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We develop a normative framework for the optimal design, value assessment, and risk management inte-

gration of combined custom contingent claims. A risk averse firm faces a mix of financially insurable and

noninsurable risk. The firm seeks optimal positioning in a pair of custom claims, one written on the insurable

term, and another written on any listed index correlated to the noninsurable term. We prove that a unique

optimum always exists unless the index is redundant, and show that the optimal payoff schedules satisfy a

design integral equation. We assess the firm’s incremental benefit in terms of both an indifference value and

an efficiency rating: this benefit increases with the correlation of the index to the noninsurable term, and it

decreases with the correlation of the index to the insurable term. Our hedge proves empirically relevant for a

highly risk averse firm facing a market shock (COVID-19 pandemic). In the context of a newsvendor model

featuring random price and demand, we show that: (i) integrating our optimal combined custom hedge with

the corresponding optimal procurement policy allows the firm to obtain a significant improvement in both

risk and return; (ii) this gain may be traded off for a substantial enhancement in operational flexibility.

Key words : Integrated risk management; Noninsurable risk; Financial product design; COVID-19

pandemic.

History : This paper was first submitted on April 12, 1922 and has been with the authors for 83 years for

65 revisions.

1. Introduction

A large body of asset pricing literature is devoted to the direct problem of financial contingent

claim (or, derivative) pricing: given a payoff schedule, one looks for a rational theory to assign a

corresponding fair value (Bingham and Kiesel 2004). Little attention has been paid to the inverse

problem of derivative origination, whereby an economic agent seeks an affordable claim to optimize
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a standing business position. Yet, contingent claim design is of great relevance in the value chain

of financial business operations, nested inside the functional area of product design (Xu et al.

2016). In addition, customization (i.e., tailoring a payoff written on a given underlying risk term)

and combination (i.e., assembling payoffs written on distinct underlying risk terms) are typically

performed independently of each other. This is odd given the increasing popularity of derivative

combination both in portfolio allocation (Haugh and Lo (2001), Faias and Santa-Clara (2017)) and

in corporate risk management (Ding et al. (2007), Chen et al. (2014)).

We hope to contribute to the existing literature by: (i) providing a comprehensive methodology

for the optimal design of combined custom financial claims to hedge corporate exposure mixing

financially insurable and noninsurable risk terms (Basak and Chabakauri 2012); (ii) quantitatively

assessing the firm’s gain over the best alternatives developed so far, and (iii) analyzing the value of

integrating the optimal combined custom hedge into optimal management of physical operations,

in keeping with a holistic approach to risk management (Birge 2015).

1.1. Motivation

The problem of financial contingent claim design dates back to the pioneering work of Leland

(1980) and Brennan and Solanki (1981) on portfolio insurance. These authors search for a payoff

function of portfolio value that maximizes expected utility. Although presented as a hedging issue,

the problem is in essence a speculative gain optimization, so long as the agent’s business position

does not enter the utility to maximize. On the contrary, real world trades show that derivative

buyers and sellers may not have a mere speculative attitude. Corporate hedgers, for instance, seek

protection against cashflow variability in their business revenues; hence, their standing position

must affect the hedge they select (Fraser and Simkins 2010).

Our starting point is the business position of a manufacturing firm, a commodity merchant, or a

financial trader, which we refer to hereafter as a “firm”. Future operating (or, business) revenues,

say π, typically depend on a financially insurable risk term X (i.e., a quantity that is commonly

verifiable at the time of uncertainty resolution, Chod et al. (2010)) and an uninsurable risk term

Y . Each term may be anything ranging from a random variable (r.v., henceforth) to a stochastic

process. In addition, we allow π to depend on the firm’s decision about an operational control q

driving the way risk terms interact within the position in question. In general, q may range from a

scalar to a more complex control policy. Revenues π= π (X,Y ; q) are referred to as mixed exposure.

A financial intermediary acts as a claim originator in that (i) it supplies any claim H written on

X with payoff function (or functional) H (·) in an assigned class H; (ii) it puts a price VH on H

through a (possibly individual) state-price density (Caldentey and Haugh 2006). We say that risk

term X is claimable in H provided that both of these two previous conditions are met. (Whenever
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the class of claims is clearly understood, we simply say the term is claimable.) In addition, there

is a side index I that is claimable in a class G. The firm can thus buy claims H on X and G on

I, devise a static hedge H +G, and get to full exposure π (X,Y ; q) +H (X) +G (I) for a total

hedging cost VH +VG. In contrast, we assume that no claim on risk term Y is available for trading

whatsoever, and say that Y is nonclaimable. Claimability thus subsumes the attribute of being

financially insurable de facto. Henceforth, we identify a claim, or hedge, H on X with its random

payoff H (X) or payoff function (or functional) H (x).

Academic literature extensively examines the problem of optimizing business revenues π (X,Y ; q)

through financial hedges (here, H +G), operational tools (here, q), or a suitable integration of

the two. A first strand of research focuses on optimal positioning in a class of financial claims

exclusively written on the claimable term X. The risk engendered by the nonclaimable component

Y is indirectly handled through the statistical dependence on X, if any. McKinnon (1967) (resp.,

Rolfo (1980)) devise the minimum variance (resp., maximum mean-variance (MV)) forward hedge

for a farmer exposed to a claimable soft commodity price X and a nonclaimable crop yield Y .

Kerkvliet and Moffet (1991) derive futures hedge ratios in the context of an international trade

involving an FX rate X and foreign revenues Y . Moschini and Lapan (1995) extend the method to

expected utility preferences and enlarge the hedging opportunity space by including vanilla options

and straddles. Brown and Toft (2002) adopt a value maximizing target and derive an optimal

custom claim featuring a quadratic payoff function.

The aforementioned financial hedges on X may be integrated with operational management

policies defined by a control q. Ritchken and Tapiero (1986) approach price-demand risk through

a joint selection of physical stock procurement and financial option holding. Chowdhry and Howe

(1999) put forward an integrated strategy, which addresses the price-quantity risk experienced by

an international corporation featuring mean-variance preferences, and derive a genuinely custom

hedge in a risk neutral setup. Ding et al. (2007) integrate real options and derivative packages to

maximize MV preferences under nonzero risk premia. Chen et al. (2014) complete this research

path, and derive a fully custom optimal claim in a general setup.

A second strand of research focuses on devising financial claims written on a side index I

exhibiting statistical dependence on the nonclaimable term Y .Gaur and Seshadri (2005) consider

fixed-price newsvendor (NV) revenues under risk averse preferences: their financial hedge is sought

among alternative classes of derivative packages written on an index I that partially spans the risk

engendered by demand Y . Chod et al. (2010) consider a value maximizing firm acting in a risk

neutral world: they derive an optimal claim on index I and boil it down to a portfolio of vanilla

instruments available for trading. Gerner and Ronn (2013) consider an airline company exposed

to jet-fuel consumption Y1 and price Y2: as long as no futures trade on jet-fuel price, they face a
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Figure 1 Single-claim vs. combined custom hedging of mixed claimable-nonclaimable exposure.
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nonclaimable risk vector Y := (Y1, Y2), which they manage through a suitable forward hedge on a

side index I.

Extant literature thus develops two approaches to financially hedge mixed exposure: one uses

financial claims written on the claimable term entering the position in question; the other adopts

claims written on a claimable side index. Figure 1 illustrates this situation.

The two approaches share a common feature: financial hedging takes the form of either a sin-

gle, possibly custom, contingent claim (or trading strategy), or a parametrized array of assigned

derivatives. A simultaneous consideration of claim customization and combination seems to be

overlooked. We contend that the effectiveness of any (possibly integrated ) risk management policy

may significantly be hindered by such a constraint. Our conjecture calls for a theoretical devel-

opment to unify the aforementioned hedging approaches, and devise a normative method for the

design, assessment, and integration of the optimal combined custom hedge H∗ (X) +G∗ (I) facing

mixed exposure π (X,Y ; q). Interestingly, our study owes a great deal to a research strand that

extends the aforementioned static approaches to a dynamic setup (Caldentey and Haugh (2006),

Caldentey and Haugh (2009), Wang and Yao (2017), and Kouvelis et al. (2018)). Appendix EC.1(D)

elaborates on this connection.

1.2. Contribution

Our contribution is threefold.

1. We design and analyze the mean-variance optimal combined custom hedge H∗ (X) +G∗ (I) of

business positions featuring mixed exposure π = π (X,Y ; q) to financially insurable and noninsur-

able risk terms X and Y according to an operational control q. This allows us to unify the two

aforementioned strands of research in the area of corporate risk management.



Guiotto and Roncoroni: Combined Custom Hedging
Article submitted to Operations Research; manuscript no. OPRE-2019-01-058.R3 5

Optimal hedging may be cast as a budget-constrained functional optimization problem over a

set of regular payoffs written on tradable indices only, hence under the assumption of incomplete

information whereby no knowledge about nontradable risk terms may enter the hedging instrument

(Caldentey and Haugh 2006). Each claim entails pure hedging and speculative terms, plus a new

cross-hedge component. Both the existence and uniqueness of the optimal combined claims are

guaranteed, provided the two claimable terms X and I are unrelated to one another according to

a suitable measure of dependence which we identify. This measure explicitly excludes that they

are functionally dependent on one another, meaning that f (X) 6= h (I) for all functions f and h.

By assuming absolutely continuous distributions for all risk variables, the optimal payoff functions

satisfy a Fredholm integral equation.

2. We provide a sharp analytical assessment of the incremental benefit a risk averse firm ascribes

to our optimal combined custom hedge H∗ (X) +G∗ (I) compared to either optimal single-claim

custom hedge H[ (X) or G[ (I). This benefit can be expressed in terms of indifference value (i.e.,

a monetary amount) or relative efficiency (i.e., a dimensionless rating); they allow us to quantify

the power of our combined hedging proposal over the best existing alternatives.

We define combination value as the precise monetary amount which, when added to an optimal

single-claim custom hedge, makes the resulting payoff as attractive as our optimal combined custom

hedge’s in terms of MV. We derive an explicit expression for this quantity in terms of optimal

claim G∗ (I) and obtain two tight lower bounds for the combination value in terms of a suitable

correlation measure between X and I and other model primitives. These bounds are related to

a refined notion of risk aversion which allows us to differentiate between strictly and weakly risk

averse firms. By assessing a combination value, we may rank any array of alternative claimable

side indices to in turn decide which one to adopt. We also extend the efficiency index proposed

by Brown and Toft (2002) to benchmark alternative hedges with respect to a scale ranging from

no hedge to our optimal combined custom hedge. We derive a formula for efficiency in terms of

optimal claim G∗ (I) and a tight upper bound. These results allow us to decide whether to switch

from a single-claim to a combined custom hedge. A case-study shows the power of this method in

the context of a global economic crisis.

3. We assess the value enhancement from integrating our optimal combined custom hedge H∗ (X)+

G∗ (I) within the optimal management of business and physical operations. For a generalized

NV model, we experimentally measure the extent to which our integrated policy outperforms all

existing primary alternatives and the effect it has on physical operations.
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We consider a stylized case featuring a gas retailer exposed to random price and demand, and

craft a new class of integrated risk management policies. In a realistic parametric setup, the inte-

grated financial-operational policy consisting of our optimal combined custom hedge and the related

optimal procurement provides a risk averse firm with as much as a simultaneous 38.31% reduction

in risk (i.e., standard deviation) and 14.22% increase in return (i.e., expected value) of operating

revenues. This latter comprises a financial speculative term represented by the expected payoff of

the hedge, which is negative, and an operational term given by the variation in expected revenues

obtained by switching from the optimally handled naked position to the naked position managed

through the optimal integrated policy (+45.3% in gas procurement order), which exceeds the afore-

mentioned figure. This underpins the hedging role of combining claims. It also shows the speculative

attitude of the hedge provider who correspondingly cashes in positive expected revenues from their

short hedge position. Finally, our hedge offers a key leverage to widen the profitable range of a

firm’s operations: gas procurement may increase anywhere from 2.2% to 54.0% while ensuring an

increase in return and a reduction of risk. Ultimately, our analysis highlights the importance of

combined custom hedging for integrated risk management whenever noninsurable risk is present.

Achieving the three aforementioned goals in the simplest possible (i.e., a one-period) time frame

and the most general (i.e., random-element based) state variable setup is a motive for our model.

The paper is organized as follows. Section 2 sets up the model framework. Section 3 presents our

optimal combined custom hedge. Section 4 quantifies the value enhancement it yields. Section 5

analyzes a new class of integrated risk management policies. Section 6 concludes with a summary,

empirical predictions, managerial insights, and avenues for future research. Complements, technical

details, and all proofs are available in the Electronic Appendices.

2. Model

We develop a normative framework for the optimal design of combined custom contingent claims.

Let us consider a one-period time frame {0, T}: financial hedging and an operational decision occur

at time 0; uncertainty is resolved for all risk terms, and cash flows are paid out at time T . For

the sake of simplicity, we assume interest rates are zero. A firm expresses their beliefs through

a probability space (Ω,F ,P). Measure P denotes a physical probability reflecting an estimation

based on a time series of observed samples, a purely subjective assessment, or any blend of the two.

The sources of corporate risk are represented by a term X that is claimable in a suitable set HX
and a nonclaimable term Y . An additional side (i.e., position external) index I is claimable in a set

HI . (Exact hedging spaces, or classes, are defined in the next subsection.) Together, variables X,

Y , and I represent the random state of the system at time T as seen from time 0. We let them be

random elements defined on (Ω,F ,P). Hence, the model can handle both static and dynamic risk

systems. Table EC.1 in Appendix EC.1.1 reports all terms and symbols appearing in the model.
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Example 1 (Static and dynamic systems). Let 0 and T be the endpoints of a time interval

[0, T ] and let (Xt)06t6T and (Yt)06t6T be assigned stochastic processes. A standard case in finance

entails figures observed exactly at time T , i.e.,X :=XT and Y := YT . Alternatively, we may consider

functionals of observed price paths. For instance, Fusai et al. (2008) consider discretely monitored

Asian-style deals where payoffs depend on the arithmetic average of a commodity price monitored

over a finite set t1, ..., tN of dates prior to the payoff date T . One may correspondingly set X :=

N−1
∑N

j=1X(tj) and Y := N−1
∑N

j=1 Y (tj). More generally, risk variables can be the underlying

stochastic processes, say X := (Xt)06t6T and Y := (Yt)06t6T .

2.1. Corporate Positions featuring Mixed Exposure

At time 0, the firm holds a naked (i.e., hedge-free) position. This generates a time T cash flow

π= π (X,Y ; q) combining claimable term X with nonclaimable term Y according to an operational

policy q. Function π (·, ·; q) is assumed to be sufficiently regular to ensure that π (X,Y ; q) is square-

integrable for any admissible control q. This quantity defines the time T state of a financially

uncontrolled system, whereby no financial hedge has been entered in and an operational control

policy q has been selected at time 0. In keeping with Caldentey and Haugh (2006), the operational

policy domain may range from a set of scalars to a class of stochastic control policies which do not

affect any system variable. Cash flow π thus accommodates a wide array of corporate exposure

instances. The following examples are detailed in Appendix EC.1.2.

Example 2 (Mixed exposure). 1) Primary commodity production model (Moschini and Lapan

1995): π (X,Y ; q) :=XY q−c (q). 2) Stochastic clearance price model (Caldentey and Haugh 2009):

π(X,Y ; q) := (Y − ξq) q − Xq; 3) Generalized newsvendor model (Secomandi and Kekre 2014):

π (X,Y ; q) := s (X)v (Y, q) + bid (X) (q−Y )+ − ask (X) (Y − q)+ − pq; 4) Multinational produc-

tion capacity allocation model (Chowdhry and Howe 1999): π (X,Y;q) := X1Y1 − c1o1 (q,Y) +

X3 [X2Y2− c2 (Y1 +Y2− o1 (q,Y))].

2.2. The Space of Combined Custom Hedges

Hedging is determined by positioning in the custom derivative market at time 0. The firm may

enter a tailored contingent claim with payoff H (X) to settle at time T . However, the idiosyncratic

risk portion carried over by Y remains unhedged so long as the risk term Y is nonclaimable. The

firm may then identify a side index I correlated to Y and buy a custom claim with time T payoff

G (I). A combined custom hedge H (X)+G (I) is defined by a pair of combined claims H (X)∈HX
and G (I)∈HI , where H# denotes the space of σ (#)-measurable r.v.’s with finite variance. It also

requires meeting a budget constraint VH(X) +VG(I) 6w, where V# denotes the fair value of a claim
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with payoff #, and w is the firm’s cash available for hedging. This constraint is well-defined as long

as X and I are claimable. Time T full exposure revenues can be expressed as:

π(X,Y ; q) + [H(X) +G(I)] , (1)

where (H (X) ,G (I)) defines a financial control policy. They represent the time T state of a finan-

cially controlled system in our hedging problem. In general, a payoff H (X) is an HX-measurable

variable, that is a functional of random element X as a whole: later, we derive conditions whereby

H (X) is a genuine payoff function x→H (x) to compute on each sample value x=X (ω). Similar

considerations hold for G (I) and H (X) +G (I).

We assume that the firm can price the two claims using arbitrage pricing theory (Bingham and

Kiesel 2004). That is VH(X) =EQ [H (X)] and VG(I) =EQ [G (I)], where Q is an equivalent martingale

measure (EMM) compatible with the absence of arbitrage opportunities. Following Caldentey and

Haugh (2006) and (2009), we assume that Q is assigned through a pricing kernel dQ/dP the firm

is aware of. (Appendix EC.1.4 elaborates further on this point.) We need not assume completeness

in the underlying market model. However, this property ensures the uniqueness of both the EMM

Q and the consequent hedge. The budget constraint may be expressed as:

EQ [H (X) +G (I)]6w. (2)

Appendix EC.2.1 provides the additional regularity conditions allowing us to cast the hedge

design problem within a Hilbert space setting: this framework lets us visualize the underlying issue

through a neat geometrical representation (see Appendix EC.1.5) and develop a solution in full

generality.

2.3. Optimal Design: Problem Statement

The quality of a combined custom hedge is assessed through a MV utility criterion U (·) := %E [·]−
(a/2)Var [·] , where % and a are nonnegative scalars. If %> 0, then ratio a/% defines the firm’s risk

aversion. If a> 0, the reciprocal ratio %/a denotes the firm’s risk propensity. The case whereby %= 0

and a> 0 represents a variance minimizing firm. A MV target allows us to obtain optimal hedges

as the sum of pure hedging and speculative terms. This adheres to the empirical evidence about

traded contingent claims in financial markets (Anderson and Danthine 1980). Correspondingly, we

use the term “hedging” in the broad sense of “contingent claim positioning”. Our adoption of MV

preferences is supported by further considerations detailed in Appendix EC.1.3.

The firm seeks to design a pair of combined custom claims maximizing a MV target, subject to

payoff regularity and a budget constraint, i.e.,

max
(H(X),G(I))∈HX×HI : EQ[H(X)+G(I)]6w

U (π+ [H(X) +G(I)]) , (3)
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where π := π(X,Y ; q). Any solution (H∗,G∗) to this problem defines an optimal combined custom

hedge H∗ (X) +G∗ (I) for the firm in question. We omit explicitly indicating the dependence of π

on q whenever this is immaterial to the analysis (Sections 3 and 4), but include it each time this

is essential (e.g., Section 5).

We can simplify the design problem (3) by showing that: 1) The maximum is attained in the

geometrical variety defined by constraint EQ[H(X) + G(I)] = w; 2) In a MV setup there is no

loss of generality when assuming a zero cash endowment w = 0; 3) The maximum can be sought

among value-centered claims: EQ[H(X)] = 0 and EQ[G(I)] = 0. All details are reported in Appendix

EC.2.2. Note that property 2 also holds under the value maximizing criterion adopted in Caldentey

and Haugh (2009). In the following, we exclusively focus on the value-centered problem. Appendix

EC.1.4 provides a number of clarifying remarks about the extent, limitations, and possible exten-

sions of our model, while Appendix EC.1.5 illustrates our theory within a simplified Bernoulli

market model.

3. Optimal Design

3.1. Economic Characterization

We derive and analyze the economic structure of combined contingent claims that define any

optimal combined custom hedge. Let FX (resp., FI) denote the sub σ-algebra of the events space

F generated by X (resp., I), which represents the information gleaned by the observation of X

(resp., I), and E[ ·|F#] stand for the conditional expectation operator given F#, which is the

function of variable “#” that best approximates the argument “·” in the space of finite variance

r.v.’s.

Proposition 1 (Characterization of optimal combined custom hedge). Any optimal

combined custom hedge H∗ (X) +G∗ (I) for the value-centered problem:

U ∗
HXI := max

(H(X),G(I))∈HX×HI : EQ[H(X)]=EQ[G(I)]=0
U (π (X,Y ) + [H (X) +G (I)]) (4)

involves combined claim payoffs H∗(X) = H∗0 (X) − EQ[H∗0 (X)] and G∗(I) = G∗0(I) − EQ[G∗0(I)],

where both H∗0 (X) and G∗0 (I) display a zero mean under P and satisfy the first-order condition:H∗0 (X) = −E [ (π−E[π])|FX ] +E
[
%
a

(
1− dQ

dP

)∣∣FX

]
−E [G∗0(I)|FX ] ,

G∗0(I) = −E [ (π−E[π])|FI ] +E
[
%
a

(
1− dQ

dP

)∣∣FI

]
−E [H∗0 (X)|FI ] .

(5)

Combined claims H∗ (X) and G∗ (I) are value-centered as per budget constraint. Their cash flows

are driven by payoffs H∗0 (X) and G∗0 (I) solving system (5), each featuring as many as three

financially distinct components. We analyze the structure of H∗0 (X), with G∗0 (I) following mutatis

mutandis.
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A first term is the best estimate one can make of the deviation of business revenues π from their

average value E[π], based on the sole knowledge of the claimable term X appearing there. In a

context of purely claimable exposure (π = π (X)) and lack of market risk premium (P=Q) this

term boils down to the optimal single-claim hedge derived in Chowdhry and Howe (1999). If the

market quotes a nonzero risk premium (P 6=Q), the same term arises as the variance minimizing

(%= 0) single-claim hedge (see Proposition EC.1).

A second term builds on the market risk premium 1−dQ/dP. It defines the optimal single-claim

position for a pure speculator (π= 0) and represents the reward they receive for risk taking (Poitras

(2013)). This cash flow acts as a rebate over the minimum variance hedging payoff. Interestingly,

a speculative component enters the optimal derivative schedule proportionally to the ratio %/a

representing firm’s propensity to risk. Notably, this term is independent of the firm’s position and

plays a ubiquitous role in optimal derivative positioning (Leland (1980), Brennan and Solanki

(1981), Carr and Madan (2001)).

A third term seems to be new in the existing literature on the subject. It defines a cross-claim

effect representing a hedge enhancement afforded by the linkage between X and I. Specifically,

the greater the dependence between side index I and position’s claimable X, the stronger the

contribution of one claim, say G∗ (I), to the payoff of the other claim, say H∗ (X). An offsetting

cross-claim effect may explain the underhedging puzzle arising in asset pricing, a phenomenon

usually ascribed to utility prudence (Adam-Müller 1997), basis risk (Briys et al. 1993), defaulting

OTC markets (Cummins and Mahul 2008), or liquidity needs (Mello and Parsons 2000).

Example 3 (Independent hedging index and the speculative theme). If a side index I

is statistically independent of the claimable term X, the third term in system (5) vanishes,

i.e., E[G∗(I)|FX ] = E[G∗(I)] = 0, and the (value-centered) optimal claims reduce to H∗0 (X) =

−E [K0|FX ] and G∗0(I) =−E [K0|FI ], where K0 := π+(%/a)dQ/dP−E [π+ (%/a)dQ/dP]. If index

I is also statistically independent of term Y , hence G∗0(I) = E [ (%/a) (1− dQ/dP)|FI ], then I is

useless for mitigating the firm’s exposure π although it may have a speculative role. Indeed, if risk

is the sole concern of the firm (i.e., %= 0), then G∗0(I)≡ 0. However, if expected revenues are part

of the firm’s target (i.e., % > 0), then G∗0(I) 6= 0, provided that I and the market premium dQ/dP
are not statistically independent of one another.

Essential to the present study is the optimal hedging kernel defined as K := π + (%/a)dQ/dP.

This quantity gathers both hedging and speculative components of the optimal combined hedge

in an ideal contingent claim that simultaneously spans business and market premium risks. This

can be seen by posing G ≡ 0 in the first equation of system (5) and allowing for positioning in

claims written on a variable Z that spans both market premium risk (i.e., pricing kernel dQ/dP is

FZ-measurable) and business risk (i.e., π is FZ-measurable). Note that K0 defined in the example

above is the optimal centered hedging kernel, i.e., K0 =K−E [K] .
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3.2. Existence and Uniqueness

In general, the optimal combined claim pair (H∗ (X) ,G∗ (I)) may not be unique (see, e.g., Appendix

EC.1(F)). It turns out that both the existence and uniqueness of the optimal combined claims

H∗ (X) and G∗ (I), and the hedge H∗ (X) +G∗ (I) they entail, depends on the relation between X

and I as measured through the maximal correlation index defined by:

rXI := sup
φ(X)∈HX ,ψ(I)∈HI : E[φ(X)]=E[ψ(I)]=0

ρ(φ(X),ψ(I))∈ [0,1] , (6)

where ρ is the Pearson linear correlation (Balakrishnan and Lai 2009). Appendix EC.2.3 reports

the major properties of this index.

Theorem 1 (Existence and uniqueness of optimal combined hedge). Let claimable X

and index I display a maximal correlation rXI < 1. Then, the optimal combined claim pair

(H∗ (X) ,G∗ (I)), hence the resulting combined custom hedge H∗ (X)+G∗ (I), exists and is unique.

In addition, the value-centered optimal claim H∗0 (X) solves the fixed-point functional equation:

H∗0 (X) = ΠX
0 (X) +E [E [H∗0 (X)|FI ]|FX ] , (7)

where term ΠX
0 (X) :=−E [K−E [K|FI ]|FX ] represents the best estimate a suitable function of X

can make of the portion of the optimal hedging kernel K that is unspanned by I.

Once we solve equation (7) for H∗0 (X), then G∗0(I) stems from the second equation in the first-order

system (5). This features a high level of generality, as X, Y , and I may be any kind of random

element, including finite vectors and stochastic processes. We offer examples within a log-normal,

a Bernoulli and an Itô dynamic market model in Appendix EC.1.6.

Example 4 (Log-normal market model). Under a standard market model featuring lognor-

mal variables (Bingham and Kiesel 2004), things are dramatically simpler, since unitary maximal

correlation is equivalent to having one variable functionally dependent on the other. If (X,I) =

(eZ , eW ) and (Z,W )
P∼ N (m,C), condition rXI < 1 amounts to |ρZ,W | < 1. In addition, rXI = 1

entails |ρZ,W | = 1, i.e., W = aZ + b: hence, the two underlying terms X and I are functionally

dependent one another as long as I = eW = eb(eZ)a = ebXa and the problem degenerates.

3.3. The Design Integral Equation

Under absolutely continuous distributions (with P and Q densities f# and fQ
#, respectively), com-

bined claim payoffs H∗ (X) and G∗ (I) take the form of payoff functions H∗ (x) and G∗ (i) to

compute at the values assumed by X and I, respectively; in addition, these payoff functions solve

a Fredholm integral equation. Let LP (#) be the law of a r.v. # and L2
# :=L2 (RN ,BRN ,LP (#)).
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Theorem 2 (Design integral equation). Let the N -dimensional r.v.’s X, Y , and I admit a

joint distribution density fXY I under P. If rXI < 1, then the optimal combined custom hedge

H∗ (X) +G∗ (I) exhibits payoff functions H∗(x) =H∗0 (x)− c∗H and G∗(x) =G∗0(x)− c∗G, with con-

stants c∗H := EQ [H∗0 (X)] and c∗G := EQ [G∗0(I)]; the value-centered claim payoff function H∗0 (x) in

L2
X solves a Fredholm equation of the second kind:

H∗0 (x) = ΠX
0 (x) +

∫
RN
k(x, ξ)H∗0 (ξ)dξ,

(
x∈RN

)
(8)

with integral kernel k(x, ξ) :=
∫
RN

fXI (x,i)

fX (x)fI (i)
fXI(ξ, i)di, (x, ξ)∈RN ×RN , and term:

ΠX
0 (x) = −

∫
RN
π(x, y)

fXY (x, y)

fX(x)
dy+

∫
R3N

π(ξ, y)
fXI(ξ, i)fXY I(x, y, i)

fX(x)fI(i)
dξdydi (9)

−%
a

(
fQ
X(x)

fX(x)
−
∫
RN
fQ
I (i)

fXI(x, i)

fX(x)fI(i)
di

)
,
(
x∈RN

)
.

Expressions for the payoff function G∗0(i) in L2
I are derived in Appendix EC.3.3 (formulae (EC.29)

and (EC.30)). Appendix EC.1.7 solves the design integral equation (8) for a large class of integral

kernels, proposes a new numerical scheme, and shows a convergence result.

4. Combination Value Assessment

Firms can optimally handle mixed exposure through the optimal combined custom hedge H∗ (X)+

G∗ (I). They may nevertheless decide to hedge through a single instrument on either claimable

term X or I. In this respect, two major issues present themselves:

Issue 1 How should we select an appropriate index I within a menu of claimable terms?

Issue 2 When is it worth switching from a single-claim to our combined custom hedge?

Answering these questions requires us to first assign a monetary value to our combination theme.

4.1. Financial Hedging Flexibility, Combination Value, and Risk Spanning

Access to any class H ⊂ L2 (Ω) of contingent claims defines the financial hedging flexibility of a

firm. Whenever it is well-posed, the corresponding hedge design problem is:

H∗H← max
H∈H: EQ[H]=0

U (π+H) =: U ∗
H. (10)

Example 5. The optimal single-claim custom hedges written on either X or I are defined as H[ :=

H∗HX and G[ :=H∗HI , respectively. The optimal combined custom hedge defined in Proposition 1

satisfy H∗+G∗ =H∗HXI , where HXI :=HX +HI . (Appendix EC.1.8 elaborates on the discrepancy

between optimal single-claim and combined custom hedges in terms of their payoff functions.)

We may monetize a shift in financial hedging flexibility, say from G to H, by resorting to a notion

of indifference value for the MV criterion U .
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Definition 1 (Value of financial flexibility). The value VG→H of a financial hedging flex-

ibility shift from G to H is the monetary amount m rendering the firm indifferent between adopting

the optimal hedge in G plus m and the optimal hedge in H, i.e., U
(
π+H∗G +m

)
= U (π+H∗H).

The value VH of financial hedging flexibility granted by H is defined by V{0}→H.

Clearly, VG→H may be negative. It surely is nonnegative provided that G ⊂H: this is the case of

VH for any class H 6= {0}. Since EQ
[
H∗G
]

= 0 (budget constraint), then VG→H may be interpreted

as the fair price of claim H∗G +m ∈ G achieving the same target MV as that of the optimal claim

H∗H ∈H. Since U (# +m) = U (#) + %m, then U
(
π+H∗G +VG→H

)
= U ∗

G + %VG→H, and:

VG→H = %−1
(
U ∗
H−U ∗

G
)
. (11)

This formula allows us to interpret changes in optimal mean-variance in terms of monetary units.

We may apply these notions to assess a monetary value to claim combination.

Definition 2 (Combination value). The combination value CVX→X+I of X and I over X is

the value of a financial hedging flexibility shift from single-claim to combined custom hedging, i.e.,

CVX→X+I := VHX→HXI .

We may similarly define the combination value of X and I over I as CVI→X+I := VHI→HXI .

Combination values are always nonnegative because HXI ⊃HX . Note that these definitions focus

on combination values under custom hedging: this choice averts potential valuation bias stemming

from assuming any prescribed functional form for the hedge’s payoff, say linear (forward hedge) or

piecewise linear (combinations of vanilla instruments).

Any claim on a side index I that is functionally dependent on X (as defined in Subsection 1.2)

provides the firm with no combination value over using H[ (X). Hence, we assume that rIX < 1

so that risk variables I and X are not functionally dependent upon one another. The exact value

of optimal combination under customization depends upon the ability of the claimable terms to

span the risk engendered by business revenues and to leverage the market risk premium. Let I be

a candidate side index. We argue that:

• Conjecture I : All other terms being equal, the greater the statistical linkage rIX between side

index I and the position’s claimable X, the stronger the redundancy of I, and the smaller the

value from combining a claim on X with a claim on I. Hence, on equal terms, the relevance of

claim combination vs. single-claim positioning decreases with increasingly dependent I and X. The

nonunitary assumption rIX < 1 in Theorem 1 underpins our guess.
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• Conjecture II : All other terms being equal, the greater the statistical linkage rIY between

side index I and the position’s nonclaimable Y , the stronger the ability of I to mitigate the risk

engendered by Y , and the greater the value from combining a claim on X with a claim on I. This

is actually the rationale behind the studies by Gaur and Seshadri (2005), Caldentey and Haugh

(2006), Chod et al. (2010), Wang and Yao (2017) and (2019)).

These statements call for selecting a side index I which is as weakly linked to X (i.e., low

rIX) and as strongly linked to Y (i.e., high rIY ) as possible. However, a low value of rIX does

not necessarily entail a high value of rIY : they may both decrease or increase, thus producing a

counterbalancing effect which ought to be assessed case by case. Example EC.7 shows this may

happens within the context of a Bernoulli market model. Moreover, an increase (decrease) in the

speculative nature of the selected combined custom hedge may partially offset the loss (gain) in

terms of net reduction of risk that results from using an index I adhering to both prescriptions

above. The intricate relation between combination value and maximal correlation indices can be

clarified through a number of estimates, which in turn offer a tool for the rational selection of a

side index (Issue 1).

4.2. Value Estimates and Index Selection

We can compute the combination value CVX→X+I in terms of the additional centered claim G∗0 (I)

and offer a lower bound that may suffice for practical applications, e.g., index selection.

Theorem 3 (Combination value assessment). Let rIX < 1 and %> 0. Then:

CVX→X+I =
a

2%
Var (G∗0 (I)−E [G∗0 (I)|FX ]). (12)

>
a

2%
(1− r2

IX)Var (E [K0−E [K0|FX ]|FI ]) , (13)

where K0 is the optimal centered hedging kernel and pair (H∗0 (X) ,G∗0 (I)) solves system (5). The

lower bound is tight: equality holds true provided that X and I are statistically independent.

A similar expression can be derived for CVI→X+I . The right-hand side in these expressions is

invariant upon rescaling the risk aversion parameters a and %. While exact estimate (12) requires

one to preliminarily compute G∗0(I), the lower bound (13) directly stems from correlation rIX and

other model primitives. Specifically, this bound increases proportionally to three factors: (i) The

risk aversion coefficient a/%: the greater its value, the stronger the firm’s benefit from combined

positioning on X and I; (ii) A degree of statistical independence between X and I, here measured

by 1− r2
IX : this quantity attains a maximum when X and I are mutually independent (Conjecture

I); (iii) The ability of a suitable payoff written on side index I to span the variance risk engendered

by the portion of the optimal centered hedging kernel K0 that remains unspanned by using the
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best approximating claim written on X: this term is intimately connected to the relation between

index I and the nonclaimable term Y .

We can improve our estimate (13) and seek conditions whereby a bound for CVX→X+I is explic-

itly proportional to the degree of dependence between I and Y (Conjecture II). We restrict our

statement to separable mixed exposures featuring independent risk terms: a similar, yet more

convoluted expression can be derived in the general case.

Proposition 2 (Combination value lower bound: strictly risk averse firms). Let X and

Y be statistically independent risk terms entering a separable exposure π(X,Y ) := α(X)β(Y ). If:

Var[π]�
(%
a

)2

Var

[
dQ
dP

]
, (14)

then:

CVX→X+I '
a

2%
(1− r2

IX)
(

1−
√

1− r2
IY

)2 ∣∣mα(X)

∣∣σβ(Y ), (15)

where mα(X) = E[α(X)] and σ2
β(Y ) = Var[β(Y )]. The lower bound is tight: equality holds true pro-

vided that X and I are statistically independent.

Bound (15) is approximately proportional to risk aversion coefficient a/%, a degree 1− r2
IX of

statistical independence between X and I, and a degree
(

1−
√

1− r2
IY

)2

of statistical dependence

between I and Y : their joint effect attains a maximum value when index I is simultaneously

independent of X (rIX = 0) and fully dependent on Y (rIY = 1) in terms of maximal correlation.

This confirms Conjecture II. Bound (15) is also easier to compute than bound (13) and exact

estimate (12) as long as it directly stems from model parameters: it thus offers the firm a practical

tool to select a side hedging index within a basket of alternative claimable terms.

Example 6 (Side index selection). Let I1, I2, and I3 be claimable indices. Assume maximal

correlations are rI1X = 0.1, rI2X = 0.2, rI3X = 0.4, and rI1Y = 0.6, rI2Y = 0.7, rI3Y = 0.75. Whereas

index I1 is the “closest” to independence of X, index I3 is the most dependent on Y among the three

indices in question. Let us consider for simplicity a variance minimizing agent (%= 0). Asymptotic

estimate (15) is essentially a bound proportional to (1−r2
IX)

(
1−

√
1− r2

IY

)2

. For a firm satisfying

condition (14), it solves this puzzle and shows that I3 is the best choice.

Condition (14) allows us to sharpen the traditional concept of risk aversion. Two firms sharing

a common risk aversion a/% may actually differ in terms of exposure π and beliefs P. Hence, the

pure hedging components appearing in their optimal combined claims differ as well (formula (5)).

Inequality (14) states that (squared) risk aversion exceeds the market premium risk per unit of

business risk. We correspondingly say the firm is strictly risk averse. Otherwise, the firm is said to

be weakly risk averse. These definitions are well-posed since 1 = E [dQ/dP] 6 E
[
(dQ/dP)

2
]
. For a

weakly risk averse firm, we offer a lower bound in Appendix EC.1.9.
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4.3. Efficiency Analysis

Estimate (12) and bounds (13), (15), and (EC.14) offer absolute assessments of combination values.

Hence, they do not speak to the appropriateness of switching from optimal single-claim hedges to a

combined custom hedge (Issue 2). According to Brown and Toft (2002), this should depend on the

relative proximity or distance between competing hedges in terms of target performance. We can

adapt their efficiency index to MV preferences and define a new one based on values of financial

hedging flexibility. This index allows us to benchmark alternative hedges against a scale ranging

from no hedge to our optimal combined hedge. This ranking allows a firm to assess the relative

merits of alternative solutions offered by a hedge provider.

Definition 3 (Single-claim hedge efficiency). The single-claim hedge H[ (X) (resp.,

G[ (I)) efficiency is the ratio of financial hedging flexibility values granted by HX (resp., HI) and

HXI :

EX :=
VHX
VHXI

, (resp., EI :=
VHI
VHXI

). (16)

Efficiency is dimensionless, it lies in [0,1], and is invariant under affine rescaling in the MV. It can

also be expressed in terms of MV: E# =
(
U ∗
H#
−U0

)
/
(
U ∗
HXI −U0

)
, with U0 := U (π). Hereafter,

we focus on EX , the case of EI being similarly dealt with. Example EC.8 ranks an array of potential

hedges in a Bernoulli market model. Here follows an exact assessment for EX .

Proposition 3 (Single-claim hedge efficiency assessment).

EX =
Var (E [K0|FX ])

Var (E [K0|FX ]) + Var (G∗ (I)−E [G∗ (I)|FX ])
. (17)

In particular, EX = 1 provided that I = f (X). EI can similarly be derived in terms of H∗ (X).

Formula (17) shows that the greater the variance of the portion of G∗ (I) that is unpredictable

by X, the lower the capacity of single-claim hedge H[ (X) to yield the MV attained by our optimal

combined custom hedge H∗ (X)+G∗ (I), and the lower the efficiency of single-claim hedge H[ (X).

4.3.1. Case-study: Risk aversion and hedge combination during COVID-19 pan-

demic. Let X = NYMEX 1m WTI oil futures price (US$/bbl), Y = IEA US oil daily consumption

(MMbbl), and I = COMEX 1m gold futures price (US$/oz) 6-month forecasts. A representative

agent of the US oil industry is exposed to operating revenues π := (X − k)Y , where k = 22.5

USD/bbl is an average unit production cost. When should they hedge through H[ (X), G[ (I), or

H∗ (X)+G∗ (I)? We analyze this trilemma under normal and extreme market conditions, here rep-

resented by the first semester of 2019 and 2020 (COVID-19 pandemic), respectively. At the outset
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Table 1 Volatility, correlation, and efficiency across market contexts and risk aversion levels.

Year WTI vol Cons vol Gold vol Maximal correlations Risk averse ←→ Risk taker Eff

σX σY σI rXY rXI rY I 100a∗ 50a∗ 10a∗ a∗

2019

(normal)
0.064 0.001 0.006 0.090 0.207 0.179

0.994

0.048

0.972

0.036

0.989

0.037

0.538

0.400

EX

EI

2020

(crisis)
0.962 0.026 0.003 0.849 -0.399 -0.623

0.857

0.306

0.492

0.627

0.039

0.983

0.001

0.999

EX

EI

of each period, we estimate a simplified version of the trivariate lognormal model (EC.18) reported

in Appendix EC.2(E). 6-month estimates for volatilities, maximal correlations, and efficiencies in

each time period and across four levels of risk aversion (standard: a∗ := 2E [π]/Var [π]' 7.7×10−4,

med.: 10a∗, high: 50a∗, huge: 100a∗) are reported in Table 1.

2019 shows a normal scenario: WTI and gold are mildly volatile, and consumption is steady.

All correlations are small, with WTI-consumption smallest. Thus, revenues π almost exclusively

depend on WTI and a single claim on X should hedge most of their risk, while any combination

value should prove modest. Efficiency figures show this is the case (EX ∼ 1), unless the agent is a

risk taker (a= a∗) and claims on X and I may combine to enhance profitability regardless of risk.

In contrast, 2020 exhibits an extreme scenario: WTI is highly volatile, consumption uncertainty

dramatically increases, and gold prices reflect the diversification role they usually play during crises

(Baur and Lucey 2010). All correlations increase in absolute value and a tradeoff emerges: on one

hand, an increased rXY makes consumption Y approach a function of X, hence revenues π depend

on X only: hence, the best practice to hedge through a single claim on X; on the other hand, a

tripled figure for |rY I | suggests a value in combining claims. Since EX increases with risk aversion,

while EI increases with risk propensity, the problem can be solved as follows: for an appropriately

high level of risk aversion a (resp., propensity a−1), the agent should use H[ (X) (resp., G[ (I));

on intermediate values, where both efficiency EX and EI are well below one, they should adopt

the optimal combined hedge H∗ (X) +G∗ (I). This applies to both the risk takers in 2019 and the

highly risk averse agents in 2020. Combination strategy is thus valuable in managing mixed risk

during the aforementioned economic crisis.

5. Risk Management Integration

The joint adoption of financial and operational instruments defines integrated risk management

policies (Babich and Kouvelis 2018). Our theoretical development allows us to craft a new class of

integrated policies to optimize business exposure.

5.1. A New Integrated Policy for the Newsvendor Position

We take the case of a commodity producer, say a gas company serving a mid-sized area in the US.

They produce a stock q (operational control) to meet future random demand Y (position’s non-

claimable). Each unit sold yields the market price X prevailing upon delivery (position’s claimable).
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Gross revenues are thus: Xmin{Y, q}. Residual stock, if any, entails a fixed unit cost net salvage

price, say c. This leads to an overall cost equal to cmax{q−Y,0}. For the sake of simplicity, we

assume that unmet demand, if any, entails no additional cost. We also disregard production costs:

their consideration would increase computational effort while leaving our argument unaltered. The

resulting position displays newsvendor-type operating net revenues as in Wang and Yao (2017):

πNV (X,Y ; q) :=Xmin{Y, q}− cmax{q−Y,0} . (18)

The side index I (the position external claimable term) is a temperature record in the delivery

area.

An integrated policy (H,q) is defined by a hedging payoff function H (financial control) in a set

H and a procurement order q (operational control) in a set Q. We consider seven sets H×Q of

admissible integrated policies. They differ in terms of financial hedging space H, while they all

share a common set Q of feasible procurement orders. Given a set H×Q of admissible integrated

policies, we select the one optimizing full exposure utility, namely:

(
H∗H×Q, q

∗
H×Q

)
← max

(H,q)∈H×Q: EQ[H]=0
U
(
πNV (X,Y ; q) +H

)
=: U ∗

H×Q.

This optimization problem can be disentangled into two nesting problems:

H∗H (q)← maxH∈H: EQ[H]=0 U (πNV (X,Y ; q) +H) =: U ∗
H (q) , (19)

q∗ (H)← maxq∈QU (πNV (X,Y ; q) +H∗H (q)) , (20)

so that the optimal integrated policy in H × Q, the corresponding operating revenues, and

the related utility may be expressed as
(
H∗H×Q, q

∗
H×Q

)
:= (H∗H (q∗ (H)), q∗ (H)), π∗H×Q +H∗H×Q :=

πNV (X,Y ; q∗ (H)) + H∗H (q∗ (H)), and U ∗
H×Q = U ∗

H (q∗ (H)), respectively. We refer to maps q →

H∗H (q)∈H and q→U ∗
H (q)∈R as the optimal hedge profile in H and the financially optimal utility

profile over H, respectively. Then, the optimal hedge H∗H×Q in H and utility U ∗
H×Q over H are

given by the optimal hedge profile and the financially optimal utility profile over H, each computed

with the optimal procurement order q∗ (H).

The first hedging policy leaves the business position financially naked. The second to the sixth

hedging policies assume positioning in a linear claim on X (Rolfo 1980), a linear claim on I

(Gaur and Seshadri 2005), a custom claim on X (Chen et al. 2014), a custom claim on I (new),

and a combined linear hedge on X and I (Roncoroni and Id Brik 2017), respectively. Appendix

EC.2.4 offers a precise description of these six hedging classes, as well as the corresponding

financially optimal utility profiles. The seventh hedging policy involves our optimal combined

custom hedge, i.e., H = HXI := HX +HI . The financially optimal utility profile is U ∗
HXI (q) =
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U (πNV (X,Y ; q) +H∗ (X) +G∗ (I)) and H∗HXI×Q :=H∗ (X) +G∗ (I) is our optimal combined cus-

tom hedge. We are now ready to present our proposal.

The joint adoption of the optimal combined custom hedge with the related optimal procurement:

(
H∗HXI×Q, q

∗
HXI×Q

)
:=
(
H∗HXI (q∗ (HXI)), q∗ (HXI)

)
(21)

defines a new integrated risk management policy in HXI ×Q referred to as the optimal combined

custom integrated policy. We compare this policy to the six alternatives resulting from integrating

each of the aforementioned optimal hedges with the related optimal procurement order. We simplify

notation and let subscripts exclusively indicate a hedging space H.

5.2. Empirical Comparative Analysis

We assume a lognormal model for the state vector (logX, logY, log I) distribution under P and a

constant market price of risk (Cartea and Williams 2008). Appendix EC.2.5 details the model and

reports a parametric setup compatible to gas prices and consumption levels recorded in the US.

Hereafter, risk and return stand for standard deviation and expected value of future revenues.

5.2.1. Efficient Frontiers We first consider integrating each of the seven optimal financial

hedges with a varying level of gas procurement. We assess their performance through the Wang-Yao

efficient frontiers (Wang and Yao (2017) and (2019)) as depicted in Figure 2 (Left panel). Each

frontier exhibits a locus of mean and standard deviation pairs (mH (q) , σH (q)) of full exposure rev-

enues πNV (X,Y ; q)+H∗H (q) across a range of operational levels q in Q. Each pair thus characterizes

the optimally hedged full exposure corresponding to an operational level q. It turns out that σH (q)

always increases in q, while mH (q) does so until a threshold q̄H and then decreases. Return-risk

configurations (mH (q) , σH (q)) for q > q̄H are inefficient in that they entail a simultaneous increase

in risk and reduction in return. Therefore, we let q range between 0 and the smallest procurement

order q̄ for which at least one of the seven efficient frontiers reverts back to inefficient return-risk

configurations, namely q̄ := minH q̄H. In the case in question, we have q̄' 10.92 MMBtu.

Descriptive statistics on both axes are reported on a $10 MM scale. The uppermost frontier refers to

a naked position, while the lowermost frontier corresponds to our optimal combined custom hedge.

In between are efficient frontiers corresponding to optimal hedges in the other five classes. On each

curve we indicate point PH := (mH (q∗H) , σH (q∗H)) by a bold dot: it corresponds to the optimal

integrated policy (H∗H, q
∗
H). In Appendix EC.2(F), Table EC.4 reports optimal procurement q∗H,

expected value (i.e., return) and standard deviation (i.e., risk) of the optimal operating revenues

π∗H +H∗H across the seven admissible integrated policy spaces, and variations of both descriptive

statistics occurring upon switching between integrated policies, say from
(
H∗G, q

∗
G
)
, featuring a
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Figure 2 Wang-Yao return-risk efficient frontiers (left panel) and efficiency profiles (right panel) of alternative

integrated financial-operational policies.
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the curve it lies on.

hedging class G, to (H∗H, q
∗
H), featuring another hedging class H. In a slight abuse of language, we

refer to this modification as a change from a hedging class G to a hedging class H.

We analyze these results along three dimensions: a) Nature of the underlying: X vs. I; b) Hedging

payoff complexity: linear vs. custom; c) Number of underlying terms: single vs. combined position-

ing. In the background is the interplay of these terms with the naked operating revenues πNV .

These latter are linear in the position’s claimable X, a property certainly binding for low values

of q, in which case they become somewhat independent of Y . Conversely, they are nonlinear in Y

for relatively low values of q, and become increasingly linear as q increases. These facts lead to a

few interesting properties of the proposed hedges, which we highlight in Figure 2.

a) Nature of underlying terms: X vs I. Be they linear or bespoke, claims on X and claims

on I show contrasting patterns. Compared to the naked position alone, while the former entail

significant reductions in risk (−17.99% and −19.50% upon entering a forward on X or a custom

claim on X, respectively) and mild increases in return (+4.84% and +5.01% in the aforementioned

cases), the latter go the other direction (+7.27% and −8.59% in risk variation and +9.21% and

+14.05% in return variation upon entering a forward on I and a custom claim on I, respectively).

Hedged exposure leads to a simultaneous reduction of risk and an increase of return in all cases
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except one: that is upon entering the optimal forward on I, which entails a rise in both return

and risk. This is because πNV is linear in Y as long as Y < q and then turns into a constant for

Y > q, so that a linear hedge on index I correlated to Y is effective in the former case while it

brings additional risk for low values of q. This tradeoff is resolved by the adopted MV criterion,

which entails that the forward hedge on I is still preferable to a naked position. Figure 2 shows

that for low procurement orders q, hedges on X push the efficient frontier downward while hedges

on I display a limited effect in that sense; this feature weakens as long as q increases, until a

reversion occurs: for a sufficiently high level of q, hedges on I dominate hedges on X in terms of

risk reduction given a common return figure. These considerations show that, in general, mixed

exposure leads to a tension in hedging effectiveness between derivatives written on the claimable

term entering position’s revenues and those contingent on a side index exhibiting strong correlation

to the position’s nonclaimable term.

b) Hedging payoff complexity: linear vs custom. For low values of q, hedging through claims

on X leads to a remarkable improvement in the efficient frontier compared to using claims on I.

This effect slows as q increases due to the increasing relevance assumed by term Y within the

NV exposure. However, switching from a forward to a custom claim on X entails a steady and

relatively small gain across q due to the steadily linear behavior of πNV with respect to X: graphs

show that the efficient frontiers related to forward and custom hedges on X are nearly matching.

Conversely, hedges on I seem to be less effective than hedges on X for relatively low q, whereby

πNV shows a mild dependence on Y . However, switching from a forward to a custom hedge on

I improves the hedge performance. This effect is exacerbated so long as the procurement order q

increases, due to the ability of custom claims on I to effectively manage the increasingly relevant

and nonlinear dependence of revenues πNV on Y . Indeed, the efficient frontiers related to forward

and custom hedges on I diverge as q increases. Also, for large levels of q, both linear and custom

hedges on I perform better than any hedges on X. These facts show that optimal customization

is relevant to hedging in the presence of nonlinear behavior in the underlying exposure.

c) Number of underlyings: single-claim vs combined. Combined hedging allows firms to resolve

the aforementioned tradeoff between risk and return gain over the figure shown by naked operating

revenues. In the forward hedging cases, full exposure risk (resp., return) gains resulting from

combined claim positioning is comparable to risk (resp., return) gains resulting from single-claim

positioning on X (resp., I), namely −19.60% vs. −17.99% (resp., +12.07% vs. 9.21%). In the custom

hedging cases, optimal combination nearly doubles risk reduction when compared to the effect of

a single-claim on X (−38.31% vs. −19.50%), and multiplies risk reduction of a single-claim on I

by four (−38.31% vs. −8.59%). Our optimal combination approach ensures a return comparable

to that of a single-claim on I (+14.22% vs. +14.05%), which already accounts for as much as three
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times the return from a single-claim on X (+14.05% vs. +4.84%). These observations underpin

our contention that optimal combination may entail a crucial improvement in hedge design.

Similar observations can be made when switching from any hedging set to another. For instance,

entering the combined forward hedge yields an appreciable gain in return upon switching from

either a forward (+6.89%) or a custom claim on X (+6.72%). It also entails risk savings upon

switching from either a forward (−25.05%) or a custom claim on I (−12.05%). Interestingly, adopt-

ing our combined hedging strategy leads to a more efficient outcome regardless of starting position.

Appendix EC.2.6 analyzes the special case of variance preferences, i.e., %= 0.

5.2.2. Hedge Efficiency across Operational Levels and Hedging Spaces We may com-

pare optimal integrated policies across hedging classes H and procurement orders q by using the

efficiency index defined in Section 4.3. Recall that H∗H and U ∗
H (q) denote the financially opti-

mal hedge and utility profile when hedging in H (formula (19)). Functions U ∗
HXI (q) and U0 (q)

indicate the highest and the lowest financially optimal utility profiles. Let the value VH (q) of

financial hedging flexibility granted by H be the monetary amount m satisfying U (π (q) +m) =

U (π (q) +H∗H). The efficiency of H at an operational level q can be defined as the proportion of the

maximal value VHcu
XI

(q) obtained by switching from no hedging to the optimal hedging in H, i.e.,

EH(q) := VH (q)/VHXI (q). Figure 2 (Right panel) shows efficiency profiles for the hedging spaces

Hf
X ,H

f
I ,HX ,HI , and Hf

XI . For relatively low values of procurement order q, the largest contribu-

tion to the best hedge is carried over by claims written on price X. As q increases, this effect cedes

to the increasing importance exhibited by claims written on side index I. Combining forwards is

an easy way to resolve this tradeoff. In addition, custom claims perform better than linear claims,

and the discrepancy between these two classes is greater for claims on I than for claims on X,

a phenomenon due to the strong nonlinear dependence of NV revenues on size term Y . These

observations show that, in the NV case in question, hedge nonlinearities can significantly improve

hedging performance provided they enter an optimal combined positioning in the derivative mar-

ket. Hence the empirical relevance of joining combination and customization themes. Appendix

EC.2.6 disentangles the operational and speculative effects of hedging class switching on expected

revenues, and shows the former dominates the latter upon entering any hedging class at stake.

5.2.3. The Effect of Financial Flexibility on Operational Flexibility The firm may

leverage a batch of financial hedging classes in various ways. First, it can strengthen its optimal

operational policy. Table EC.4 reports that optimal procurement starts at q∗ ({0}) = 7.087 with

no hedge and reaches q∗ (HXI) = 10.300 with our optimal combined custom hedge, i.e., a 45.3%

increase. Second, they may use increasingly complex hedges to gain operational flexibility: by
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Table 2 Operational flexibility gains generated by a change in the underlying hedging class.

Initial

hedge

Initial

procur.
Operational flexibility range

q∗ Q
(
· →Hf

X

)
Q (· →HX ) Q

(
· →Hf

I

)
Q (· →HI ) Q

(
· →Hf

XI

)
Q (· →HXI )

(MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu)

H0 7.087 [7.214,8.651] [7.214,8.773] [7.129,7.961] [7.177,11.034] [7.172,11.034] [7.241,10.920]

Hf
X

7.861 - [7.887,7.982] * [7.781,8.574] [7.822,9.309] [7.898,10.920]

HX 7.917 * - * [7.809,8.400] [7.854,9.188] [7.928,10.920]

Hf
I

8.470 [8.612,8.958] [8.604,9.081] - [8.531,11.034] [8.529,11.034] [8.689,10.920]

HI 9.934 * * * - [9.935,10.173] [10.168,10.920]

Hf
XI

9.177 * * * * - [9.380,10.920]

switching to a larger hedging space, a firm may gain access to an array of operational procurement

orders, ensuring an efficient improvement in the return-risk space.

Let us consider a starting hedging class G. By switching to a larger class of hedges H⊃ G, the

firm may tune their procurement order over a range defined by a whole interval Q (G →H) :=

[q−, q+] ⊂ Q. Each level q ∈ [q−, q+] leads to a more efficient outcome compared to PG :=

(mG (q∗ (G)) , σG (q∗ (G))) in the return-risk space, that is Q (q) := (m (q) , σ (q)) satisfies m (q) >

mG (q∗ (G)) and σ (q) 6 σG (q∗ (G)). The locus of points Q (q) is clearly visible on the curves dis-

played in Figure 2: we consider the two-point intersection (Q1,Q2) between the efficient frontier

corresponding to the hedging class H and the two semi-axes defining the lower-right orthant cen-

tered at P ; they single out a portion of the efficient frontier of H gathering all points Q in question.

The inverse images of Q1 and Q2 through m (]) are exactly q− and q+. Note that an operational

flexibility range Q (G →H) might not exist, unless G ⊆H, in which case it always does. Table 2

reports values for all operational flexibility sets. An asterisk indicates that no operational flexibil-

ity gain occurs. For instance, moving from Hf
X to Hf

I never leads to an optimal integrated policy

(θI (i− fI) , q) that is more efficient than the initial policy
(
θX (x− fX) , q∗

(
Hf
X

))
. In all other cases,

a firm may switch between hedging classes to expand the operating range while improving its posi-

tioning in the return-risk space. How (and indeed, whether) a firm decides to increase operational

flexibility is a matter of preference refinement beyond the assumed MV criterion.

6. Conclusion

6.1. Summary

We develop a new model for combined contingent claim origination, and analyze its effectiveness

in a typical finance-operations context (Babich and Kouvelis 2018). From the perspective of finan-

cial economics, we solve an inverse problem of fund allocation to bespoke financial claims. More

precisely, we establish a general methodology for the design of combined custom claims to opti-

mally manage the risk engendered by any mix of insurable and noninsurable exposure faced by

a firm featuring MV preferences. Under mild technical conditions, optimal custom claims exist,
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are unique, and their payoff schedules satisfy a design integral equation. We also provide analyti-

cal solutions and create a numerical scheme for this equation. From the standpoint of operations

management, we outline a rational decision process for handling corporate risk. Specifically, we

assess the monetary benefit a representative firm earns by switching from a single-claim custom

hedge to our optimal combined custom hedge. A related efficiency index allows the firm to rank

alternative potential hedges and make an informed choice. We also devise a new array of integrated

financial-operational risk management policies which allow the firm to widen operational flexibility

and improve the efficient frontier of their operating revenues. Exactly how the firm leverages these

opportunities is an entirely idiosyncratic decision, outside of the scope of a claim design framework.

6.2. Empirical Predictions and Managerial Insights

Our model naturally leads to a number of testable empirical implications and managerial insights.

Some proved to sharpen existing knowledge, while others have yet to be assessed.

1. Static management of long-term risk. Chowdhry and Howe (1999) state that firms engage

either in operational hedging when facing an important demand risk or in financial hedging when

demand is predictable. Hence, the former is adopted to manage long-terms exposure, while the

latter is used to tackle short-term risk. We show that this need not be the case provided the hedging

space allows for claim combination. Indeed, our empirical analyses demonstrate that a firm facing

mixed exposure can suitably combine custom claims into an effective hedge even when demand

is highly unpredictable. Static hedging may thus mitigate long-term exposure, and operational

hedging can address the residual risk. This insight sharpens the Kouvelis et al. (2018) prescription

whereby “inventory decisions focus on demand risk which cannot be hedged by financial instru-

ments”.

2. Financial vs. operational hedging profitability. Conventional theories state that hedging

increases firm’s value by alleviating market (i.e., firm-exogenous) imperfections (Smith and Stulz

1985). Adam and Fernando (2006) empirically show cases where shareholder value increases through

systematic gains from derivative holdings. We demonstrate that by switching between hedging

classes, expected revenues vary according to a financial term leveraging market risk premia and a

real component leveraging operational flexibility gains granted by the financial hedging flexibility

change. Our NV exercise empirically reveals that the former may be negligible, while the latter

still remains important. Hence, even in a model featuring no market imperfections, the beneficial

effect of financial hedging flexibility on shareholder value may exclusively manifest through the

nonfinancial (i.e., firm-endogenous) channel of operational flexibility.

3. Customization vs. combination. The decision of exclusively relying on either a customiza-

tion or a combination theme leads us to a new dilemma. The efficiency profiles of alternative
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integrated policies in the NV case underpin the superiority of combination over customization.

The ultimate choice ought to be grounded in the market context in question. We predict that

the high transaction costs and price markups usually exhibited by custom claims act in favor of

adopting combined forwards. To test this prediction, empirical analysts might assess the actual

customization-combination mix prevailing in a batch of corporate hedging portfolios.

4. Speculative derivative portfolios. Poitras (2013) argues that a few financial debacles (e.g., Met-

allgesellschaft AG) originated from a misunderstanding of the speculative side in large derivative

positions. Our design system (5) exhibits two terms contributing to the overall speculative portion

in a portfolio: one is idiosyncratic to the claim at stake (Chen et al. 2014); the other is a cross-claim

component arising upon combination, which we first unveil. This leads to examine the relative

importance of each term in financial derivative failures: we predict that the cross-claim term is

relevant whenever the underlying asset correlations proved important.

5. Decentralized risk management. Unless maximal correlation rXI = 0, the optimal combined

hedge H∗ (X) +G∗ (I) dominates the combination H[ (X) +G[ (I) of optimal single-claim hedges.

In a decentralized risk management system, should the risk engendered by a claimable X and a

nonclaimable Y be handled by distinct entities, index selection might be run irrespectively of rXI .

This practice could increase the distance between the two combined hedges above and possibly

generate an important underperformance of a hedge. When designing a decentralized framework,

managers should established a centralized monitoring system to detect this kind of failure.

6. Combination-customization complementarity. Custom hedging on I proves increasingly effec-

tive with decreasing rXY and increasing rIY . Whenever customization (say, upon switching Hf
X→

HX) is largely ineffective (say, because revenues are almost linear in X as in our NV experiment,

or X and Y are poorly correlated as in Brown and Toft (2002)), optimal combination may replace

(HX→Hf
XI) or add up (HX→HXI) to it, while enhancing the firm’s position. A manager can thus

use combination to effectively cope with mixed revenues featuring, e.g., uncorrelated risk terms X

and Y . This insight settles an unresolved hedging issue in Brown and Toft (2002).

7. Ranking alternative hedges. A firm might wish to benchmark a hedge against an ideal reference.

No hedge and our optimal combined hedge may represent the lowest and the highest points of

reference, respectively. One-dimensional scales can be obtained by considering operating revenues

MV, mean, or variance figures, each computed at the current level of operations. By locating

and comparing hedges within a selected scale, firms may assess the relative quality of alternative

hedging opportunities, rank them accordingly, and select a preferred solution.

8. Resolving single-claim tradeoff. Single-claim hedges may dramatically change their efficiency

in response to changes of varying nature. The extreme market case-study in Subsection 4.3 shows

that efficiency estimates for the optimal single-claim hedges on X and on I exhibit a tradeoff upon
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varying the firm’s aversion to risk. The NV case-study shows the same property upon varying the

level of operations. Whatever the nature of an efficiency tradeoff is, a manager can combine claims

to develop a hedge that outperforms single-claim hedges across the selected dimension.

6.3. Future Developments

Forthcoming research may target a number of theoretical enhancements and applications. A first

direction is to develop concrete model instances. On the financial side, the dependence structure

among state variables could be modeled using copula functions and the design integral equation

could be recast in terms of the estimated copulas. This would lead to computable combined cus-

tom hedges compatible with real-world financial market contexts. On the operational side, custom

claims may merge into static or dynamic operational hedging policies, such as inventory manage-

ment strategies (Berling and Mart́ınez-de-Albéniz 2011), capacity allocation options (Ding et al.

2007), or market procurement options (Secomandi and Kekre 2014), as well as combined assortment

and stocking decisions (Dong et al. 2018), among others.

A second direction is to modify one or more model ingredients and examine their effect on

the results we obtained. These may include: a) The class of admissible hedges: they may range

from American-style to path-dependent payoff schedule; b) Naked position revenues π: they may

comprise newsvendor networks (Van Mieghem 2007), decentralized supply chains(Turcic et al.

2015), and trading networks (Nadarajah and Secomandi 2018), among others; c) The target utility:

risk aversion may be modeled by using risk-adjusted performance measures other than a MV

criterion: they include exponential utility (Chen et al. 2007), mean-CVaR (Conditional Value-at-

Risk) criterion (Zhao and Huchzermeier 2017), expected shortfall (Wang and Yao 2019), and an

upper bound constraining an assigned risk measure (Park et al. 2017), among others.

A third direction involves the theoretical investigation of the integrated financial-operational risk

management problem. It may prove interesting to devise a setup where the joint optimization over a

functional class of custom claims and a class of operational actions could be analyzed. Operational

policies might be static, dynamic, or of some intermediate kind (e.g., a sequentially reoptimized

rule, as in Secomandi (2015)). Analyzing the existence, uniqueness, and any characterization of a

general integrated risk management problem is perhaps the most challenging issue we foresee.

A fourth direction is to use combined custom claims for purposes other than revenue hedging.

Our combined custom hedge may offer a viable alternative in alleviating agency costs (Iancu et al.

2017), in increasing the cash endowment entering a budget constraint (Caldentey and Haugh 2009),

or in complementing insurance contracts on side events (Dong and Tomlin 2012).

A fifth direction is to allow for the dynamic resettling of our combined custom hedge in the

spirit of Chen et al. (2007), Kouvelis and Ding (2013), and Goel and Tanrisever (2017). A new
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setup would include a family of stochastic processes for each risk term, one process for a starting

time n and state x; a dynamic balance condition whereby the fair value of a new custom hedge

matches the fair value of the standing hedge; and an array of static hedge design problems, one for

each time and state. Appendix EC.1.10 proposes a model setup for the optimal design of dynamic

strategies based on single-claim custom hedges.

A sixth direction is to extend the role of the time T of uncertainty resolution to that of a decision

variable, and examine the effect of our combined custom hedge on T . Appendix EC.1(K) gives

a snapshot of conjectures put forward in Guiotto et al. (2020). An alternative path might be to

explore the role of T as an entry time as in Leung and Ludkovski (2011).

Note that both issues of dynamic extension and the embedding the time T as a decision variable

are still open problems even under the assumption of single-claim custom hedging. Any advance in

one of the aforementioned issues would definitively constitute a step forward in the construction

of a general theory of corporate risk management.
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Electronic Companion Appendices

EC.1. Complements

EC.1.1. List of Symbols

Table EC.1 A framework for the optimal design of combined custom financial contingent claims.

Symbol Mathematical term Financial term Operational term

{0, T} I Time set I Time period I Time frame

0 Initial time Hedging setup time Decision time

T Final time > 0 Payoff time Realization time

(Ω,F ,P) I Probability space I Firm’s beliefs I Stochastic setting

X I Random element I Claimable (risk) term I State variable 1

Y idem Nonclaimable (risk) term I State variable 2

I idem Claimable (side) index I State variable 3

F# (# =X or I) I σ-algebra of events of # I Events gleaned by # I #-information

L2 (Ω) I Finite variance r.v. I Regular payoffs I Regular variables

HX I L2 (Ω,FX ,P) I Payoffs H (X) I Financial controls 1

HI I L2 (Ω,FI ,P) I Payoffs G (I) I Financial controls 2

HXI I HX +HI I Combined p.’s H (X) +G (I) I Financial controls 3

L2
X I L2 (RN ,BRN ,LP (X)) I Payoff functions x→H (x) I Financial controls 1(bis)

L2
I I L2 (RN ,BRN ,LP (I)) I Payoff functions i→G (i) I Financial controls 2(bis)

L2
XI I L2

X +L2
I I Combined p. functions H (x) +G (i) I Financial controls 3(bis)

Q I Set of scalars I Operational variables q I Operational controls q

π= π(X,Y ; q) I Random variable in L2 (Ω) I Naked exposure I Fin. uncontrolled system

w I Nonnegative constant I Financial endowment I Control constraint

Q I Martingale measure I Pricing probability I Control constraint

U (·) I %EP [·]− (a/2)VarP [·] I Mean-variance utility I Target reward

(no symbol) I π (X,Y ; q) + [H (X) +G (I)] I Full exposure I Fin. controlled system

EC.1.2. Examples of Mixed Exposure

Example EC.1 (Primary commodity production model). Moschini and Lapan (1995) con-

sider a flexible producer of a primary commodity, say a farmer harvesting crops. They face risk

from output price X quoted in dollars per tonne (US$/t) and crop yield Y expressed in tonnes per
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hectare (t/ha). If q denotes the scale of production expressed in hectares (ha) and c (q) stands for

the corresponding cost, then operating net revenues may be written as:

π (X,Y ; q) :=XY q− c (q) . (EC.1)

This is an example of multiplicatively mixed exposure.

Example EC.2 (Stochastic clearance price model). Caldentey and Haugh (2009) develop

and analyze a Stackelberg game between a producer and a retailer. They consider a background

quoted price process (Xt)06t6T . At time 0, the producer offers the retailer a wholesale price menu

X defined by a functional W evaluated at each quoted price path X0T := (Xt (ω))06t6T , namely:

X :=W [X0T ]. Then, the retailer reacts by optimizing net revenues:

π(X,Y ; q) := (Y − ξq) q−Xq (EC.2)

over the class of order quantity actions q that depend on the same price path, i.e., q := Q [X0T ]

for a suitable deterministic functional Q. Costs result from ordering each unit for a wholesale

purchase price X. Gross revenues are the order quantity q times a retail market price, which in

turn is calculated as a random market size term Y net a linear discount component ξq featuring

elasticity ξ. In the original Stackelberg game model, W is a control variable determined when the

producer selects a production level. Here, we focus on the retailer’s viewpoint, and assume that W

is assigned upfront. This is an example of additively mixed exposure.

Example EC.3 (Generalized newsvendor model). Secomandi and Kekre (2014) consider a

newsvendor-like commodity merchant meeting demand Y by optimally adjusting an initially pro-

cured quantity q through suitable ex post open market trades. Let X be the quoted commodity

price, s (X) stand for the retailer’s selling price, bid (X) be the bid quote, ask (X) be the ask

quote, and v (Y, q) denote the sales figure. In general, the merchant’s net revenues can be writ-

ten as sales revenues s (X)v (Y, q), plus liquidation revenues resulting from any stock excess over

demand (q−Y )+, minus purchase costs of any demand excess over stock (Y − q)+, net the initial

procurement cost pq, i.e.:

π (X,Y ; q) := s (X)v (Y, q) + bid (X) (q−Y )+− ask (X) (Y − q)+− pq.

Secomandi and Kekre (2014) take s (x) = x, v (y, q) = y, and p equal to the forward ask price

prevailing at time 0. By setting retail price s (x) equal to a constant amount, the bid price equal to a

constant salvage value, the ask price equal to a constant per unit penalty cost of unsatisfied demand,

and v (Y, q) = min{Y, q}, we obtain the newsvendor position revenues considered in Caldentey and

Haugh (2006).
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Example EC.4 (Multinational production capacity allocation model). Chowdhry

and Howe (1999) consider a multinational corporation allocating production capacity and selling

their single product in two economies. Given domestic and foreign production capacities q1 and

q2, demand figures Y1 and Y2, sales prices X1 and X2, and an exchange rate X3, the authors

show how to determine the domestic production level o1 (q,Y) depending on the demand vector

Y := (Y1, Y2) and the capacity allocation vector q := (q1, q2). Foreign production level o2 (q,Y)

results from a clearing condition whereby overall production o1 + o2 is required to meet global

demand Y1 + Y2. Corporate net revenues may be expressed as the sum of domestic and currency

converted foreign profit and losses:

π (X,Y;q) :=X1Y1− c1o1 (q,Y) +X3 [X2Y2− c2 (Y1 +Y2− o1 (q,Y))] ,

where c1 and c2 denote domestic and foreign unit production costs, respectively.

EC.1.3. On the Adoption of Mean-Variance Preferences

There are at least three arguments in favor of adopting MV preferences in our framework. First,

the MV criterion, possibly in the restricted form of a variance to minimize, is a benchmark for

representing risk-aversion within risk management models in a variety of contexts. These include

international trading (Ding et al. (2007), Chen et al. (2014)), operations management (Kouvelis and

Gutierrez (1997), Mart́ınez-de-Albéniz and Simchi-Levi (2006), Chen et al. (2007), Van Mieghem

(2007), Kouvelis and Ding (2013)), and agricultural business optimization (Rolfo (1980), Lence

(1995)), among others. Second, although the appropriateness of MV preferences has been debated

for decades, there is general consensus on the dominance of this criterion over the existing alter-

natives in practical contexts (Markowitz 2014). Third, optimizing a MV target ensures analytical

tractability of the problem. Incidentally, by replacing the variance term with a quadratic cost

function, MV leads to the value maximizing criterion adopted in Stulz (1984), Mello et al. (1995),

Froot and Stein (1998), Brown and Toft (2002), Chod et al. (2010), Goel and Tanrisever (2017),

and Park et al. (2017), among others.

EC.1.4. Discussion on Extent, Limitations, and Extensions of our Model

We herein clarify the extent, limitations, and possible extensions of our model.

1. Time frame and static positioning. It is natural to cast the optimal design of a combined custom

hedge as a static decision problem. This setup allows us to develop a self-contained design theory

adhering to the empirical observation that most nonfinancial firms are simply insurance buyers

who are either unwilling or unable to trade in financial markets (Brown and Toft 2002), hence

seeking buy-and-hold hedges. This is also in line with the growing popularity of static positioning
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in the hedging practice of financial intermediaries (Carr et al. 1998). A one-period setup does not

require risk terms X and I to be tradable: from a buyer’s perspective, they need only be claimable.

Temperature records and most economic indices are examples of nontradable claimable terms.

2. Relation to the dynamic trading approach. In the dynamic setup of Example 1, equipped with a

tradable side asset price process (It)06t6T and risk averse preferences, Caldentey and Haugh (2006)

devise a hedging payoff V (T ) resulting from a self-financing trading strategy (SFTS) θ= (θt)06t6T

that acts on the side asset price process in a complete financial market. If admissible strategies

θ only depend on side asset price paths (i.e., incomplete information, as opposed to complete

information whereby they may also depend on the nonclaimable process (Yt)06t6T ), then V (T )

is a path-dependent payoff G (I0T ), where I0T denotes a sample path of process (It)06t6T over a

time period [0, T ]. Conversely, any path-dependent G (I0T ) can be replicated by a SFTS acting on

(It)06t6T only, i.e., θ (t) = F [t, I0t]. Setting aside minor differences (e.g., our MV target functional

vs. their quadratic expected utility), the incomplete information solution developed by these authors

corresponds to the restricted case of our combined custom hedge stemming from H (X)≡ 0. Our

theoretical development thus takes a step forward within the incomplete information hypothesis

by jointly designing and combining a custom claim on X with a custom claim on I. In this

respect, a direct design approach seems relevant to us: were we to adopt a dynamic framework,

it would be hard to characterize the SFTS as achieving additively combining payoffs of form

V (T ) =H (X0T ) +G (I0T ) and then define conditions ensuring their optimal coupling. In the case

of path-independent claims H (XT ) and G (IT ), our approach also allows us to explicitly describe

the corresponding payoff functions H (x) and G (i) through a design integral equation.

3. Complementarity of dynamic trading and claim design approaches. We contend that the two

hedging approaches based on dynamic trading (Caldentey and Haugh (2006), Wang and Yao (2017)

and (2019)) and on direct claim design (Chowdhry and Howe (1999), Chen et al. (2014), and the

present work) may play a complementary role. A trading approach delivers replicating strategies,

which are of a key importance for the hedge issuer. In addition, it handles trading under complete

information (i.e., θ depending on nontradable Y as well) whenever it makes sense, say a firm

exposed to a term Y that only the firm can observe. However, claim design delivers explicit,

possibly path-dependent, payoff functions or functionals incorporating desired hedging themes (e.g.,

linearity, customization, and combination), in line with banking practice (Myint and Famery (2012),

Ramirez (2011)). For instance, a firm looks for exposure to specific path dependence F :X0T →X,

say an Asian-style average (Fusai et al. 2008) or a barrier condition (Leppard 2005). Then, the

optimal claim F̂ (X0T ) :=H∗ (F (X0T )) =H∗(X) is the required optimal path-dependent claim.

4. Further linkages to dynamic financial-operational risk management. Caldentey and Haugh

(2009) use portfolio value Vθ (T ) to alleviate a budget constraint in a two-stage game representing
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a supply chain model with flexible contracts. Our setup covers their operating position (Example

EC.2) and borrows a number of features, including the nature of the pricing kernel and the equiv-

alence to a zero-balance constrained problem. Wang and Yao (2017) explore integrated dynamic

hedging in a NV model under minimum variance preferences: by assuming demand dynamics are

linked to a tradable side index, they derive MV efficient frontiers of full exposure across varying

operational levels. Our model includes minimum variance as a special case (Appendix EC.2.6).

We similarly leverage efficient frontiers to assess the performance of a new integrated policy we

propose (Subsection 5.2.1).

5. Market completeness. In order to feed a budget constraint (2), the firm must be able to price

any candidate contingent claim H (X) and G (I). This requirement is compatible with a variety

of market contexts. In all cases, Y is nonclaimable, hence no contract involving Y ever needs to

be priced; in particular, the distribution of Y under Q is not required at any step in the design

process. First, the joint market for (X,I) can be complete: this is the partially complete market

referred to in Smith and Nau (1995). Second, if this market is incomplete, then a pricing kernel

can be identified through any criterion for resolving incompleteness (Staum 2008). Third, the firm

might simply have access to the originator’s pricing kernel as suggested in Caldentey and Haugh

(2006). Fourth, markets for a claimable X and a claimable I can be segmented, i.e., pair (X,I) is

nonclaimable, whereas each market is complete on its own: the firm would then price claims using

pricing kernels dQX/dP or dQI/dP depending on the underlying variable in question. Finally, the

firm may simply specify a range of pricing kernels to in turn yield an array of optimal combined

custom hedges.

EC.1.5. Combined Custom Hedging in a Bernoulli Market Model

We build a simple model drawing upon our intuition about the nature of combined custom hedging

and its relevance to integrated financial-operational risk management. Within the setup proposed

in Section 2, let us consider a variance minimizing firm (% = 0) devoting no budget (w = 0) to

hedging in a risk neutral market (P=Q). The best financial claim available so far is either the

optimal custom claim written on the financially insurable price X (Chowdhry and Howe 1999):

H[ (X)← min
H(X)∈HX : E[H(X)]=0

Var [π+H (X)] =: V ∗X , (EC.3)

or the optimal custom claim written on any claimable side index I exhibiting correlation to the

noninsurable term Y (Gaur and Seshadri 2005):

G[ (I)← min
G(I)∈HI : E[G(I)]=0

Var [π+G (I)] =: V ∗I . (EC.4)
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They are referred to as optimal single-claim hedges. It is tempting to consider the naively combined

custom hedge H[ (X) +G[ (I), suppose it outperforms both optimal single-claim custom hedges

H[ (X) and G[ (I), and assume it represents the optimal combined custom hedge defined as:

H∗ (X) +G∗ (I)← min
(H(X),G(I))∈HX×HI : E[H(X)+G(I)]=0

Var [π+H (X) +G (I)] =: V ∗XI . (EC.5)

This argument would be fallacious, and it is precisely this observation which represents the spring-

board for our theoretical development. Specifically, it turns out that:

Claim 1. The optimal single-claim custom hedges H[ (X) and G[ (I), and the optimal combined

custom hedge H∗ (X) +G∗ (I) exist.

Claim 2. The optimal combined custom hedge H∗ (X) +G∗ (I) outperforms the naively combined

custom hedge H[ (X) +G[ (I) unless X is independent of I; optimal single-claim custom hedges

H[ (X) and G[ (I) can even outperform the naively combined custom hedge.

Claim 3. The optimal combined custom hedge H∗ (X) + G∗ (I) may considerably improve the

effectiveness of integrated financial-operational risk management policies encompassing any of the

alternative hedges H[ (X), G[ (I), and H[ (X) +G[ (I).

We prove the three claims in the simplest possible nontrivial setup. Let us begin with an intuitive

geometric argument supporting our main idea. Under zero market premia, i.e., Q = P, Chowdhry

and Howe (1999) show that H[ (X) =− [E [π|X]−E [π]]. In general, we have the following:

Proposition EC.1 (Minimum variance custom hedge). Consider a variance minimizing

agent. Let P be a closed subspace of L2(Ω,F ,P) such that 1∈P and Q∼ P. Then, the zero-valued

optimal claim in P is given by:

P ∗ := arg min
P∈P: EQ[P ]=0

Var[π+P ] =− [ProjPπ+ c∗] , (EC.6)

where constant c∗ =−
〈
π,ProjP

dQ
dP

〉
. (Here, ProjP indicates the orthogonal projection on P.)

In our context, Q = P, hence c∗ = −E [π] and E [H (X)] = EQ [H (X)] = 0. The same holds for

G (I). Then, the optimal single-claim hedge H[ (resp., G[) is given by the orthogonal projection

of opposite naked revenues −π over the subspace U (resp., V) of finite-variance P-mean centered

r.v.’s which can be expressed as a function of X (resp., I). Both naively combined custom hedge

H[ (X) +G[ (I) and optimal combined custom hedge H∗ (X) +G∗ (I) clearly belong to the sum

space U⊕V. However, the former is the sum of projections on individual spaces U and V, while

the latter is the orthogonal projection over U⊕V: clearly, the two always differ unless U and V are

orthogonal (see Figure EC.1, its geometrical observation underpins the intuition behind Claim 1,

provided that space orthogonality is intended as statistical independence.).
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Figure EC.1 Geometry of optimal vs. naively combined custom hedges H∗ (X) +G∗ (I) and H[ (X) +G[ (I).

Our argument may yield closed-form expressions for these hedges if we specify a probabilistic

model for all risk variables in question. The simplest nontrivial example is a Bernoulli market

model. Specifically, let X assume values x+ and x− with probability pX and 1− pX , respectively,

and I assume values i+ and i− with probability pI and 1 − pI , respectively. We define pXI :=

P (X = x+, I = i+) and make no assumptions regarding the distribution of the nonclaimable risk

term Y .

Theme 1: Hedge design. Optimal single-claim and combined custom hedges can be computed in

closed-form.

Proposition EC.2 (Minimum variance hedges in a risk neutral Bernoulli market model).

Consider a Bernoulli market model with P = Q. The optimal single-claim hedges solving problems

(EC.3) and (EC.4) may be expressed as:

H[ (X) = αU, G[ (I) = βV, (EC.7)

where U := (1X=x+ − pX)/
√
pX(1− pX) and V := (1I=i+ − pI)/

√
pI(1− pI) are zero mean r.v.’s

with unit variance, i.e., versors in L2 (Ω), and coefficients α=−〈π,U〉 and β =−〈π,V 〉 are con-

stant. In addition, the optimal combined custom hedge solving problem (EC.5) exists and is unique

provided X and I are not functionally dependent on one another; it is given by:

H∗ (X) +G∗ (I) =
α− ρβ√

1− ρ2
U +

β− ρα√
1− ρ2

V, (EC.8)

where |ρ| := |〈U,V 〉|=
∣∣∣(pXI − pXpI)/√pXpI(1− pX)(1− pI)

∣∣∣< 1.
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If either X or I is a function of the other, any combined hedge is a claim on a single underlying.

Otherwise, naively and optimal combined hedges H[ (X)+G[ (I) and H∗ (X)+G∗ (I) differ unless

either ρ = 0 or α = β = 0: in the first case, X and I are statistically independent variables; in

the second case, any claim written on either variable is useless for hedging purposes, hence the

corresponding optimal position vanishes. This proves Claim 1 stated earlier in this section.

Theme 2: Relative performance assessment. We compare our optimal combined custom hedge

H∗ (X) + G∗ (I) to the alternative hedges H[ (X), G[ (I), and H[ (X) + G[ (I) in terms of risk

mitigation performance. All the hedges in Proposition EC.2 may be written as ξU+ηV for suitable

constants ξ and η. In addition, full exposure variance is Var [π+ (ξU + ηV )] = Var [π] + ξ2 + η2 −

2ξα−2ηβ+2ξηρ. Variance figures attained by using each of the four proposed optimal hedges are:

V ∗HX = Var [π]−α2, VXI = Var [π]− (α2 +β2− 2ραβ) ,

V ∗HI = Var [π]−β2, V ∗HXI = Var [π]− (α2 +β2− 2ραβ)/ (1− ρ2) ,
(EC.9)

where VXI := Var
[
π+H[ (X) +G[ (I)

]
. The naively combined custom hedge H[ (X) + G[ (I)

increases the firm’s exposure compared to adopting the sole optimal single-claim custom hedge

H[ (X), i.e., VXI > V ∗HX , provided that β2 < 2αβρ. (If β ≷ 0, this inequality amounts to β ≶ 2αρ.)

Similarly, H[ (X)+G[ (I) may perform worse than G[ (I) alone. However, barring degenerate cases

(e.g., β = ρα, whereby V ∗HXI = V ∗HX ), the optimal combined custom hedge H∗ (X) +G∗ (I) always

outperforms both single-claim custom hedges H[ (X) and G[ (I) as well as their naive combination

H[ (X) +G[ (I) provided that ρ2 < 1. These observations prove Claim 2, and show how merging

the two strands of research depicted in Figure 1 is indeed a worthy pursuit.

Theme 3: Operational flexibility gain. Integrating our optimal combined custom hedge with the

optimal handling of business operations may yield considerable gains in operational flexibility (Zhao

and Huchzermeier 2015). Let business revenues π (q) = π (X,Y ; q) depend on a scalar operational

control q ∈Q, say a procurement order, a production level, or a sale price. Each financially optimal

variance reported in expressions (EC.9) entails a function q → V ∗# (q), which we refer to as an

optional variance profile.

We consider three alternative optimal financial-operational hedging policies:

1. Optimal operational policy (0, q∗0), with operational level q∗0 minimizing the variance profile

V0(q) := Var[π (q)] of naked position revenues;

2. Optimal single-claim integrated policy
(
H[ (X) , q∗HX

)
minimizing Var[π (q) +H] over single-

claim custom hedges H (X)∈HX and operational levels q ∈Q;

3. Optimal combined integrated policy
(
H∗ (X) +G∗ (I) , q∗HXI

)
minimizing Var [π (q) +H +G]

over combined custom hedges H (X) +G (I)∈HXI and operational levels q ∈Q.
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Figure EC.2 Operational flexibility ranges and gains.
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Note. Operational flexibility ranges entailed by: (i) single-claim custom hedging (Iq∗HX
: red segment); (ii) combined

custom hedging (Iq∗HXI
: blue half-line). The corresponding operational flexibility gain Iq∗HXI

\ Iq∗HX
is unbounded.

Under mild regularity conditions, the variance profiles of optimally hedged positions lie below the

naked position’s minimum variance V ∗0 := V0 (q∗0) in suitable operational control ranges of values.

That is, there are intervals Iq∗HX and Iq∗HXI such that V ∗HX (q)6 V ∗0 for all q ∈ Iq∗HX and V ∗HXI (q)6

V ∗0 for all q ∈ Iq∗HXI . In addition, these ranges nest inside one another along with increasing hedge

complexity, i.e., Iq∗HX ⊆ Iq
∗
HXI

. We identify Iq∗HX (resp., Iq∗HXI ) with the operational flexibility

range yielded by optimal single-claim (resp., combined) custom hedging. Thus, the range increment

Iq∗HXI \ Iq
∗
HX

represents the operational flexibility gain afforded by our optimal combined hedge.

We now show that this gain can be as large as an unbounded interval of values.

Example EC.5 (Electricity retailer). Let an electricity retailer act as a price taker in a

competitive wholesale market (Joskow and Kahn (2001)). They buy at a competitive market price

X, sell on for a selected retail price q (control variable) a load demand Y/q requested by end

consumers, and earn operating revenues π(q) := (q −X)Y/q. Note that demand size is inversely

proportional to retail price q. We make the natural assumption that procurement costs and demand

level are positively correlated, i.e., ρ(XY,Y )> 0. For the sake of simplicity, we consider the selected

side index I to be statistically independent of the purchase price X. (An extension to dependent

variables X and I would merely increase the computational burden while leaving our argument

unaffected.) Below, we derive analytical formulae for optimal variance profiles V ∗0 (q), V ∗HX (q),

V ∗HXI (q), their points of minimum q∗0 , q∗HX , q∗HXI , and the two operational flexibility ranges Iq∗HX and

Iq∗HXI . We show that each optimal variance profile assumes the form V ∗#(q) = a#

(
q−1− q∗−1

#

)2
+b#,
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where both a# > 0 and b# > 0 are decreasing with increasingly complex hedges. We also prove

that for any parametric configuration entailing the two inequalities q∗−1
HX −

√
a−1
X (V ∗0 − bX) > 0

and q∗−1
HXI −

√
a−1
XI (V ∗0 − bXI) < 0, the operational range Iq∗HX is bounded while the operational

range Iq∗HXI is unbounded. In these cases, the operational flexibility gain Iq∗HXI \ Iq
∗
HX

from our

combination theme is unbounded as well. Figure EC.2 illustrates this interesting phenomenon.

These considerations underpin our experimental investigation in Section 5 of the extent of Claim

3 within the more general setup of Section 2.

EC.1.6. Further Examples

The following three examples compute maximal correlations, analyze their mutual dependence,

and offer a case of hedge ranking in the context of a Bernoulli market model.

Example EC.6 (Maximal correlation in a Bernoulli market model). Since φ(X) =

αU and ψ(I) = βV (Proposition EC.2), then: ρ(φ(X),ψ(I)) = |〈U,V 〉| = |ρXI |, and maximal

correlation is rX,I = |ρXI |. Clearly, ρXI = corr (1X=x+ − p+,1I=i+ − q+) . By the Cauchy-Schwarz

inequality, |ρXI |= 1 whenever V ∝U , i.e., V =±U : X and I are a function of one another.

Example EC.7 (Maximal correlation linkages in a Bernoulli market model). In

the previous example, rIX = |〈V,U〉| = cos (ϑV U) , where ϑV U denotes the angle between V and

U . If Y is a Bernoulli r.v., then rIY = cos (ϑVW ) for some vector W . If W lies within the angle

between V and U , then it satisfies ϑV U = ϑVW + ϑWU . Since Y and X are fixed, then the angle

ϑWU created between the two of them is fixed as well. By varying I, we see that rIX = cos (ϑV U)

decreases (or increases) if and only if rIY = cos (ϑVW ) decreases (or increases) as well.

Example EC.8 (Hedge ranking in a Bernoulli market model). With reference to the

efficiency analysis reported in Subsection 4.3, the variance attained by using no hedge, H[ (X), and

H∗ (X) +G∗ (I) are given by formulae (EC.9). The efficiency of single-claim hedge H[ (X) is thus:

EX = (1 − ρ2)α2/ (α2 +β2− 2ραβ), where α = −〈π,U〉, β = −〈π,V 〉, and |ρ| = |〈U,V 〉|. Clearly,

H[ (X) and H∗ (X) +G∗ (I) deliver the same performance and EX = 1 provided that ρα= β. By

using the explicit expression for H∗ (X) + G∗ (I) in formula (EC.8), this condition amounts to

having G∗ (I) = 0.

We now show that rXI = 1 is compatible with non-uniqueness of the optimal combined claims

H∗ (X) and G∗ (I).

Example EC.9 (Non-uniqueness). Let FI ⊆FX . Then, I = f(X) for a measurable function f

(i.e., index I is redundant), system (5) entails infinitely many solution pairs. The design problem

(4) reduces to U ∗
HXI

= U ∗
HX

:= maxH̃∈HX : EQ[H̃(X)]=0 U
(
π (X,Y ) + H̃ (X)

)
, whose (unique) solution

H̃∗ (X) equals H∗ (X) + G∗ (f (X)) = H∗(X) + G∗(I) for infinitely many pairs (H∗ (X) ,G∗ (I))

solving the original problem (4).
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We conclude this appendix by exhibiting a state variable setup based on Itô diffusion processes

and by computing the related maximal correlations in terms of their coefficients.

Example EC.10 (Dynamic market model). Assume Itô diffusion dynamics: dXt/Xt = α dt+σX1 dW1 +σX2 dW2,
dIt/It = β dt+σI1dW1 +σI2dW2,
dYt/Yt = γ dt+σY1 dW1 +σY2 dW2 +σY3 dW3,

are assigned for given independent Brownian motionsW1, W2, and W3. A variety of alternative state

vectors (X,Y, I) enter our setup, including 1) European-style vectors with components X :=XT ,

Y := YT , and I := IT , and 2) Asian-style vectors with terms X := (Xt1 , . . . ,XtN ), Y := (Yt1 , . . . , YtN ),

and I := (It1 , . . . , ItN ) (see Example 1). Appendix EC.3.9 shows that rXI < 1 for both models

provided that coefficients σX := (σX1 , σ
X
2 ,0) and σI := (σI1 , σ

I
2 ,0) are linearly independent, and

σY3 6= 0.

EC.1.7. Explicit and Numerical Solution of the Design Equation

The design integral equation (8) can explicitly be solved provided that the integral kernel k(x, ξ)

is separable. This is the case of statistically independent variables X and I, that is fXI(x, i) =

fX(x)fI(i). Then, the integral kernel is k(x, ξ) =
∫
RN fXI(ξ, i)di= fX(ξ) and the optimal hedges are

easily derived (see Example 3). We may also analytically solve the design integral equation related

to a class of kernels derived from a perturbation of the independence case. (A proof is reported in

Appendix EC.3.11.)

Proposition EC.3 (Separable Perturbation of the Independence Case). Let variables X

and I feature a joint distributions density:

fXI(x, i) = (1 +α(x)β(i))fX(x)fI(i), (EC.10)

where α (x)β (i) > −1 for all (x, i) ∈ RN × RN and
∫
RN α (x)fX (x)dx =

∫
RN β (i)fI (i)di = 0. If

‖α‖L2
X
‖β‖L2

II

< 1, then the integral kernel is separable, it can be expressed as:

k(x, ξ) = fX (ξ)
(

1 + ‖β‖2
L2
I
α(x)α (ξ)

)
,

and the unique solution of design equation (8) is:

H∗0 (x) = ΠX(x) + γ‖β‖2
L2
I
α(x), x∈RN , (EC.11)

where γ = c−1
∫
RN α(ξ)Π0(ξ)fX(ξ) dξ and c= 1−‖α‖2

L2
X
‖β‖2

L2
I
.
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Example EC.11. Let N = 1. Assume that:

α(x) := θ(1− 2FX(x)),

β(i) := 1− 2FI(i),

where θ > 0 and F# denotes the distribution function of # under P. Both α and β satisfy the

aforementioned regularity conditions and ‖α‖L2
fX

‖β‖L2
fI

< 1. Since ∂xα(x) =−2θfX(x), then:

E[α(X)] =− 1

4θ

∫
R
∂x(α(x))2 dx=−θ

4

[
(1− 2FX(x))2

]x=+∞
x=−∞ = 0,

and:

E[α(X)2] =− 1

6θ

∫
R
∂x
(
α(x)3

)
dx=−θ

2

6

[
(1− 2FX(x))3

]x=+∞
x=−∞ =

θ2

3
<+∞.

Similarly, E[β(I)] = 0 and E[β(I)2]<+∞.

The design integral equation is difficult to solve analytically. One may thus resort to a suitable

numerical scheme and derive an approximated solution. It turns out that most numerical methods

for integral equations rely on the compactness of the integral operator:

I [w] (x) :=

∫
RN
k(x, ξ)w(ξ) dξ, x∈RN , (EC.12)

as defined in L2
X (Hackbush 1995). In our context, I [w](X) =E [E [w(X)|FI ] |FX ] is a projection,

hence it is compact only provided it exhibits finite dimensional rank. Unfortunately, this is not

the case if (X,I) is absolutely continuous with respect to the Lebesgue measure. However, we may

adapt a Galerkin finite elements method, which normally requires a compactness assumption, as a

convenient means of developing our setup. Let L2
X,0 := {H ∈L2

X :
∫
RN H(x)fX(x)dx= 0}.

Theorem EC.1 (Numerical solution of the design equation). Consider a basis (wj)j>0 for

L2
X,0, an orthonormal basis (ej)j=1,...,n

for Span〈w1, . . . ,wn〉 (n> 1), a matrix Tn := (Tjk) defined

by wj =
∑n

k=1 Tkjek, operator I in (EC.12), and Mn := (〈I [ek], ej〉)k,j=1,...,n
. If rXI < 1, then the

unique solution H∗0 ∈L2
X of the design equation (9) is the L2

X-limit of payoff sequence:

(
H∗0,n(x)

)
n>1

:=

(
n∑
j=1

hnjwj(x)

)
n>1

,

where hn ∈Rn is the unique solution of the n-dimensional linear system: T−1
n (In−Mn)Tnh

n = γn,

matrix In is the n×n identity, and vector γn := (〈ΠX
0 , ej)j=1,...,n, with ΠX

0 given by (9).

In the case of Gaussian distributions, wj may be centered Hermite polynomials; if distributions are

lognormal, we may change variables according to x= eu and then center the outcome around the

P-mean. To the best of our knowledge, this result is new. We have used it for solving the design

equation arising in Section 5.
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EC.1.8. Combined vs. Single-Claim Hedge Payoff Analysis

Let us consider the mean-centered claims H∗0 (X) and G∗0 (I) solving system (5). The optimal single-

claim hedge H[(X) results from setting G (I) ≡ 0 in expression (5). We see that the two claims

H∗0 (X) and H[
0 (X) differ by exactly the cross-claim effect:

H∗0 (X)−H[
0 (X) =−E [G∗0(I)|FX ] .

By adding G∗0(I) to both terms in the previous expression, we have:

[H∗0 (X) +G∗0 (I)]︸ ︷︷ ︸
combined positioning

− H[
0 (X)︸ ︷︷ ︸

single claim

=G∗0 (I)−E [G∗0(I)|FX ]︸ ︷︷ ︸
I-idiosyncratic risk

. (EC.13)

The value-centered optimal combined custom hedge H∗0 (X) +G∗0 (I) exceeds the value-centered

optimal single-claim hedge H[
0 (X) by the incremental contribution of claim G∗0(I) over its X-

predictable component E [G∗0(I)|FX ]. In other words, this contribution is represented by the por-

tion of payoff G∗0 (I) that depends on whatever risk source is unspanned by X. This quantity is the

I-idiosyncratic risk component of the hedge G∗0 (I).

EC.1.9. Combination Value Lower Bound for Weakly Risk Averse Firms

For a weakly risk averse firm, we obtain an approximate explicit lower bound which does not

depend on naked revenues π. Hence, we needn’t assume anything regarding π, X, and Y .

Proposition EC.4 (Combination value lower bound: weakly risk averse firms).

Assume that Var[π]� (%/a)
2
Var [dQ/dP]. Then:

CVX→X+I '
1

2
(1− r2

XI)
(

1−
√

1− r2
X⊥I

)2 %

a
Var

[
dQ
dP

]
, (EC.14)

where rX⊥I := sup
{
ρ(Z,W ) :Z ∈L2

I ,W ∈ (L2
X)⊥

}
.

If index selection is based on this bound, then it would not depend upon the firm’s position

revenues π or nonclaimable risk term Y . This concludes our analysis of Issue 1 stated above.

EC.1.10. A Dynamic Custom Hedging Model Setup

Let us consider our standard model setup (Section 2) and the following variations. The time frame

is a finite set of points 0, ...,N . There is a single source of risk X, which we assume to be claimable.

This is defined through a family of stochastic processes X := (Xn,x
k )06n6k6N over a probability

space (Ω,F ,P), starting at Xn,x
n = x for all times n and states x, and grouped according to the rule

X
k,X

n,x
k

h =Xn,x
h for all times n6 k 6 h and states x. We focus on one-claim hedges written on X

only. For the sake of simplicity, we consider operating revenues and hedges depending on the final
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state Xn,x
N only. Given a starting point in time n, a state x, and a cash endowment w, the optimal

self-financing hedging strategy (SFHS) originating at (n,x,w) is a family (H∗k,y|n,x)n6k6N,y=X
n,x
k

defined by the following recursion:

• At time t= n, optimal hedge H∗n,x|n,x is the payoff H determined by solving:

max
H∈L2

X
:EQ[H(X

n,x
N

)]=w
U [π(Xn,x

N ) +H(Xn,x
N )] . (EC.15)

This is the one-period single-claim custom hedge design problem stated in Section 4.

• At time k + 1 : n 6 k < N , given a standing hedge H∗k,y|n,x for every state y = Xn,x
k , let z =

Xn,x
k+1 denote an admissible state. The firm seeks an optimal hedge H := H∗k+1,z|n,x paying out

H∗k+1,z|n,x(X
k+1,z
N ) at maturity N and currently worth the time k + 1 fair value of the standing

hedge H∗
k,X

n,x
k |n,x

in their portfolio (self-financing condition). That is:

EQ[H(Xk+1,z
N )] = EQ

[
H∗
k,X

n,x
k |n,x

(Xn,x
N )

∣∣∣Xn,x
k+1 = z

]
. (EC.16)

The time k + 1 hedge H∗k+1,z|n,x corresponding to state z is the payoff H solving the one-period

design problem:

max

H∈L2
X

:EQ[H(X
k+1,z
N

)]=EQ

[
H∗
k,X

n,x
k |n,x

(X
n,x
N

)

∣∣∣∣∣Xn,xk+1
=z

]U
[
π(Xk+1,z

N ) +H(Xk+1,z
N ))

]
. (EC.17)

This procedure leads to the optimal SFHS:

H∗ :=
(
H∗n,x|n,x, ...,H

∗
k+1,·|n,x, ...,H

∗
N−1,·|n,x

)
.

If x = xn, ..., xN is a sample path for the underlying risk variable, then strategy H∗ entails the

following sequence of payoff functions:(
H∗n,xn|n,x, ...,H

∗
k+1,xk+1|n,x, ...,H

∗
N−1,xN−1|n,x

)
.

One might also include transaction costs and examine the tradeoff between incremental benefit and

cost related to switching from a static hedge to a periodically rebalanced hedge. An issue arising

upon extending any MV model to multiple periods is time inconsistency. This is of particular

relevance when trying to solve the course of dimensionality entailed by the formulation above and

coming up to an equivalent dynamic programming recursion. The problem may be tackled either by

replacing the MV target with an expected exponential utility, as in Caldentey and Haugh (2006),

or by using any of the methods developed in Basak and Chabakauri (2010) and Björk and Murgoci

(2014). An extension to a dynamic setup may be found in Kouvelis et al. (2018). Further theoretical

investigation is left for future research.
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EC.1.11. The Term Structure of Optimal Operations

Guiotto et al. (2020) consider time T operating revenues πT (X,Y ; q) in a dynamic setting (see, e.g.,

Example EC.10), derive a term structure of optimal operational levels T → q∗ (T ), and compute the

optimal lead-time defined as T ∗0 := arg maxT>0 U (πT (X,Y ; q∗ (T ))). One may include our combined

custom hedge and derive the optimal operational time defined as:

T ∗H⊕G := arg max
T>0

U
(
πT (X,Y ; q∗ (T )) +H∗T,q∗(T ) (X) +G∗T,q∗(T ) (I)

)
.

Our conjecture is twofold: first, T ∗H⊕G > T ∗0 ; second, by reducing exposure to uncertainty, our

optimal combined hedge allows the firm to delay any optimal operational policy change resulting

from model exogenous factors (e.g., a sudden increase in risk aversion due to unexpected market

turmoil).

EC.2. Technical Details

EC.2.1. Regularity Conditions

Throughout the paper, functional dependence between variables is assumed to go through a Borel

measurable map. We require that all r.v.’s exhibit finite variance under the physical probability P.

This assumption does not substantially impact the economics of the underlying problem. However,

it ensures that any future cash flow C with finite variance has a well-defined fair price because:

EQ [|C|]2 6EP

[
|C|2

]
EP

[
(dQ/dP)

2
]
. In particular, any admissible combined hedge has a finite fair

price EQ[H(X) +G(I)], hence the budget constraint in problem (3) is well-defined. Let L2 (Ω) :=

L2(Ω,F ,P) be the space of square integrable r.v.’s equipped with the usual inner product. We

denote BRN the Borel σ-algebra over RN . The assumption of variance finiteness amounts to stating

that all risk variables (including the business position, pricing kernel, and hedge’s payoffs) are in

L2 (Ω). Should X and I be finite dimensional, then this statement is equivalent to taking payoff

functions H = H (x) and G = G (i) in L2
X and L2

I , respectively. Similarly, the business position

π = π (X,Y ; q) is assumed to be in L2 (Ω) for all q ∈ Q. Clearly, the optimized business position

revenues Π defined in formula (1) are in L2 (Ω) and the target MV criterion U is well-defined.

EC.2.2. Budget Constraint Reduction

We first show that budget constraint EQ[H(X) +G(I)]6w is binding at the optimum: any hedge

(H∗ (X) ,G∗ (I)) that solves the optimization problem (3) meets a condition with strict equality,

i.e., EQ[H∗(X) + G∗(I)] = w. Otherwise, the firm may use the residual cash endowment δ :=

w−EQ[H∗(X) +G∗(I)]> 0 to enhance their investment and take a derivative position (H∗ (X) +

δ,G∗ (I)). This latter clearly satisfies the budget constraint, while entailing a MV utility that
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strictly exceeds the one related to (H∗ (X) ,G∗ (I)), i.e., U (π + (H∗ (X) + δ) +G∗ (I)) >U (π +

H∗ (X) + G∗ (I)). This contradicts the optimality of (H∗ (X) ,G∗ (I)). Next, we prove that the

optimization problem (3) with an equality constraint EQ[H(X) + G(I)] = w boils down to one

with equality constraints at the level of individual claims, i.e., EQ[H(X)] = 0,EQ[G(I)] = 0. Let

(H∗ (X) ,G∗ (I)) denote an optimal combined positioning that corresponds with a zero portfolio

endowment. Then, any derivative positioning (H∗ (X) +w1,G
∗ (I) +w2), with w1 +w2 =w> 0, is

optimal for the problem featuring a budget w. Indeed, they are all worth w and deliver a common

MV performance. Given a worthless derivative portfolio, i.e., w= 0, centering each payoff function

by the related fair value does not alter the resulting MV target, namely U (π + (H (X)− VH) +

(G (I)−VG)) = U (π+H (X) +G (I))−%(VH +VG) = U (π+H (X) +G (I)), as long as VH +VG =

EQ[H(X) +G(I)] =w= 0, where VH := EQ[H(X)] and VG := EQ[G(I)]. These considerations show

that the firm may split their endowment w into a portion w1 allocated to purchasing a claim H (X)

written on the position’s claimable X and a portion w2 devoted to buying a claim G (I) written

on the side index I. The optimal hedge then reads as follows:

(H∗ (X) ,G∗ (I)) = (H̃∗ (X) +w1, G̃
∗ (I) +w2),

where claims H̃∗ (X) and G̃∗ (I) solve the reduced optimization problem (3) with individual con-

straints EQ[H(X)] = 0,EQ[G(I)] = 0.

EC.2.3. Properties of Maximal Correlation

Maximal correlation exhibits the following properties:

1. 06 rXI 6 1 (unitary range);

2. rXI = rIX (symmetry);

3. rXI = 0 ⇔ X and I are statistically independent (orthogonality);

4. rΦ(X)Ψ(I) = rXI for all bijections Φ and Ψ (invariance under one-to-one transformation);

5. rXI = |ρ (X,I)| if X and I are Gaussian. (Here ρ denotes the Pearson linear correlation.)

6. For any multivariate Gaussian pair (Z1,Z2), rZ1,Z2
= 1 ⇐⇒ ∃a, b 6= 0 : a ·Z1 = b ·Z2.

Statements 1 to 5 are proved in Schweizer and Wolff (1981). Statement 6 is proved in Guiotto

(2019). Note that functional dependence between variables X and I (see Section 1.2) entails a

unitary maximal correlation (rXI = 1), while the inverse may not be true. Hence, rXI < 1 implies

that X and I are not functionally dependent on one another.

EC.2.4. Hedging Policies and Utility Profiles in the Newsvendor Model

The first hedging policy leaves the business position financially naked, i.e., H = {0}. We thus

have a trivial hedge H∗H×Q ≡ 0, a utility profile U ∗
0 (q) := U (πNV (X,Y ; q)), and an optimal pro-

curement q∗0 := q∗ ({0}). The second and third hedging policies assume a positioning in linear
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derivatives written on either X or I. That is H = Hf
X := {x 7→ θ (x− fX) , θ scalar} and H =

Hf
I := {i 7→ θ (i− fI) , θ scalar}, where the two arbitrary constant values fX and fI represent

the T -delivery prices agreed on at time 0 by buyer and seller. Clearly, the zero-price condition

EQ[H] = 0 appearing in optimization (19) entails that fX and fI are forward prices and the opti-

mum is sought amongst forward contracts. The financially optimal utility profiles are U ∗
Hf
X

(q) =

U
(
πNV (X,Y ; q) + θ[X (X − fX)

)
and U ∗

Hf
I

(q) = U
(
πNV (X,Y ; q) + θ[I (I − fI)

)
. Here, the optimal

forward sizes θ[X and θ[I define the optimal single-claim forward hedges H∗
Hf
X
×Q

: x→ θ[X (x− fX)

and H∗
Hf
I
×Q

: i→ θ[I (i− fI). Size θ[X has been found by Rolfo (1980), while θ[I is computed in

Gaur and Seshadri (2005). The fourth and fifth hedging policies enlarge forward hedging spaces

to encompass all regular custom claims written on X and I, i.e., H =HX and H =HI , respec-

tively. They yield financially optimal utility profiles U ∗
HX (q) = U

(
πNV (X,Y ; q) +H[ (X)

)
and

U ∗
HI (q) = U

(
πNV (X,Y ; q) +G[ (I)

)
, respectively. Here, claims H∗HX×Q :=H[ (X) and H∗HI×Q :=

G[ (I) define the optimal single-claim custom hedges solving problem (10) for H=HX and H=HI ,

respectively. Claim H[ (X) has been derived in Chen et al. (2014), while G[ (I) is, to the best

of our knowledge, new. The sixth hedging policy involves an optimal combined portfolio of two

forwards: one contract is written on the position’s claimable X, the other on the side index I. The

hedging space is H=Hf
XI := {(x, i) 7→ θX (x− fX) + θI (i− fI) , θX and θI scalar}. The financially

optimal utility profile is U ∗
Hf
XI

(q) = U (πNV (X,Y ; q) + θ∗X (X − fX) + θ∗I (I − fI)). Here, sizes θ∗X

and θ∗I are the optimal forward gas and index units defining the optimal combined forward hedge

H∗
Hf
XI
×Q

: (x, i)→ θ∗X (x− fX) + θ∗I (i− fI) derived in Roncoroni and Id Brik (2017).

EC.2.5. Model Implementation Algorithm

Let the state vector distribution be jointly lognormal under the physical measure P, i.e., logX
logY
log I

 P∼N

mX

mY

mI

 ,
 σ2

X ρXY σXσY ρXIσXσI
ρXY σXσY σ2

Y ρY IσY σI
ρXIσXσI ρY IσY σI σ2

I

 . (EC.18)

Risk neutral parameters mQ
X and mQ

I result from shifting their physical counterparts mX and mI

by a proportion λ of the corresponding volatility terms σX and σI , where λ stands for the gas

market price of risk (Kolos and Ronn 2008). A risk neutral mean mQ
Y is not required so long as

demand Y is nonclaimable and thus it does not enter arbitrage-free valuation used in the budget

constraint. We assume that correlations and standard deviations are the same under P and Q. In

a NV model featuring operating revenues (18), we consider r.v.’s X, Y , and I representing a gas

price, a consumption level, and a temperature record to be observed at time T , respectively. We

assume T = 1 calendar year since current time 0. Estimating a trivariate lognormal model (EC.18)

requires samples for X, Y , and I. In the absence of one-year market estimates for gas prices,
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consumption levels, and temperatures, we rely on simulated sample data. Specifically, we follow a

three-step simulation procedure:

1. Identify (logX, logY, log I) with the marginal (logX (1) , logY (1) , log I (1)) of a trivariate

stochastic process Z := (logX (t) , logY (t) , log I (t))t>0;

2. Estimate process Z on a time series of gas prices, consumption levels, and temperature records;

3. Generate samples of (X,Y, I) by simulating paths of Z via Monte Carlo methods.

Given an array of simulated samples, we easily arrive at estimated means mX , mY , mI , stan-

dard deviations σX , σY , σI , and correlations ρXY , ρXI , and ρY I . If the process has normal finite

dimensional marginals, then a model instance (EC.18) is fully identified. This algorithm is fed by

a time series for the three state variables in question. Whereas gas prices are open market quotes,

consumption figures are usually proprietary information. In addition, temperature records should

refer to the exact region where gas is actually consumed. As our goal is to assess the relevance

of our integrated policy compared to major existing alternatives, we are content with deriving

and adopting a realistic parametric setup. This may be obtained by crafting an estimate of the

trivariate model (EC.18) based on a suitable instance of the aforementioned algorithm, which we

now describe.

Gas prices are daily quoted frontline futures prices for delivery at Henry Hub in Louisiana. These

quotes are posted on the Bloomberg platform (www.bloomberg.com). They are expressed in US

dollars per million British thermal unit (USD/MMBtu). Our time series spans December 1, 2007

to February 28, 2009. We assume prices obey a lognormal market model featuring mean-reverting

paths, i.e.,

d logX (t) = θx [αx− log (X (t))]dt+σxdWx(t), (EC.19)

under P. Here coefficient θx represents a mean reversion speed per unit of log-price discrepancy

from the corresponding long-term level αx, term σx denotes the instantaneous variance rate, and

process Wx is a standard one-dimensional Brownian motion. This is a market model for commodity

price modeling, it ensures analytical tractability, and it fits our distributional assumption (Benth

et al. 2008). Next, we estimate model (EC.19) through maximum likelihood on the recorded price

path. Finally, we run a Monte Carlo simulation and get to a sample mean mX and a standard

deviation σX for the normal variable logX = logX (1). Throughout the implementation, we assume

that time is measured in “years” according to the Actual/Actual day-count convention.

We repeat the same procedure for consumption level Y and obtain a sample mean mY and a

standard deviation σY for the normal variable logY = logY (1). Here, Y is identified with the one-

year estimate of the monthly average consumption in a representative region featuring 10 million

inhabitants. Consumption levels for the whole US area are posted in a monthly report issued by
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the US Energy Information Administration (www.eia.gov). We divide each record by thirty to get

an approximate figure for the region in question. Gas volumes are expressed in MMBtu. By using

standard formulae linking first and second order moments to corresponding lognormal distribution

parameters, i.e., mz = 2 logE [Z]− 1
2

log
(
E [Z]

2
+ Var [Z]

)
and σz =

√
log (Var [Z]/E [Z]) + 1, with

log (Z)∼N (mz, σ
2
z), we obtain round values for the mean and standard deviation of the one-year

forecast of gas price and volume.

Table EC.2 A realistic model setup.

Average value Standard deviation

Gas price X (USD/MMBtu) 4 1

Gas volume Y (MMBtu) 10,000,000 5,000,000

Temperature index I (◦F) 60 30

Descriptive statistics of one-year estimate of state variables X, Y , and
I. Gas price X is expressed in US dollars per million British thermal units
(USD/MMBtu); Gas consumption is given in millions of British thermal units
(MMBtu); temperature records are measured in degrees Fahrenheit (◦F).

These figures are reported in Table EC.2, where temperature means and standard deviation reflect

a typical continental region featuring mild climate conditions. To complete our picture of a realistic

parametric setup, we assume correlations generate a mild positive dependence of gas price X on

both consumption level Y and temperature record I and a strong positive dependence between I

and Y . These two assumptions characterize regions where energy consumption goes in pair with

warm seasons, while showing a stiff demand curve: the former exacerbates the portion of corporate

exposure due to nonclaimable risk, while the latter underpins the use of temperature derivatives

to cope with that type of risk. Last, initial conditions are given by recorded values X (0) = 5.57

USD/MMBtu, Y (0) = 2,547,629 MMBtu, I (0) = 19◦F, which correspond to logX (0) = 1.7178,

logY (0) = 14.7507, and log I (0) = 2.9444 in the natural logarithmic scale. Estimated figures are

reported in Table EC.3.

Table EC.3 Parametric setup in a NV model for gas retail.

mY mX mI mQ
X mQ

I σY σX σI ρXY ρXI ρY I λ % a c

16.01 1.36 3.98 1.35 3.97 0.47 0.25 0.47 0.20 0.30 0.95 0.2 1.00 10−7 2.00

This calibration procedure defines the model instance we consider in Section 5. Note that numerical

computations of the hedges are run up to an approximation error lower than 10−5.
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Figure EC.3 Optimal variance of alternative integrated policies for a variance minimizing firm.
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EC.2.6. Empirical Comparative Analysis: Further Details

Table EC.4 reports optimal procurement q∗H as well as expected value (i.e., return) and standard

deviation (i.e., risk) of the optimal operating revenues π∗H+H∗H across the seven admissible inte-

grated policy spaces. It also exhibits the variations of both mean and standard deviation that

occur upon switching from an integrated policy, say,
(
H∗G, q

∗
G
)

featuring a hedging class G, to an

integrated policy (H∗H, q
∗
H) featuring another hedging class H.

It is interesting to study the special case of variance minimizing firms. This corresponds to setting

parameter % = 0 in a MV target. Put differently, a firm is a pure risk minimizer provided that

no speculative theme affects its preferences. Figure EC.3 shows realized optimal variance against

operational level q for the seven hedging strategies examined so far.

The naked position and the position hedged through our optimal combined custom claim define

upper and lower bounds for the variance profile, respectively. For relatively low operational figures,

hedges involving X outperform all others. However, things change as the procurement order q

increases. For relatively large values of q, revenues hedged through single claims on I exhibit a

lower variance than those hedged by single claims on X. Interestingly, the optimal forward on I

outperforms the optimal custom claim on X for q greater than 106 MMBtu. As noted earlier, these

facts are intimately related to the kind of functional dependence of NV revenues on price X (resp.,

demand Y ) for relatively low (resp., high) values of procurement q. In general, by increasing hedge

complexity, a firm may attain an assigned level of operations and a progressively lower variance

or, equivalently, a progressively higher level of operations and a steady variance.
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Regardless of the hedging class in question, minimum variance is attained at q = 0, a result in

keeping with the pure variance minimizing firm considered in Wang and Yao (2017). By comparing

this result with those reported earlier in Figure 2 for a risk averse firm, we see that the best strategy

is “not to play the game” (i.e., q= 0) whenever risk is the sole concern for the firm. Should they be

interested in expected revenues as well, then an array of optimal operational levels arises depending

on the hedging class in question. Indeed, in the NV case under scrutiny, the greater the class of

hedging opportunities, the larger the optimal procurement order (Table 2, column 2).

We conclude by disentangling the operational and speculative effects on expected revenues pro-

duced by a change in hedging classes. Suppose a firm switches from a hedging class G to another

class H. Then, revenues π∗G +H∗G turn into π∗H+H∗H. Hence, expected revenue variations reported

in Table EC.4 stem from two distinct channels. One is financial speculative and is represented by

the variation in the expected payoff of the hedge: E [H∗H]− E
[
H∗G
]
. It stems from the ability of

financial derivatives to leverage the risk premium offered by the market. The other is operational

and is given by the variation in expected revenues under optimal integrated policies
(
H∗G, q

∗
G
)

and

(H∗H, q
∗
H): E [π∗H]−E

[
π∗G
]
. This term originates from the effect that a change in financial hedge has

on the optimal procurement order q∗, which in turn affects revenues π. For instance, let us consider

entering an optimal integrated policy, starting from an optimally handled naked position π∗0 :=

π (q∗0). This corresponds to switching from G :=H0 (no hedge) to any other hedging class H. For

notational neatness, we omit indicating H0 as a starting hedging class. The expected relative gain

∆mH := (E [π∗H+H∗H]−E [π∗0 ])/E [π∗0 ] can be split into a financial term ∆mfin
H :=E [H∗H]/E [π∗0 ] and

an operational term ∆mop
H := (E [π∗H]−E [π∗0 ])/E [π∗0 ]. Table EC.5 reports these quantities expressed

as percentages over the no-hedge figures and for all the six non trivial hedging classes at stake.

Table EC.5 Expected gain breakdown into speculative and operational terms.

Hedging class Procurement order Expected gain Speculative Operational

H q∗H ∆mH = ∆m
fin
H + ∆m

op
H

(MMBtu) (%) (%) (%)

Hf
X

7.861 4.84 -1.33 6.17

HX 7.917 5.01 -1.54 6.55

Hf
I

8.470 9.21 -0.49 9.70

HI 9.934 14.05 -1.15 15.20

Hf
XI

9.177 12.07 -0.84 12.91

HXI 10.300 14.22 -1.67 15.89

For each target hedging class H= Hf
X (forward on X), HX (custom on X), Hf

I (forward
on I), HI (custom on I), Hf

XI (combined forward on X and I), and HXI (combined custom
on X and I), we report optimal procurement order q∗H, full exposure expected gain ∆mH0→H,
speculative term ∆mfin

H0→H
, operational term ∆mop

H0→H
. All variations are expressed as a

percentage over the no-hedge figure.

Two interesting features are worth mentioning. First, expected revenues primarily increase due

to an increasing optimal procurement order allowed by the adoption of a financial hedge. Put
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differently, operational flexibility is a major source of profitability (Zhao and Huchzermeier 2017).

Second, the market risk premium conveyed by the hedge plays a relatively modest and negative

role in the variation of expected revenues. The negative sign may reflect a risk averse attitude of

the firm, which adheres to a “hedging pressure” (Keynes (1923), Hicks (1939)) whereby hedgers

pay a premium to transfer their risk to speculators acting as hedge providers.

EC.3. Proofs

EC.3.1. Proof of Proposition 1

The statement is a direct consequence of the Lagrange multipliers theorem applied to optimal

pair (H∗ (X) ,G∗ (I)). Let us consider the map (H,G)→ U (π + H + G). A point of maximum

(H∗ (X) ,G∗ (I)) under constraints EQ[H(X)] = 0 and EQ[G(I)] = 0 satisfies the first order station-

arity condition:

∇U (π+H∗ (X) +G∗ (I)) = λ∇(EQ[H∗(X)]) +µ(EQ[G∗(I)]), (EC.20)

for suitable real scalars λ and µ. Here, ∇ := (∂H , ∂G) is the gradient operator and ∂ denotes the

Fréchet differential operator. If L2 :=L2 (Ω,F ,P), straightforward calculations lead to:

〈∂HU (π+H +G), δH〉=E [(%− a ((π+H +G)−E [π+H +G])) δH] , ∀δH(X)∈L2, (EC.21)

〈∂GU (π+H +G), δG〉=E [(%− a ((π+H +G)−E [π+H +G])) δG] , ∀δG(I)∈L2. (EC.22)

Clearly:

〈∂HEQ[H(X)], δH(X)〉=EQ[δH(X)], ∂GEQ[H(X)] = 0,

〈∂GEQ[G(I)], δG(I)〉=EQ[δG(I)], ∂HEQ[G(I)] = 0.

Hence, condition (EC.20) leads to a 2×2 system of equations for the optimal pair (H∗ (X) ,G∗ (I)):E [(%− a ((π+H∗ (X) +G∗ (I))−E [π+H∗ (X) +G∗ (I)])) δH(X)] = λEQ[δH(X)],

E [(%− a ((π+H∗ (X) +G∗ (I))−E [π+H∗ (X) +G∗ (I)])) δG(I)] = µEQ[δG(I)],
(EC.23)

for any δH(X), δG(I)∈L2. By taking δH ≡ 1≡ δG, we obtain Lagrange multipliers:

λ=E [(%− a ((π+H∗ (X) +G∗ (I))−E [π+H∗ (X) +G∗ (I)]))] = %,

and µ= %. By inserting these values into system (EC.23) and switching from risk neutral to physical

expectation, we have:E
[(
%
(
1− dQ

dP

)
− a ((π+H∗ (X) +G∗ (I))−E [π+H∗ (X) +G∗ (I)])

)
δH(X)

]
= 0,

E
[(
%
(
1− dQ

dP

)
− a ((π+H∗ (X) +G∗ (I))−E [π+H∗ (X) +G∗ (I)])

)
δG(I)

]
= 0,
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namely: E
[(
%
(
1− dQ

dP

)
− a ((π+H∗ (X) +G∗ (I))−E [π+H∗ (X) +G∗ (I)])

)∣∣FX

]
= 0,

E
[(
%
(
1− dQ

dP

)
− a ((π+H∗ (X) +G∗ (I))−E [π+H∗ (X) +G∗ (I)])

)∣∣FI

]
= 0.

As long as H∗(X) is FX measurable and G∗(I) is FI measurable, we may simplify the system as

follows: H∗(X) =−E
[
π+ %

a
dQ
dP

∣∣FX

]
−E [G∗(I)|FX ] +m,

G∗(I) =−E
[
π+ %

a
dQ
dP

∣∣FI

]
−E [H∗(X)|FI ] + m̃,

(EC.24)

for suitable constants m,m̃. These latter may be computed by taking the expectation of both terms

in the two equations under P, that is:

m̃=m=E[H∗(X)] +E [G∗(I) ] +E[π] +
%

a
.

If we consider the P-mean centered claims H∗0 (X) := H∗(X) − E[H∗(X)] and G∗0(I) := G∗(I) −
E[G∗(I)], the resulting pair (H∗0 (X),G∗0(I)) satisfies the system (5). Q.E.D.

EC.3.2. Proof of Theorem 1

Our proof strategy is as follows. First, we highlight that H∗0 (X) solves a fixed-point equation.

Second, we prove that this equation involves a contraction in a suitable subspace of L2 (Ω). Third,

we derive both existence and uniqueness of H∗0 (X) by using the Banach fixed-point theorem.

To begin, we insert the second equation of system (5) into the first one and get to:

H∗0 (X) = Π0(X) +EP [EP [H∗0 (X)|FI ]|FX ] , (EC.25)

where:

Π0(X) :=−EP [K−EP [K|FI ]|FX ] , (EC.26)

and K := π+ %
a
dQ
dP is the optimal hedging kernel. This is a fixed-point equation. The Banach fixed-

point theorem requires the right-hand side in equation (EC.25) to be a contraction in a suitable

space. To show this, let us define the operator:

T [Z] :=E [E [Z|FI ]|FX ] .

By using standard properties of conditional expectation, we easily see that T is linear and bounded

on HX . Moreover,

E[T [Z]] =E [E [E [Z|FI ]|FX ]] =E[Z],

hence E[T [Z]] = 0 provided that E[Z] = 0. In other terms, T maps the Hilbert subspace HX of P-

centered, FX-measurable, L2 (Ω) r.v.’s into itself. Also, Π0(X) ∈HX . Therefore, (EC.25) assumes

the following abstract form:

H∗0 (X) = Π0(X) +T [H∗0 (X)] (EC.27)
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in the space HX . Map T is a contraction over HX provided that the operator norm ‖T‖ is strictly

less than 1. The following estimate proves this claim. Let φ(X)∈HX and ψ(I)∈HI . By using the

definition of inner product in L2 (Ω) and two elementary properties of conditional expectation, we

have:
〈E[φ(X) | FI ],ψ(I)〉 =E [ψ(I)E [φ(X) | FI ]] =E [E [φ(X)ψ(I) | FI ]]

=E [φ(X)ψ(I)] = ‖φ(X)‖2‖ψ(I)‖2ρ(φ(X),ψ(I)),

hence:

〈E[φ(X) | FI ],ψ(I)〉6 rXI‖φ(X)‖2‖ψ(I)‖2

by the very definition of maximal correlation rXI . If we set ψ(I) := E[φ(X) | FI ], the following

upper bound holds true:

‖E[φ(X) | FI ]‖2 6 rXI‖φ(X)‖2. (EC.28)

Consequently,

‖E [E[φ(X) | FI ] | FX ]‖2 6 ‖E[φ(X) | FI ]‖2
(EC.28)

6 rXI‖φ(X)‖2

for all φ(X)∈HX . Hence, ‖T‖6 rXI , which we assumed to be strictly smaller than 1. Therefore, T

is a contraction in HX and the Banach fixed-point theorem ensures that equation (EC.27) admits

a unique solution H∗0 (X) in HX . Q.E.D.

EC.3.3. Proof of Theorem 2

Since vector (X,Y, I) is absolutely continuous on RN , we may compute all the conditional expec-

tations appearing in equation (7) in terms of probability densities. Indeed, conditional expectation

E[φ(X)|FI ] =ψ(I), where:

ψ(i) =E[φ(X)| I = i] =

∫
RN
φ(ξ)fX|I(ξ|i)dξ =

∫
RN
φ(ξ)

fXI(ξ, i)

fI(i)
dξ.

A similar formula holds for E[ψ(I)|FX ]. According to Fubini-Tonelli theorem,

E [E [H∗0 (X)|FI ] |X = x] =

∫
RN
H∗0 (ξ)

(∫
RN

fXI(x, i)

fX(x)

fXI(ξ, i)

fI(i)
di

)
dξ.

As for the conditional expected market premium, note that:

E
[
dQ
dP

ψ(X)

]
=EQ[ψ(X)] =

∫
RN
ψ(x)fQ

X(x)dx=

∫
RN
ψ(x)

fQ
X(x)

fX(x)
fX(x)dx=E [φ(X)ψ(X)],

where φ(x) := fQ
X(x)/fX(x) and ψ(X) ∈ L2

X . Hence, E
[
dQ
dP | X = x

]
= fQ

X(x)/fX(x). Following a

similar argument, E
[
dQ
dP | I = i

]
= fQ

I (i)/fI(i). By inserting these formulae into equation (7) and

the related term ΠX
0 (X), the design equation (8) follows after straightforward calculations.
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A design equation for the value-centered claim payoff function G∗0 (i) results from the second

equation in the first-order system (5). The corresponding expression is given by:

G∗0(i) = ΠI
0(i) +

∫
RN
H∗0 (x)

fXI(x, i)

fI(i)
dx,

(
i∈RN

)
(EC.29)

with term:

ΠI
0(i) =−

∫
R2N

π(x, y; q)
fXY I(x, y, i)

fI(i)
dxdy+

∫
R2N

π(x, y; q)
fXY (x, y)fXI(x, i)

fX(x)fI(i)
dxdy

−%
a

(
fQ
I (i)

fI(i)
−
∫
RN
fQ
X(x)

fXI(x, i)

fX(x)fI(i)
di

)
.
(
x∈RN

) (EC.30)

Q.E.D.

EC.3.4. Proof of Theorem 3

We premise to the proof the following

Lemma EC.1. Let P ∈L2 (Ω) be such that EQ[P ] = 0. Then

U (π+P )−U (π) =
a

2

(
E[K2

0]−E
[
(P0 +K0)

2
])
, (EC.31)

where P0 := P −E[P ].

Proof. Let P0 := P − E[P ] be defined such that P = P0 − EQ[P0]. Since U (Z + k) = U (Z) + %k,

then:

U (π+P ) = U (π+P0)− %EQ[P0] = U (π+P0)− %E
[
P0

dQ
dP

]
. (EC.32)

Because U (Z +W ) = U (Z) + U (W )− a cov(Z,W ), we see that:

U (π+P0) = U (π) + U (P0)− a cov(π,P0)

= U (π)− a
2
E [P 2

0 ]− aE[πP0].

By inserting this expression into (EC.32), we obtain:

U (π+P ) = U (π)− a
2

(
E[P 2

0 ] + 2E
[
P0

(
π+ %

a
dQ
dP

)])
= U (π)− a

2
(E[P 2

0 ] + 2E [P0K0])

= U (π)− a
2

(
E
[
(P0 +K0)

2
]
−E [K2

0]
)
.

The Lemma is proved. Q.E.D.

We are now ready to prove Theorem 3. Since CVX→X+I = %−1
(
U ∗
HXI −U ∗

HX

)
, we may focus on the

utility gap U ∗
HXI −U ∗

HX . By using (EC.31) and adopting L2 notations, we see that:

U ∗
HXI −U ∗

HX=−a
2

(
‖H∗0 (X) +G∗0(I) +K0‖22−

∥∥H[
0(X) +K0

∥∥2

2

)
. (EC.33)
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We recall that H[
0 (X) =−E [K0|FX ] and:

H∗0 +G∗0 (I) =H[
0 (X) + (G∗0 (I)−E [G∗0 (I)|FX ]) =−E [K0|FX ] + (G∗0 (I)−E [G∗0 (I)|FX ]).

(EC.34)

The utility gap (EC.33) thus reads as follows:

U ∗
HXI −U ∗

HX = a
2

(
‖K0−E [K0|FX ]‖22−‖(K0−E [K0|FX ]) + (G∗0 (I)−E [G∗0 (I)|FX ]‖22

)
= a

2

(
−2 〈K0−E [K0|FX ] ,G∗0 (I)−E [G∗0 (I)|FX ]〉− ‖G∗0 (I)−E [G∗0 (I)|FX ]‖22

)
.

Note that K0−E [K0|FX ] and E [G∗0 (I)|FX ] are orthogonal under the standard scalar product in

L2(Ω,P). By using standard properties of conditional expectation, we may develop:

〈K0−E [K0|FX ] ,G∗0 (I)−E [G∗0 (I)|FX ]〉 = 〈K0−E [K0|FX ] ,G∗0 (I)〉

= 〈E [K0−E [K0|FX ]|FI ] ,G
∗
0 (I)〉

=−〈ΠI
0,G

∗
0 (I)〉 ,

where ΠI
0 :=−E[K0−E [K0|FX ]|FI ]. A fixed-point equation for G∗0 (I) can easily be derived as:

G∗0 (I) = ΠI
0 +E [E [G∗0 (I)|FX ]|FI ] . (EC.35)

By using standard properties of conditional expectation once more, we compute:

〈ΠI
0,G

∗
0 (I)〉 = 〈G∗0 (I)−E[E[G∗0 (I) |FX ] | FI ],G

∗
0 (I)〉 (by (EC.35))

= 〈E [(G∗0 (I)−E[G∗0 (I) | FX ]) | FI ] ,G
∗
0 (I)〉

= 〈G∗0 (I)−E[G∗0 (I) | FX ],G∗0 (I)〉 (G∗0 (I)∈FI)

= 〈G∗0 (I)−E[G∗0 (I) | FX ],G∗0 (I)−E[G∗0 (I) |FX ]〉

= ‖G∗0 (I)−E[G∗0 (I) | FX ]‖22,

where the equality before the last one stems from the fact that E[G∗0 (I) | FX ] ⊥ G∗0 (I) −

E[G∗0 (I) | FX ].

The utility gain finally reads as follows:

U ∗
HXI −U ∗

HX =
a

2
‖G∗0 (I)−E[G∗0 (I) | FX ]‖22 . (EC.36)

The adoption of a probabilistic notation whereby Var [#]≡ ‖#‖22 for any P-centered argument and

a conversion of utility gain to the combination value CVX→X+I leads to formula (12).
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To prove inequality (13), we need only develop the right-hand side in expression (EC.36). By

using the very definition of maximal correlation rXI and the elementary inequality 2ab6 a2 + b2,

we have

‖G∗0 (I)−E[G∗0 (I) | FX ]‖22 = ‖G∗0 (I)‖22− 2〈G∗0 (I) ,E[G∗0 (I) | FX ]〉+ ‖E[G∗0 (I) | FX ]‖22

> ‖G∗0 (I)‖22− 2rXI‖G∗0 (I)‖2‖E[G∗0 (I) | FX ]‖2 + ‖E[G∗0 (I) | FX ]‖22

> ‖G∗0 (I)‖22− r2
XI‖G∗0 (I)‖22−‖E[G∗0 (I) | FX ]‖22 + ‖E[G∗0 (I) | FX ]‖22

= (1− r2
XI)‖G∗0 (I)‖2.

(EC.37)

Formula (EC.35) leads to:

‖ΠI
0‖2 = ‖G∗0 (I)−E[E[G∗0 (I) | FX ] | FI ]‖2 6 ‖G

∗
0 (I)‖2. (EC.38)

By combining (EC.37) and (EC.38), we obtain:

‖G∗0 (I)−E[G∗0 (I) | FX ]‖22 > (1− r2
XI)‖ΠI

0‖22, (EC.39)

which we insert into (EC.36) and arrive at the desired lower bound:

U ∗
HXI −U ∗

HX >
a

2
(1− r2

XI)‖ΠI
0‖22

after converting utility gains into the combination value CVX→X+I . Q.E.D.

EC.3.5. Proof of Proposition 2

According to inequality (13), we must estimate:

VarP(EP [(K0−EP[K0 | FX ]) | FI ] = ‖EP [(K0−EP[K0 | FX ]) | FI ]‖22 .

This is relatively straightforward: since K0 = π+ %
a
dQ
dP and %

a
is small, the main contribution to the

L2-norm originates in naked position revenues π. More precisely, by using the triangular inequality,

‖E [(K0−E[K0 | FX ]) | FI ]‖2

> ‖E [π−E[π | FX ] | FI ]‖2−
∣∣ %
a

∣∣ ∥∥E [dQ
dP −E

[
dQ
dP | FX

]
| FI

]∥∥
2

> ‖E [π−E[π | FX ] | FI ]‖2−
∣∣ %
a

∣∣ ∥∥dQ
dP

∥∥
2
.

Assumption (14) leads to:

‖E [(K0−E[K0 | FX ]) | FI ]‖2 > ‖E [π−E[π | FX ] | FI ]‖2− ε
1/2Var[π]1/2. (EC.40)
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By using the separable form of π, the first summand in the right-hand side of this expression can

be computed as follows:

π−E[π | FX ] = α(X)β(Y )−E[α(X)β(Y ) | FX ] = α(X)β(Y )−α(X)E[β(Y )]

≡ α(X) (β(Y )−m) =: α(X)β0(X),

where m := E[β(Y )]. By taking the conditional expectation with respect to FI and denoting the

orthogonal projection on (L2
Y )⊥ by E[· |F⊥

Y ], we obtain:

E [π−E[π | FX ] | FI ] =E [E [α(X)β0(Y ) | FY ] | FI ] +E [E [α(X)β0(Y ) | F⊥
Y ] | FI ]

=E[α(X)]E[β0(Y ) | FI ] +E [E [α(X)β0(Y ) | F⊥
Y ] | FI ]

=E[α(X)]β0(Y )−E[α(X)]E[β0(Y ) | F⊥
I ] +E [E [α(X)β0(Y ) | F⊥

Y ] | FI ] .

The triangular inequality leads to:

‖E [(π−E[π | FX ]) | FI ]‖2 > ‖E[α(X)]β0(Y )‖2

− (‖E[α(X)]E[β0(Y ) | F⊥
I ]‖2 + ‖E [E [α(X)β0(Y ) | F⊥

Y ] | FI ]‖2) .
(EC.41)

Clearly,

‖E[α(X)]β0(Y )‖2 = |E[α(X)]|E
[
(β(Y )−E[β(Y )])2

]1/2
= |mα(X)|σβ(Y ),

while:

‖E[α(X)]E[β0(Y ) | F⊥
I ]‖2 = |mα(X)|‖E[β0(Y ) | F⊥

I ]‖2 6 |mα(X)|σβ(Y )

√
1− r2

Y I .

As long as X is independent of Y , α(X) is F⊥
Y measurable, hence:

E
[
α(X)β0(Y ) | F⊥

Y

]
= α(X)E

[
β0(Y ) | F⊥

Y

]
= α(X)E[β0(Y )] = 0.

By inserting these estimates into expression (EC.41), we arrive at:

‖EP[π−EP[π | FX ] FI ]‖2 > |mα(X)|σβ(Y )

(
1−

√
1− r2

Y I

)
.

Finally, by using (EC.40), letting ε→ 0+, and switching to combination value, we obtain the

approximate estimate (15). Q.E.D.

EC.3.6. Proof of Proposition 3

Since H[
0 (X) =−E[K0 |FX ], the utility gain (EC.31) and the Pythagorean theorem yield:

U ∗
HX −U0 =

a

2

(
‖K0‖22−‖K0−E[K0 | FX ]‖22

)
=
a

2
‖E[K0 | FX ]‖22 . (EC.42)

According to Theorem (3), the utility gain:

U ∗
HXI −U0 =

(
U ∗
HXI −U ∗

HX

)
+
(
U ∗
HX −U0

)
(EC.36)

= a
2
‖G∗0 (I)−E[G∗0 (I) | FX ]‖22 + a

2
‖E[K0 | FX ]‖22 .

(EC.43)
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By inserting (EC.42) and (EC.43) into the very definition of efficiency (formula (16)), closed-form

expression (17) follows. Note that:

EX = 1, ⇔ ‖G∗0 (I)−E[G∗0 (I) | FX ]‖22 = 0, ⇔ G∗0 (I) =E[G∗0 (I) | FX ] a.s.-P.

This leads to the following alternative. If G∗0 (I) is a constant, then G∗0 (I)≡ 0 as long as E[G∗0 (I)] =

0. If G∗0 (I) is varying, then identity G∗0 (I) = E[G∗0 (I) | FX ] implies that G∗0 (I) is a non-zero r.v.

that is measurable with respect to both FI and FX . Hence, rXI = 1. Q.E.D.

EC.3.7. Proof of Proposition EC.1

We show that the optimization problem in question may equivalently be cast as one over the space

of P-centered claims, which allows us to invoke a projection argument to derive an explicit solution.

Indeed, to each claim P ∈P :EQ[P ] = 0, we associate P-centered claim P0 := P −E[P ]. Conversely,

any P-centered claim P0 induces a unique P ∈P such that EQ[P ] = 0, i.e.,

P := P0−EQ[P0]. (EC.44)

Clearly,

Var[π+P ] = Var[π+P0] =E
[
(π+P0)2−E[π]2

]
.

Therefore:

min
P∈P: EQ[P ]=0

Var[π+P ] =

(
min

P0∈P : E[P0]=0
E
[
(P0− (−π))

2
])
−E[π]2→ P ∗0 .

That is seeking the zero P-mean element in P which is the nearest to−π in the sense of L2 (Ω,F ,P)-

distance. Condition E[P0] = 0 may be written as 〈P0,1〉= 0 and space P is closed by assumption.

Then, P ∗0 is the component in the orthogonal projection of −π onto P that is orthogonal to 1,

namely:

P ∗0 = Proj[−π]P −〈ProjP [−π],1〉1.

Orthogonal projection is self-adjoint and 1 ∈ P by assumption, hence 〈〈ProjP [−π],1〉 =

−〈π,ProjP1〉=−〈π,1〉=−E[π]. Therefore:

P ∗0 =−ProjPπ+E[π]. (EC.45)

A simple computation shows that:

EQ[P ∗0 ] =E
[
P ∗0

dQ
dP

]
=−

〈
π,ProjP

dQ
dP

〉
+E[π]. (EC.46)

By replacing expressions (EC.45) and (EC.46) into (EC.44), we obtain the desired result (EC.6).

Q.E.D.
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EC.3.8. Proof of Proposition EC.2

Optimal hedges are orthogonal projections on the subspaces of X-measurable and I-measurable

r.v.’s. As long as X admits only two values, any contingent claim written on X only exhibits

two values as well. In particular, the optimal custom hedge on X may be written as H[ (X) =

h+1X=x+ +h−1X=x− for suitable constants h+ and h−. Here, 1 denotes the usual indicator function.

Because the space of X measurable r.v.’s considered here is finite-dimensional, we may identify

an orthonormal basis to compute the required orthogonal projections. Since P = Q, the assumed

balance conditions yields E[H[ (X)] = EQ[H[ (X)] = 0. By inserting the previous expression for

H[ (X) into this equality, we easily obtain h− =− pX
1−pX

h+, hence:

H[(X) = h+

(
1X=x+ − pX

1− pX
1X=x−

)
= h+ 1X=x+ − pX

1− pX
.

Note that:

E[1X=x+ − pX ] = 0, E[(1X=x+ − pX)2] = pX(1− pX)2 + (1− pX)p2
X = pX(1− pX).

We may thus write H[ (X) = αU , where:

U :=
1X=x+ − pX√
pX(1− pX)

is a unit vector. Therefore, H[ (X) lies in the linear span SX := Span(U) of versor U . However,

we know that H[ (X) =−E [π|X] =−〈π,U〉U . Hence,

α =−〈π,U〉=− 1√
pX (1−pX )

E[π(X,Y ; q)(1X=x+ − pX)]

=− 1√
pX (1−pX )

[π(x+, y+; q)pXY (1− pX) +π(x+, y−; q)(pX − pXY )(1− pX)

−π(x−, y+; q)pX(pY − pXY )−π(x−, y−; q)pX(1− pX − pY + pXY )] ,

(EC.47)

where pXY := P(X = x+, I = i+). Similarly, we can show the optimal single-claim hedge on index

I may be expressed as:

G[ (I) = βV,

where β is a constant and:

V =
1I=i+ − pI√
pI(1− pI)

is a unit vector. Therefore G[ (I) lies in SI := Span(V ) and:

β =−〈π,V 〉V =− 1√
pI (1−pI )

[π(x+, y+; q)pXY I +π(x+, y−; q)(pXI − pXY I)

+π(x−, y+; q)(pY I − pXY I) +π(x−, y−; q)(pI − pXI − pY I + pXY I)

−π(x+, y+; q)pX(pY − pXY )−π(x−, y−; q)pX(1− pX − pY + pXY )]

(EC.48)
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with pXI := P(X = x+, I = i+) and pY I := P(Y = y+, I = i+). These expressions prove statement

(EC.7).

Notice that U and V are linearly dependent if and only if

∃λ : 1X=x+ − pX = λ(1I=i+ − pI). (EC.49)

It is easy to verify that either {X = x+}= {I = i+} or {X = x−}= {I = i+}. Let us focus on the

first of the two. Condition (EC.49) amounts to having:{
1− pX = λ(1− pI),
−pX =−λpI ;

whereby λ= 1 and pX = pI . If we define f(i+) := x+ and f(i−) := x−, we have X = f(I). We have

shown that X is a function of I (and vice versa) provided that U and V are linearly dependent. Let

us assume that X = f(I) for some bijection f . (The same argument applies whenever I = g(X)).

We see that:

{X = x+}= {f(I) = x+}= {I = f−1(x+)}.

Since X and I are Bernoulli variables, then f−1(x+) must match either i+ or i−, whereas f−1(x−)

assumes the other of the two values. For instance, suppose f−1(x+) = i+. Then {X = x+}= {I = i∗}
and pX = P(X = x+) = P(I = i+) = pI . This shows that U = V . We conclude that vectors U and V

are linearly independent as long as X and I are not functionally dependent upon one another.

The naively combined custom hedge is just the sum of the two optimal single-claim hedges:

H[ (X) +G[ (I) =−〈π,U〉U −〈π,V 〉V = αU +βV. (EC.50)

This hedge lies in the sum space SX ⊕SI and entails variance VX+I := Var
[
π+H[ (X) +G[ (I)

]
.

Our optimal combined custom hedge is defined as the element H∗ (X) + G∗ (I) in SX ⊕SI

attaining the minimum variance V ∗HXI := minH∈SX ,G∈SI
Var [π+H (X) +G (I)]. That is the pro-

jection of naked position revenues π over the sum space SX ⊕SI . This quantity matches the sum

of projections on space SX and space SI , namely expression (EC.50), provided that they form

an orthogonal basis for SX ⊕SI , i.e., 〈U,V 〉 = 0. Simple computations show that ρ := 〈U,V 〉 =

const× (pXI − pXpI). According to the Cauchy–Schwarz inequality, ρ2 6 1 and ρ2 = 1 if and only

if U =±V , i.e., provided that X is function of I and vice versa. Here, we have ρ2 < 1. Moreover,

〈U,V 〉= 0 if and only if pXI = pXpI , that is X and I are independent r.v.’s. In all other cases, opti-

mal and naively combined hedges differ. To compute our optimal combined custom hedge, we need

to project revenues π on an orthonormal basis for SX⊕SI . If X is not statistically independent of

I, pair (U,V ) cannot be an orthonormal basis. We may thus perform a standard orthogonalization

procedure leading to a basis (U,V ∗), where:

V ∗ :=
V −〈V,U〉U
‖V −〈V,U〉U‖

=
V − ρU√

1− ρ2
.



e-companion to Guiotto and Roncoroni: Combined Custom Hedging ec33

Hence:

H∗(X) +G∗(I) =−〈π,U〉U −〈π,V ∗〉V ∗ = αU +β∗V ∗,

with:

β∗ =−〈π,V ∗〉=− 1√
1− ρ2

(〈π,V 〉− ρ〈π,U〉) =
β− ρα√

1− ρ2
,

which proves expression (EC.8). Q.E.D.

EC.3.9. Proof of Example EC.5

Naked operating revenues variance is easily computed as follows:

V ∗0 (q) = Var[XY ]

(
1

q
− C(Y,XY )

Var[XY ]

)2

+

(
Var[Y ]− C(Y,XY )2

Var[XY ]

)
,

where C denotes the covariance operator. Note that C(Y,XY )2 = q2ρY,XY Var[Y ]1/2Var[XY ]1/2 > 0

as long as ρY,XY > 0 by assumption. This quantity thus attains a minimum value:

V ∗0 = Var[Y ]− C(Y,XY )2

Var[XY ]

at point:

q∗0 =
Var[XY ]

C (Y,XY )
.

The optimal variance under optimal single-claim custom hedging is given by:

V ∗HX (q) = Var[π(q)]−α(q)2,

where α(q) =−〈π,U〉=− (〈Y,U〉− q−1〈XY,U〉). By inserting V ∗0 (q) into this expression, we obtain:

V ∗HX (q) = (Var[XY ]−〈XY,U〉2)
(

1
q
− C(Y,XY )−〈Y,U〉〈XY,U〉

Var[XY ]−〈XY,U〉2

)2

+(Var[XY ]−〈Y,U〉2)− (C(Y,XY )−〈Y,U〉〈XY,U〉)2

Var[XY ]−〈XY,U〉2

=: aX

(
1
q
− 1

q∗HX

)2

+ bX ,

where aX , bX , and q∗HX are defined accordingly. Clearly, q∗HX is the corresponding point of minimum.

The operational flexibility gain yielded by optimal single-claim custom hedging on X is given by

the range of operations levels q such that:∣∣q−1− q∗−1
HX

∣∣6√a−1
X (V ∗0 − bX),

namely:

Iq∗HX =



[(
1

q∗HX
+
√

V ∗0 −bX
aX

)−1

,

(
1

q∗HX
−
√

V ∗0 −bX
aX

)−1
]
, if 1

q∗HX
−
√

V ∗0 −bX
aX

> 0,

[(
1

q∗HX
+
√

V ∗0 −bX
aX

)−1

,+∞

[
, if 1

q∗HX
− V ∗0 −bX

aX
< 0.

(EC.51)
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Similarly, the optimal variance under optimal combined custom hedging is:

V ∗HXI (q) = Var[π(q)]−
[
α(q)2 +β(q)2

]
,

where β(q) = −〈π,V 〉 = − (〈Y,V 〉− q−1〈XY,V 〉). By inserting V ∗0 (q) into this expression, we

obtain:

V ∗HXI (q) = aXI
(
q−1− q∗−1

HXI

)2
+ bXI ,

where:

aXI := aX −〈Y,V 〉2 <aX ,

bXI :=
(
Var[XY ]−〈Y,U〉2−〈Y,V 〉2

)
−(C(Y,XY )−〈Y,U〉〈XY,U〉− 〈Y,V 〉〈XY,V 〉)2

Var[XY ]−〈XY,U〉2−〈XY,V 〉2
< bX ,

q∗−1
HXI :=

C(Y,XY )−〈Y,U〉〈XY,U〉− 〈Y,V 〉〈XY,V 〉
Var[XY ]−〈XY,U〉2−〈V Y,V 〉2

.

The operational flexibility gain yielded by optimal combined custom hedging on X and I is given

by the set of operations levels q such that:

∣∣q−1− q∗−1
HXI

∣∣6√a−1
XI (V ∗0 − bXI),

namely:

Iq∗HXI =



[(
1

q∗HXI
+
√

V ∗0 −bXI
aXI

)−1

,

(
1

q∗HXI
−
√

V ∗0 −bXI
aXI

)−1
]
, if 1

q∗HXI
−
√

V ∗0 −bXI
aXI

> 0,

[(
1

q∗HXI
+
√

V ∗0 −bXI
aXI

)−1

,+∞

[
, if 1

q∗HXI
− V ∗0 −bXI

aXI
< 0.

EC.3.10. Proof of Example EC.10

The pair (X,I) defines a complete market where claims written on Y need not be replicable.

Model 1: State vector (X(T ), I(T )) is jointly lognormal, i.e.,

log

(
X(T )

X(0)
,
I(T )

I(0)

)
∼N (~mT,CT ),

with:

~m=

(
α− ‖σ

X‖2
2

β− ‖σI‖2
2

)
, C =

(
‖σX‖2 σX ·σI

σX ·σI ‖σI‖2

)
.

According to property 5 reported in Appendix EC.2(C), rXI =
∣∣ρlogX(T ),log I(T )

∣∣. Thus:

rXI = 1⇔ σX ·σI =±‖σX‖‖σI‖.
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By using the Cauchy–Schwarz inequality, the condition on the right hand side holds true provided

that σX ∝ σI , namely σX and σI are linearly dependent. This statement violates our working

assumption. Hence, rXI < 1.

Model 2: The stochastic differential equations for X (t) and I (t) admit solutions:

X(t)

X(0)
= exp

((
α− ‖σ

X‖2
2

)
t+σX ·W (t)

)
,

I(t)

I(0)
= exp

((
β− ‖σ

I‖2
2

)
t+σI ·W (t)

)
.

These expressions entail the following representation:

(X,Y ) := (X(t1), . . . ,X(tN), I(t1), . . . , I(tN))

= (Φ(σX ·W (t1), . . . , σX ·W (tN)) ,Ψ(σI ·W (t1), . . . , σI ·W (tN))) ,

for suitable functions Φ and Ψ. Maximal correlation can easily be computed by using property 4

reported in Appendix EC.2(C):

rXI = r(σX ·W (t1),...,σX ·W (tN )),(σI ·W (t1),...,σI ·W (tN )).

Clearly, the right-hand side in the previous expression is the maximal correlation of a multivariate

Gaussian variate. By using property 6 reported in Appendix EC.2(C), we see that:

rXI = 1⇔∃a, b 6= 0 :
N∑
j=1

ajσ
X ·W (tj) =

N∑
j=1

bjσ
I ·W (tj). (EC.52)

We claim that the condition on the right hand side violates our model assumptions. Indeed, we

note that:
N∑
j=1

ajσ
X ·W (tj) =

N∑
j=1

ajσ
X · (W (tj)−W (t1)) +

(
N∑
j=1

aj

)
σX ·W (t1).

A similar condition holds for
∑N

j=1 bjσ
I ·W (tj). By conditioning with respect to Ft1 , we get to:(

N∑
j=1

aj

)
σX ·W (t1) =

(
N∑
j=1

bj

)
σI ·W (t1),

namely: ∣∣ρσX ·W (t1),σI ·W (t1)

∣∣= 1⇔ σX ∝ σI ,

which contradicts our assumption of linear independent coefficients σX and σI . Consequently,

N∑
j=1

aj =
N∑
j=1

bj = 0

and
N∑
j=2

ajσ
X · W̃ (tj) =

N∑
j=2

bjσ
I · W̃ (tj),
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where W̃ (t) :=W (t)−W (t1) is defined for all t> t1. Because process W̃ conditioned to W (t1) is a

Brownian motion starting at t= t1, condition (EC.52) holds true for index N − 1 replacing N . By

following the same argument, we see that:

N∑
j=2

aj =
N∑
j=2

bj = 0,

and, by iteration, we may conclude that:

N∑
j=k

aj =
N∑
j=k

bj = 0, ∀k= 1, . . . ,N.

These conditions lead to aj = bj = 0 for all j = 1, . . . ,N . This result clearly contradicts the condition

on the right hand side in formula (EC.52). We thus conclude that rXI < 1. Q.E.D.

EC.3.11. Proof of Proposition EC.3

To proceed in the proof we need an auxiliary

Lemma EC.2 (Maximal correlation for separable integral kernels). If the integral kernel

k is separable, then rXI = min{1,‖α‖L2
X
‖β‖L2

I
}.

Proof. Let φ,ψ be Borel measurable functions satisfying:

E[φ(X)] =

∫
RN
φ(x)fX(x) dx= 0, E[ψ(I)] =

∫
RN
ψ(i)fI(i) di= 0,

E[φ(X)2] =

∫
RN
φ(x)2fX(x) dx= 1, E[ψ(I)2] =

∫
RN
ψ(i)2fI(i) di= 1.

Then:

E[φ(X)ψ(I)] =

∫
RN×RN

φ(x)ψ(i)fXI(x, i) dxdi

=

∫
RN×RN

φ(x)ψ(i)fX(x)fI(i) (1 +α(x)β(i)) dxdi

=

(∫
RN
φ(x)α(x)fX(x) dx

)(∫
RN
ψ(i)β(i)fI(i) di

)
.

The Cauchy–Schwarz inequality shows that:∣∣∣∣∫
RN
φ(x)α(x)fX(x) dx

∣∣∣∣6(∫
RN
φ(x)2fX(x) dx

)1/2(∫
RN
α(x)2fX(x) dx

)1/2

= ‖α‖L2
fX

.

Similarly, we can show that: ∣∣∣∣∫
RN
ψ(i)β(i)fI(i) di

∣∣∣∣6 ‖β‖L2
fI

.
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A bound for the maximal correlation between X and I follows:

rXI = sup{E[φ(X)ψ(I)] : E[ψ(X)] =E[ψ(I)] = 0, E[φ(X)2] =E[ψ(I)2] = 1}

6 ‖α‖L2
fX

‖β‖L2
fI

.

By definition, rXI 6 1. Thus:

rXI 6min{1,‖α‖L2
fX

‖β‖L2
fI

},

which is the desired statement. This bound is tight: if φ(x) = α(x)/‖α‖L2
fX

and ψ(i) = β(i)/‖β‖L2
fI

,

then the previous expression clearly turns into an equality. Q.E.D.

We are now ready to prove the Proposition EC.3. The proof is simply a matter of calculation of

the terms appearing in the design equation. In light of the assumed form for density fXI (x, i), we

may compute the integral kernel as follows:

k(x, ξ) =

∫
RN

(1 +α(x)β(i))(1 +α(ξ)β(i))fX(ξ)fI(i) di

= fX(ξ)

∫
RN

(
1 +α(ξ)β(i) +α(x)β(i) +α(x)α(ξ)β(i)2

)
fI(i) di

= fX(ξ)
(

1 + ‖β‖2
L2
I
α(x)α(ξ)

)
.

By inserting this expression into the design equation (8), we obtain:

H∗0 (x) = ΠX
0 (x) +

∫
RN
fX(ξ)(1 + ‖β‖2

L2
I
α(x)α(ξ))H∗0 (ξ) dξ = ΠX

0 (x) + γ‖β‖2
L2
I
α(x),

where:

γ =

∫
RN
α(ξ)H∗0 (ξ)fX(ξ) dξ

as long as E[H∗0 (X)] = 0. Thus, we may further specify the expression for γ as follows:

γ =

∫
RN
α(ξ)

(
ΠX

0 (ξ) + γ‖β‖2
L2
I
α(ξ)

)
fX(ξ) dξ

=

∫
RN
α(ξ)ΠX

0 (ξ)fX(ξ) dξ+ γ‖α‖2
L2
X
‖β‖2

L2
I
.

Hence:

γ =
1

1−‖α‖2
L2
X
‖β‖2

L2
I

∫
RN
α(ξ)ΠX

0 (ξ)fX(ξ) dξ.

The proof is finished. Q.E.D.
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EC.3.12. Proof of Theorem EC.1

To proceed with the proof we need the following auxiliary

Lemma EC.3. Let e1, . . . , en be orthonormal vectors in L2
X and Mn be the n×n matrix defined as:

Mn := (〈I [ek], ej〉)k,j=1,...,n
, (EC.53)

where I [w] :=
∫
RN k(x, ξ)w(ξ) dξ defined in L2

X . Then

‖Mn‖6 rXI , (EC.54)

where ‖.‖ denotes the matrix norm corresponding to the standard norm in Rn.

Proof. Let v ∈Rn. Then

Mnv=

(
n∑
k=1

〈I [ek], ej〉vk

)
j=1,...,n

=

(〈
I

[
n∑
k=1

vkek

]
, ej

〉)
j=1,...,n

.

Estimate (EC.28) leads to:

‖I [w](X)‖2 6 rXI‖w(X)‖2,

where ‖ · ‖2 is the L2(Ω,F ,P) norm. In particular,

‖I [w]‖L2
X
6 rXI‖w‖L2

X
. (EC.55)

By using Bessel inequality and this bound, we see that:

‖Mnv‖2 =
n∑
j=1

〈
I

[
n∑
k=1

vkek

]
, ej

〉2

6

∥∥∥∥∥I
[

n∑
k=1

vkek

]∥∥∥∥∥
2

2

(EC.55)

6 r2
XI

∥∥∥∥∥
n∑
k=1

vkek

∥∥∥∥∥
2

L2
X

= r2
XI‖v‖,

hence our claim. Q.E.D.

We are now ready to prove the Theorem EC.1. Let us consider an approximate solution of design

equation (8) in the form:

H∗0,n(x) :=
n∑
j=1

hnjwj(x). (EC.56)

A simple substitution in the equation shows that:

n∑
j=1

hnjwj = ΠX
0 +

n∑
j=1

hnj

∫
Rn
k(x, ξ)wj(ξ) dξ ≡ΠX

0 +
n∑
j=1

hnjI [wj]. (EC.57)

Whereas the left-hand side lies in Span〈w1, . . . ,wn〉, the right-hand side may not. Let

Pn : L2
X→ Span〈w1, . . . ,wn〉
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denote the orthogonal projection on Span〈w1, . . . ,wn〉. We modify (EC.57) as follows:

n∑
j=1

hnjwj = Pn

(
ΠX

0 +
n∑
j=1

hnjI [wj]

)
= PnΠX

0 +
n∑
j=1

hnjPnI [wj]. (EC.58)

This is an equation in the unknown variable hn := (hnj )j=1,...,n ∈Rn. We first prove that it admits a

unique solution provided that rXI < 1. If e1, . . . , en is an orthonormal basis for 〈w1, . . . ,wn〉 (possibly

obtained through the Gram-Schmidt algorithm), then:

PnΠX
0 =

n∑
j=1

〈ΠX
0 , ej〉ej,

and

Pn (I [wj]) =
n∑
i=1

〈I [wj], ei〉ei.

If Tn := (Tjk) denotes the matrix operating the following change of basis:

wj =
n∑
k=1

Tkjek, (EC.59)

then we may write:

Pn (I [wj]) = Pn

(
n∑
`=1

T`jI [e`]

)
=

n∑
`=1

T`jPn (I [e`]) =
n∑

k,`=1

T`j〈I [e`], ek〉ek. (EC.60)

By inserting expressions (EC.59) and (EC.60) into (EC.58), we arrive at:

n∑
k=1

(
n∑
j=1

Tkjh
n
j

)
ek =

n∑
k=1

(
n∑
j=1

Tkjγ
n
j

)
ek +

n∑
k=1

(
n∑

j,`=1

T`jh
n
j 〈I [e`], ek〉

)
ek. (EC.61)

Let hn :=
(
hnj
)
j

and γn := (γnj )j. Then expression (EC.61) may be expressed as:

(I−Mn)Tnh
n = Tnγ

n, (EC.62)

where Mn is the matrix defined in (EC.53). Assumption rXI < 1 entails bound (EC.54), which in

turn implies that matrix I−Mn is invertible. Consequently, expression (EC.62) immediately yields

a unique solution of (EC.58):

hn = T−1
n (I−Mn)

−1
Tnγ

n.

Let us define H∗0,n(x) as in expression (EC.56). We can prove the convergence relation H∗0,n
L2
X−→

H∗0 (X), where H∗0 (X) solves the first-order equation system (5). Since:

H∗0 (X) = ΠX
0 + I [H∗0 (X)] = ΠX

0 + PnI [H∗0 (X)] + (I−Pn)I [H∗0 (X)],

H∗0,n = PnΠX
0 + PnI [H∗0,n],
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we have:

H∗0 (X)−H∗0,n = (I−Pn)ΠX
0 + PnI

[
H∗0 (X)−H∗0,n

]
+ (I−Pn)I [H∗0 (X)].

By taking norms on both sides in the previous identity, we obtain the following upper bound:

‖H∗0 −H∗0,n‖L2
X
6
∥∥(I−Pn)ΠX

0

∥∥
L2
X

+
∥∥PnI [H∗0 (X)−H∗0,n]

∥∥
L2
X

+ ‖(I−Pn)I [H∗0 (X)]‖L2
X
.

(EC.63)

Let us focus on the second of the three summands on the right-hand side in this expression. We

recall that I is the nested double conditioning:

I [H∗0 (X)−H∗0,n](X) =E
[
E[H∗0 (X)−H∗0,n(X) | FI ] | FX

]
.

Hence, bound (EC.28) and bound ‖Pn‖6 1 imply that:∥∥PnI [H∗0 (X)−H∗0,n]
∥∥
L2
X

6 ‖I [H∗0 (X)−H∗0,n]‖L2
X
6 rXI‖H∗0 (X)−H∗0,n‖L2

X
.

Bound (EC.63) may thus be written as follows:

‖H∗0 −H∗0,n‖L2
X
6
∥∥(I−Pn)ΠX

0

∥∥
L2
X

+ rXI
∥∥H∗0 −H∗0,n∥∥L2

X

+ ‖(I−Pn)I [H∗0 ]‖L2
X
,

or, equivalently,

‖H∗0 −H∗0,n‖L2
X
6

1

1− rXI

(∥∥(I−Pn)ΠX
0

∥∥
L2
X

+ ‖(I−Pn)I [H∗0 ]‖L2
X

)
. (EC.64)

Finally, as long as (wn)n∈N is a basis for L2
X,0, we have: ‖(I−Pn)φ‖L2

X
−→ 0 for every φ ∈ L2

X,0.

The convergence relation we set out to prove thus holds true. Q.E.D.

EC.3.13. Proof of Proposition EC.4

We follow a path similar to the strictly risk averse case. According to (13), we must estimate

Var [E [K0−E [K0|FX ]|FI ]] , where K0 = dQ
dP − E

[
dQ
dP

]
. By assumption, π exhibits a lower order

than %
a
dQ
dP . Hence, the main contribution in the previous expression stems from the market price of

risk. By using the triangular inequality,

Var [E [K0−E [K0|FX ]|FI ]]
1
2

=
∥∥E [π−E[π | FX ] | FI ] +

(
%
a

)
E
[
dQ
dP −E

[
dQ
dP | FX

]
| FI

]∥∥
2

> %
a

∥∥E [dQ
dP −E

[
dQ
dP | FX

]
| FI

]∥∥
2
−‖E [π−E[π | FX ] | FI ]‖2 .

Let us define a new index:

rX⊥I := sup
{
ρ(Z,W ) : Z ∈L2

I , W ∈ (L2
X)⊥

}
.
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We may write:

‖E [π−E[π | FX ] | FI ]‖2 6 rX⊥IVar[π]1/2 6 εrX⊥I

∣∣∣%
a

∣∣∣Var

[
dQ
dP

]1/2

.

Following arguments used in the proof of the strictly risk averse case, we may easily derive a bound:∥∥∥∥E[dQdP −E
[
dQ
dP
| FX

]
| FI

]∥∥∥∥
2

>
(

1−
√

1− r2
X⊥I

)
Var

[
dQ
dP

]1/2

.

By combining these estimates together, we get to:

Var [E [[(K0−E[K0 | FX ]) | FI ] ]>
(%
a

)2

Var

[
dQ
dP

]((
1−

√
1− r2

X⊥I

)2

− εr2
X⊥I

)
.

The approximate bound (EC.14) follows by letting ε→ 0+ and switching to the combination value.

Q.E.D.
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