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Abstract
The ability to complete partially missing contours is widespread across the animal kingdom, but whether this extends to dogs 
is still unknown. To address this gap in knowledge, we assessed dogs’ susceptibility to one of the most common contour 
illusions, the Kanizsa’s triangle. Six dogs were trained to discriminate a triangle from other geometrical figures using a two-
alternative conditioned discrimination task. Once the learning criterion was reached, dogs were presented with the Kanizsa’s 
triangle and a control stimulus, where inducers were rotated around their centre, so as to disrupt what would be perceived 
as a triangle by a human observer. As a group, dogs chose the illusory triangle significantly more often than control stimuli. 
At the individual level, susceptibility to the illusion was shown by five out of six dogs. This is the first study where dogs as 
a group show susceptibility to a visual illusion in the same manner as humans. Moreover, the analyses revealed a negative 
effect of age on susceptibility, an effect that was also found in humans. Altogether, this suggests that the underling perceptual 
mechanisms are similar between dogs and humans, and in sharp contrast with other categories of visual illusions to which 
the susceptibility of dogs has been previously assessed.
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Introduction

Visual perception is the result of the brain’s processing of 
sensory signals originating in retinal photoreceptors (Feng 
et al. 2017). Perception does not always correspond with the 
physical reality and stimuli that systematically trigger a mis-
perception are commonly known as “visual illusions” (Greg-
ory 1968). Discussion of visual illusions dates back to Aris-
totle and nowadays a variety of illusions tackling different 
perceptual mechanisms have been scientifically investigated 
(Eagleman 2001). For instance, recent literature provides 
experimental evidence about visual illusions eliciting mis-
perception of relative size (Agrillo et al. 2019; Doherty et al. 

2010), quantity (Agrillo et al. 2016; Kirjakovski and Mat-
sumoto 2016), colour (Rizzi and Bonanomi 2012; Schlaffke 
et al. 2015), brightness (Blakeslee and McCourt 2012) and 
motion (Ashida et al. 2012; Kanazawa et al. 2013). Most of 
the studies in this field have concentrated on humans, but it 
has been suggested that some of the underlying mechanisms 
of illusory perception might be shared across species (Feng 
et al. 2017). Exploring the susceptibility to illusions by non-
human animals may shed light on the top–down cognitive 
mechanisms of visual perception as well as providing new 
accounts about the phylogenesis of visual processing.

One of the most well-known classes of visual illusions is 
illusory contour. Contour illusions emerge when the visual 
scene fails to give complete luminance, texture, and/or col-
our cues on the boundaries of the objects, but the latter are 
nevertheless perceived (Kanizsa 1976). Since the observer 
perceives visual elements that are physically absent, the con-
tour illusions can be classified as “fiction” illusions (Gregory 
1997). Common examples of fiction illusions are the Ehren-
stein illusion and the Kanizsa’s triangle illusion. The first 
one is composed of radial line segments with abrupt ends, 
which results in the perception of a white disk covering the 
centre of the image, from where the rays virtually originate 
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(Ehrenstein 1987). The latter consists of an arrangement of 
three circles with a missing sector (i.e. “pac-men” figures), 
with their centres placed at the corners of an imaginary tri-
angle, and symmetrically pointing inwards with their open 
60° angles. Typically, human observers perceive a white 
triangle in between such figures, by mentally filling in the 
missing parts of the edges (Kanizsa 1976). Besides human 
observers, various non-human species were shown to be sus-
ceptible to the Kanizsa’s illusion, including chimpanzees 
(Fagot and Tomonaga 2001), macaque monkeys (Feltner 
and Kiorpes 2010; Zimmermann 1962), cats (Bravo et al. 
1988), mice (Okuyama-Uchimura and Komai 2016), fish 
(Fuss et al. 2014; Sovrano and Bisazza 2009; Wyzisk and 
Neumeyer 2007) and even insects (Horridge et al. 1992; 
Sakiyama and Gunji 2016). Most of these studies have used 
two-alternative forced-choice tasks, in which animals were 
trained to discriminate figures with whole contours, after 
which their ability to transfer the discrimination to figures 
with seemingly occluded contours was assessed in transfer 
tests. Slight differences may exist between experiments in 
the discriminants or in characteristics of the inducers. For 
instance, Okuyama-Uchimura and Komai (2016) trained 
mice to discriminate rectangles based on their orientation, 
whereas Sovrano and Bisazza (2009) trained fish to discrimi-
nate a triangle and a square on different backgrounds. The 
perception of contour illusions is rendered possible due to 
the ability of perceptual completion (Nanay 2018; Nieder 
2002). Besides contour illusions, perceptual completion 
also allows an observer to perceive objects with partially 
occluded or only partly illuminated contours, which are 
common in natural scenes (Nieder 2002). Therefore, pos-
sessing the ability of perceptual completion allows an animal 
to inspect its surrounding faster, which gives an animal a 
considerable advantage, particularly in hunting and in avoid-
ance of predators. Altogether, this suggests that the abil-
ity to perceive illusory contours might be an ecologically 
important trait, which evolved early in evolution and was 
conserved across phylogenetically distant species. Indeed, 
neurophysiological recordings in primates have revealed 
that the illusory figures evoke cortical activation amongst 
the phylogenetically oldest parts of central visual pathways, 
namely the primary visual cortex (V1) and the secondary 
visual area (V2) (Grosof et al. 1993; von der Heydt et al. 
1984; Lee and Nguyen 2001; Ramsden et al. 2001).

Studies on the perception of the Kanizsa’s triangle in 
humans have shown that the strength of the perception is 
positively correlated with the support ratio, i.e. the ratio 
between the physically specified contours and the total edge 
length (Halko et al. 2008; Otsuka et al. 2004; Shipley and 
Kellman 1992). When the support ratio is very low, the illu-
sory contours are no longer perceived (Shipley and Kellman 
1992). The principle is not limited to the Kanizsa’s triangle 
illusion. For instance, Petry and colleagues (1983) reported 

that the perceived brightness and sharpness of the white disk 
in the Ehrenstein illusion are affected both by the number 
and the thickness of the rays. When both of the variables 
are low (i.e., few thin lines are used as inducers), resulting 
in a very low support ratio, human observers report a weak 
perception of the inner disk. This phenomenon expands also 
to other species since rhesus monkeys presented a consider-
able decline in susceptibility of the Kanizsa’s illusion, when 
the support ratio was decreased to 25% (Feltner and Kiorpes 
2010).

Dogs are increasingly used in cognitive studies due to 
their particular evolutionary history (Hare et al. 2002), com-
parative standpoint with humans (Miklósi et al. 2007) and 
applied value as working dogs. In particular, visual percep-
tion is a key feature in all of the above-mentioned aspects. 
However, our knowledge regarding dogs’ visual percep-
tion is far from being comprehensive. Several studies have 
recently explored dogs’ susceptibility to visual illusions, 
but most of them are confined to the so-called “distortion 
illusions” (Byosiere et al. 2017a,b, 2018; Keep et al. 2018; 
Lõoke et al. 2020; Miletto Petrazzini et al. 2017). Most of 
the studies have found that dogs do not perceive the illusions 
as humans do and the proposed explanation is the differ-
ences in global and local preference (Byosiere et al. 2020). 
In regard to fiction illusions, two studies have explored dogs’ 
susceptibility to contour illusions (Byosiere et al. 2017a, 
2019). Byosiere and colleagues (Byosiere et al. 2017a) stud-
ied dogs´ susceptibility to an illusory contour version of the 
Ebbinghaus–Titchener illusion, where the spatial relation-
ship between a circle and surrounding elements results in 
a misperception of the circle’s size. Three dogs out of five 
showed susceptibility to the illusion, suggesting that they 
were able to perceptually complete the missing contours. 
However, besides the relatively low proportion of dogs sus-
ceptible to the illusion, dogs were trained to discriminate 
illusory figures of different size before being tested for their 
susceptibility, which leaves the doubt that dogs might have 
learned to discriminate the circle size based on the induc-
ers without perceptually completing the edges. The second 
study (Byosiere et al. 2019) presented dogs with a classical 
version of the Ehrenstein illusion. As a group, dogs failed to 
show susceptibility to the illusion, but the individual results 
of two dogs out of six suggested that these subjects were 
able to perceive missing contours. One possible reason for 
the lack of susceptibility might be a small support ratio. 
Altogether, the above-mentioned studies suggest that dogs 
are scarcely susceptible to the contour illusions. If this holds 
true, it would raise new questions in the evolution of visual 
perception, since the ability of perceptual completion is 
highly conserved across species and dogs would stand out 
as an exception.

The current study aims to assess dogs’ susceptibility to 
illusory contours in the Kanizsa’s triangle illusion. Dogs 
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were initially trained to discriminate a triangle from other 
geometrical figures and later tested in their ability to trans-
fer this discrimination, when presented with the Kanizsa’s 
triangle and a proper control figure. If dogs are able to per-
ceptually complete the missing contours, they are expected 
to choose the illusory triangle more often than expected 
by chance. The illusion had a support ratio of 0.67, that is 
known to result in a strong perceptual effect in humans. In 
fact, the Kanizsa’s triangle allows an easily manipulable sup-
port ratio and may provide a more effective tool for assessing 
the ability to perceptually complete missing contours. More-
over, the susceptibility to this illusion has been assessed in 
a higher number of species than the Ehrenstein illusion and 
therefore, it makes assessing Kanizsa’s triangle illusion in 
dogs a more suitable choice for comparative purposes.

Materials and methods

Subjects

The sample consisted of six pet dogs (Table 1). The three 
mixed breed dogs were all mesocephalic and medium-sized 
(height at the withers 45 to 55 cm). The dogs’ average age 
was 4.3 ± 2.6 years. The dog owners were students or work-
ers of the University of Padua and were recruited on a vol-
untary basis. The criterion for dogs’ selection was a good 
health condition, willingness to cooperate in the laboratory 
setting and high motivation for food.

Experimental setting

The experiment was conducted in a quiet room (4.7 × 5.8 m) 
with dim light. Two identical touch screen monitors 
(VG248QE, ASUSTeK Computer Inc., Taipei, Taiwan) 
measuring 53 × 30 cm, were used for stimuli presentation, 
with the refresh rate set to 100 Hz. Monitors were positioned 
side by side, with 25 cm in between and the vertical middle 
point of both monitors was set at the eye level of each sub-
ject. Both monitors were connected to a PC (Optiplex 960, 
Dell Inc., Round Rock, Texas, USA) which was operated 
through a Bluetooth keyboard (Logitech K400R, Logitech 

International S.A. Losanna, Switzerland). A coloured tape 
on the floor at 120 cm from the middle point between moni-
tors marked the position at which the dog’s head was kept 
during the presentation of the stimuli (see below for details). 
A chair for the experimenter was placed at either side of 
such mark.

Stimuli

Training stimuli

White geometrical shapes presented on black background 
were used as training stimuli. These included an equilat-
eral triangle, which was used as a positive stimulus. Ten 
additional shapes were used as negative stimuli, including 
a square, a cross, a circle, an arch, a half-moon, a heart, a 
hexagon and letters “L”, “T” and “C”. One side of the tri-
angle measured 10.5 cm and was composed of 555 pixels. 
The triangle had an area of 47.7 cm2 and all negative stimuli 
had approximately the same size. All stimuli were presented 
in the middle of the screen. The stimuli were created with 
OpenSesame (version 3.2.8 Kafkaesque Koffka, Mathôt et al. 
2012).

Test stimuli

All test stimuli consisted of three black circles with a miss-
ing sector of 60° (i.e. “pac-man” figures). The centre of the 
three pac-men was located in the same position as the apexes 
of the triangle of the training phase. The pac-men could 
be rotated so that the edges of the sectors of each pac-man 
were aligned with those of the other two pac-men, which 
typically generate the illusory perception of a solid trian-
gle by humans (illusory stimulus; Fig. 1a). Alternatively, 
the pac-men were rotated, so that sectors were not aligned 
(non-illusory stimulus; Fig. 1b). Ten different non-illusory 
configurations were presented, including five figures where 
the three sectors had the same orientation as the illusory 
stimulus, but the pac-men were not in the same position as 
the illusory stimulus. All pac-men figures were presented 
on white background in the middle of the screen. The radius 
of the circle was 185 pixels, therefore the physical contours 
covered 2/3 (0.67) of the illusionary triangle sides.

Experimental procedures

The experiment was composed of two phases, a training and 
a test phase. Dogs who were not accustomed to using the 
touch screen apparatus were previously involved in a pre-
liminary procedural training. Two dogs (subjects 4 and 5) 
were already accustomed to using the touch screen appara-
tus. However, the stimuli were non-illusory and of a differ-
ent nature (i.e. random dot motion displays); therefore, it is 

Table 1   Subjects demographics at the time of testing

Subjects’ number Age (y) Sex Breed

1 9.2 F Golden retriever
2 3.2 M Mixed breed
3 4.8 F Whippet
4 1.3 F Mixed breed
5 5.3 M Mixed breed
6 2.0 F Golden retriever
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unlikely that the previous experience would have affected the 
results of the current experiment. The preliminary training 
was aimed at teaching dogs to wait at the designated initial 
position, visually inspect the monitors and touch the screen 
with their snout where a 4.5 cm plain white circle was pre-
sented on a black background. The preliminary training ses-
sions were composed of 20 trials to accustom the dogs to the 
trial repetition. Preliminary training was completed when the 
dog was comfortable and accurately performing every aspect 
of the procedure. In the days in which dogs were involved 
in the study, they were only fed in the previous evenings to 
keep the dogs’ food motivation high.

Training phase

The training phase used a two-alternative conditioned dis-
crimination task to teach the dog to choose the triangle over 
other geometrical figures. The training phase consisted of 
sessions of 20 trials. Each trial started with the dog standing 
at the designated initial position beside the experimenter, 
who held it gently by its harness. Once the dog was ori-
ented towards the monitors, the experimenter closed her eyes 
(Macpherson and Roberts 2013; Range et al. 2014) to avoid 
influencing the subjects’ choice and simultaneously started 
the presentation of the stimuli. The positive and the negative 
stimuli appeared on the monitors concurrently. The experi-
menter held the dog for 5 s to allow the dog to inspect the 
stimuli before choosing. Then, the experimenter said “Go!” 
and released the dog, who was then free to approach and 
touch one of the two monitors. Both stimuli disappeared 
upon touching one of the screens. If the dog chose the moni-
tor with positive stimulus, it received a verbal praise and a 
food reward (either a commercial dog treat or a piece of sau-
sage) tossed on the ground by the experimenter. After eating 
the food, the dog was called back to the starting position for 
the following trial. If the dog chose the negative stimulus, 
it was called back to the starting position without receiving 
any reward. If the dog did not make a choice within 60 s, the 

experimenter proceeded with the next presentation and the 
result was recorded as “No choice”.

The training phase was organized in steps with increasing 
difficulty to make learning easier for dogs. In the first step of 
the training phase, a black screen served as a negative stimu-
lus. In the second step, a figure “L” was used as a negative 
stimulus. The third step had four negative stimuli presented 
in random order: the figure “L”, a square, a figure “T” and a 
cross. The fourth step had seven negative stimuli presented 
in a random order: a circle, a hexagon and an arch were 
added to the previous shapes. The final step had ten negative 
stimuli: a heart, a figure “C”, a half-moon and the previ-
ously mentioned shapes. Each time the dog made 2 or less 
mistakes (i.e., 90% accuracy) for 3 sessions in a row, it was 
moved to the next step. The side of the positive stimulus was 
counterbalanced across the session and semi-randomised so 
that it never appeared on the same side more than three times 
in a row. Each dog underwent a maximum of five training 
sessions per day, with an interval between sessions of at 
least 30 min. The dogs were moved to the test phase when 
they chose the positive stimulus for at least 18 out of 20 tri-
als (i.e., 90% accuracy) in 6 consecutive sessions in the last 
step (i.e., using ten different negative stimuli), distributed 
over two separate days.

Test phase

Test phase was meant to assess the dogs´ susceptibility to 
the Kanisza’s triangle illusion. Test phase sessions consisted 
of 25 trials, which included 20 training trials and 5 test tri-
als. On test trials, both an illusory and non-illusory stimu-
lus were presented. Test trials were regularly presented on 
every fifth trial and followed a similar procedure to the train-
ing trials, except that in the test trials, the dogs were rein-
forced randomly half of the times regardless of their choice. 
In the training trials of this phase, choices of the positive 
or negative stimulus had the same consequences as in the 
training phase. If the dogs made more than two mistakes 

Fig. 1   The illusory stimulus 
used in the test phase (a) and 
an example of the non-illusory 
stimulus used in the test phase 
(b)
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in the training trials, they were moved back to the training 
phase, required to reach the learning criterion, and tested 
again. Each dog underwent five test sessions, therefore they 
were presented with 25 test trials overall. The time interval 
between sessions performed by the same dog was at least 
30 min.

Data collection and analyses

Data for the choice performed by the dogs in each trial, both 
in training and test phase, were automatically collected with 
OpenSesame. In addition, the data regarding the number of 
training sessions for each subject were collected. A two-
tailed binomial test was run for each individual dog to test 
the null hypothesis (H0) that the choices were not different 
from chance level in the test trials. Only the test sessions 
where two or less mistakes were made in the training tri-
als were considered in the final analysis. To assess whether 
an overall prevalence for choosing the illusionary stimuli 
was present in our sample, we performed a one-sample 
two-tailed Student’s t test on the dogs means for the type of 
choice (0 = non-illusionary stimulus, 1 = illusionary stimu-
lus) expressed in the 25 test trials, testing the null hypothesis 
(H0) that the mean was equal to or lower than 0.5. To ana-
lyze if the length of the training phase or the age of the dog 
affected the choices in the test phase, a repeated measures 
binomial logistic regression analyses were computed. All 
statistical analyses were conducted using R (version 3.5.2; 
R Core Team 2018), with statistical significance level set 
at 0.05.

Results

All six dogs reached the learning criterion in the training 
phase. The mean number of training sessions was 85 ± 26. 
The maximum number of training sessions was 129 and the 
minimum number was 60. Two dogs needed to go back to 
the training phase from the test phase. Both times the learn-
ing criterion was reached immediately within the next six 
sessions and the dogs were moved back to the test phase.

The individual results are presented in Table 2. All dogs 
made a choice in the test trials within 60 s and “No choice” 
was never recorded. The analyses revealed that five dogs 
chose the illusionary stimuli over chance level and one dog 
performed at chance level in the test phase. At the group 
level, dogs chose the illusionary stimuli more often than 
expected by chance (t(5) = 7.7, p < 0.001, Cohen’s d = 3.2).

The logistic regression revealed that older dogs chose 
the illusory stimuli significantly less often in the test phase 
(z = − 3.22, p = 0.001, Cohen’s d = 0.81). The length of 
the training phase had no effect on the test phase choices 
(z = 1.28, p = 0.20, Cohen’s d = 0.03). Due to the low number 

of choices of the non-illusory stimulus across the test ses-
sions, we could not analyse statistically if the dogs’ per-
formance changed across the test phase. However, the dis-
tribution of choices across test sessions did not reveal any 
consistent pattern.

Discussion

This study provides compelling evidence that dogs are sus-
ceptible to a “fiction” illusion, i.e., the Kanizsa’s triangle 
illusion. Similar results have been obtained in other spe-
cies, ranging from insects to primates (Bravo et al. 1988; 
Fagot and Tomonaga 2001; Feltner and Kiorpes 2010; 
Fuss et al. 2014; Horridge et al. 1992; Okuyama-Uchimura 
and Komai 2016; Sakiyama and Gunji 2016; Sovrano and 
Bisazza 2009). Therefore, the current finding aligns with 
the idea that perceptual completion of missing contours is 
widespread in the animal kingdom and that the dogs are no 
exception to this. However, the result is in sharp contrast 
with the general lack of susceptibility to the illusions so far 
observed in dogs (Byosiere et al. 2020).

The current results seem to clash particularly with previ-
ous work by Byosiere and colleagues (2019), who assessed 
dogs’ susceptibility to the Ehrenstein illusion. Contrary 
to the present results, ability to perceptually complete the 
illusory figure was only found in a minority of dogs in the 
sample, resulting in the failure to support susceptibility to 
illusion in dogs as a group. Although both the Ehrenstein 
and the Kanisza’s triangle illusions rely on perceptual com-
pletion, the higher susceptibility to the latter could be due to 
key differences in the structure of the two illusions. A first, 
crucial difference is that Kanizsa’s triangle inducers are of 
the “edge type”, whereby the edges of the inducers are col-
linear to the edges of the illusory shape. Conversely, in the 
Ehrenstein illusion, inducers are “line-end type”, meaning 
that the inducing lines are perpendicular to the illusory con-
tour (Lesher and Mingolla 1993). It has been proposed that 
in humans, the neural underpinnings of these two illusions 
are slightly different: in the former, the neural activity along 

Table 2   The number of training sessions, choices of the illusionary 
stimulus on 25 test trials (i.e., the entire test phase) and the p value of 
the two-tailed binomial test

Subject 
number

Nr of train-
ing sessions

N of choices of the illusionary 
stimulus on 25 presentations

Binomial 
test p value

1 102 16 0.230
2 60 22  < 0.001
3 69 21 0.001
4 68 24  < 0.001
5 129 23  < 0.001
6 81 22  < 0.001
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the edge is used directly for completion, whereas in the lat-
ter, the completion is divided in several stages, with neurons 
both responding to the end of lines and the line orientation 
(Lesher and Mingolla 1993). Moreover, in humans, it is well 
known that the perceptual strength of the Kanizsa’s triangle 
illusion is monotonically increased with the increase of the 
support ratio (Shipley and Kellman 1992). The perceptual 
strength of the Ehrenstein illusion depends both on the width 
and the number of inducing lines, whereas the perceived 
brightness shows an inverted U-function in relation to the 
inducer width (Petry et al. 1983). Even though the previ-
ous evidence shows that the support ratios are not directly 
comparable, there still remains a doubt that the support ratio 
used by Byosiere and colleagues (2019) was not sufficient 
for dogs to perceive the Ehrenstein illusion. In humans, the 
optimal support ratio for the Ehreinstein illusion is around 
40%, and with a support ratio less than 20% the illusion is 
perceived weakly (Petry et al. 1983). However, the perfor-
mance of two dogs of the study of Byosiere and colleagues 
did suggest the dog’s ability to perceive the Ehrenstein illu-
sion and interestingly, they were the only two dogs that were 
trained to choose the smaller figure with a support ratio of 
18.5%. Accordingly, the rest of the dogs trained to choose 
the larger figure with the support ratio of 8.5% were not 
susceptible to illusion (Byosiere et al. 2019). This seems 
to indicate that with an increase in the support ratio, the 
susceptibility to Ehrenstein illusion in dogs might be com-
parable to the one reported in the current study.

To date, no studies have found that dogs perceive visual 
illusions in a manner similar to humans. Previous studies 
exploring the perception of Ponzo, Müller-Lyer illusion, 
Solitaire, Ebbinghaus-Titchener illusion, and Delboeuf 
illusions conclude that dogs as a group are not suscep-
tible to them or perceive them in the opposite manner 
to humans (Byosiere et  al. 2017a,b, 2018; Keep et  al. 
2018; Lõoke et al. 2020; Miletto Petrazzini et al. 2017). It 
should be noted, however, that in all such illusions, col-
lectively classified as the “distortion” illusions (Gregory 
1991), the visual context elicits a misperception of either 
length, number or size. The susceptibility to such illu-
sions is closely related with quantity estimation abilities, 
whereas the susceptibility to contour illusions lies more 
heavily on object recognition. As they require different 
capabilities, the illusions trigger the activation of differ-
ent cortical regions. In humans, the contour illusions are 
predominantly processed in the cortical areas confined to 
the visual cortex, mainly in V1 and V2 (Ffytche and Zeki 
1996; Seghier and Vuilleumier 2006). Conversely, the per-
ception of distortion illusions requires also an integration 
of higher cortical areas responsible for numerical skills 
and magnitude estimation (Axelrod et al. 2017; Carther-
Krone et  al. 2020; Qiu et  al. 2008; Weidner and Fink 
2007). To date, it is unknown where exactly the visual 

illusions are processed in the canine brain. However, the 
results of behavioral experiments suggest that the mecha-
nisms underlying perceptual completion are more simi-
lar between dogs and humans than mechanisms in which 
quantitative information has to be extracted from visual 
inputs.

While most of the dogs in the current study proved to 
be individually susceptible to the Kanizsa’s illusion, one 
dog did not. In view of the small sample size, it is difficult 
to make any conclusive discussion on underlying factors 
that may have contributed to this result. However, the only 
dog choosing at chance level was the oldest of the sample 
and possibly considered senior. There lies the possibility 
that the dog had a vision deficit that might have affected 
the results. However, such a hypothesis is unlikely, as all 
dogs went through a veterinary check prior to enrolling 
to the study; moreover, susceptibility to the Kanizsa’s tri-
angle illusion does not seem to be affected by visual defi-
cit produced by retinal scotomas (De Stefani et al. 2011). 
Furthermore, the statistical analyses of the current study 
found a general significant effect of age, indicating a lower 
probability to choose the illusory triangle by older sub-
jects. Clearly, our sample size is not sufficient to draw any 
conclusive consideration of the role of age; however, it is 
interesting to highlight a potential parallel with humans, as 
elderly people are also less susceptible to the contour illu-
sions compared to young adults (Kurtz 2011). One of the 
proposed reasons for elderly humans’ lower susceptibility 
of the Kanizsa’s triangle illusion (Kurtz 2011) is linked to 
a tendency to prioritize the processing of local elements, 
rather than the global level of hierarchical stimuli (Lux 
et al. 2008). Similar to humans, dogs seem to prioritize 
the global perception of hierarchical stimuli, although not 
as strongly and with a higher individual variability than 
humans (Pitteri et al. 2014). While no data exist about 
the effect of ageing on hierarchical stimulus perception in 
dogs, the same mechanism might be true for dogs.

Our sample consisted of dogs of various breeds. While 
the sample size is certainly too small to draw conclusion 
about the generalizability of the result to the dog popula-
tion at large, the results suggest that perceptual comple-
tion may be shared across breeds. However, while we did 
include both mesocephalic and dolichocephalic dogs, none 
of our tested subjects was brachycephalic. It should be 
noted that the study by Byosiere and collaborators (2019) 
on the Ehrenstein illusion involved only Lagotto Romag-
nolo dogs, a moderately brachycephalic breed. In view 
of the demonstrated influence of cranial morphology on 
dogs’ use of visual information (McGreevy et al. 2004), 
the possibility that the sample composition in terms of 
breed may have contributed to the difference in suscepti-
bility found in the two studies must be taken into account.
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Conclusion

Despite several differences in illusory perception, the find-
ing of the present study indicates that dogs are susceptible 
to illusory contours. The contextual lack of difference to 
other illusions by dogs, reinforces the idea that the cortical 
mechanisms underlying illusory contours are different from 
that related to “distortion” illusions. Our results also demon-
strate that, despite several differences between humans and 
dogs in perceptual mechanisms, at least the ones concern-
ing illusory contours are similar. One potential aspect of 
similarity between dogs and humans which was only sug-
gested by our results is a detrimental effect of ageing on the 
susceptibility to this illusion. Further experiments will be 
needed to determine if this is confirmed. Moreover, future 
research should explore the extent to which susceptibility 
to illusory contours can be extended to dogs with peculiar 
characteristics with known influence on visual processing, 
such as brachycephalism.
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