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1. Abstract

Numerous major advances have been made in
forensic genetics over the past decade. One recent field of
research has been focused on the analysis of External Visi-
ble Characteristics (EVC) such as eye colour, hair colour
(including hair greying), hair morphology, skin colour,
freckles, facial morphology, high myopia, obesity, and
adult height, with important repercussions in the forensic
field. Its use could be especially useful in investigative
cases where there are no potential suspects and no match
between the evidence DNA sample under investigation and
any genetic profiles entered into criminal databases. The
present review represents the current state of knowledge of
SNPs (Single Nucleotide Polymorphisms) regarding visi-
ble characteristics, including the latest research progress in

identifying new genetic markers, their most promising ap-
plications in the forensic field and the implications for po-
lice investigations. The applicability of these techniques to
concrete cases has stoked a heated debate in the literature
on the ethical implications of using these predictive tools
for visible traits.

2. Introduction

In the last few decades, genetic markers have been
widely used for forensic purposes and have revolution-
ized the field of forensic investigations, embodying what
is probably one of the most meaningful breakthroughs of
our times [1].

Numerous methods of DNA typing have been pro-
posed over time, the first being represented by a variable
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number of tandem repeats (VNTRs) as used from the mid-
1980s [2] for identity testing which were afterwards re-
placed by short tandem repeats (STRs) or microsatellite loci
due to the more advantageous characteristics of the latter
[3]. Nowadays, STRs are still the predominant forensic ge-
netic markers for identity testing and kinship analysis and
validated STR kits are readily available, and routinely em-
ployed, in most forensic laboratories around the world [4].

More recently, a third class of genetic markers has
emerged, which is represented by single nucleotide poly-
morphisms (SNPs). SNPs are point mutations in the DNA
sequence, occurring ubiquitously in coding and non-coding
regions of the whole human genome (i.e., autosomal, sex-
linked, and mitochondrial DNA) [5]. They encompass
single-base substitutions, where one nucleobase is substi-
tuted by another, and single-base insertion and/or deletion
(InDel), where one base is added or removed thus resulting
in DNA length variation [6, 7]. Most SNPs are bi-allelic
markers, which means that each locus usually has only two
possible allelic variants (for example, A and B) and conse-
quently, in the diploid human genome, there are only three
possible genotypes (AA, BB, or AB). SNPs are classified as
functional or neutral, depending on whether they influence
gene expression and biological processes [8].

SNPs possess several characteristics that make
them more valuable markers than STRs: smaller ampli-
con size (50–150 bp); higher occurrence in human genome
(approximately 1 in every 1000 bp, millions per individ-
ual, thus representing the most common human genetic
variation); lower mutation rate; and finally, an elevated
amenability to high-throughput genotyping through mul-
tiplexed sequencing [1, 5, 7, 9–12]. These features make
SNPs particularly suitable for obtaining information in
cases of aged, degraded/or low copy biological samples,
(where DNA fragments may be smaller than the required
length for STR analysis), in kinship and paternity test-
ing (especially in cases where relationships are generations
apart) and in population and evolutionary genetics research
[4, 11, 12].

There remain some disadvantages and limitations,
at least for the near future, to their routine use as primary
markers in forensic investigations in place of STR, includ-
ing their lower discrimination power (SNPs are predomi-
nantly bi-allelic, which implies that numerous loci must be
tested to yield the same discriminative power as STRs) and
the well-established utilization of STR kits and databases in
global forensic communities [1, 13].

The forensic community has currently been utiliz-
ing SNPs for different purposes. According to their appli-
cation, SNPs can be divided into four classes [1]: iden-
tity SNPs, employed for differentiating individuals from
one another, lineage SNPs, which prove information for
kinship/paternity testing and evolutionary studies, ances-
try SNPs, used to predict the DNA owner’s biogeograph-
ical background, and phenotype SNPs, associated with the

prediction of visible traits, such as skin, hair or eye colour,
height, weight, facial morphology, etc., commonly knowns
as External Visible Characteristics (EVCs). Since pheno-
typic traits are determined not only by environmental fac-
tors (including diet, exercise regimen, sunlight exposure,
stress exposure, etc.) but also by the genotype, it could be
possible to predict some physical appearance traits relying
on a DNA specimen. This inferential process is referred to
as Forensic DNA Phenotyping (FDP). The possibility of ac-
cessing and predicting phenotypic information from a DNA
sample by using a precise selection of SNPs probably repre-
sents themost promising application of SNPs in the forensic
field. SNPs can also be used to support forensic DNA anal-
ysis for the possibility of automation. In the “omic era”,
different approaches to SNP genotyping have been devel-
oped. Among them, SNaPshot® mini-sequencing method
(Applied Biosystems) has been commonly applied since it
has the advantage of not requiring additional equipment to
what is already used in forensic laboratories [10]. Other
technologies like TaqMan® hybridisation probes, hybridi-
sation microarrays and massive parallel sequencing (MPS)
have been previously described in the literature [5, 10, 14–
18]. Depending on the final purpose (e.g., sequencing of
one single gene, sequencing of the whole exome, or se-
quencing of the entire genome), some Next Generation Se-
quencing (NGS) platforms aremore suitable than others due
to their different characteristics. Despite SNPs being pre-
dominantly bi-allelic markers, given that NGS can work in
multiplex, a large number of SNPs can be studied simulta-
neously [19].

Current forensic DNA analysis is substantially
based on comparison of profiles, i.e., biological traces left
at the crime scene are analyzed and compared to that of
a known person (a tested suspect) or with genetic profiles
stored in forensic DNA databases. The new genetic tech-
nology consists of gaining information about phenotypic
traits of the wanted person from the DNA sample itself
[11–13, 19]. Its use could be especially useful in inves-
tigative cases where there are no potential suspects and no
match between the evidence DNA sample under investiga-
tion and any genetic profiles entered in criminal databases.
Through the phenotyping prediction starting from biolog-
ical samples found at the crime scene, probabilistic infor-
mation may be acquired as to the physical characteristics
of the sample donor, such as the colour of the hair, eyes
and skin, as well as on the biogeographical origin and age.
The combination of these elements, therefore, narrows the
circle of possible perpetrators and facilitates investigations.
In particular, pigmentation and ancestry markers typically
corroborate each other.

Moreover, other recent studies have developed
tools in order to provide statistical support to the weight of
information on the prediction of FDP. The VISAGE con-
sortium has recently suggested, at least for now, the use of
MLR (multinomial logistic regression) as the most appro-
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priate method for predicting appearance traits from DNA,
especially with regard to hair, eye and skin prediction [20].

The present review represents the current state of
knowledge on SNPs regarding visible characteristics, in-
cluding the latest progress in research in identifying new
genetic markers, their most promising application in the
forensic field, i.e., prediction of phenotypic traits from a
DNA sample, and its implications in police investigations.

The reviewwas made with regard to the prediction
of physical characteristics that related to forensic applica-
tions. For some traits, like pigmentation, the restriction to
the forensic field has worked well but for others, such as
myopia or body mass, for which a lot of research has like-
wise been made, an incomplete picture has emerged since
such traits have been poorly explored by forensic scientists.
A further limitation of this review is that the details of the
technical aspects have not been considered because our in-
tent was to describe the state of the art of the inference possi-
bilities of visible traits. Moreover, we have not considered
the different regulatory approaches that, for example at a
European level, are very heterogeneous in allowing or not
to use this type of prediction in judicial cases. We have con-
sidered only the current possibilities, which are still arous-
ing a scientific and sociological debate, without considering
the future prospects of forecasting other visible traits.

3. Materials and methods
This review was performed in adherence to the

Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [21].

In February 2021, a systematic literature review
of English and non-English papers regarding EVC-SNPs
was conducted by two authors (A.G. and C.P.) using a pub-
lic electronic database (Scopus). The research strategy in-
cluded the terms “SNP”, “indel”, “phenotype”, “forensic”,
“forensic genetic”, and “visible characteristic” in the fol-
lowing combinations: “SNP [and] forensic”, “indel [and]
forensic”, “SNP [and] forensic genetic”, “indel [and] foren-
sic genetic”, “SNP [and] phenotype [and] forensic”, “indel
[and] phenotype [and] forensic”, “SNP [and] visible char-
acteristic [and] forensic”, “indel [and] visible characteristic
[and] forensic”. The search terms were intentionally kept
generic in order to include all potentially interesting papers
about the topic.

A total of 1795 works were identified through
database searching. Duplicates (314 works) were removed
manually. Then, three authors (A.G., A.D. and C.P.), in-
dependently of each other, performed a first selection of
the remaining articles according to the following inclusion
criteria: (A) English language; (B) topic, i.e., only EVC-
informative SNPs and/or EVC-informative indels; and (C)
topic, i.e., only papers related to human beings. We first
screened titles for inclusion criteria A–C, then abstracts,
and only when necessary (i.e., the topic was not clear from
the title and/or abstract reading) the authors undertook a

full-text evaluation. In cases of disagreement or further
doubts, the supervisors (L.C. and P.T.) were queried. Be-
cause of their indirect and limited informative value on phe-
notype, manuscripts concerning only ancestry-informative
SNPs were not included in the review [1]. Similarly, al-
though gender was reported as a kind of EVC, it was not
included since it is usually assessed through standard STR
analysis [19, 22].

After title and abstract evaluation, 1327 and 67
manuscripts (1394 in total), respectively, were excluded
due to irrelevance. After a full text reading of the se-
lected papers, only 66 were considered eligible using cri-
teria A–C and included in the review. Additional pertinent
manuscripts (17) were identified within the bibliography of
selected papers. After external peer review, two articles
were included in full text. A total of 90 articles were exam-
ined for the review and qualitative synthesis. For each arti-
cle, the authors examined the full text and extracted the fol-
lowing data, managing them in Excel® (Microsoft® 365):
title, authors, year of publication, type of visible trait con-
sidered, polymorphism(s) (SNPs or Indels) tested for asso-
ciation with EVCs, target population, and sample size.

The PRISMA flow chart in Fig. 1 summarizes the
study screening and selection process as described above.

4. Results
So far, the following EVCs have been evaluated

for forensic DNA phenotyping: hair colour, eye colour,
skin colour (considered separately or in associations, e.g.,
eye and hair colour; eye and skin colour; eye, hair and skin
colour), hair morphology, height, weight (obesity), facial
morphology, presence of freckles, male-pattern baldness,
and myopia.

Even ancestry-informative SNPs (AIMs) have
been employed in DNA phenotyping, as exemplified in
one selected study, where facial morphology prediction was
found to be significantly associated with genetic ancestry
information [22]. However, their contribution to the over-
all predictive power of human phenotype is limited to basic,
ancestry-related information, such as light skin pigmenta-
tion in Northern Europeans or large noses and thick lips in
African populations [1].

Amongst all EVCs, pigmentation traits (i.e., skin
and/or eye and/or hair colour) have been reported as
the least genetically complex traits, accurately predictable
through analysis of only a few genes [13, 19]. In Fig. 2
we report a description of the melanin synthesis pathway,
showing formation of various melanins (e.g., phaeome-
lanin, eumelanin) and the functions of important gene prod-
ucts and modifiers. Melanin is a pigment responsible
for humans’ hair, eye and skin coloring. There are two
main types of melanin involved in pigmentation pathway,
a darker (brown/black) pigment called eumelanin and a
lighter (reddish) pigment called pheomelanin. A person’s
hair/eyes/skin colour depends both on the type and total
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Fig. 1. Preferred Reporting Items for Systemic Reviews and Meta-
Analyses (PRISMA) 2020 flow diagram.

amount of melanin. For instance, dark phenotypes (black
hair, brown/black eyes, and dark skin) are determined by
large amount of eumelanin; intermediate phenotypes (i.e.,
brown hair, hazel/green eyes, and intermediate skin colour)
are determined by moderate concentration of eumelanin;
lighter phenotypes (like blonde hair, blue eyes, and pale
skin) come down from low amount of eumelanin, while red
hair is the result of very little eumelanin and lot of pheome-
lanin. Melanogenesis is initiated by tyrosinase enzyme
which converted melanin precursor, tyrosine, to DOPA (Di-
hydrOxyPhenylAlanine) and then to DOPAquinone. Fur-
ther transformations convert DOPAquinone to the final
products, eumelanin or pheomelanin. OCA2, SLC24A5 and
SLC45A2 encode for membrane transport proteins whose
activity influenced the melanosome internal environment
in terms of ion concentrations, which in turn influence the
availability of tyrosine or the tyrosinase activity and thus,
ultimately, the amount of melanin synthetized;HERC2 con-

tains the promoter region for OCA2, affecting its expres-
sion.

Most selected papers, 55 out of 85 (64.7%), con-
cerned with pigmentation traits, are distributed as follows:
26 studies considered eye colour alone, seven studies con-
sidered skin colour only, three studies examined solely hair
colour, while 21 studies examined more than one pigmenta-
tion trait (eye and/or hair and/or skin colour). Fig. 3 shows
a diagram of the markers that make up the IrisPlex, HIris-
Plex and HIris-Plex-S systems.

Other visible characteristics were found to be
much less studied than pigmentation traits: head-hair mor-
phology (eight studies), male-pattern baldness (three stud-
ies), presence of freckles (three studies), various facial fea-
tures (eight studies, grouped together into one category
named “Facial morphology”), high myopia (two studies),
obesity (two studies), and adult height (three studies).

While less common than SNPs (meant as single-
nucleotide substitutions) in the genome sequence, in our re-
view we found that only one indel (N29insA, also denotes
as rs86inA and rs312262906) has been so far identified in
relation to visible characteristics and, more especially, to
pigmentation traits [23, 24]. Insertion-deletion polymor-
phisms have been reported to be of increasing interest in a
forensic context [7]; nevertheless, indels are frequently ob-
served in the more severe cases of pigmentation variation–
for example, albinism. Thus, they can be considered less
relevant for EVC prediction, where the primary interest lies
in the common pigmentary variation.

Table 1 (Ref. [25–75]) summarizes all the studies
considered in this review with the SNPs that were studied
and the type of predicted trait.
4.1 Eye colour

The first evidence of a possible correlation be-
tween genetic variants and eye colour dates back to the
early 2000s, when it was first suggested that the OCA2
gene was responsible for a great deal of normal eye-colour
variation [76–78]. The following year, Duffy et al. [71]
confirmed this assertion, finding a strong association be-
tween blue versus non-blue eye colour and three OCA2
SNPs (rs7495174, rs6497268, and rs11855019), with the
TGT/TGT genotype explaining the 0.905 of total light
eye colour (blue or green). A few years later, Bran-
icki et al. [72] and Andersen et al. [62] explored in
greater depth the contribution of the OCA2 gene to de-
termining human eye colour. Significant association was
found for eight newOCA2 SNPs (rs17566952, rs11638265,
AY392134, rs1800411, rs1900758, rs1800404, rs1800407,
and rs749846). Among these, the strongest association re-
sulted between rs1800407 and intermediate (green/hazel)
iris colour. Some years later, Andersen et al. [73] also iden-
tified two further important OCA2 variants (rs74653330
and rs121918166).
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Fig. 2. Melanin biosynthesis pathway. A schematic representation of eumelanin and pheomelanin synthesis is provided within melanocytes showing
some of the most important genes involved in melanogenesis regulation: α-MSH binds to MC1R (melanocortin-1-receptor), a transmembrane receptor
expressed on the melanocyte surface; this interaction leads to the activation of cAMP pathway and thereby to an increase of intracellular cAMP levels,
which in turn induces the expression of specific enzymes involved in eumelanin production, like tyrosinase (TYR), tyrosinase-related protein-1 and
protein-2 (TYRP1 and TYRP2). On the contrary, ASIP (Agouti Signaling Protein) acts like antagonist of the MC1R, blocking the binding of α -MSH
and inhibiting the MC1R-mediated signaling pathway, thus leading preferentially to pheomelanogenesis. OCA2, SLC24A5 and SLC45A2 encode for
membrane transport proteins whose activity influenced the melanosome internal environment in terms of ion concentrations, which in turn influence the
availability of tyrosine or the tyrosinase activity and thus, ultimately, the amount of melanin synthetized. HERC2 contains the promoter region for OCA2,
affecting its expression.

In order to evaluate the possible involvement of
other genes in human eye-colour variation in addition to
OCA2, Kayser et al. [59] performed GWAS (GenomeWide
Association Studies) and linkage analysis with people of
European descent. They showed that the HERC2 gene, lo-
cated in the same region of OCA2 (15q13.1), is a new im-
portant determinant of human iris colour and identified up
to 15 relevant loci in this region, among which rs916977
emerged as the most influential variant (the T allele, which
represents the ancestral state of the marker, being predic-
tive for brown iris colour, the C allele for blue iris colour),
followed by rs1667394 [59]. In the same year, Eiberg et
al. [63] identified the linkage disequilibrium (LD) of two
tightly linked loci rs12913832 and rs1129038 with good
predictive power for blue and brown eye colour. LD be-
tween alleles at two loci has been defined in many ways,
but all definitions depend on the difference between the

frequency of gametes carrying the pair of two alleles at
two loci and the product of the frequencies of these alleles
[79]. With regard to rs12913832, although located within
the HERC2 region, it is part of a regulatory element up-
stream from OCA2 exerting an inhibitory effect on OCA2
itself. The decreased expression of OCA2, particularly
within iris melanocytes, causes the blue eye-colour pheno-
type [47, 63]. Furthermore, Pośpiech et al. [24] found mul-
tiple epistatic interactions among genes affecting pigmen-
tation phenotype, particularly eye colour.

A turning point came with the development by
Walsh et al. and Liu et al. [40–42] of the first highly
sensitive multiple genotyping assay for the prediction of
blue/brown eye colour, named IrisPlex. It consists of the
six SNPs currently identified asmajor eye-colour predictors
in Europeans:rs12913832 (HERC2), rs1800407 (OCA2),
rs12896399 (SLC24A4), rs16891982 (SLC45A2/MATP),
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Fig. 3. The table displays the SNPs marker included in IrisPlex, H-IrisPlex and H-IrisPlex-S, respectively for eye, eye + hair, and eye + hair +
skin colour prediction.

rs1393350 (TYR), and rs12203592 (IRF4)—albeit two
subsequent publications did question the usefulness of
rs12203592 since they found very little or no predictive
power linked to this locus [43, 56]. The model was based
on initial genotype and phenotype data from a single Euro-
pean population (the Dutch) but its reliability for accurate
eye-colour predictionwas also demonstrated for individuals
from several countries across Europe (including Norway,
Estonia, the UK, France, Spain, Italy, and Greece), showing
extremely high predictive power (0.96 AUC—Area Under
Curve) for both blue and brown eye colour [41]. The pre-
diction accuracy for blue/brown eye colour decreased when
IrisPlex was applied to a more biogeographically diverse
sample, including individuals of Asian, African, and South
American descent [23].

Moreover, the intermediate eye colour could not
be predicted by IrisPlex with as high accuracy as with
blue and brown eyes, resulting in a higher rate of mis-
classified or unclassified predictions [40–42, 57]. Im-
proved detection of intermediate phenotype (correct clas-
sification rate of 26.1%) was observed using a differ-

ent eye-colour prediction model (Snipper5+1) elaborated
by Freire-Aradas et al. [44] and based on five IrisPlex
SNPs (rs1800407, rs12896399, rs16891982, rs1393350,
and rs12203592) plus rs1129038 counted in combination
with IrisPlex rs12913832 (HERC2 haplotype). Among
these, particularly noteworthy is the effect on green eye-
colour determination made byOCA2 rs1800407 when con-
sidered in haplotype with rs12913832 [47]. Likewise,
the interaction between rs12913832 and TYRP1 rs1408799
also allowed for a slight increase in the accuracy of green-
colour predictivity [47].

Ruiz et al. [43] confirmed the remarkable effect,
as already described in other studies, of rs12913832,
rs1129038, rs11636232, rs1289399, rs1800407,
rs16891982, and rs1393350 and proposed to add three
additional SNPs (rs1129038, rs1667394, and rs7183877
from HERC2) into the six-SNP panel of IrisPlex, aiming
at increasing its discriminative power in predicting Euro-
peans’ iris colour, especially for intermediate phenotypes
(green and hazel) [43, 45].
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Table 1. Findings reported in the results section about SNPs and correlated visible traits.
SNP-ID GENE CHR. PREDICTED PHENOTYPE

rs4845418 Unknown 1 Hair morphology [25–27]
rs12130862 Unknown 1 Hair morphology [25–27]
rs80293268 ERRFI1/SLC45A1 1 Hair morphology [25–27]
rs5781117 LYPLAL1 1 Facial morphology [28]
rs4648379 PRDM16 1 Facial morphology [28]
rs12565727 TARDBP 1 Male Pattern Baldness [29]
rs11803731 TCHH 1 Hair morphology [25–27]
rs17646946 TCHHL1 1 Hair morphology [25–27]

rs3827760 EDAR 2
Hair morphology [26]
Facial morphology [28]

rs7559271 PAX3 2 Facial morphology [28, 30]
rs974448 PAX3 2 Facial morphology [31]
rs17479393 TEX41 2 Facial morphology [31]
rs7349332 WNT10A 2 Hair morphology [25–27]
rs50663440 CACNA2D3 3 Facial morphology [28]
rs12635264 MASP1 3 Facial morphology [32]
rs1717652 MASP1 3 Facial morphology [32]
rs2977562 RAB7A/ACAD9 3 Facial morphology [31]
rs9995821 DCHS2 4 Facial morphology [31]
rs2045323 DCHS2 4 Facial morphology [31]
rs6555969 C5orf50 5 Facial morphology [31]
rs929626 EBF1 5 Male Pattern Baldness [29]
rs2074612 HBEGF 5 Facial morphology [33]
rs10502861 SLC12A2 5 Male Pattern Baldness [29]

rs26722 SLC45A2 5
Hair colour [34]

Skin colour [24, 34–36]
rs28777 SLC45A2 5 Hair colour [37, 38]
rs13289 SLC45A2 5 Skin colour [39]

rs16891982 SLC45A2/MATP 5
Eye colour [40–45]
Hair colour [34, 46]

Skin colour [24, 34–36, 39]
rs4959270 EXOC2 6 Hair colour [37]

rs12203592 IRF4 6
Eye colour [40, 42, 42, 47]

Freckles [75]
rs227833 SUPT3H 6 Facial morphology [28]
rs1852985 SUPT3H/RUNX2 6 Facial morphology [31]
rs756853 HDAC9 7 Male Pattern Baldness [29]
rs987525 Unknown 8 Facial morphology [48]
rs10504499 EYA1 8 Facial morphology [31]
rs11782517 MSRA 8 Facial morphology [31]
rs10756819 BNC2 9 Skin colour [49]
rs2153271 BNC2 9 Frekles [50]

rs1408799 TYRP1 9
Eye colour [24, 47]
Skin colour [39]

rs683 TYRP1 9 Hair colour [37]
rs1194708 DKK1 10 Facial morphology [28]
rs2219783 LGR4 11 Hair morphology [25–27]
rs644242 PAX6 11 High myopia [51]
rs35264875 TPCN2 11 Hair colour [38]
rs3829241 TPCN2 11 Skin colour [39]
rs35264875 TPCN2 11 Hair colour [38]
rs1393350 TYR 11 Eye colour [40–43, 45, 47, 52]

rs1042602 TYR 11
Hair colour [37]

Skin colour [24, 35, 36, 53, 54]
rs2277404 ABCC9 12 Facial morphology [32]
rs7316271 ABCC9 12 Facial morphology [32]
rs12821256 KITLG 12 Hair colour [37, 38]
rs10777129 KITLG 12 Skin colour [39]
rs731223 VDR 12 Hair colour [24]
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Table 1. Continued.
SNP-ID GENE CHR. PREDICTED PHENOTYPE

rs7161418 DICER1 14 Facial morphology [31]
rs2224309 GSC 14 Facial morphology [31]
rs8004825 MIR495 14 High myopia [55]
rs12896399 SLC24A4 14 Eye colour [40, 42, 42, 44, 52]
rs2402130 SLC24A4 14 Hair colour [37, 39]
rs17128291 SLC24A4 14 Skin colour [49]
rs1289399 SLC24A4 14 Eye colour [43–45, 56, 57]
rs8041414 CEP152 15 Skin colour [58]
rs12913316 CTXN2 15 Skin colour [58]
rs11637235 DUT 15 Skin colour [58]
rs916977 HERC2 15 Eye colour [52, 59–61]

rs1667394 HERC2 15
Eye colour [43–45, 56, 57, 59]

Skin colour [49]

rs12913832 HERC2 15
Eye colour [40, 42, 42, 44, 46, 47, 52, 61–67]

Hair colour [38, 46]
Skin colour [49, 68]

rs1129038 HERC2 15
Eye colour [42–47, 52, 62–67]
Hair colour [38] Skin colour [49]

rs11636232 HERC2 15 Eye colour [43–45, 56, 57]
rs7183877 HERC2 15 Eye colour [43–45, 56, 57, 69]
rs7170852 HERC2 15 Eye colour [61]
rs12931267 HERC2 15 Hair colour [38]
rs1636232 HERC2 15 Skin colour [70]
rs1133496 HERC2 15 Skin colour [70]
rs2238289 HERC2 15 Skin colour [49, 70]
rs6497292 HERC2 15 Skin colour [49]
rs11070627 MYEF2 15 Skin colour [58]
rs1258763 near GREM1 15 Facial morphology [48]
rs7495174 OCA2 15 Eye colour [38, 61, 71]
rs6497268 OCA2 15 Eye colour [71]
rs11855019 OCA2 15 Eye colour [71]
rs17566952 OCA2 15 Eye colour [62, 72]
rs11638265 OCA2 15 Eye colour [62, 72]
rs1800411 OCA2 15 Eye colour [62, 72]
rs1900758 OCA2 15 Eye colour [62, 72]

rs1800407 OCA2 15
Eye colour [40–43, 46, 47, 52, 62, 64–67, 72]

Skin colour [36, 49, 66, 70]
rs749846 OCA2 15 Eye colour [62, 72]
rs74653330 OCA2 15 Eye colour [73]
rs121918166 OCA2 15 Eye colour [73]

rs1800416 OCA2 15
Eye colour [24, 60, 70]
Skin colour [36, 66, 70]

rs4778138 OCA2 15
Eye colour [52] Hair colour [38]

Skin colour [36, 66, 70]

rs1800404 OCA2 15
Eye colour [62, 72]
Skin colour [49, 70]

rs7170989 OCA2 15 Skin colour [36, 66, 70]
rs1375164 OCA2 15 Skin colour [36, 39, 58, 66, 70]
rs1448484 OCA2 15 Skin colour [39]
rs1800414 OCA2 15 Skin colour [49]
rs12441727 OCA2 15 Skin colour [49]
rs1470608 OCA2 15 Skin colour [49]
rs1545397 OCA2 15 Skin colour [49]
rs6059655 RALY 15 Skin colour [49]

rs1426654 SLC24A5 15
Hair colour [46]

Skin colour [24, 35, 36, 39, 53, 54, 58]
rs2924566 SLC24A5 15 Skin colour [58]
rs4775730 SLC24A5 15 Skin colour [58]
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Table 1. Continued.
SNP-ID GENE CHR. PREDICTED PHENOTYPE

rs3114908 ANKRD11 16 Skin colour [49]
rs8051733 DEF8 16 Skin colour [49]
rs1805007 MC1R 16 Hair colour [37, 46]

rs11547464 MC1R 16
Hair colour [37, 38]
Skin colour [53, 74]

rs885479 MC1R 16
Hair colour [37]
Freckles [75]

rs1805005 MC1R 16 Hair colour [37]

rs1805006 MC1R 16
Hair colour [37, 38]
Skin colour [53, 74]

rs1805008 MC1R 16
Hair colour [37, 38]

Skin colour [36, 53, 57, 70, 74]

rs1805009 MC1R 16
Hair colour [38]

Skin colour [53, 74]
rs201326893 MC1R 16 Skin colour [53, 74]

rs2228479 MC1R 16
Hair colour [37]
Freckles [75]

rs1110400 MC1R 16 Hair colour [37]
N29insA (or rs86inA or rs312262906) MC1R 16 Hair colour [37]
rs3212345 MC1R 16 Skin colour [53, 74]
rs228479 MC1R 16 Skin colour [49]
rs1126809 MC1R 16 Skin colour [49]
rs3212355 MC1R 16 Skin colour [49]
rs33832559 MC1R 16 Frekles [75]
rs228478 MC1R 16 Frekles [75]
rs11150606 PRSS53 16 Hair morphology [25–27]
rs1268789 FRAS1 17 Hair morphology [25–27]
rs80067372 TNFSF12 17 Facial morphology [28]
rs12976445 MIR495 19 High myopia [55]
rs61374441 Unknown 20 Male Pattern Baldness [29]
rs19980761 Unknown 20 Male Pattern Baldness [29]
rs201571 Unknown 20 Male Pattern Baldness [29]
rs6047844 Unknown 20 Male Pattern Baldness [29]
rs913063 Unknown 20 Male Pattern Baldness [29]
rs1160312 Unknown 20 Male Pattern Baldness [29]
rs6113491 Unknown 20 Male Pattern Baldness [29]
rs2180439 Unknown 20 Male Pattern Baldness [29]
rs2378249 ASIP/PIGU 20 Hair colour [37, 49]
rs6119471 ASIP/PIGU 20 Skin colour [49]
rs2206437 DHX35 20 Facial morphology [31]
rs310642 PTK6 20 Hair morphology [25–27]
rs369378152 GPR50 X Hair colour [34]
rs4827379 AR Xq12 Male Pattern Baldness [29]
rs1385699 AR Xq12 Male Pattern Baldness [29]
rs1352015 AR Xq12 Male Pattern Baldness [29]
rs1041668 AR Xq12 Male Pattern Baldness [29]
rs1397631 AR Xq12 Male Pattern Baldness [29]
rs5919324 AR Xq12 Male Pattern Baldness [29]
rs6625150 AR Xq12 Male Pattern Baldness [29]
rs12558842 AR Xq12 Male Pattern Baldness [29]
rs6625163 AR Xq12 Male Pattern Baldness [29]
rs2497938 AR Xq12 Male Pattern Baldness [29]
rs2497911 AR Xq12 Male Pattern Baldness [29]
rs2497935 AR Xq12 Male Pattern Baldness [29]
rs962458 AR Xq12 Male Pattern Baldness [29]
rs6152 AR Xq12 Male Pattern Baldness [29]
rs12396249 AR Xq12 Male Pattern Baldness [29]
rs4827545 AR Xq12 Male Pattern Baldness [29]
rs7885198 AR Xq12 Male Pattern Baldness [29]
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Among all the SNPs discovered, HERC2
rs12913832 was found to be the most strongly associated
with iris colour, although HERC2 rs1129038 and OCA2
rs1800407 have been reported to be of predominant
importance as well [42, 46, 47, 52, 62, 64–67]. Indeed,
many studies have observed that most eye-colour variation
(ranging from 68.8% to 74.8% depending on the study)
could be explained by rs12913832, while additional SNPs,
although found to be associated with eye colour, allowed
for only a slight improvement in predictive ability (75.6–
76%) [46, 62]. Similarly, the five additional SNPs within
the IrisPlex also turned out to produce a small predictive
value to that determined by rs12913832 [42].

However, the selection of the best SNPs for EVC
determination seems to be highly population-dependent,
suggesting that panels for eye-colour prediction should be
adjusted for different geographical regions: for instance, a
relevant effect on eye colour was observed for rs1408799 in
the Polish population, and for rs916977 in the Czech pop-
ulation, while rs1800416 was found to be significantly as-
sociated with eye colour only in the Brazilian population
[24, 60, 70].

Although developed based on a European
database, IrisPlex’s usability has also been tested in
individuals outside of Europe. For example, Rahat et
al. [80] showed the reliability of IrisPlex for brown and
blue colour prediction in Pakistan’s population, but also
pointed out the need for the inclusion of more SNPs in
the model to increase prediction accuracy especially for
intermediate colour. Al-Rashedi et al. [81] came to similar
conclusions with the Iraqi population. Some other studies
have demonstrated instead the existence of a significant
bias linked to the geographical origins of the population
to which it was applied, especially in cases of admixed
populations or intermediate eye colour [56, 57, 82]. Yun
et al. [56] observed a higher proportion of uncertain
prediction, besides some inconsistences, when IrisPlex
was applied in the Eurasian population, which presents an
admixed genetic structure (European and Asian), except
for East Asian populations (such as Koreans and Chinese),
in which predictions were always consistent for brown
eye colour. Bulbul et al. [57] also observed a worse per-
formance of IrisPlex on the Turkish population compared
with European results. Dembinski et al. [82] obtained only
a moderate predictive power with the IrisPlex essay in a
North American sample (US population), which is highly
admixed compared to the European population.

To overcome this limit, further models were later
developed for prediction of eye colour in other populations.
Allwood et al. [52] developed a predictive model for New
Zealanders. They first evaluated the effect of preselected
SNPs upon eye-colour phenotype in a collection of dichoto-
mous tree models (i.e., blue vs. non-blue, brown vs. non-
brown, and intermediate vs. non-intermediate) and, finally,
in a multiple-response tree considering all eye colours, i.e.,

blue vs. brown vs. intermediate. The SNPs chosen for
use in the different models were: rs1129038 (HERC2),
rs1393350 (TYR), and rs12896399 (SLC24A4) for blue
vs. non-blue; rs1129038, rs1800407 (OCA2), rs12913832
(HERC2), and rs1393350 for brown vs. non-brown;
rs1800407, rs916977, rs1393350, and rs4778138 (OCA2)
for intermediate vs. non-intermediate; and rs1129038,
rs1800407, and rs1393350 for the final model. It is
worth noting that part of the SNPs employed in the bi-
nary response models (except for rs1129038, rs12896399,
rs916977, rs4778138), and all SNPs composing the multi-
ple response model, are also included in the IrisPlex sys-
tem. Both models performed well though with differences
for each specific eye-colour group, (i.e., considerably better
for brown and blue than for intermediate eye colour). The
“all-eye-colour” model predicted blue colour with an accu-
racy level of 89%, brown colour at 94%, and intermediate
eye colour at only 46%, with an overall accuracy of 79%
(obviously conditioned by the latter rate). As for IrisPlex,
and in similar proportion, most prediction errors were gen-
erated by intermediate eye colour. Similarly, Alghamdi et
al. [61] proposed an eye-colour prediction model for Saudi
individuals containing five SNPs (rs12913832, rs7170852,
rs7183877, rs7495174, and rs916977) that showed a high
accuracy for both brown and intermediate eye colours (no
participant was categorized as blue iris). Gettings et al. [69]
developed a 50-SNP assay to predict eye phenotype among
European-Americans, which was able to accurately predict
eye colour in 61% of individuals tested.

Another discrepancy factor in eye-colour predic-
tion of the Irisplex was seen to be gender. Martinez-
Cadenas et al. [83] noticed that, given a specific IrisPlex
genetic profile, males had lighter eye colours than pre-
dicted by genotype, while females tended to have darker
eye colours, suggesting the possible existence of an uniden-
tified gender-related component contributing to human eye-
colour variation.

It is worth noting that, although developed on a
European (Dutch) database, IrisPlex was also found to be a
little less predictive in some European subpopulations (Ital-
ians, Spanish, and Portuguese) than in others (Germans and
Dutch) [45, 84, 85]. It has been hypothesized that this re-
sult may reflect a greater degree of genomic admixing in the
Southern European populations, just as reported by Dem-
binski et al. [82] in the US population. Another study high-
lighted that, in contrast to Northern European populations,
not all six IrisPlex SNPs had significant association with
eye colours in individuals from Mediterranean Europe, and
this could be traced back to a lower frequency of blue iris
colour in these populations, classically presenting a darker
pigmentation phenotype [83].

4.2 Hair colour

Human hair colour depends on the combined
amount of two types of melanin, eumelanin (dark pig-
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ment) and pheomelanin (light pigment). The first stud-
ies on hair-colour predictability were based on the search
for genetic variations in people with a far-away biogeo-
graphical origin (individuals of Asian, African, Australian,
and Caucasian descent), or among individuals from the
same geographic region but presenting multi-coloured phe-
notypes (e.g., the Brazilian population). Among genes
showing significant association with pigmentation vari-
ation, polymorphisms in ASIP, MATP (then renamed
SLC45A2), SLC24A5, and MC1R—all implicated in the
melanin biosynthesis—showed significant association with
hair colour [34]. For instance, specific allelic polymor-
phisms in SLC45A2 rs16891982, SLC452 rs26722 and
ASIP rs369378152 were found at a higher frequency in
non-Caucasian dark-haired populations, such as African-
Americans and Asians, as well as in dark-haired people of
Caucasian descent [34]. Moreover, Pośpiech et al. [24]
identified epistatic interactions betweenMC1R variants and
both theHERC2 gene and rs731223 in VDR (Vitamin DRe-
ceptor), having an advantageous impact on red versus non-
red hair colour prediction.

The publication of Valenzuela et al. [46] repre-
sented an important step forward, since they indicated four
SNPs, sited in as many genes, as major genetic contributors
to hair pigmentation: rs1426654 (SLC24A5), rs16891982
(SLC45A2), rs12913832 (HERC2), and rs1805007
(MC1R). Specifically, two of them (SLC24A5 rs1426654
and SLC45A2 rs16891982) showed the strongest asso-
ciation with both total hair-melanin amount and eume-
lanin/pheomelanin ratio, while HERC2 rs12913832 turned
out to be the third most significant contributor to total hair
melanin and MC1R rs1805007 the third major contributor
to eumelanin/pheomelanin ratio [46]. However, as for
eye colour, some studies suggested that the strongest
association with pigmentation traits, including hair, was
with SNPs from the OCA2-HERC2 region [70, 73, 86].

New acquaintances were used to integrate IrisPlex
with the 22 most predictive SNPs currently identified for
hair-colour determination, creating a system for simul-
taneous eye and hair-colour prediction named HIrisPlex.
Among the 22 SNPs involved in hair-colour determination,
four variants were already included in IrisPlex (being pre-
dictive for eye colour as well), while 18 were of new intro-
duction, for a total of 24 SNPs (including one InDel) mak-
ing up the model: SLC45A2 rs28777, KITLG rs12821256,
EXOC2 rs4959270, TYR rs1042602, SLC24A4 rs2402130,
ASIP/PIGU rs2378249, and TYRP1 rs683, 10 SNPs from
MC1R (rs11547464, rs885479, rs1805008, rs1805005,
rs1805006, rs1805007, and rs1805009, Y152OCH (later
renamed as rs201326893), rs2228479 and rs1110400),
and one InDel N29insA (also denotes as rs86inA and
rs312262906). As its forerunner, HIrisPlex was initially
developed using DNA samples collected from 1551 Euro-
pean subjects living in Poland (n = 1093), the Republic of
Ireland (n = 339) and Greece (n = 119). The hair-colour

prediction component of the HIrisPlex tool applied to in-
dividuals from different parts of Europe yielded prediction
accuracies of 69.5% for blond hair colour, 78.5% for brown,
80% for red and 87.5% for black independently from bio-
geographic ancestry. To verify its use outside of Europe,
Walsh et al. [37] performed HIrisPlex analysis on world-
wide DNA samples from the HGDP-CEPH panel relative
to 952 individuals from 51 populations. Although with mi-
nor accuracy, it was demonstrated to provide satisfactory
eye/hair colour prediction in non-European individuals as
well [87]. Likewise, it was revealed to be a suitable and
sufficiently robust predictive system for human skeletal re-
mains [88].

Söchtig et al. [38] indicated a subset of 12
SNPs as the best hair-colour prediction markers (OCA2
rs7495174 and rs4778138; TPCN2 rs35264875; HERC2
rs1129038, rs12931267, rs12913832, and rs28777; MC1R-
R rs11547464, rs1805006, rs1805007, rs1805008, and
rs1805009), only seven of which were also included in
HIrisPlex. Moreover, they indicated HERC2 rs1129038 as
the strongest predictor for blond hair, HERC2 rs12913832
the strongest predictor for black hair, while TPCN2
rs35264875 and HERC2 rs12931267 as key markers for
brown hair colour. However, the predictive performance of
the 12 SNPs set in the European population remained lower
than with HIrisPlex [38].

In an effort to explain the higher rate of inaccu-
racy observed in HIrisPlex’s blonde-hair prediction, Kukla-
Bartoszek et al. [89] focused on age-dependent hair-colour
darkening, i.e., some individuals with blonde hair colour
in early childhood may experience a hair-colour darkening
during advanced childhood or adolescence. They observed
that the number of incorrect blond hair-colour predictions
given by HIrisPlex was significantly higher in adult indi-
viduals with brown hair who were blond in early child-
hood (2–3 years old), compared to those who had always
had brown hair (only one third of individuals who experi-
enced hair-colour darkening from childhood to adulthood
were correctly predicted by HIrisPlex) [89]. Still in regard
to age-related hair-colour changes, Pośpiech et al. [90] in-
vestigated the genetics underlying the hair-greying process
but concluded that most predictive power was given by age
alone, while genetic variants had only a small impact on
hair-greying variation (<10%). However, their age- and
sex-based model made up of 13 selected SNPs attains a
fairly accurate prediction rate for greying vs. non-greying,
with AUC equalled 0.873 [90].

Finally, with regard to red-hair-colour prediction,
Keating et al. [23] observed that by removing four MC1R
SNPs from the 22 HIrisPlex DNA variants, there was
more red hair missed (nearly 60% compared to the 14%
of HIrisPlex). This result confirmed the important role of
theMC1R gene in red hair determination, as previously re-
ported [23, 66].
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4.3 Skin colour

As for other pigmentation traits previously ar-
gued, the first genes to be associated with skin colour
were those encoding for proteins which are involved in
the melanin production within melanocytes, e.g., MC1R
(encoding for a membrane receptor whose activation
by α-MSH (α-Melanocyte-Stimulating Hormone) stim-
ulates eumelanin while inhibiting pheomelanin produc-
tion), SLC45A2/MATP (which regulates the introduction
of substrates for melanin production in the melanocytes
and whose mutation causes albinism), ASIP (which in-
hibitsMC1R activation acting as an antagonist of α-MSH),
SLC24A5, and OCA2 [35, 36, 91]. The first studies aim-
ing at identifying DNA variants responsible for skin-colour
variation were based on sample populations of varying an-
cestry/distant biogeographical origins (e.g., Africans ver-
sus Northern Europeans), thus characterized by clear differ-
ences in skin pigmentation and, hypothetically, underlying
genetic differences [36]. As might be expected, some of
these pigmentation-related SNPs were also observed to be
ancestry-informative (AIMs) [35, 36, 92]. It is also worth
noting that in the study by Castel et al. [93], that consid-
ered 14 autosomal SNPs grouping participants into four dif-
ferent phenotypes according to their declared hair, eye and
skin colour, 30% of Type IV participants were incorrectly
assigned to Type II, possibly due to overlap in dark hair
and eye colour between these phenotypes. The authors con-
cluded that this result indicated that the autosomal SNPs se-
lected may have stronger affiliations with these traits rather
than with skin colour [93].

Significant associations with skin colour were
found for MC1R gene variants, including rs1805006,
rs1805007, rs1805008, rs1805009, rs11547464,
rs201326893, N29insA (InDel), and rs3212345. It
has been hypothesized that rs3212345: C>T is associated
with light skin, red hair, and poor tanning ability, while
the rs3212346: G>A is associated with dark skin, black
hair, and strong tanning ability [53, 74]. In the HERC2
gene, significant loci are rs1636232, rs1133496, and
rs2238289, with the TCT haplotype showing association
with light skin colour (as well as eye and hair colour),
whereas the CTC haplotype was correlated with dark traits
[70]. Similarly, the CGG haplotype resulting from OCA2
rs1800416, rs1800407, and rs1800404 has proved to be a
good predictor for dark features; other OCA2 loci showing
association with skin type are rs7170989, rs4778138,
rs1375164, rs1805007, and rs1805008 [36, 66, 70].
Furthermore, haplotype results are not always in line with
all respective allelic associations, but findings suggest that
haplotype analysis, rather than single SNPs, provides a
more accurate prediction [70]. Moreover, rs16891982 and
rs26722 within SLC45A2 have been linked with dark skin
in the Caucasian population [24, 34–36]. Other significant
associations were found for rs1426654 in SLC24A5 (which
plays a key role in light-skin determination in people of

European and South Asian descent) and rs1042602 in TYR
[24, 35, 36, 53, 54].

Maroñas et al. [39] described the 10 best pre-
dictive SNPs linked to skin colour in European and
non-European individuals, among which are: SLC45A2
rs16891982 and SLC24A5 rs1426654 (the two most impor-
tant markers, the former for intermediate, the latter for black
and white skin colour); ASIP rs60580017 (the secondmajor
important marker for classifying black skin and fourth for
classifying intermediate skin); TYRP1 rs1408799 (for dis-
tinguishing intermediate skin); OCA2 rs1448484 (impor-
tant contributor to black versus white); SLC45A2 rs13289
(olive skin colour in Europeans); KILTG rs10777129,
TPCN2 rs3829241, and SLC24A4 rs2402130 (not previ-
ously described). Remarkably, the first two SNPs described
above account formost of the classification success (respec-
tively, 77.6% for intermediate, 87.6% for black, and 95.7%
for white), the remaining eight SNPs enhancing classifica-
tion success by only a few percentage points (2–3%) each.

However, as happened for eye colour, bio-
geographical divergences were observed here too: in
the Indian population, in contrast to Maroñas’ results,
the nine major contributors to skin pigmentation (over-
all explaining the 31% variance) were found to be
OCA2 rs1800404 and rs1375164, SLC24A5 rs2924566,
rs4775730, rs1426654, MYEF2 rs11070627, CTXN2
rs12913316, DUT rs11637235, CEP152 rs8041414 [39,
58]. In the Polish population, HERC2 rs12913832 seemed
to be the strongest variant for skin phenotype [68].

In the footsteps of HIrisPlex, a combined tool
for simultaneous prediction of eye, hair, and skin colour
named HIrisPlex-S was introduced, where skin colour pre-
diction was based on a set of 36 SNPs (of which 19 had
also been included in the previous model, plus 17 novel
markers): SLC24A5 rs1426654, IRF4 rs12203592, MC1R
rs1805007, rs1805008, rs11547464, rs885479, rs228479,
rs1805006, rs1110400 and rs3212355, OCA2 rs1800414,
rs1800407, rs12441727, rs1470608, and rs1545397,
SLC45A2 rs16891982 and rs28777, HERC2 rs1667394,
rs2238289, rs1129038, rs12913832, and rs6497292, TYR
rs1042602, rs1126809 and rs1393350, RALY rs6059655,
DEF8 rs8051733, PIGU rs2378249, ASIP rs6119471,
SLC24A4 rs2402130, rs17128291, rs12896399, TYRP1
rs683, KITLG rs12821256, ANKRD11 rs3114908, and
BNC2 rs10756819. The model has proved capable of skin-
colour prediction on a global scale with prediction accura-
cies of 0.74 for very pale, 0.72 for pale, 0.73 for interme-
diate, 0.87 for dark, and 0.97 for dark black [49]. More
recently, another tool named VISAGE BT A&A (PSeq) for
contemporary eye, hair, and skin-colour prediction was de-
veloped by Palencia-Madrid et al. [16], consisting of 41
phenotype SNPs plus 115 markers for biogeographical an-
cestry inference (three overlapping with the EVCs’ SNP
set) for a total of 153 markers.
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4.4 Freckles

Freckles, including both lentigines and ephelides,
consist of brown or reddish spots of the skin that can
show up on different body areas (face, neck, arms, shoul-
ders, back, and legs) predominantly in individuals with fair
skin and light hair (therefore, people of European descent).
Their presence, especially on exposed areas such as the
face, represents a particular, and easily visible, phenotypic
characteristic. Although different studies, as seen above,
have focused on skin pigmentation, only four of them have
investigated freckles as a separate trait.

Cao et al. [75] investigated the associa-
tion between genetic variation on melanocortin-1-receptor
(MC1R) gene and the presence of freckles in 225 Chinese
subjects. Although MC1R was indicated as a major ge-
netic determinant of freckle phenotype, no statistical dif-
ference was observed in individuals with freckles compared
to controls, at least for the four SNPs tested (rs33832559,
rs2228478, rs2228479, rs885479).

Conversely, Zaorska et al. [68] demonstrated a
strong association between freckling and a different genetic
locus, rs12203592 in IRF4, in 222 Polish individuals. No
association was observed with MC1R gene (rs1805007) in
this case either.

Based on genetic predictors previously correlated
with human pigmentation, Kukla-Bartoszek et al. [94] de-
veloped a predictive model for freckle presence, divided
into three categories, non-, medium-, and heavily-freckled,
and obtained a moderate accuracy (respectively, AUC =
0.75, 0.66 and 0.79).

The model proposed by Hernando et al. [50]
in 2018 for freckle prediction considered five genetic
determinants: R variants of the MC1R gene (rs1805006,
rs11547464, rs1805007, rs1110400, rs1805008 and
rs1805009, defined as “R” alleles for their strong associ-
ation with the red hair colour phenotype in population),
IRF4 rs12203592, r variants of theMC1R gene (rs1805005,
rs2228479 and rs885479, defined as “r” alleles for their
lower association with the red hair colour phenotype),
ASIP rs4911442 and BNC2 rs2153271). It leads to a
cross-validated prediction accuracy of up to 74.13% [50].

4.5 Hair morphology

On the sidelines of studies focused on the pre-
diction of hair colour, different authors investigated scalp
hair morphology, which is known to be heritable, in terms
of shape and degree of the curl [25–27]. The first study
evaluated the predictive capacity of six SNPs (rs17646946,
rs11803731, rs4845418, rs12130862, rs1268789, and
rs7349332) in 670 Europeans, identifying three of them
(rs11803731) as the most informative. Among these,
rs11803731 on TCHH (gene of the trichohyalin, a struc-
tural protein of the hair follicle) showed the strongest
effect on hair morphology, particularly on straight hair
(and, to a lesser degree, also on wavy and curly hair).

Weaker correlation with straight hair was also found for
rs7349332 (WNT10A) and rs1268789 (FRAS1). Together,
these three SNPs explained about 8% of total hair-shape
variability, with the highest predictive ability for the (rare)
TTGGGG genotype (present in only 4.5% of individuals,
giving >80% probability of straight hair) [25]. In their
second study, EDAR (ectodysplasin A receptor) rs3827760
was evaluated as the best predictor of straight hair in
non-Europeans (East Asians), also with a lower effect
on curly and wavy hair and confirmed a moderate effect
of TCCH on non-Europeans as well. Moreover, further
SNPs were found to be related to hair shape in both Eu-
ropean and non-European individuals (e.g., rs1268789 in
FRAS1, rs80293268 in ERRFI1/SLC45A1, and rs310642
in PTK6), and in non-Europeans only (e.g., rs2219783 in
GR4 and rs11150606 in PRSS53). Finally, they developed
a new model for hair-shape prediction (considering pheno-
type straight vs. non-straight), based on 32 SNPs, which
achieves a better prediction accuracy than previous models,
although with a significant difference between Europeans
(AUC = 0.66) and non-Europeans (AUC = 0.789) [26]. In
this regard, it is noted than people of European descent are
characterized by higher variability in hair morphology than
other ethnicities such as Asians (prevalence of straight hair)
and Africans (prevalence of curly hair). Among other genes
reported in the literature as being involved in hair morphol-
ogy, there are GATA3, OFCC1, LCE3E, PEX14, PADI3,
TGFA, LGR4, HOXC13, and KRTAP [95–100].

4.6 Male pattern baldness

Male pattern baldness (MPB), also named andro-
genetic alopecia (AGA), is a common form of hair loss in
adult men, characterized by a receding hairline and/or a hair
loss on the top or front of the head, thus determining a sig-
nificant alteration in a person’s physical appearance. This
condition is affected by both male sex hormones (andro-
gens) and genetic predisposition, hence the name androge-
netic.

Marcińska et al. [29] confirmed 29 SNPs’ role
in MBP determination in European people of different
ages: rs12565727 (chr1), rs929626 in EBF1, rs756853
in HDAC9, 8 SNPs on chromosome 20 (rs61374441,
rs19980761, rs201571, rs6047844, rs913063, rs1160312,
rs6113491, and rs2180439), rs10502861 in SLC12A2,
and 17 SNPs on Xq12 (rs4827379, rs1385699,
rs1352015 rs1041668, rs1397631, rs5919324, rs6625150,
rs12558842, rs6625163, rs2497938, rs2497911,
rs2497935, rs962458, rs6152, rs12396249, rs4827545,
and rs7885198). Among them, 2 SNPs, rs5919324 near
AR/EDAR2 genes (chrX) and rs1998076 (chr20), showed
the strongest association, followed by three other SNPs:
rs929626 in EBF1, rs12565727 in TARDBP and rs756853
in HDAC9.

On this basis, they created a predictive model for
MPB made up of 20 SNPs, which showed higher speci-
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ficity (90%) but lower sensitivity (67.7%) in the popula-
tion of men over 50 years old as compared to men under 50
years old (sensitivity of 87.1% and specificity od 42.4%),
and a better predictive power for early-onset MBP (AUC =
0.761) rather than late-onset MPB (AUC = 0.657) [29]. Li
and collaborators [101] conduct a large-scale meta-analysis
of seven genome-wide association studies for early-onset
AGA in 12,806 individuals of European ancestry demon-
strating unexpected association between early-onset AGA
Parkinson’s disease, and decreased fertility.

Liu et al. [102] built another predictive model in-
cluding 14 SNPs and achieved a similar accuracy value for
predicting early-onset MPB (AUC = 0.74). However, in
2017, Hagenaars et al. [103] studied genetic variants in
a cohort of 52,000 English men, finding over 250 genetic
loci to be associated with severe hair loss, and developed a
prediction algorithm for identifying those at greatest risk of
hair loss (AUC = 0.78).

4.7 Facial morphology

Facial morphology is probably the most dis-
cernible physical trait, whose accurate prediction would
have highly relevant implications in forensic applications.
Nevertheless, given that it is affected by a large number of
genes, most of which are still unknown, it remains a daunt-
ing challenge to predict an individual’s facial appearance.
Moreover, although a strong genetic effect, many other fac-
tors, such as age, sex, and environment, may play a relevant
role in its determination.

Given its extreme complexity and variability, all
studies that have tried to predict facial morphology from
genetic information have broken down the human face
into basic bi-dimensional phenotypes, each consisting of a
Euclidean distance (e.g., eye distance, nose width, facial
height) between anatomical landmarks located on the fa-
cial surface (such as palpebral commissures, alae nasi, oral
commissures, ear lobules, etc.). In this way, each facial fea-
ture could be considered separately from other facial traits
and analysed in an easier way.

Boehringer et al. [48] investigated whether ge-
netic loci involved in the pathogenesis of cleft lip and cleft
palate (a birth defect determining a pathologic facial trait)
were also correlated to variation in normal facial morphol-
ogy, specifically in nose width and/or bizygomatic distance,
studying the effect of 11 SNPs in 3026 European individu-
als (from Germany and the Netherlands). They found a sta-
tistically significant association between rs1258763 (near
the GREM1 gene) and nose width (but only in the German
cohort, and stronger in males than females), and between
rs987525 and bizygomatic distance (but only in the Dutch
cohort). These markers were able to predict, respectively,
ca. 2% of nose width variation (rs1258763) and 0.57% of
bizygomatic distance variation (rs987525) [48].

In 2014, Paternoster et al. [30] identified an as-
sociation between rs7559271, which is an intron of PAX3,

and nasion position in a population of adolescents. Further-
more, common variants in this gene are also associated with
prominence and vertical position of the nasion [30].

Claes et al. [104] investigated the effect of 24
SNPs showing a significant effect on normal-range facial
morphology, spread over 20 genes: POLR1D, CTNND2,
SEMA3E, SLC35D1, FGFR1,WNT3, LRP6, SATB2, EVC2,
RAI1, ADAMTS2, ASPH,DNMT3B,RELN,UFD1L,ROR2,
FGFR2, FBN1, GDF5, and COL11A1. They first recon-
structed a ‘base-face’ using sex and ancestry information,
both estimated from the same DNA sample through anal-
ysis of, respectively, amelogenin and AIMs. Then, they
overlapped the effects of the 24 SNPs onto the ‘base-face’ to
obtain the final predictive model. Although facial morphol-
ogy turned out to be mainly affected by sex and ancestry,
the SNPs’ effect could significantly increase the distinctive-
ness of facial prediction [22, 104].

Jin et al. [32] investigated the genetic asso-
ciation between four SNPs selected from facial-shape-
associated genes (rs2277404 and rs7316271 on ABCC9,
rs12635264 and rs1717652 on MASP1) and eyelid mor-
phology (single vs. double eyelid) in a cohort of 96 Chi-
nese individuals. Only one SNP, rs2277404 in ABCC9,
demonstrated significant association with difference in the
Chinese-eyelid phenotype [32]. Shaffer et al. [105] demon-
strated that MAFB, PAX9, MIPOL1, ALX3, HDAC8, and
PAX1 play roles in craniofacial development or in syn-
dromes affecting the face. Li et al. [28] tested the ef-
fect of 125 facial-shape-associated SNPs on facial fea-
tures in a European-Asian admixed population of 612 in-
dividuals. Eight SNPs showed a significant association
with one or more facial traits (EDAR rs3827760, LY-
PLAL1 rs5781117, PRDM16 rs4648379, PAX3 rs7559271,
DKK1 rs1194708, TNFSF12 rs80067372, CACNA2D3
rs56063440, and SUPT3H rs227833) and explained 6.47%
of the facial variation, adjusted for sex, age, and BMI.
For example, rs3827760 on EDAR (a gene involved in
the development of ectodermal-derived tissues, includ-
ing skin) showed an association with incisor-teeth shovel-
ling, earlobe size and attachment, ear protrusion, and ear-
helix rolling. All of the eight SNPs had a different al-
lele frequency between Europeans and Asians, and four of
them (rs4648379, rs3827760, rs7559271 and rs1194708)
showed an inverse allele frequency in the two groups [28].
Li L. et al. [33] focused on two specific facial traits: the
epicanthal fold (a skin fold covering the inner angle of the
eye, which is typical of people of Asian descent but can also
be present with lower frequency in other populations) and
palpebral fissure height andwidth. They observed, in a Chi-
nese cohort, a significant association between rs2074612
and palpebral fissure appearance, while no correlation was
found for epicanthal fold [33].

Fagertun et al. [106] evaluated the genetic asso-
ciation between facial traits in an Icelandic population of
1266 individuals and a large number of SNPs selected from
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a genome-wide association analysis, instead of using a few
markers previously chosen from candidate genes. Even
with this innovative method, they could explain only 4.4–
9.6% of facial shape. In particular, they observed that six
facial features were predictable with statistically significant
accuracy from genetic information, with some gender dif-
ferences: face width (for both sexes); mouth width (only in
men); lip fullness and, to a lesser degree, eye distance, eye
size, and eyebrow width (only in women) [106].

In 2019, Mbadiwe et al. [107] proposed, through
a literature search, a panel composed of 6,816 SNPs asso-
ciated with the human face and called it FaceSNPs. This
panel is available upon request. Moreover, they also iden-
tified chromosomes that promise better performance in
genotype-to-phenotype prediction of human face character-
istics (so, for example, chromosomes 10, 17, 1 and 5) [107].

Liu M. et al. [31] have also worked with the
genetic basis of facial morphology in a Chinese popula-
tion, confirming a significant association with 12 reported
SNPs which are together responsible for up to 3.89% of
age- and BMI-adjusted variance (EX41 rs17479393, PAX3
rs974448, RAB7A/ACAD9 rs2977562, DCHS2 rs9995821
and rs2045323, C5orf50 rs6555969, SUPT3H/RUNX2
rs1852985, MSRA rs11782517, EYA1 rs10504499, GSC
rs2224309, DICER1 rs7161418 and DHX35 rs2206437)
[31].

Recently, White and collaborators identified 203
genome-wide significant signals associated with multivari-
ate normal-range facial morphology. Among which 53
genome-wide significant peaks are located in region with
no previously known role in facial development or disease.
Moreover, they demonstrated interaction between variants
at different loci affecting similar aspects of facial shape
variation, identifying gene sets that work in concert to build
human faces [108].

4.8 High myopia

High myopia is a condition characterized by a
highly negative refractive error (>–6 to –8 dioptres) in the
context of eye elongation (26–26.5mm) [109]. Although its
pathogenesis is not completely understood, actual knowl-
edge suggests that high myopia is a complex trait whose
occurrence is affected by multiple genes [55]. Visible char-
acteristics of high myopia includes both myopic exophthal-
mos (i.e., protrusion of the eyeball due to an increase of ocu-
lar axial length) and the need to wear glasses. Nevertheless,
little research focused on high myopia as an external visible
characteristic and only three SNPs have been identified so
far. A meta-analysis by Tang et al. [51] showed a relation-
ship with rs644242 on the PAX6 gene, encoding a protein
essential for eye development, in people of Asian ancestry;
while Xie et al. [55] found a statistically significant cor-
relation in the Chinese Han population for rs8004825 and
rs12976445, both located in micro-RNA sequences (small
RNA sequences involved in the regulation of gene expres-

sion). However, starting from these preliminary results on
correlation, both papers conclude that, given the polygenic
nature of the condition, to first correlate and then predict
high myopia with high accuracy, more genetic markers in
more samples should be investigated.

4.9 Obesity

Amer et al. [110] investigated several (sixteen)
SNPs in the cytochrome b gene of mitochondrial DNA
to test their association with obesity in 66 Saudi Arabian
individuals. Contrary to a previous study, they found
only a weak relation with two non-synonymous mutations
(corresponding to nucleotide substitutions, A15043G and
C15677A respectively, in two obese males and two obese
females), concluding that further research is needed to pro-
vide evidence for the possibility of applying cyt-b gene in
obesity diagnosis [111].

4.10 Adult height

Adult height has demonstrated itself to be a highly
hereditable trait, whose variability is affected by hundreds
to thousands of contributing genes [112]. In 2014, Liu et
al. [113] introduced a model for DNA predictability of tall
stature in Europeans consisting of a subset of 180 height-
associated SNPs previously identified in other studies. In
2017, Marouli et al. [114] identified 32 rare and 51 low-
frequency coding variants associated with adult height. In
2019, the model was updated and expanded by the same
authors with the addition of newly discovered polymor-
phisms, for a total amount of 689 SNPs, in order to increase
the model’s prediction accuracy (AUC = 0.79, compared to
the previous 0.75) [112]. Subsequently, Jing et al. [115]
investigated the predictive power of the same SNPs, origi-
nally identified for European individuals, in the Uyghurs, a
population presenting an admixture of European and East-
Asian genetic traits. On the one hand, the study confirmed
a moderate genetic correlation between Uyghurs and Eu-
ropeans, since some European height-associated SNPs also
showed significant correlation in the Uyghurs. However,
on the other hand, the study emphasises a substantial differ-
ence in terms of genetics of human stature (allele frequen-
cies, allele effect sizes, and allele effect directions) between
the two different populations [115].

4.11 Phenotype evaluation

It should be noted that different methods have
been used to evaluate and classify pigmentation trait phe-
notype (iris, hair and skin colour). In some studies, colour
assignments were made in a subjective manner, through
direct observation and visual identification [26, 45, 84].
Some studies made use of specific tools and equipment,
such as professional cameras with top-quality lens and
flash systems, but also colourimeters, spectrometers and
spectrophotometers, usually ensuring standardized lighting
and distance-to-subject conditions for each subject, so as
to obtain a more objective and quantitative classification
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[39, 42–44, 46, 53, 57, 58, 61, 62, 66, 67, 73, 75, 84, 85, 92].
Sometimes trait colour was determined in both manners,
subjectively and objectively. In some studies, participants
were scrutinized directly by one or more investigator(s) or
volunteer(s), who were not specialists but who had been
specially trained for the task [39, 44, 46, 62, 66, 70, 83, 85].
However, especially for eye and skin colour, one of the
main approaches consisted of seeking advice from spe-
cialists in the sector, usually ophthalmologists and der-
matologists, but also anthropologists with experience in
phenotyping [24, 26, 38, 61, 72, 73, 75, 87, 90]. In a
few cases, phenotype data were collected from participants
themselves, through self-declaration or self-administered
questionnaires [60, 64, 69, 92, 93] or were not known and
just inferred from ethnic background [53, 65]. Occasion-
ally, the method used was not indicated [41, 60, 65, 74, 76].
In one study, no pigmentation data were available for any
of the participants [56].

5. Discussion

One of the recent fields of research in forensic ge-
netics has been focused on the analysis of EVCs such as
eye colour, hair colour (including hair greying), hair mor-
phology (including hair loss), skin colour, freckles, facial
morphology, high myopia, obesity, and adult height, with
important repercussions in the forensic field, in order to pre-
dict the appearance of EVCs of a trace left at a crime scene
or of an unknown person represents an additional investiga-
tory tool in the context of forensic investigative techniques.

So far, extensive knowledge has been attained for
pigmentation traits, i.e., eye, hair, and skin colour, while
phenotyping beyond pigmentation traits is still in its earlier
stages and far from being deeply understood.

By now, one of the most widespread and applied
predictive tools for simultaneous eye and hair colour pre-
diction is HIrisPlex, which was initially developed based
on a European database but shown to be suitable for people
of non-European descent as well. Yet, despite this, there
remains potential bias linked to geographical origins of the
population to which it is applied, especially in the case of
admixed populations.

In particular, as reported in Fig. 3, the IrisPlex con-
sists of six SNPs currently identified as major eye-colour
predictors. The selection of the best SNPs for EVC deter-
mination, indeed, seems to be highly population-dependent,
suggesting that panels should be adapted for different geo-
graphical regions. One possible solution that has been sug-
gested in the literature is to combine EVC prediction with
DNA that allows for the inferring of the unknown person’s
geographic origin with high accuracy. Although highly
accurate for predicting the most extreme phenotypes, the
model is not as informative for intermediate phenotypes.
These findings highlight that DNA-based inference of a per-
son’s physical appearance still needs to be cautiously ap-

plied in real-world casework since an erroneous prediction
may lead an investigation down the wrong path. Further
research is required that is aimed at broadening the pool of
SNPs known for each phenotypic trait and for individuals
from different geographic regions.

Considering all the SNPs that have been studied,
those found to be the most strongly associated with iris
colour are HERC2 rs12913832, HERC2 rs1129038 and
OCA2 rs1800407 [42, 46, 47, 52, 62, 64–67].

When considering the prediction of hair colour,
different polymorphisms in genes associated with melanin
biosynthesis (Fig. 2) showed significant association with
different phenotypes [34]. Following this new evidence,
the IrisPlex systemwas integratedwith new polymorphisms
sets in order to develop and validate the HIrisPlex model as
seen in Fig. 3 [42]. The questions that still remain open are
those related to the predictivity of blond hair colour [89] due
to the possibility that subjects born blond then turn brunette
with growth and with the poor ability to predict, from a ge-
netic point of view, the greying of hair with aging [90].

As for other pigmentation traits previously dis-
cussed, the first genes to be associated with skin colour
were those encoding for proteins which are involved in the
melanin production within melanocytes, and it has been ob-
served that many genes found to be associated with hair and
iris colour variations also seem to be associated with skin
colour variation [19] (MC1R, SLC45A2/MATP, SLC24A5
and OCA2) [35, 36, 91]. Significant associations with skin
colour were found for variants of MC1R, HERC2, OCA2,
SLC45A2, SLC45A5, TYR, VDR, ASIP, TYRP1, KILTG,
TPCN2 and SLC24A4 genes. In 2018, a combined tool
for simultaneous prediction of eye, hair, and skin colour
named HIrisPlex-S was introduced, where skin colour pre-
diction was based on a set of 36 SNPs (of which 19 had also
been included in the previous model, plus 17 novel mark-
ers) [18]. More recently, another tool named VISAGE BT
A&A (PSeq) for contemporary eye, hair, and skin-colour
prediction has been developed, consisting of 41 phenotype
SNPs plus 115 markers for biogeographical ancestry infer-
ence (three overlapping with the EVCs’ SNP set) for a total
of 153 makers [16].

In the examined literature, the most studied statis-
tical models applied to IrisPlex, HIrisPlex and HIrisPlex-
S system were based on MLR analysis in order to reach
posterior probabilities for each trait (three for eye colour,
four for hair colour and five for skin colour) [20, 24, 42,
45, 57, 76]. Some authors have proposed different sta-
tistical approaches, such as Principal Component Analy-
sis (PCA) [92], Iterative naïve Bayesian approach [38, 39],
other Bayesian classifiers such as Snipper [43], artificial
neural networks and classification trees [40]. More re-
cently, Katsara et al. [20] have proposed Machine Learn-
ing (ML) as a tool to be used for the prediction of visi-
ble traits. ML algorithms use mathematical-computational
methods to learn information directly from data and ML al-
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gorithms improve their performance in an “adaptive” way
as the “examples” learn from increase. Katsara et al. [20]
applied some of the most popular machine learning systems
to three datasets of samples for eye colour, hair colour and
skin colour, from subjects belonging to populations around
the world, comparing them with the predictivity provided
by IrisPlex, HIrisPlex and HIrisPlex-S systems. This study
concluded that there are no substantial differences in the
ability to predict visible traits with ML or with MLR and,
therefore, MLR, in the current state of knowledge, rep-
resents the best approach to evaluating the predictivity of
these traits starting from DNA [20]. It should be noted that
while MLR is a useful categorical classifier and has been
successfully employed for the prediction of eye, hair and
skin colour, there is a real risk for over-fitting data with
small sample sizes when applying MLR. To avoid overfit-
ting a regression model, the sample should be large enough
to handle all of the terms that are expected to be included in
the model, thus suggesting that a huge number of training
data set should be settled up.

It should also be remembered that genetic back-
ground is not the only determinant at stake, since other fac-
tors such as age, gender and BMI, can affect a person’s
physical appearance and should always be taken into ac-
count when dealing with predictive models in order to re-
duce prediction error and increase reliability. For instance,
a gender divergence has been shown for eye colour, accord-
ing to which, given the same genotypic background, males
have lighter eye colours than females.

Alongside the main characteristics which are cur-
rently the most studied (pigmentation traits), there may be
less-studied characteristics such as adult height, hair shape,
facial morphology, male-pattern baldness, obesity, freck-
les, and high myopia that could act as auxiliary tools and
help add information to reduce the size of the referring clus-
ter. In particular, predictions on hair structure and male-
pattern baldness are still under development, while the pre-
diction of facial features remains among the most challeng-
ing goals of this field of research.

DNA analysis of genetic profiles is a comparative
analysis, whose goal is to find a match between a trace
found at a crime scene and a person (victim or suspect)
through a direct comparison or through a DNA-database
search. When the reference genetic profile is not available,
this kind of approach may be useless because genetic pro-
files cannot be compared. Under these circumstances we
consider that the forensic usefulness of EVC might consist
of adding further information to criminal investigations in
order to restrict the field of qualitative information useful
for identifying the subjects potentially involved [19].

In fact, it is known that crime-scene stain analysis
can play a crucial role in connecting a person to an object
or a place with the possibility of investigating the visible
characteristics that reduce the number of possible suspects
of a crime, especially in cases where the police have little

or no knowledge of the identity of the trace donor and how
to find him/her, or in complex cases of missing persons or
disaster-victim identification [116].

There is no doubt that EVCs can be altered in
many different ways (e.g., cosmetics, coloured contact
lenses, dyed hair colour, self-tanning skin procedures, plas-
tic surgery, etc.) to alter one’s appearance in ID portrait
images. There is always the possibility that the molecu-
lar inference of physical features might not correspond to
body appearance [117]. Furthermore, even if today the de-
tection of EVC has reached a good level of accuracy, future
research activities have to be focused on reducing the lim-
itations of available eye, hair and skin colour DNA testing
in predicting intermediate categories [13].

Some critical issues that should be considered to
correctly interpret the prediction studies of non-pigmented
visible traits are the missing heritability in many GWAS
studies used to find SNPs associated with phenotypes and
the apparently inverse relationship between effect size and
allele frequency (abundance) for complex traits like height
[118, 119]. It has been demonstrated that for many complex
traits there might be many SNPs (additional to those sig-
nificantly associated with a certain phenotype) with small
effects that together play a significant role in the phenotype
variance. This hypothesis is also supported by data that tell
us that GWAS conducted on ever growing sample sizes is
able to find new hits, in particular for appearance traits. For
instance, in the case of adult height, the number of associ-
ated variants has grown from about 40 in the first GWAS to
about 700 when study sizes increased to 250,000 individ-
uals and to 3290 in the latest study that included 693,529
participants [120, 121].

As seen, quite different methods of evaluation
have been applied for colour assignments to different cat-
egories in studies dealing with pigmentation traits. Some
authors have used quantitative andmore objective methods,
while in some others cases the evaluation has been based on
the subjective judgment of one or more investigators. This
means that different studies could be difficult to compare.
In this regard, it is also worth noting that quantitative mea-
surement is fundamental to obtaining an objective evalua-
tion of the various colour categories. However, as observed
by Andersen et al. [62], in real forensic caseworks, the cat-
egorization would be based on human interpretation and not
on an objective method.

Despite the initial enthusiasm for pigmentation-
related traits, andwhich continues to fuel research and train-
ing through international circuits, there is much information
currently lacking in this field when facing with real applica-
tions in forensic caseworks. It should not be forgotten that,
from a genetic point of view, physiognomic traits, precisely
because they are multifactorial characteristics, are particu-
larly difficult to identify unlike simple Mendelian traits. It
should therefore not be forgotten that, at least at the present
time and in the near future, only a few physiognomic char-
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acteristics, as mentioned, will be identifiable with a certain
degree of accuracy. For all other conditions, estimates of
greater or lesser probability of occurrence of this or that
phenotype can only be provided, with the consequence of a
reduced statistical weight of the information obtained. Rel-
atively to the use of polygenic scores (largely applied for
predicting therapeutic response in multi-genic diseases) for
predicting complex phenotypes beyond pigmentation traits
(for instance, adult height) numerous DNA variants previ-
ously implicated in normal height variation in Europeans
have been demonstrated of being involved in determining
tall stature. Nevertheless, it is necessary to improve the
modeling of genetic interactions and allelic heterogeneities
within height-associated loci [113]. This achievement is
strictly related to future applications in real forensic case-
works where genomic height prediction can be applied.

Despite the potential usefulness of forensic DNA
phenotyping, this innovative approach has not gained a
socio-scientific consensus yet [122, 123]. Indeed, there still
exists a lively debate concerning the legitimacy of its use in
the criminal justice system, which is primarily focused on
socio-ethical issues [117, 122, 123]. For instance, one of
the main points under discussion is that information deriv-
ing from this technique does not identify a single or spe-
cific person (the potential suspect) but a cluster of individ-
uals sharing similar visible traits, which leads to both legal
and ethical concerns, such as the unfeasibility of massively
screening the whole suspect population, or the risk of gen-
erating racial prejudice and stigmatization. In this frame-
work, there is a need for further discussion regarding not
only FDP applications and utility, but also related risks and,
moreover, there is a need for new laws, especially consider-
ing that only a few countries have already enacted specific
legislation on the matter, while in most other countries a le-
gal vacuum exists or these techniques are specifically for-
bidden [124].

From a practical point of view, the application
scenario for forensic DNA phenotyping in real caseworks
should be that, at the moment, the STR profile has the first
priority and phenotypic SNPs analysis should be performed
on remaining DNA and the source tissue of the trace should
be known. Given the nature of the prediction frameworks
validated for forensic DNA phenotyping, single source or
major/minor profiles are suitable for these analysis and
multi-person mixtures should be avoided. Results should
then be communicated as probabilities for a given pheno-
typing trait, or genetic (y-related or autosomal) ancestry,
while the underlying genetic data should not be shared or
stored in databases. The basis for any court proceeding is
still the determination of STR profiles, and suspects will be
excluded or identified based on traditional STR profile. In
case of identification using STR profiles, phenotypic SNPs
data are not relevant and can be deleted.

The ease of adding these types of analyses into the
already overworked crime labs would be difficult to be set

up in daily routine caseworks. While the instrumentation
may be the same of “traditional” forensic genetics analysis,
the training and integration into an already busy caseload
would be difficult from a practical standpoint. It should be
remembered that appropriate training is imperative to en-
able forensic practitioners to apply bio-informatic methods
and given set protocols to analyse data generated and in-
terpret such data in the context of case-related questions.
Last but not least, it is essential that forensic geneticists are
able to explain to their clients (police forces, judicial au-
thorities) the meaning of the data obtained. After having
spent years explaining the meaning of prepositions, at the
source level and at the activity level, it will now be neces-
sary to make us understand a different perspective, namely
that these data do not give us likelihood ratios useful for
identification purposes, but they give us a priori informa-
tion on characteristics shared by the person of interest with
many other people, and thus cluster the range of suspects.
Results for EVCs prediction are communicated by thresh-
old of probabilistic accuracy about each trait: this means
that new knowledge and new cognitive and communicative
skills are required both for scientists and investigators in
order to request, understand and use such data. Therefore,
in a potential future involving the forensic application of
phenotype prediction, the involvement of agencies that set
standards and accredit laboratories would be crucial to up-
hold high standards of admissibility of EVCs predictions to
support criminal investigations.

The variations in the distribution of genetic differ-
ences on a geographical basis (based on the divergence and
stabilization of migratory flows in the different geographi-
cal areas of the globe over the millennia), despite the aware-
ness of their continuous distribution and without absolute
characterizations, still allow us to provide information, al-
beit of a statistical nature, about the geographical origin of
the sample. Indications that, added to those more directly
connected with other physiognomic traits, can thus be use-
fully employed more in excluding a subject belonging to a
certain ethnic-geographical group, rather than in positively
associating him or her with it, in the awareness that the
growing admixture between populations due to recent and
current migratory flows may not allow for such distinctions
in the future.

From an ethical point of view, the greatest concern
linked to the use of such information is that it may cause a
stigmatization of the group of subjects who share that visi-
ble characteristic. The risk is also associated with the like-
lihood that certain groups of individuals who share certain
characteristics will be discriminated against as being statis-
tically more frequently responsible for certain crimes. The
passage from the stigmatization of single subjects to dis-
crimination against whole groups could lead to a degener-
ation towards racial discrimination. The prediction of FDP
on the basis of the genotype clusters the population groups
on the basis of very frequent characteristics in that specific



846

population, thus highlighting and enhancing the phenotypic
differences that characterize the various ethnic groups by
increasing the visibility of phenotyping differences. This
could lead, as the cases in which investigations are initially
guided by information of this type increase, to a collectivi-
sation of suspicion for certain populations [125, 126]. Nev-
ertheless, the discussion on the applicability of the predic-
tion of visible traits cannot be detached from the discussion
on the possible effects on minority groups that are already
vulnerable to the action of police forces or judicial authori-
ties. This risk was considered by some of the study partici-
pants by Granja et al. in 2020 [124] and has been highly
debated in the literature [122, 127]. Worrying about the
sociological and ethical implications of the application of
these technologies does not mean denying their biological
robustness and scientific soundness. Stimulating a greater
bioethical, political, and social debate can also be of great
help for forensic geneticists who do research in this area
and who will apply these technologies in real caseworks,
without necessarily entrenching oneself on contrary posi-
tions between detractors and promoters of the use of these
technologies.

6. Conclusions

Although they are not yet widespread and system-
atically applied in different judicial systems among differ-
ent countries, the diffusion and progress of research in the
field of EVCs makes the techniques for determining, at
least, pigmentation characteristics nonetheless promising.
The application in real forensic cases of forensic pheno-
typing to achieving reliable investigative information is a
promising tool that is particularly useful when other tech-
niques cannot provide useful information. Moreover, cer-
tain limits should be taken into consideration to avoid over-
estimating the actual possibilities of this tool in forensics.
In fact, although highly accurate for predicting the most
extreme pigmentation phenotypes, the model is not as in-
formative for intermediate phenotypes. Consequently, an
improvement in the accuracy of determining intermediate
colours is needed. Moreover, there still remains potential
bias linked to the geographical origins of the population to
which DNA phenotyping is applied, especially in the case
of admixed populations as well as for eye and hair colour
prediction.

Forensic DNA phenotyping of pigmentation traits
(in particular eye, hair and skin colours) can now provide
extraordinary information in the course of investigations.
The real challenge for our scientific community will be to
establish uniform rules of application at least at a European
level, and continue to implement not only the analytical ca-
pacity but above all the interpretative one.

The issues raised by the use of these markers
should be necessarily discussed, both to improve the aware-
ness of forensic geneticists on the limits of these techniques,

and to be able to think of technical and regulatory inter-
ventions that can make their applicability more concrete,
widespread and uniform internationally.
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