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Abstract: We report new accurate measurements of the drift mobility µ of quasifree electrons in
moderately dense helium gas in the temperature range 26 K ≤ T ≤ 300 K for densities lower
than those at which states of electrons localized in bubbles appear. By heuristically including
multiple-scattering effects into classical kinetic formulas, as previously done for neon and argon,
an excellent description of the field E, density N, and temperature T dependence of µ is obtained.
Moreover, the experimental evidence suggests that the strong decrease of the zero-field density-
normalized mobility µ0N with increasing N from the low up to intermediate density regime is
mainly due to weak localization of electrons caused by the intrinsic disorder of the system, whereas
the further decrease of µ0N for even larger N is due to electron self-trapping in cavities. We suggest
that a distinction between weakly localized and electron bubble states can be done by inspecting the
behavior of µ0N as a function of N at intermediate densities.

Keywords: electron mobility; multiple-scattering effects; disordered systems; weak localization

1. Introduction

The study of the transport properties of excess electrons in dielectric gases or liquids
may shape detailed knowledge of the dynamics and energetics of electron states in disor-
dered media and of the relationship between the electron-host atom interactions and the
thermodynamic properties of the system. In particular, the negative density effect, i.e., the
decline of the electron drift mobility µ with increasing gas number density N, initially ob-
served in dense helium [1–7], has attracted a great deal of theoretical work [8–15] because
of the possible connection between multiple-scattering effects at a high density and the
electron localization induced by the intrinsic disorder of the medium [16,17].

Several multiple-scattering theories have been developed for the thermal electrons
mobility µ0, i.e., in the limit of vanishingly small density-reduced electric field E/N → 0,
where E is the drift electric field. All these theories are based on a complex shift of
the electron kinetic energy in a dense medium [18,19] and on quantum corrections to
the electron-atom scattering rate when the electron mean free path ` and the thermal
electron wavelength λT become comparable [11,20]. They are proved quite successful at
the description of the density dependence of the zero-field limit of the density-normalized
electron mobility µ0N in helium.

Unfortunately, the theoretical prediction for µ0N in dense neon was proven wrong
or, at best, incomplete [21], mainly because it was based on the assumption of a nearly
energy-independent momentum-transfer scattering cross section σmt. Moreover, these
theories explained the different density effects (negative in helium and neon but positive
in argon, i.e., µ0N increasing with N [22,23]) by invoking different physical mechanisms
according to the sign of the scattering length a.

In order to give a unique description of the electron-atom scattering process in a
dense gas, independent of the sign of a, we have developed a model [24] that heuristically
incorporates the multiple-scattering effects introduced by previous theories [25,26].
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We briefly recall here the main three multiple-scattering effects that are taken into
account in the heuristic model. The first one is the density-dependent energy shift Ek(N)
of the electron kinetic energy ε. EK is the zero-point kinetic energy arising from the
exclusion of the electron from the hard-core volume of the atoms [27]. It can explicitly
be obtained by replacing the fluid structure with a locally ordered array of hard-sphere
scatterers and by matching the electron wave function with its asymptotic expression at
the surface of the Wigner–Seitz sphere [28] of volume 4πr3

ws/3 = 1/N centered on each
atom, thereby getting [29]

Ek(N) =
h̄2

2m
k2

0. (1)

m is the electron mass, h̄ = h/2π, and h is the Planck’s constant. The wave vector k0 is
determined by the eigenvalue equation

tan [k0rws + η0(k0)] = k0rws, (2)

in which η0(k) is the s-wave phaseshift [30]. In order to account for the superposition of the
tails of the atomic potentials, −η0(k0)/k0 is replaced by the hard-core radius of the Hartree-
Fock potential ã =

√
σT(k0)/4π, in which σT is the total scattering cross section [27].

This energy shift produces a large effect if the momentum-transfer scattering cross section
is a rapidly varying function of the electron energy.

The second effect is due to correlations among scatterers. The electron wave packet
encompasses a volume of the gas whose linear dimension is of the order of the electron
wavelength λ = h̄/

√
2mε. This volume contains many atoms, and the electron is scattered

off all of them simultaneously. The total amplitude of the scattered wave is obtained
by summing up coherently all partial scattering amplitudes contributed by each atom.
The net result is that the scattering cross section is weighted by the static structure factor
of the gas S(0) = NkBTχT [31]. Here, kB is the Boltzmann’s constant, and χT is the gas
isothermal compressibility.

Finally, the third multiple-scattering effect is the enhancement of the electron backscat-
tering rate due to quantum self-interference of the electron wave function scattered off
atoms located along paths connected by time-reversal symmetry [32]. The strength of this
effect depends on the ratio of the electron thermal wavelength λT to the electron mean
free path ` = 1/Nσmt. For λT/` ≤ 1, a perturbative treatment is adequate yielding for the
scattering rate ν the linearized expression [10]

ν(ε) = ν0

(
1 + f

λ

`

)
= ν0

(
1 + f

h̄ν0

ε

)
, (3)

in which ν0 =
√

2ε/mNσmt is the scattering rate in the dilute gas limit, and f is a number
of order unity [10]. This perturbative treatment is adequate for argon [23] and neon [21]
because their cross sections are relatively small at thermal and shifted energies.

However, for helium, σmt is so large and the experimental N so high that λ/` & 1.
In this case, we are in presence of the so-called weak localization regime in the jargon of the
theory of disordered systems [33,34]. If disorder is enhanced by increasing N, electrons
become completely localized with exponentially decaying wave functions (known also as
Anderson localized states) [16], and a mobility edge appears at the finite energy εc [35,36].

At the mobility edge the scattering rate diverges. Polischuk obtains the mobility edge
with a sophisticated diagrammatic technique [12]. The same result can be obtained by
following a more simple, intuitive approach. The correction term enhancing the scattering
rate in Equation (3) must be proportional to the actual scattering rate ν(ε) rather than to
the unperturbed scattering rate ν0. It is then easy to get

ν(ε) =
ν0

1− f h̄ν0/2ε
=

ν0

1− f λ/`
(4)
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that perfectly agrees with the result of Polischuk [12]. The location of the mobility edge
corresponds to the Ioffe-Regel criterion for localization λ ' ` [25], and the mobility edge
energy is obtained as

εc =
2
m

[
f
2

h̄NS(0)σmt(εc)

]2
. (5)

in which the cross section enhancement due to correlation among scatterers is included.
We note that there is some disagreement in the literature about the value of f . Its value is
f = 2π/3 ≈ 2.09 for Polischuk [12] and f = 2 for Atrazhev [10]. The difference is quite
small (≈ 4 %) and does not significantly affect the results.

The heuristic model [23] is obtained by including the above-mentioned multiple-
scattering effects into the equation for the mobility of the classical kinetic theory [26].
Its advantage is that it also predicts the electric field dependence of µ in addition to the N
dependence of µ0. Moreover, it does not entail adjustable parameters and can be applied to
all noble gases independently of the sign of the electron–atom scattering length.

The density-normalized mobility is given by [26]

µN = − e
3

(
2
m

)1/2 ∞∫

εc

[
ε

σ?
mt(ε)

]
dg(ε)

dε
dε. (6)

g(ε) is the Davydov–Pidduck energy distribution function [26,37]

g(ε) = A exp



−

ε∫

0

[
kBT +

Me2

6mz

(
E

Nσ?
mt(z)

)2
]−1

dz



 (7)

Here, M is the atom mass, and A is the normalization constant given by enforcing
the condition

∫ ∞
0 ε1/2g(ε)dε = 1. σ?

mt is the effective momentum-transfer scattering cross
section that takes into account the three multiple-scattering effects, and it is expressed by

σ?
mt(ε) = F (w)σmt(w)

[
1− f h̄

F (w)σmt(w)

(2mw)1/2

]−1

, (8)

in which w = ε + Ek is the shifted energy. F (w) is given by

F (w) =
1

4w2

2w∫

0

q3S(q)dq. (9)

For not too large values of the exchanged momentum q, the Ornstein–Zernike approx-
imation [38] can be used, yielding a Lorentzian form of the structure factor

S(q) =
S(0) + (qL)2

1 + (qL)2 , (10)

in which L2 = 0.1l2[S(0)− 1], and l ≈ 0.1 nm is the short-range correlation length [39].
The previous formulas do not have any adjustable parameters and allow the re-

searchers to compute µN as a function of E, N, and T for any gas whose cross sections and
thermodynamic equation of state are known. In particular, the density dependence of µ0N
can simply be obtained by setting E/N = 0 in Equation (7).

The model we have outlined is developed to describe the mobility of quasifree elec-
trons by possibly taking into account the existence of weakly localized, non-propagating
states. It has proven extremely successful when applied to argon [23,40] and neon [21,24].

However, in this latter case, sufficiently high-density and low-temperature electrons
get self-trapped in (partially) empty cavities giving birth to low-mobility electron bubbles
for which the use of the heuristic model is no longer applicable. In cold, dense helium
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gas, the formation of electron bubbles is also a well-known phenomenon [1–3,6,7,41,42].
The comparison of the theoretical predictions for the quasifree electrons has, thus, to be
made only for such N and T ranges, in which electron bubbles are not significantly present.
It is interesting to note, however, that the previous multiple-scattering theories for µ0N
were applied to an extended N range, thereby leading, in our opinion, to some confusion
about the relationship between Anderson-localized and bubble states.

Therefore, we have carried out new, accurate measurements in broad T and N ranges
in order to gain insight both in the process of electron bubble formation at high densities
and at higher temperatures and in the behavior of quasifree electrons up to intermediate
densities. The results on bubble formation have already been published [42]. In this
paper, we will present mobility data from low up to intermediate density in the range
26 K ≤ T ≤ 300 K in order to investigate the behavior of quasifree electrons, compare the
previous multiple-scattering theories with the present heuristic model, and shed some light
on the relationship between disorder-induced non-propagating states and self-trapped
states in bubbles.

The paper is organized as follows: In Section 2, the details of the experiments are briefly
described. In Section 3, the experimental results are presented and discussed. In Section 4,
we will discuss if experimental data allow the distinction between Anderson-localized
states and electron bubbles with the aid of the prediction of the heuristic model.

Following the Conclusions in Section 5, in Appendix A, we will give some details on
the different effects on the mobility of the two relevant energy scales, EK and εc, which are
necessary for the description of the experimental electron mobility.

2. Experimental Details

The measurements are carried out using the pulsed photoemission technique and
apparatus exploited in previous measurements of electron mobility, O−2 mobility, and
resonant electron attachment in dense helium, neon, and argon gases and have already
been thoroughly described [21,40,42–47]. We recall here only the main technical features of
the experiment.

A high-pressure cell is mounted on the cold head of a cryocooler inside a triple-shield
thermostat. The cell can withstand pressure up to P ≈ 10 MPa and can be cooled down to
T ≈ 25 K. The cell temperature is stabilized within ±0.01 K, and the pressure is measured
with an accuracy of ±1 kPa. The gas used is ultra-high purity helium with nominal O2
content of 1 ppm. However, in order to make accurate mobility measurements, the impurity
content must be lowered by recirculating the gas in a closed loop through a LN2-cooled
activated-charcoal trap and a commercial Oxisorb cartridge [48]. The final impurity content
is estimated to be a fraction of one ppb. The gas density N is computed from the measured
values of T and P by means of an accurate equation of state [49,50].

The parallel plate drift capacitor is located in the cell and is energized by a d.c. high-
voltage generator [51]. A thin slice of electrons is photoinjected from the cathode by a short
pulse (≈ 4µs) of VUV light produced by a Xe flashlamp [52] and is drifted towards the
anode. The injected charge amounts to 4 through 400 fC, depending on the gas pressure
in the cell and on the applied electric field strength, and is low enough to avoid space-
charge effects.

The current induced at the anode by the drifting electrons is passively integrated to
improve the signal-to-noise ratio. The voltage signal is acquired by a digital oscilloscope
and fetched by a personal computer for offline analysis. Several signals are acquired for
any experimental conditions and are software-averaged to improve the signal quality.

The drift time τ is obtained by analyzing the time evolution of the voltage signal at
the anode [53]. The drift velocity is obtained as vD = τ/d, where d is the drift distance, and
the mobility is obtained as µ = vD/E, where E is the applied electric field. The estimated
accuracy on µ is much better than 5 %.
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3. Experimental Results and Discussion

In this section, the experimental data will be presented and discussed.

3.1. The Need for Accurate Measurements

The present measurements in helium are aimed at validating the heuristic model
developed for the description of the mobility of quasifree electrons in dense noble gases [23].
This goal justifies the need for new accurate measurements of the mobility. Actually, the
main attention in the past was focused onto the negative density effect shown by µ0N
that eventually leads to the formation of electron bubbles. As µ0N decreases by nearly
five orders of magnitude in a restricted density range at low temperature [2–4,6,7,41],
the mobility at low and medium density, where no localization takes yet place, was not
investigated with the necessary accuracy in the past. In order to clarify this point, the
present µ0N data for T = 77.2 K are compared in Figure 1, with one of the most accurate
experiments at nearly the same temperature [4].
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Figure 1. µ0N vs. N at T ≈ 77 K. Comparison of the present measurements accuracy at T = 77.2 K (closed points) with
literature data at T = 77.6 K (open squares) [4].

Literature data are more scattered than the present ones, especially at low density,
where they strongly disagree with the classical kinetic theory prediction based on the
commonly accepted momentum-transfer scattering cross section [30]. On the contrary, it
will be shown in the following that the present data agree very well with this prediction.
At lower temperatures, the accuracy of literature data in the low density range is even
worse [2,3,41].

3.2. Choice of the Correct Density Range to Explore

Another important point to be discussed before proceeding is the determination of
the density range in which the quasifree electron mobility is not affected by the presence of
electrons localized in cavities. As the mobility of the electron bubbles is roughly four to
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five orders of magnitude smaller than that of quasifree electrons, any significant presence
of them would spoil the comparison of the experimental outcome with the theory for
quasifree electrons.

Actually, the present measurements were carried out in very broad N and T ranges be-
cause of the great interest in ascertaining whether the phenomenon of electron self-trapping
in cavities also occurs at higher temperatures than previously observed. The high-density
µ0N data [42] have shown that localization takes place at any T, indeed, provided that N
is large enough to yield an excess Helmoltz free energy of the localized state with respect
to the quasifree one ∆A(N, T) . 0 with |∆A(N, T)| & kBT, in which kB is the Boltzmann
constant. The excess free energy ∆A(N, T) was computed by adopting a simple electron
bubble model [54], taking into account that the gas has no surface tension and that the
helium atoms have non-negligible thermal energy at the temperatures of the experiment.
The threshold density N? at which quasifree electrons and electron bubbles are equiproba-
ble is obtained by solving the equation

∆A(N?, T) = 0, (11)

yielding a quite satisfactory agreement with the data [42]. However, at N?, the fraction of
electron bubble states is 50 %, and its contribution to the mobility is far from negligible.
Thus, the threshold density, above which they cannot actually be neglected any longer,
must experimentally be determined by inspecting the electric field dependence of µ for
different N. A typical example is shown in Figure 2 for T = 26.1 K .

0.2

0.3

0.4

1 10 100

μN
 (1

026
 V

-1
 m

-1
 s-1

)

E/N (mTd)

E/N-1/2

Figure 2. µN vs. E/N at T = 26.1 K for densities close to the onset of the electron self-trapping in bubbles. From top:
N = 17.33, 19.47, and 22.76 in units of 1026 m−3. 1 mTd = 10−24V m2. The line ∝ (E/N)−1/2 is the prediction of the
classical kinetic theory for scattering of quasifree, epithermal electrons off hard spheres [26]. The presence of electron bubble
states for the highest N is proven by the rise of µN above its zero-field limit (shown as a constant line) before joining the
high-field behavior.
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Helium can be considered a hard-sphere scatterer to a good approximation as its
momentum-transfer scattering cross section σmt is roughly independent of energy (it varies
from 4.87 Å2 at energy ε = 0 to 6.8 Å2 at ε = 1 eV) [30]. For such a system, the classical
kinetic theory predicts that, at constant T, µN is constant at weak electric field and is
proportional to (E/N)−1/2 at a high field. By inspecting Figure 2, in which the electric
field dependence of µN is shown for T = 26.1 K for some N, we note that µN at the lower
N follows the classically expected behavior. If N is further increased, the behavior of µN
changes even qualitatively. At weak fields, µN is constant but, upon a further increase
of the field strength, µN increases with E/N and shows a maximum before joining the
density-independent, high-field region. This specific behavior, observed for N large enough
even at very low temperature [6,7], was previously reported also in dense neon gas [44]
and is intepreted as the field-assisted hindrance to self-trapping or field-assisted release
of electrons from the bubbles [55]. This interpretation is also supported by experimental
evidence in liquid neon [56].

The logical consequence drawn from the observed field dependence of µN is that
a temperature-dependent threshold Nthdensity exists for electron bubble states of low
mobility to be experimentally detected. In Figure 3, Nth is reported along with the computed
density N?.
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Figure 3. Temperature dependence of the threshold density Nth for the onset of bubble state formation as determined by
the inspection of the field dependence of µN (closed points). Open squares: temperature dependence of the density N? at
which quasifree electrons and electron bubbles are equiprobable according to the bubble model [42]. The lines are only a
guide for the eye.

As a result, the analysis of the mobility of quasifree electrons will be restricted to
N ≤ Nth(T).
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3.3. Density Dependence of the Zero-Field Limit of the Density Normalized Mobility

In Figure 4, µ0N is shown as a function of N for several T. As previously discussed,
the data are shown only for N < Nth to be sure that only quasifree electrons contribute
to the mobility. At the highest temperatures, the pressure necessary to reach Nth exceeds
the experimental cell capability, and thus, the measurements are restricted to not too high
density values. At all temperatures, µ0N shows the well-known negative density effect that
is extremely well described by the heuristic model, represented by the solid lines through
the data in the figure.

According to the model, three density-dependent processes combined to determine
the behavior of the mobility: the quantum density-dependent shift of the kinetic energy
of the electron Ek(N), the correlation among scatterers, and the quantum self-interference
of the electron wave packet scattered by atoms located along paths connected by time-
reversal symmetry. In the case of helium, the first one is not very effective because σmt
does not depend very much on the electron energy. On the contrary, this effect is very
important in neon [21,43] and argon [22,24,40,57–59], whose cross sections are strongly
energy dependent [13,60].

The correlation among scatterers is a second process that increases the scattering
cross section by the long-wavelegth limit of the static structure factor S(0) = NkBTχT .
The effect of S(0) is very important close to the critical point, which, for helium, occurs for
Tc = 5.2 K and Nc = 104.8× 1026 m−3 [49,50]. As the present experiment is carried out for
T � Tc, S(0) ≈ 1 always, its effect is quite negligible.
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Figure 4. µ0N vs. N. T = 26.1 K (closed points), T = 64.4 K (open squares), T = 199.5 K (closed diamonds), and T = 295.5 K
(open points). Lines: heuristic model prediction. The data are only presented for N ≤ Nth, at which electron bubbles are
still either absent or present in a negligible proportion. The error bars for the highest T are of the same size of the dots and
are not shown.

The last process is the quantum self-interference of the electron wave packet scattered
off atoms located along paths connected by time-reversal symmetry. As discussed in the
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Introduction, this process leads to an increase of the scattering rate, which is ∝ λ/`, i.e.,
proportional to the ratio of the electron quantum wavelength λ to its mean free path `.
However, if the scattering cross section is large, i.e., if the mean free path is short, and
the temperature is low, i.e., the electron thermal wavelength is large, the quantum self-
interference process is so strong to lead to the weak electron localization via the appearance
of the mobility edge [11,12,17]. Electrons in the low-energy tail of the distribution function
below the mobility edge energy εc do not propagate. In helium, this is the dominant
process that produces most of the observed negative density effect of the mobility.

The mobility edge introduces an infrared cutoff in the electron energy distribution
function, which gives rise to a strong exponential decrease in µ0N with increasing N.
On one hand, the quite fair agreement with experiments of the older theories, all of
which are based on a complex shift of the electron energy in a dense disordered medium
due to multiple-scattering effects [13–15], is explained by various additional assump-
tions (not all fully correct) invoked by the authors, as discussed in the literature [8,9,20].
Their apparent success is due to the fact that they predict an exponential decrease of the
mobility with increasing N. It has also to be noted that these theories invoke different
phenomena to explain the different density effects observed in repulsive gases (such as
helium and neon) and in attractive gases (such as argon) [10,12,14].

On the other hand, the heuristic model takes into account all the three multiple-
scattering effects in a natural way. Their relative weight is automatically accounted for
by the strength and energy dependence of the scattering cross section and by the thermo-
dynamic state of the gas through which electrons are drifted. As a further benefit, the
heuristic model treats the scattering of low energy electrons in noble gases in a unified way
independently of the sign of the scattering length.

The heuristic model shares with the theories of Atrazhev [10] and of Polischuk [12]
the concept of enhancement of the scattering rate due quantum self-interference (that
eventually leads to the appearance of the mobility edge) but accounts for the two additional
multiple-scattering effects (quantum density-dependent shift of the electron kinetic energy
in the dense disordered medium and correlation among scatterers), although their influence
only marginally affects the electron mobility in helium in the particular thermodynamic
conditions of the experiment.

3.4. Validation of the Accuracy of the Present Experiment and of Its Outcome

A way to validate the accuracy of the results of the present experiment is to show that
the present data agree well with the prediction of the classical kinetic theory in the limit of
low density [26]. If N → 0, all multiple-scattering effects vanish. Both the mobility edge εc
and the energy shift Ek(N) tend to 0 and the long wavelength limit of the structure factor
S(0)→ 1. In this limit, the classical formula predicts

µ0N → (µ0N)0 =
4e

3
√

2πm(kBT)5

∞∫

0

ε

σmt(ε)
e−ε/kBT dε. (12)

The zero-density extrapolation of the mobility obtained from the investigated isotherms
(some of which are reported in Figure 4) are compared in Figure 5 with the theoretical pre-
diction, Equation (12), based on O’Malley’s low-energy electron-helium cross section [30].
The data are in excellent agreement with the classical prediction, thereby lending credibility
to the accuracy of the experiment. It has to be noted that both the data as well as the theo-
retical line are extremely well fitted to an inverse power law of the temperature, namely
(µ0N)0 ∝ T−0.536. The exponent differs from the value −1/2, which is typical of gas of
hard-sphere scatterers, because of the weak energy dependence of the electron-helium
momentum-transfer scattering cross section.
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Figure 5. (µ0N)0 vs. T. The solid line is the prediction of the heuristic model which, for N → 0, must coincide with the
classical kinetic prediction [26]. Data and theory are well fitted to the inverse power law T−0.536 close to the T−1/2 behavior
of a gas of hard-sphere scatterers.

An additional confirmation of the validity of the heuristic model is obtained by
inspecting how it is able to reproduce the electric field dependence of the experimental
data. In Figure 6, we show typical µN vs. E/N data for T = 64.4 K for several N < Nth,
i.e., for densities below the onset of electron bubble formation. The heuristic model is able
to accurately describe the field dependence of µN for well over a decade in N and nearly
three decades in E/N. Similar results are obtained at all temperatures.

A small discrepancy between the experiment and model can still be spotted in the
transition region between thermal and epi-thermal behavior. On one hand, this discrepancy
could be ascribed to imperfect knowledge of the scattering cross section at energies higher
than thermal. On the other hand, it has to be noted that, for any given N, the same energy
shift EK(N) is used for all fields and energies in Equation (6), although it is obtained by a
solving Equation (2), which is only valid for s-wave scattering.

Figure 5. (µ0N)0 vs. T. The solid line is the prediction of the heuristic model which, for N → 0, must coincide with the
classical kinetic prediction [26]. Data and theory are well fitted to the inverse power law T−0.536 close to the T−1/2 behavior
of a gas of hard-sphere scatterers.

An additional confirmation of the validity of the heuristic model is obtained by
inspecting how it is able to reproduce the electric field dependence of the experimental
data. In Figure 6, we show typical µN vs. E/N data for T = 64.4 K for several N < Nth,
i.e., for densities below the onset of electron bubble formation. The heuristic model is able
to accurately describe the field dependence of µN for well over a decade in N and nearly
three decades in E/N. Similar results are obtained at all temperatures.

A small discrepancy between the experiment and model can still be spotted in the
transition region between thermal and epi-thermal behavior. On one hand, this discrepancy
could be ascribed to imperfect knowledge of the scattering cross section at energies higher
than thermal. On the other hand, it has to be noted that, for any given N, the same energy
shift EK(N) is used for all fields and energies in Equation (6), although it is obtained by a
solving Equation (2), which is only valid for s-wave scattering.



Atoms 2021, 9, 52 11 of 19
Atoms 2021, 1, 0 11 of 19

Figure 6. µN vs. E/N for T = 64.4 K. Densities (from top, in units of 1026 m−3): N = 2.79, 12.95, 18.20, 27.54, 31.38.
The solid lines are the predictions of the heuristic model.

4. Weakly Localized States vs. Electron Bubble States

It is well known that electrons in cold dense helium, either liquid or gas, do give origin
to states localized in cavities (for a review, see Ref. [61]). The cavities form as a consequence
of the delicate balance between the free energies of the quasifree and the localized electrons
and because the medium is compliant enough not to withstand the quantum pressure
exerted by the wavefunction of the localized electron that pushes away the nearby atoms,
thereby digging out the cavity.

On the other hand, it is also well known that a static structural disorder can lead
to the vanishing of electron diffusion because of the formation of Anderson-localized
states [12,16,17,35]. In this case, the electron wave function exponentially decays with
distance owing to multiple-scattering effects induced by the disorder. Under this re-
spect, helium is a school case of a dense, disordered system consisting of (nearly) hard-
sphere scatterers.

It still unclear, however, if Anderson-localized states might be precursors of electron
bubbles. Actually, non-propagating states might remain for a time long enough to favor
the enhancement and stabilization of the cavity because of the medium compliance.

We believe that the actual measurements might give some hints to solve this issue.
As an argument, we will investigate the experimental behavior of µN as a function of E/N
for densities at which electron bubbles definitely exist [42].

In Figure 7, the field dependence of µN is reported for T = 26.1 K and for
N = 32.36 × 1026 m−3 and N = 34.31 × 1026 m−3. µN is constant at weak fields and
shows a rapid enhancement towards the electron epithermal behavior ∼E/N−1/2 for
stronger fields.

Figure 6. µN vs. E/N for T = 64.4 K. Densities (from top, in units of 1026 m−3): N = 2.79, 12.95, 18.20, 27.54, 31.38.
The solid lines are the predictions of the heuristic model.

4. Weakly Localized States vs. Electron Bubble States

It is well known that electrons in cold dense helium, either liquid or gas, do give origin
to states localized in cavities (for a review, see Ref. [61]). The cavities form as a consequence
of the delicate balance between the free energies of the quasifree and the localized electrons
and because the medium is compliant enough not to withstand the quantum pressure
exerted by the wavefunction of the localized electron that pushes away the nearby atoms,
thereby digging out the cavity.

On the other hand, it is also well known that a static structural disorder can lead
to the vanishing of electron diffusion because of the formation of Anderson-localized
states [12,16,17,35]. In this case, the electron wave function exponentially decays with
distance owing to multiple-scattering effects induced by the disorder. Under this re-
spect, helium is a school case of a dense, disordered system consisting of (nearly) hard-
sphere scatterers.

It still unclear, however, if Anderson-localized states might be precursors of electron
bubbles. Actually, non-propagating states might remain for a time long enough to favor
the enhancement and stabilization of the cavity because of the medium compliance.

We believe that the actual measurements might give some hints to solve this issue.
As an argument, we will investigate the experimental behavior of µN as a function of E/N
for densities at which electron bubbles definitely exist [42].

In Figure 7, the field dependence of µN is reported for T = 26.1 K and for
N = 32.36 × 1026 m−3 and N = 34.31 × 1026 m−3. µN is constant at weak fields and
shows a rapid enhancement towards the electron epithermal behavior ∼E/N−1/2 for
stronger fields.
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Figure 7. Left scale: µN vs. E/N for T = 26.1 K for N = 32.36 (closed points) and N = 34.31 (open points). The solid and
dotted lines are the predictions of the heuristic model. N is in units of 1026 m−3. Right scale: the average electron energy for
N = 34.31× 1026 m−3 (dash-dotted line), which includes the contribution of Ek(N).

For these densities, the heuristic model fails at reproducing the low-field mobility
predicting far too large values. The rationale for this failure might be that, for these
densities, there is coexistence of both weakly localized electrons and self-trapped electrons
in bubbles. The heuristic model obviously accounts for the Anderson-localized states
through the infrared cutoff in the electron energy distribution function due to the mobility
edge. On the contrary, the measured mobility is a weighted sum of the contributions of the
quasifree states, which are very mobile, and of the electron bubbles, which, though very
slowly, do still propagate.

The heuristic model predicts that µN increases upon increasing E/N before reaching
the epithermal behavior. This increase takes place at much weaker E/N values than experi-
mentally observed. The transition between the low- and high-field behavior experimentally
occurs in the same field region in which the average electron energy (dashed–dotted line
in Figure 7) starts increasing above its thermal value 〈ε〉 ≥ (3/2)kBT + Ek(N). We note
that, in this field range, the electron drift velocity becomes comparable with the sound
speed ≈ 300 m/s [50,62].

We, thus, draw the conclusion that Anderson-localized states cannot be precursors
of electron bubbles. Actually, if they were such precursors, the decrease of their number
upon increasing field should lead to an increase of the measured mobility that, by contrast,
remains constant. The mobility only increases at stronger fields where the average electron
energy and the drift velocity are large enough to hinder the electron self-trapping process
in cavities.

Such point of view is further confirmed, in our opinion, if the fraction of quasifree
electrons is compared with the mobility behavior as a function of the reduced field.

Figure 7. Left scale: µN vs. E/N for T = 26.1 K for N = 32.36 (closed points) and N = 34.31 (open points). The solid and
dotted lines are the predictions of the heuristic model. N is in units of 1026 m−3. Right scale: the average electron energy for
N = 34.31× 1026 m−3 (dash-dotted line), which includes the contribution of Ek(N).

For these densities, the heuristic model fails at reproducing the low-field mobility
predicting far too large values. The rationale for this failure might be that, for these
densities, there is coexistence of both weakly localized electrons and self-trapped electrons
in bubbles. The heuristic model obviously accounts for the Anderson-localized states
through the infrared cutoff in the electron energy distribution function due to the mobility
edge. On the contrary, the measured mobility is a weighted sum of the contributions of the
quasifree states, which are very mobile, and of the electron bubbles, which, though very
slowly, do still propagate.

The heuristic model predicts that µN increases upon increasing E/N before reaching
the epithermal behavior. This increase takes place at much weaker E/N values than experi-
mentally observed. The transition between the low- and high-field behavior experimentally
occurs in the same field region in which the average electron energy (dashed–dotted line
in Figure 7) starts increasing above its thermal value 〈ε〉 ≥ (3/2)kBT + Ek(N). We note
that, in this field range, the electron drift velocity becomes comparable with the sound
speed ≈ 300 m/s [50,62].

We, thus, draw the conclusion that Anderson-localized states cannot be precursors
of electron bubbles. Actually, if they were such precursors, the decrease of their number
upon increasing field should lead to an increase of the measured mobility that, by contrast,
remains constant. The mobility only increases at stronger fields where the average electron
energy and the drift velocity are large enough to hinder the electron self-trapping process
in cavities.

Such point of view is further confirmed, in our opinion, if the fraction of quasifree
electrons is compared with the mobility behavior as a function of the reduced field.
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The fraction ffree of quasifree states with energy in excess of the mobility edge energy
εc is given by

ffree =

∞∫

εc

ε1/2g(ε)dε. (13)

In Figure 8, we plot the experimental mobility (closed points) and the model prediction
(solid line) for T = 34.5 K and N = 41.74× 1026 m−3 and compare their behavior with ffree
(dashed line, right scale).
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At such high a density, µ0N is well below the predicted value by the heuristic model
and by all other theoretical models [10,12–14] because a non-negligible fraction of electrons
are localized in bubbles and significantly contributes to the mobility decline with density.
By inspecting Figure 8, it can be noted that the quasifree electron fraction is ffree ≈ 10 %
at low fields and rapidly increases towards ffree = 100 % at high fields. However, its rise
begins at much weaker field strength than the mobility rise. Therefore, we can conclude
that the reduction of the fraction of non-propagating states below the mobility edge is not
the principal mechanism of the mobility increase with electric field at high densities and
that these weakly localized states are probably not the precursors of the electron states
self-trapped in cavities.

5. Conclusions

In this paper, we have presented new and accurate experimental measurements of
electron mobility in helium gas in a wide temperature range for low to intermediate
densities. The experimental ranges have been selected in a way to exclude the presence of
electron bubbles that might spoil the theoretical analysis.

Figure 8. Left scale: µN vs. E/N for T = 34.5 K for N = 41.74× 1026 m−3 (closed points) and prediction of the heuristic
model (solid line). Dashed line: the fraction of quasifree electrons ffree (right scale).

At such high a density, µ0N is well below the predicted value by the heuristic model
and by all other theoretical models [10,12–14] because a non-negligible fraction of electrons
are localized in bubbles and significantly contributes to the mobility decline with density.
By inspecting Figure 8, it can be noted that the quasifree electron fraction is ffree ≈ 10 %
at low fields and rapidly increases towards ffree = 100 % at high fields. However, its rise
begins at much weaker field strength than the mobility rise. Therefore, we can conclude
that the reduction of the fraction of non-propagating states below the mobility edge is not
the principal mechanism of the mobility increase with electric field at high densities and
that these weakly localized states are probably not the precursors of the electron states
self-trapped in cavities.

5. Conclusions

In this paper, we have presented new and accurate experimental measurements of
electron mobility in helium gas in a wide temperature range for low to intermediate
densities. The experimental ranges have been selected in a way to exclude the presence of
electron bubbles that might spoil the theoretical analysis.
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We have shown that the heuristic model, originally developed for neon and argon,
also works very well for helium. On one hand, it encompasses the multiple-scattering
effects taken into account also by previous theories. It supersedes them because all the
multiple-scattering effects are included at once in a unified picture. In particular, for helium,
the main effect is produced by the presence of a disorder-induced mobility-edge that leads
to a nearly exponential decrease of the zero-field limit of the density-normalized mobility
µ0N by shrinking the phase space available to freely propagating electrons.

On the other hand, at least for the noble gases, the heuristic model treats the electron-
atom scattering process in a dense, disordered medium as a unique phenomenon that
does not depend if the electron-atom interaction potential is mainly attractive or repulsive.
The different density effect shown by different gases is only a manifestation of the energy
dependence of the scattering cross sections.

Moreover, in comparison with the previous theories, the present heuristic model is
also able to describe the electric field dependence of the quasifree electron mobility with
great accuracy.

In helium, owing to the near energy independence of the scattering cross section
and to the distance from the criticality of the present measurements, the most important
multiple-scattering process affecting the electron mobility is the existence of a disorder-
produced mobility edge at which the scattering cross section diverges. States with energy
below the mobility-edge energy do not propagate and are weakly-localized, and thus, the
phase space of propagating electrons shrink. The resulting infrared cutoff in the electron
energy distribution function leads to a strong, nearly exponential decrease in µ0N with
increasing density that explains the approximate success of previous theories.

The availability of an accurate theoretical model and experimental measurements
has allowed us to suggest a clear distinction between disorder-induced, non-propagating,
Anderson-localized states and electron bubbles. From the theoretical analysis of the experi-
mental data in a thermodynamic state in which electron bubbles are present, the conclusion
can be drawn that Anderson-localized states may coexist with electron bubbles.

It would be interesting if an analysis similar to the present one could be carried out
on measurements of electron mobility in dense carbon dioxide [63,64], ammonia [65],
and methanol [66] that show a significant negative density effect and even self-trapping
in cavities.
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Appendix A. Influence of Ek(N) and of εc on the Mobility of Quasifree Electrons

Two characteristic energies have to be considered in the heuristic model to produce an
accurate description of the mobility data without any adjustable parameters, namely the
density-dependent energy shift Ek(N) and the mobility edge energy εc. εc slightly depends
on T because of S(0). However, for all T and N of the present experiment, S(0) ≈ 1 within
less than 10 %, and εc turns out to practically be temperature independent.

The two energies are very different values, as shown in Figure A1. Roughly speaking,
Ek is more than ≈20 times larger than εc at all densities.
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Figure A1. The density dependence of the energy shift Ek (left scale) and of the mobility edge energy
εc (right scale).

Despite this big difference between the two quantities, in the case of helium gas,
the smaller one produces the bigger effect on the mobility. Actually, Ek(N) produces a
rigid shift of the electron energy distribution function whose zero is shifted from ε = 0 to
ε = Ek(N). By a suitable change of variables in the integrals for the mobility [23], it can be
shown that the effect of Ek is to force the evaluation of the energy-dependent electron-atom
scattering cross section at the shifted energy, as demonstrated by Equation (8). If the cross
section is nearly independent of energy, as is the case of helium, its evaluation at a shifted
energy gives nearly the same value, and the effect on the mobility is small. On the contrary,
the action of Ek produces the dominant effect in neon [21,43,44] and argon [22,23,40,58],
whose cross sections very rapidly vary with energy.

The action of the mobility edge energy is more subtle. It introduces an infrared
cutoff in the mobility integrals. Electron states with energies below εc do not propagate.
Thus, the cutoff actually shrinks the phase space available to the freely propagating states.
For thermal electrons and (nearly) energy-independent cross sections, the zero-field density
normalized mobility is given by

µ0N ∝
∞∫

εc

εe−ε/kBT dε = e−εc/kBT
∞∫

0

(z + εc)e−z/kBT dz ∼ e−εc/kBT(µ0N)0. (A1)

Loosely speaking, the classical mobility (µ0N)0 is thus multiplied by an exponential
factor of the form exp (−εc/kBT). Actually, the exact integral weakens the quadratic
density dependence of εc in the argument of the exponential. In any case, the strong
density dependence of the exponential leads to the observed negative density effect of the
electron mobility in helium. Furthermore, in neon and argon, the quantum self-interference
effect leads to the appearance of a mobility edge. However, in these gases, the cross section
at thermal energies is so small that εc ≈ 0 and can safely be neglected, thus allowing the
other multiple-scattering effects to fully manifest.

As mentioned before, the infrared cutoff εc leads to a reduction of the fraction ffree of
freely propagating electron states. It is interesting to investigate how ffree depends on T, N,
and E/N as a consequence of the presence of εc.

Figure A1. The density dependence of the energy shift Ek (left scale) and of the mobility edge energy
εc (right scale).

Despite this big difference between the two quantities, in the case of helium gas,
the smaller one produces the bigger effect on the mobility. Actually, Ek(N) produces a
rigid shift of the electron energy distribution function whose zero is shifted from ε = 0 to
ε = Ek(N). By a suitable change of variables in the integrals for the mobility [23], it can be
shown that the effect of Ek is to force the evaluation of the energy-dependent electron-atom
scattering cross section at the shifted energy, as demonstrated by Equation (8). If the cross
section is nearly independent of energy, as is the case of helium, its evaluation at a shifted
energy gives nearly the same value, and the effect on the mobility is small. On the contrary,
the action of Ek produces the dominant effect in neon [21,43,44] and argon [22,23,40,58],
whose cross sections very rapidly vary with energy.

The action of the mobility edge energy is more subtle. It introduces an infrared
cutoff in the mobility integrals. Electron states with energies below εc do not propagate.
Thus, the cutoff actually shrinks the phase space available to the freely propagating states.
For thermal electrons and (nearly) energy-independent cross sections, the zero-field density
normalized mobility is given by

µ0N ∝
∞∫

εc

εe−ε/kBT dε = e−εc/kBT
∞∫

0

(z + εc)e−z/kBT dz ∼ e−εc/kBT(µ0N)0. (A1)

Loosely speaking, the classical mobility (µ0N)0 is thus multiplied by an exponential
factor of the form exp (−εc/kBT). Actually, the exact integral weakens the quadratic
density dependence of εc in the argument of the exponential. In any case, the strong
density dependence of the exponential leads to the observed negative density effect of the
electron mobility in helium. Furthermore, in neon and argon, the quantum self-interference
effect leads to the appearance of a mobility edge. However, in these gases, the cross section
at thermal energies is so small that εc ≈ 0 and can safely be neglected, thus allowing the
other multiple-scattering effects to fully manifest.

As mentioned before, the infrared cutoff εc leads to a reduction of the fraction ffree of
freely propagating electron states. It is interesting to investigate how ffree depends on T, N,
and E/N as a consequence of the presence of εc.
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In Figure A2, we show the influence of N on the field dependence of ffree at constant T.
For all N, the action of the electric field is to broaden the electron energy distribution function
so that the fraction of states with energy ε > εc always increases with the increasing E/N.

Atoms 2021, 1, 0 16 of 19

In Figure A2, we show the influence of N on the field dependence of ffree at constant T.
For all N, the action of the electric field is to broaden the electron energy distribution function
so that the fraction of states with energy ε > εc always increases with the increasing E/N.

Figure A2. ffree as a function of E/N at T = 26.1 K. From top: N : 5, 10, 20, 30, 40, 50 (in units of
1026 m−3). Note that for T = 26.1 K, the threshold density is Nth & 20.

At a low density, ffree is practically always equal to 1. Upon increasing N, ffree steadily
decreases. The higher the density is, the larger the field strength required to produce larger
proportions of quasifree electrons is.

Similar considerations can be made about the effect of temperature on ffree at constant
density, as shown in Figure A3.

At constant N and T, the action of the field is the same as discussed for the previous
figure. At constant E/N and N, the action of T is clear. Upon increasing T, the electron
energy distribution gets broader, and the average electron energy increases, thereby in-
creasing the fraction of electrons with energy in excess of εc. It has to be once more noted
that, at the density of Figure A3 for T . 50 K, a large number of electrons are self-trapped
in bubbles.

It is finally interesting to note that fraction of quasifree states at E/N = 0 is a universal
function of yc =

√
εc/kBT ∝ N/

√
T

lim
E/N→0

ffree =
2√
π

yce−y2
c + erfc(yc), (A2)

in which erfc(x) is the error function [12].

Figure A2. ffree as a function of E/N at T = 26.1 K. From top: N : 5, 10, 20, 30, 40, 50 (in units of
1026 m−3). Note that for T = 26.1 K, the threshold density is Nth & 20.

At a low density, ffree is practically always equal to 1. Upon increasing N, ffree steadily
decreases. The higher the density is, the larger the field strength required to produce larger
proportions of quasifree electrons is.

Similar considerations can be made about the effect of temperature on ffree at constant
density, as shown in Figure A3.

At constant N and T, the action of the field is the same as discussed for the previous
figure. At constant E/N and N, the action of T is clear. Upon increasing T, the electron
energy distribution gets broader, and the average electron energy increases, thereby in-
creasing the fraction of electrons with energy in excess of εc. It has to be once more noted
that, at the density of Figure A3 for T . 50 K, a large number of electrons are self-trapped
in bubbles.

It is finally interesting to note that fraction of quasifree states at E/N = 0 is a universal
function of yc =

√
εc/kBT ∝ N/

√
T

lim
E/N→0

ffree =
2√
π

yce−y2
c + erfc(yc), (A2)

in which erfc(x) is the error function [12].
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Figure A3. ffree vs. E/N at N = 50 × 1026 m−3 for several T. From top:
T (K) = 300, 200, 150, 100, 50, 26.1 .
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