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Corrigendum

Relative regular Riemann–Hilbert correspondence (Proc. London
Math. Soc. (3) 122 (2021) 434–457)

Luisa Fiorot, Teresa Monteiro Fernandes and Claude Sabbah

Abstract

We correct a wrong argument in Proposition 3.3.

The numbers for the statements or the bibliography refer to the main text [1]. We have noticed
a wrong argument in the proof of Proposition 3.3. On page 454, line 1, we claimed that “Since
i∗s(βM,N ) is an isomorphism according to the regularity assumption and the absolute case. . .”.
The regularity assumption together with the Riemann–Hilbert correspondence in the absolute
case imply an isomorphism

Li∗sRHomDX×S/S
(M,N )

(1)� RHomDX
(Li∗sM, Li∗sN )

(2)� RHomCX
(pSolLi∗sN , pSolLi∗sM)

(3)� RHomCX
(Li∗s

pSolXN , Li∗s
pSolXM)

(4)� Li∗sRHomp−1
X OS

(pSolXN , pSolXM),

where (1) and (3) have been observed in [15, Proposition 3.1], (2) is explained in (i) of the
proof of [11, Corollary 4.3.5], and (4) is [15, Proposition 2.10]. We have wrongly inferred that
H0 ◦ Li∗s of the natural morphism

βM,N : HomDX×S/S
(M,N ) −→ H0RHomp−1

X OS
(pSolXN , pSolXM),

which is our i∗s(βM,N ), is an isomorphism (note that H0RHomp−1
X OS

(pSolXN , pSolXM) is
denoted Homperv(p−1

X OS)(
pSolXN , pSolXM) in the main text, cf. Lemma 2.10). Our assumption

of strictness of N only implies an isomorphism

H0RHomDX
(Li∗sM, Li∗sN ) � HomDX

(i∗sM, i∗sN ) ∼−→ H0Li∗sRHomp−1
X OS

(pSolXN , pSolXM),

where both left-hand and right-hand sides can be different from the source and target of
i∗s(βM,N ) (we have an example for the left-hand side taken from [15, Example 3.12]). However,
once Theorems 1 and 3 are proved as explained below, the morphism (14) on page 452
is an isomorphism and by taking its H0 with F = pSolX(N ) (so that RHS

X(F ) � N ), we
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recover that βM,N is an isomorphism, from which we deduce the statement wrongly inferred
a priori.

We show how to get around this error. For that purpose, Sections 3.2– 3.4 of the main text
have to be replaced with Sections E.3.2–E.3.4 below (Sections 3.1 and 3.5 remain unchanged).
The main change is the new statement of Proposition E.3.3 (which essentially corresponds to
Corollary 3.4 of the published text) and its new proof. The end of the proof of Theorem 3 has
been adapted correspondingly. As a consequence of the new proof of Theorem 3, the statement
of Proposition 3.3 in the main text turns out to be true, as well as all other statements of the
article. We only modify the way to obtain them.

E.3.2. Proof of Theorem 3: first step

For a regular holonomic DX×S/S-module M, let us set (see Proposition 1.5)

Char(M) :=
⋃

j Char(HjM) =
⋃

i∈I Λi × Ti

Supp(M) =
⋃

i∈I Yi × Ti, SuppX(M) = Z = ZM :=
⋃

i∈I Yi.
(E.1)

Proposition E.3.3. Let M be a strict regular holonomic DX×S/S-module with X-support
Z. Let Y ⊂ X be a hypersurface containing the singular locus Sing(Z) and all subsets Yi with
dimYi < dimZ. Then the localized DX×S/S-module M(∗(Y × S)) is regular holonomic and
locally isomorphic to the projective pushforward of a relative D-module of D-type.

Proof. The question is local. The assumption on Y implies that Zo := Z \ (Y ∩ Z) is smooth
of pure dimension dimZ and the characteristic variety of M|(X\Y )×S is contained in (T ∗

ZoX) ×
S. By Kashiwara’s equivalence, M|(X\Y )×S is the pushforward by the inclusion map of a
coherent OZo×S-module with flat relative connection. The strictness assumption entails that
this flat relative connection is of the form (OZo×S ⊗p−1OS

F,dZo×S/S) for some locally constant
p−1
ZoOS-module F which is locally free of finite rank.
One can find a complex manifold X ′ together with a divisor with normal crossings Y ′ ⊂

X ′ and a projective morphism π : X ′ → X which induces a biholomorphism X ′ \ Y ′ ∼−→ Zo.
We set δ = dimZ − dimX = dimX ′ − dimX � 0. For each �, we consider the DX′×S/S-module
M′� := H�

Dπ
∗M. Although it is not yet known to be coherent, it is locally an inductive limit

(union) of coherent DX′×S/S-submodules, hence also of OX′×S-coherent submodules (cf. [2,
Proposition 2.1]). We simply say that M′� is quasi-coherent (over DX′×S/S or over OX′×S).
We will use the following property, that is deduced from the similar one for coherent OX′×S-
modules:

(∗) A quasi-coherent OX′×S-module which is zero on (X ′ \ Y ′) × S becomes zero after being
tensored with OX′×S(∗(Y ′ × S)).

If � 	= δ, the sheaf-theoretic restriction of M′� to (X ′ \ Y ′) × S is zero, so M′�(∗(Y ′ × S)) = 0
owing to quasi-coherence, according to (∗). Since OX′×S(∗(Y ′ × S)) is flat over OX′×S , we
conclude that

Dπ
∗(M(∗(Y × S))

)
[δ] � (

Dπ
∗M)

(∗(Y ′ × S))[δ] � M′δ(∗(Y ′ × S)). (E.2)

We will first check that M′δ(∗(Y ′ × S)) is strict (i.e., Li∗sM′δ(∗(Y ′ × S)) has cohomology in
degree zero only, cf. [18, Lemma 1.13]). Strictness of M(∗(Y × S)) follows from flatness of
OX×S(∗(Y × S)) over OX×S . Furthermore, as a complex of OX′×S-modules, Dπ

∗(M(∗(Y ×
S))

)
is nothing but Lπ∗(M(∗(Y × S))

)
. We then have, for each s ∈ S,
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Li∗sM′δ(∗(Y ′ × S)) � Li∗sLπ
∗(M(∗(Y × S))

)
[δ] (according to (E.2))

� Lπ∗(i∗sM)(∗Y )[δ] (strictness of M(∗(Y × S)))

� Lδπ∗(i∗sM)(∗Y ) (same argument as (E.2))

has cohomology in degree zero only, as wanted. The same argument shows that, while
M′δ(∗(Y ′ × S)) may a priori be non-DX′×S/S-coherent, its restriction by i∗s is regular
holonomic (hence DX′ -coherent) for each s ∈ S.

We now take up the argument of [18, Proof of Proposition 2.11] and show that M′δ(∗(Y ′ ×
S)) is regular holonomic and of D-type with respect to Y ′. As noticed at the beginning of the
proof, F := HomDX′×S/S

(OX′×S ,M′δ)|(X′\Y ′)×S is locally free of finite rank. Let j′ : X ′ \ Y ′ ↪→
X ′ denote the inclusion. The isomorphism

j′−1M′δ ∼−→ (O(X′\Y ′)×S ⊗p−1OS
F,dX′×S/S) =: (V,∇)

extends as a morphism of DX′×S/S(∗(Y ′ × S))-modules

ψ : M′δ(∗(Y ′ × S)) −→ j′∗(V,∇).

Let m be a local section of M′δ(∗(Y ′ × S)). Since for each s ∈ S, i∗s
(M′δ(∗(Y ′ × S))

)
=

(i∗sM′δ)(∗Y ′) is regular holonomic, the image m(·, s) of m in the latter module has moderate
growth in the sense of [6, p. 862] when restricted to X ′ \ Y ′. According to [18, Lemma 2.12],
ψ(m) is a local section of the Deligne extension Ṽ of (V,∇), which is DX′×S/S-coherent by
Theorem 1.13(a). Then imψ, being quasi-coherent, is a coherent DX′×S/S-submodule of Ṽ . By
applying (∗) to the kernel and cokernel of ψ, we obtain that ψ is an isomorphism.

According to Proposition 1.12, Dπ∗Ṽ has regular holonomic cohomology. Furthermore, since
Hj

Dπ∗Ṽ is supported on Y × S for j 	= 0, and since Ṽ = Ṽ (∗(Y ′ × S)), so that Dπ∗Ṽ �
Dπ∗Ṽ (∗(Y × S)), we have

Dπ∗Ṽ � H0
Dπ∗Ṽ � H0

Dπ∗Ṽ (∗(Y × S)).

On the other hand, there is a natural adjunction morphism (cf. [5, Lemma 4.28 and
Proposition 4.34])

Dπ∗Dπ
∗M[δ] −→ M,

which induces a morphism of coherent DX×S/S(∗(Y × S))-modules

H0
Dπ∗Ṽ � (H0

Dπ∗M′δ)(∗(Y × S)) −→ M(∗(Y × S)),

where the left-hand side is DX×S/S-coherent and regular holonomic. Its cokernel is zero on
(X \ Y ) × S and DX×S/S(∗(Y × S))-coherent, hence it is zero according to (∗), so that this
morphism is an isomorphism. In conclusion, M(∗(Y × S)) is regular holonomic. �

After the proof of Theorem 1, Proposition E.3.3 can be improved:

Corollary E.3.4 (of Theorem 1). For any M in Db
rhol(DX×S/S) and any hypersurface

Y ⊂ X, the complexes RΓ[Y×S](M) and M(∗(Y × S)) belong to Db
rhol(DX×S/S).

Proof. In view of the equivalence of Theorem 1, this reduces to Proposition 2.6. �

E.3.3. End of the proof of Theorem 2

We can argue by induction on the length of M and then reduce to the cases of a projection
and of a closed embedding. The first case was proved in Section 1.4.1. The case of a closed
embedding i : Y ↪→ X is a consequence of Corollary E.3.4.
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E.3.4. End of the proof of Theorem 3

We refer to [11, Lemma 4.1.4] which contains the guidelines for the proof of Theorem 3. In
what follows, for a complex manifold X and M ∈ Db

rhol(DX×S/S) we consider the statement

PX(M) : RHomDX×S/S
(M,RHS

X(F )) ∈ Db
C-c(p

−1
X OS) ∀F ∈ Db

C-c(p
−1
X OS),

in other words, M satisfies Theorem 3.

Lemma E.3.6. The statement P satisfies the following properties.

(a) For any manifold X and any open covering (Ui)i∈I of X,

PX(M) ⇐⇒ PUi
(M|Ui

) ∀ i ∈ I.

(b) PX(M) ⇒ PX(M[n]) ∀n ∈ Z.

(c) For any distinguished triangle M′ → M → M′′ +1−→ in Db
hol(DX×S/S),

PX(M′) ∧ PX(M′′) ⇒ PX(M).

(d) For any regular relative holonomic DX×S/S-modules M and M′,

PX(M⊕M′) ⇒ PX(M).

(e) For any projective morphism f : X → Y and any regular holonomic DX×S/S-module M
which is f -good,

PX(M) ⇒ PY (Df∗M).

(f) If M = H0(M) is torsion, then PX(M) is true.

Proof. It is clear that PX(•) satisfies Properties E.3.6(a), (b), (c), (d). Then Property (e)
follows, by adjunction, Proposition 2.9 and by the stability of S-C-constructibility under proper
direct image. Last, Property (f) has been seen in Section 3.1. �

End of the proof of Theorem 3 (and hence that of Theorem 1). We wish to prove that
PX(M) is true for any X and M ∈ Db

rhol(DX×S/S).
We proceed by induction on the dimension of ZM (cf. (E.1)). If dimZM = 0, then PX(M)

holds true by Kashiwara’s equivalence and E.3.6(e), since PX(M) obviously holds if X has
dimension zero.

Let us suppose PX(N ) true for any N ∈ Db
rhol(DX×S/S) such that dimZN < k (with k � 1)

and let us prove the truth of PX(M) for M ∈ Db
rhol(DX×S/S) with dimZM = k.

By E.3.6(b) and (c), we are reduced to proving PX(M) in the case where M is a regular
holonomic DX×S/S-module with dimZM = k.

Following the notation of Section 1.1, let t(M) (respectively f(M)) be the torsion part
(respectively the strict quotient) of M. According to E.3.6(c) (applied to the distinguished
triangle t(M) → M → f(M) +1−→) and to E.3.6(f), we are reduced to proving PX(f(M)). Note
that dimZf(M) � k since Zf(M) ⊆ ZM. If dimZf(M) < k, PX(f(M)) holds true by induction.
Hence we are reduced to proving PX(M) in the case where M is a strict regular holonomic
DX×S/S-module such that dimZM = k, a property that we now assume to hold. Locally (recall
that PX(M) is a local statement by E.3.6(a)), there exists a hypersurface Y in X satisfying
the assumptions of Proposition E.3.3.

On the one hand, it is enough to check the property PX(M) for those F ∈ Db
C-c(p

−1
X OS)

such that F = F ⊗ C(X\Y )×S . Indeed, let us check that it holds for those F such that F = F ⊗
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CY×S . For any F ∈ Db
C-c(p

−1
X OS), the complex N := RHS

X(F ⊗ CY×S) � RΓ[Y×S](RHS
X(F ))

belongs to Db
rhol(DX×S/S) according to Proposition 2.6(b), and we have, by [16, (3)],

RHomDX×S/S
(M,N ) � RHomDX×S/S

(DN ,DM).

The duality functor preserves Db
hol(DX×S/S) by [20, Proposition 2.5] and also Db

rhol(DX×S/S)
since it does so in the absolute case and Li∗s(DM) � D(Li∗sM). Let us also notice that DM =
H0DM is strict holonomic (cf. [18, Proposition 2]). Since N has DX×S/S-coherent cohomology
and is supported on Y × S, we have

RHomDX×S/S
(DN , (DM)(∗(Y × S))) = 0.

Furthermore, DM being regular holonomic and strict, so is (DM)(∗(Y × S)) by Proposi-
tion E.3.3, hence RΓ[Y×S](DM) is also regular holonomic, as well as M′ := DRΓ[Y×S](DM).
Finally, applying once more [16, (3) and (1)], we obtain

RHomDX×S/S
(M,N ) � RHomDX×S/S

(M′,N ),

with dimZHjM′ < k for any j, so the latter complex is S-C-constructible by the induc-
tion hypothesis.

On the other hand, M(∗(Y × S)) is regular holonomic, according to Proposition E.3.3.
We can now apply E.3.6(c) to the triangle RΓ[Y×S](M) → M → M(∗(Y × S)) +1−→ (which is
a distinguished triangle in Db

rhol(DX×S/S)). By the induction hypothesis, PX(RΓ[Y×S](M))
holds true.

We thus assume that M = M(∗(Y × S)) is strict, and F = F ⊗ C(X\Y )×S . Let π : X ′ → X
be as in Proposition E.3.3 and set δ = dimX ′ − dimX. Note that the assumption on F entails

π−1F = π−1F ⊗ C(X′\Y ′)×S ,

while Dπ
∗M[δ] is concentrated in degree zero and is of D-type along Y ′. According to

Lemma 2.14, RHomDX′×S/S
(Dπ

∗M[δ],RHS
X′(π−1F )) is an object of Db

C-c(p
−1
X′OS), isomorphic

to RHomDX′×S/S
(Dπ

∗M, Dπ
∗ RHS

X(F )) by Proposition 2.9, and thus Rπ∗ of the latter is an
object of Db

C-c(p
−1
X OS). By adjunction we have (cf. [5, Theorem 4.33])

Rπ∗RHomDX′×S/S
(Dπ

∗M, Dπ
∗ RHS

X(F )) � RHomDX×S/S
(Dπ∗Dπ

∗M[δ],RHS
X(F ))

� RHomDX×S/S
(M,RHS

X(F )),

since the adjunction Dπ∗Dπ
∗[δ] → Id is an isomorphism when applied to DX×S/S(∗(Y × S))-

modules. This ends the proof of Theorem 3. �
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