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Abstract IRT models relate observed data to some latent traits typically encoding
item characteristics, as well as individual abilities. Often these lasts are assumed
to follow a standard normal distribution, but there are situations in which such as-
sumption may be unrealistic. A possible extension for such models uses a Dirichlet
process mixture of normal distributions, which is seldom employed in real data anal-
ysis due to the lack of guidelines and software tools. We contribute to fill this gap by
reviewing both parametric and semiparametric versions of such models. Using 2PL
model as an example we also illustrate how these models can be easily implemented
via the novel NIMBLE software.

Abstract [ modelli IRT caratterizzano la relazione tra dati osservati e variabili la-
tenti. Quest’ultime solitamente descrivono sia caratteristiche degli item che I’abilita
degli individui. Spesso si assume che tali abilita seguano la distribuzione di una nor-
male standard, ma ci sono situazioni in cui tale assunzione non risulta appropiata.
In questi casi, una possibile estensione si puo ottenere utilizzando una mistura di
distribuzioni normali per le abilita latenti basata sul processo di Dirichlet. Tuttavia
questi modelli risultano essere poco diffusi in pratica a causa della mancanza di
linee guide e software che li implentino. In questo lavoro presentiamo le versioni
parametriche e non dei modelli IRT. Usando il modello 2PL come esempio, illustri-
amo anche come implementarli facilmente attraverso l’'uso del software NIMBLE.
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1 Motivation

Item response theory (IRT) refers to a family of models that investigate the relation-
ship between responses to a set of items and some latent traits, typically encoding
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individual or item characteristics. Such models are employed in different application
domains, with educational measurement and psychometrics being the most popular.
Models for binary responses are among the most common among IRT models, com-
prising the one, two or three parameter logistic models (1PL, 2PL and 3PL). These
models assume that the probability of a correct answer is related to the individual’s
latent ability, as well as items difficulty and potentially other item characteristics.

Standard approaches rely on the assumption that latent abilities follow a stan-
dard normal distribution. This assumption is sometimes considered for computa-
tional convenience, but it may be unrealistic in many situations [9]. For example,
[7] gives a comprehensive review of many psychometric datasets where the latent
traits distribution does not respect the normality assumption and presents instead
asymmetries, heavy-tails or multimodality.

Different proposals have been made in literature relaxing the normality assump-
tion for the latent abilities. Arguably, the most general approach in a Bayesian
framework uses a Dirichlet process [4] mixture of normal distributions as a non-
parametric distributions for latent abilities. Such models are semiparametric because
they retain other, parametric, assumptions of binomial mixed models. Within this
approach, the semiparametric 1PL model has been the focus of more effort as well
as software tool [6, DPpackage]. [10] investigate semi-parametric generalization of
Rasch-type models from a theoretical perspective, while [5] provides results from
simulation studies considering the 1PL model. An example using the 2PL model is
given in [3], but there is a lack of comprehensive studies of such models as well as
general tools for model estimation in real data analysis. In this work we review the
semiparametric 1PL and 2PL models, and illustrate how to easily implement them
in the NIMBLE software.

2 NIMBLE

NIMBLE [2] is a flexible R-based system for hierarchical modeling, which extends
BUGS language used in WinBUGS, OpenBUGS, NAGS [8], providing efficient
execution of algorithms via custom-generated C++ code. Besides offering new de-
grees of customization of MCMC algorithms, one of the latest NIMBLE features
added support for MCMC inference for Bayesian nonparametric mixture models.
In particular, NIMBLE provides functionality for fitting models using a Dirichlet
process prior, either via the Chinese Restaurant Process (CRP) [1] or a truncated
stick-breaking (SB) [11] representation of the Dirichlet process prior. These fea-
tures allows Dirichlet process priors to be embedded in very general hierarchical
models, supporting extensions of the approaches we illustrate here.
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3 IRT models background

In this context, observed data are typically answers to exam questions or items
from a set of individuals. Let y;; denote the answer of an individual j to item i
forj=1,...,Nandi=1,...,I, with y;; = 1 when the answer is correct and 0 oth-
erwise. Typically, different individuals are assumed to work independently, while
responses from the same individuals are assumed independent conditional to the la-
tent trait (local independence assumption). Hence each answer y;;, conditionally to
the latent parameters, is assumed to be a realization of a Bernoulli distribution, and
the probability of a correct response is typically modeled via logistic regression.

In the two-parameter logistic (2PL) model, the conditional probability of a cor-
rect response is modeled as

- o ooy expldi(n;—Bi)}
Pr(yij = 1n;, 4;, i) = 1+€XP{}~i(jnJ_ﬁi)}

where 7); represents the latent ability of the j-th individual for j = 1,...,N, while
Bi and A; encode the item characteristics for i = 1,...,I. The parameter A; is often
referred as discrimination, since items with a large A; are better at discriminating be-
tween subjects with different abilities, while f3; is called difficulty because the prob-
ability of a correct response is equal to 0.5 when 1; = f3;. Discrimination parameters
A are typically assumed positive. When A; = 1 fori = 1,...,1 model in (1) reduces
to the one-parameter logistic (1PL) model. Often, conditional log-odds in (1) are
reparametrized as A;n; + %, with % = —A; x B;. Sometimes this is reffered to as
slope-intercept (SI)parameterization as opposed to the IRT parameterization in (1)
traditional cosidered for interpretation.

Traditional literature assumes that n; ~ .4°(0,1) for j =1,...,N, but there are
situations in which such assumption can be too restrictive. To add more flexibility,
we can extend the model in (1) via a DP prior as

i=1,....I,j=1,...,N, (1)

T[j|GNG GNDP(OQG()) (2)

where o is the concentration parameter and Gy the base measure. The DP process
is often represented via the Chinese Restaurant Process representation, introducing
a set of indicator variables z; for j = 1,...,N indicating the cluster assignment for
the ability 17;. The prior in (2) becomes

(njlzi=h)=n, np~A (s, 0%) 3)

with typically hyperpriors on 1, and 6,%.
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4 Model comparison

We compare estimation of the parametric and nonparametric estimation of the para-
metric 2PL models via simulation. Typically parameters of the 2PL model are not
identifiable, so constraints are either included in the model or one can post-process
posterior samples to meet the constraints. We consider this last option and use sum-
to-zero constraints on the item parameters, i.e. Y/_; 8; = 0,Y_;log(4;) = 0 and es-
timate the 2PL under IRT and SI parameterizations.

We simulate data from two different scenarios changing the distribution generat-
ing the latent abilities. We simulate responses from N = 2,000 individuals to I =20
binary items. Values for the discrimination parameters {QLP}%EI are sampled from a
Unif(0.5,1.5), while values for difficulty parameters {7}, are taken as equally
spaced between (—3,3). In particular we considered for the latent abilities n? for
Jj=1,...,2000:

1. Unimodal scenario. Latent abilities comes from a normal distribution with mean
0 and standard deviation 1.25.

2. Bimodal scenario. Latent abilities comes from a mixture of two normal distri-
bution with means {—2,2} and common standard deviation 1.25.

We implement all the strategies in NIMBLE, choosing moderately vague pri-
ors for the item parameters, ; ~ .47(0,3),% ~ 47(0,3),log(A;) ~ .47(0.5,0.5) for
i=1,...,1. We assume normal latent abilities 1) ~</V(/.Ln,0'%) for j=1,...,N, and
placed a .47(0,3) on uy and Unif(0,10) on the standard deviation oy, in the para-
metric case, while in the nonparametric setting we choose Gy = .47(0,3) X Inv —
Gamma(1.01,2.01). We run the MCMC for 50,000 iterations using a 10% burn-in
of 5,000 iterations, and check traceplots for convergence.

Table 1 reports the minimum effective samples size (ESS) per second relative to
the strategies, computed by dividing the ESS for the computation time. As expected
there is a loss in efficiency when moving from the parametric to the semiparametric
specification, given that sampling from the Dirichlet Process requires more compu-
tational effort. Flexibility comes with a price, but also with a benefit for inference
when abilities are not normal. While in the unimodal scenario results match, in the
bimodal there are substantial differences.

unimodal simulation| bimodal simulation
Model parametric ~ bnp  |parametric  bnp
IRT unconstrained| 0.78 0.33 243 1.27
SI unconstrained 1.06 0.57 0.23 0.06

Table 1 Minimum ESS/seconds for different estimations strategies of the 2PL model parameters
under the two simulated scenarios.

For example, Figure 1 compares the density estimates of the posterior mean la-
tent abilities from the parametric and semiparametric models, computed taking the
posterior means of the { r]j}’]y:l . It can be notice that the parametric model detect just
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one mode because of the underlying normal assumption, while the semiparametric
specification recover the true density structure. Better estimation of the latent abili-
ties helps to avoid bias in inference, for example when estimating item parameters
or item characteristics curves (ICC).
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Density estimates of the posterior mean latent abilities under the parametric and semipara-

metric 2PL models under the bimodal simulated scenario. Both models are estimated under the

uncon

strained IRT parameterizations, the most efficient from Table 1.
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