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CONTROL TO FLOCKING OF THE
KINETIC CUCKER-SMALE MODEL*
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Abstract. The well-known Cucker—Smale model is a macroscopic system reflecting flocking, i.e.,
the alignment of velocities in a group of autonomous agents having mutual interactions. In the present
paper, we consider the mean-field limit of that model, called the kinetic Cucker—Smale model, which
is a transport PDE involving nonlocal terms. It is known that flocking is reached asymptotically
whenever the initial conditions of the group of agents are in a favorable configuration. For other
initial configurations, it is natural to investigate whether flocking can be enforced by means of an
appropriate external force, applied to an adequate time-varying subdomain. In this paper we prove
that we can drive to flocking any group of agents governed by the kinetic Cucker—Smale model, by
means of a sparse centralized control strategy, and this, for any initial configuration of the crowd.
Here, “sparse control” means that the action at each time is limited over an arbitrary proportion of
the crowd, or, as a variant, of the space of configurations; “centralized” means that the strategy is
computed by an external agent knowing the configuration of all agents. We stress that we do not
only design a control function (in a sampled feedback form), but also a time-varying control domain
on which the action is applied. The sparsity constraint reflects the fact that one cannot act on the
whole crowd at every instant of time. Our approach is based on geometric considerations on the
velocity field of the kinetic Cucker-Smale PDE, and in particular on the analysis of the particle flow
generated by this vector field. The control domain and the control functions are designed to satisfy
appropriate constraints, and such that, for any initial configuration, the velocity part of the support
of the measure solution asymptotically shrinks to a singleton, which means flocking.
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control
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1. Introduction. In recent years, the study of collective behavior of a crowd
of autonomous agents has drawn great interest from scientific communities, e.g., in
civil engineering (for evacuation problems), robotics (coordination of robots), com-
puter science and sociology (social networks), and biology (crowds of animals). In
particular, it is well known that some simple rules of interaction between agents can
provide the formation of special patterns, like formations of bird flocks, lines, etc.
This phenomenon is often referred to as self-organization. Beyond the problem of
analyzing the collective behavior of a “closed” sytem, it is interesting to understand
what changes of behavior can be induced by an external agent (e.g., a policy maker)
to the crowd. In other words, we are interested in understanding how one can act on
a group of agents whose movement is governed by some continuous model of collective
behavior. For example, one can try to enforce the creation of patterns when they are
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not formed naturally, or break the formation of such patterns. This is the problem of
control of crowds, that we address in this article for the kinetic (PDE) version of the
celebrated Cucker—Smale model introduced in [19].

From the analysis point of view, one needs to pass from a big set of simple rules
for each individual to a model capable of capturing the dynamics of the whole crowd.
This can be solved via the so called mean-field process, that permits us to consider
the limit of a set of ordinary differential equations (one for each agent) to a PDE for
the density of the whole crowd.

In view of controlling such models, two approaches do emerge: one can either ad-
dress a control problem for a finite number of agents, solve it, and then pass to the limit
in some appropriate sense (see, e.g., [5, 24, 25]), or one can directly address the control
problem for the PDE model; this is the point of view that we adopt in this paper.

In this paper, we consider the controlled kinetic Cucker—Smale equation

(L.1) Opp + (v, grad, p) + divy ((€[p] + xww)p) = 0,

where pu(t) is a probability measure on R? x R for every time t (if u(t,z,v) =
f(t,z,v) dedv, then f is the density of the crowd), with d € N* fixed, and £[u]
is the interaction kernel, defined by

(12) (o) = [ ollle=ylw =) dutyw)

for every probability measure p on R x R?, and for every (z,v) € R x RY. The
function ¢ : R — R is a nonincreasing, Lipschitz continuous, and positive function,
accounting for the influence between two particles, depending only on their mutual
distance. The term x,u is the control, which consists of

e the control set w = w(t) C R? x R? (on which the control force acts);

e the control force u = u(t,r,v) € R%.
We stress that the control is not only the force u, but also the set w on which the
force acts. Physically, u represents an acceleration (as in [10] for the finite-dimensional
model), and w(t) is the portion of the space-velocity space on which one is allowed to
act at time ¢. It is interesting to note that, in the usual literature on control, it is not
common to consider a subset of the space as a control.

There are many results in the literature treating the problem of self-organization
of a given crowd of agents, like flocks of birds (see [3, 8, 16, 17, 38, 42, 49, 51]),
pedestrian crowds (see [18, 37]), robot formations (see [36, 39]), or socioeconomic
networks (see [4, 32]). A nonexhaustive list of references on the subject from the
scientific, biological, and even political points of view are the books [2, 7, 33, 35]
and the articles [15, 34, 40, 41, 46, 45, 49]. In particular, in [41, 45] the authors
classify interaction forces into flocking centering, collision avoidance, and velocity
matching. Clearly, both the Cucker—Smale and the kinetic Cucker—Smale models deal
with velocity matching forces only.

A fundamental tool for this topic is the notion of mean-field limit, where one
obtains a distribution of a crowd by considering a crowd with a finite number N
of agents and by letting N tend to infinity. The result of the mean-field limit is
also called a “kinetic” model. For this reason, we call the model in (1.1) the kinetic
Cucker—Smale model. The mean-field limit of the finite-dimensional Cucker—Smale
model was first derived in [30] (see also [14, 29]). Other mean-field limits of alignment
models are studied in [8, 13, 12, 21, 47]. Many other mean-field limits of models
defined for a finite number of agents have been studied (see, e.g., [9, 22, 48]).
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Assuming now that one is allowed to apply an action on the system, it is very
natural to try to steer the system asymptotically to flocking. This may have many
applications. We refer the reader to examples of centralized and distributed control
algorithms in [6] (see also the references therein). All these examples are defined
for a finite number of agents, possibly very large. Instead, the control of mean-field
transport equations is a recent field of research (see, e.g., [24, 31]; see also stochastic
models in [26]).

Note that (1.1) is a transport PDE with nonlocal interaction terms. As is evident
from the expression of £[u], the velocity field [u] acting on the v variable depends
globally on the measure p. In other words, if p has a density f, then &[u](x) is not
uniquely determined by the value of f(x), but it depends on the value of f in the
whole space R? x R%. Existence, uniqueness, and regularity of solutions for this kind
of equation with no control term (u = 0) have been established quite recently (see
[1]). We will establish the well-posedness of (1.1) in section 2.

In the present paper, our objective is to design an explicit control y,u, satisfy-
ing realistic constraints, able to steer the system (1.1) from any initial condition to
flocking. Let us first recall what flocking is.

Throughout the paper, we denote by P(R? x R?) the set of probability measures
on R? x R, by P.(R? x R?) the set of probability measures on R% x R? with compact
support, and by P2¢(R? xR?) the set of probability measures on R% x R? with compact
support and that are absolutely continuous with respect to the Lebesgue measure. We
denote with supp(u) the support of p.

Given a solution p € C°(R, P.(R? x R%)) of (1.1), we define the space barycenter
Z(t) and the velocity barycenter v(t) of u(t) by

(1.3) i:(t):/Rd adu(t(a.v) @(t):/Rd  vdu)(av)

for every ¢t € R. If there is no control (u = 0), then o(¢) is constant in time. If
there is a control, then, as we will see further, we have Z(t) = o(t) and 9(t) =
Sy w(t, 2,0) du(t)(z, v).

DEFINITION 1.1. Let € CO(R, P(R? x RY)) be a solution of (1.1) with u = 0.
We say that p converges to flocking if the two following conditions hold:

e there exists XM > 0 such that supp(u(t)) € B(Z(t), XM) x R? for every
t>0;
o A(t) = [paypa v — 0] du(t) — 0 as t — +o0.

We also define the flocking region as the set of configurations u° € P.(R? x R?) such
that the solution of (1.1) with u = 0 and initial data u(0) = u° converges to flocking.

Note that, defining the velocity marginal of u(t) by s, (t)(A) = u(t)(RY x A) for
every measurable subset A of R?, this definition of flocking means that s, (t) converges
(vaguely) to the Dirac measure d;, while the space support remains bounded around
z(t).

Intuitively, u(t) is the distribution at time ¢ of a given crowd of agents in space
2 and velocity v. Asymptotic flocking means that, in infinite time, all agents tend to
align their velocity component, as a flock of birds that, asymptotically, align all their
velocities and then fly in a common direction. Flocking can also be more abstract
and the variable v can represent, for instance, an opinion: in that case flocking means
consensus. Then, the techniques presented here may be adapted for similar problems
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for consensus (reaching a common value for all state variables) or alignment (reaching
a common value in some coordinates of the state variable).

In order to steer a given crowd to flocking, the control term in (1.1) means that
we are allowed to act with an external force, of amplitude (¢, z, v), supported on the
control domain w(t). Our objective is then to design appropriate functions t — w(t, -)
and t — w(t) leading to flocking. In order to reflect the fact that, at every instant
of time, one can act only on a small proportion of the crowd, with a force of finite
amplitude, we impose some constraints on the control function u and on the control
domain w.

Let ¢ > 0 be arbitrary. We consider the class of controls x,u, where
u € L®(R x R? x R?) and w(t) is a measurable subset of R? x R for every time
t, satisfying the constraints

(1.4) lu(t, 5 ) oo (raxray < 1

for almost every time ¢ and

(15) pew) = [ o) <
for every time t.

The constraint (1.4) means that the control function (representing the external
action) is bounded, and the constraint (1.5) means that one is allowed to act only
on a given proportion ¢ of the crowd. In (1.5), u(t) is the solution at time ¢ of
(1.1), associated with the control y,,. The existence and uniqueness of solutions will
be established while assuming that y,u € L°([0,+0c0), Lip(R? x R? R%)), where
Lip(R? x R? R?) is the space of Lipschitz continuous functions defined by

Lip(R? x R",RY) = {f € C°(R? x R",R?) | 3K = K(f) > 0,Lip(f) < K}
with

(16) Llp(f) = sup {M

ll =yl

As a variant of (1.5), we will consider the following constraint as well:

| x,yeRded,x;&y}.

(1.7) lw(t)| = / dxdv < ¢
w(t)

for every time t¢.

The fact that the action is limited either to a given (possibly small) proportion
of the crowd, or the space of configurations, is related to the concept of sparsity, in
which one aims at controlling a system (or, reconstructing some information) with a
minimal amount of action, like a shepherd dog trying to maintain a flock of sheep.

Note that it is obviously necessary to allow the control domain to move because, if
the control domain w is fixed (in time), then it is not difficult to construct initial data
10 that cannot be steered to flocking, for any control function . Indeed, consider
the example of a particle model without control that is not steered to flocking! and
consider a fixed control set w, disjoint of the trajectories of the system (for example,
a control set with velocity coordinates that are larger than the maximum of the
velocities of the particles). Then, replace the particles with absolutely continuous

LAn example in dimension one with two agents for the finite-dimensional Cucker—Smale model
is given in [19].
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measures centered around them, that is, (z,v) is replaced with X[z »4e]x[v—c,vte]-
Choosing ¢ sufficiently small, the dynamics of the resulting measure with the same w
is close to the dynamics of the particle model, hence it does not converge to flocking.

In this paper, we will prove the following result.

THEOREM 1.2. Let ¢ > 0 be arbitrary. For every u° € P2¢(R? x RY), there erists
a control x,u € L*([0,+00), Lip(R? x R4 RY)), satisfying the constraints (1.4) and
(1.5) (or, as a variant, the constraints (1.4) and (1.7)), such that the corresponding
unique solution p € CO(R; P2(RIxRY)) of (1.1) with u(0) = u° converges to flocking
as t tends to +oo.

Note that, given any initial measure that is absolutely continuous and of compact
support, the control x,u that we design generates a solution of (1.1) that remains
absolutely continuous and of compact support. It is important to note that, from
a technical point of view, we will be able to prove existence and uniqueness of the
solution as long as the control function x,u remains Lipschitz with respect to state
variables. Since p converges to flocking, p becomes singular only in infinite time.

Remark 1. The proof of Theorem 1.2 is based on the construction of an ex-
plicit control x,u steering the system (1.1) to flocking, that we describe in section 4.
Moreover, this control shares the following properties:

e w(t) is piecewise constant in ¢;
e u(t,x,v) is piecewise constant in ¢ for (x,v) fixed, continuous, and piecewise
linear in (x,v) for ¢ fixed,;
e for any initial configuration p® € Pa¢(R% x R?), there exists a time T'(u°) > 0
such that u(t,z,v) = 0 for every t > T(u°).
Note that the control that we design is “centralized,” in the sense that the external
agent acting on the crowd has to know the configuration of all agents, at every instant
of time.

As we will see, the solution u(t) of (1.1) is exactly the pushforward of the initial
measure under the controlled particle flow, which is the flow of a given vector field
involving the control term. Our strategy for designing a control steering the system
to flocking consists in interpreting it as a particle system and in choosing the control
domain and the control function such that the velocity field points inwards to the
domain, so that the size of the velocity support of u(t) decreases (exponentially) in
time. Our construction goes by considering successive (small enough) intervals of
times along which the control domain remains constant, whence the property of being
piecewise constant in time.

The third item above means that the control is not active for every time ¢ > 0.
Indeed, we prove in Theorem 3.1 that, for the uncontrolled equation (1.1) (i.e., with
u = 0), if the support of u(tp) is “small enough” at some time tg, then pu converges to
flocking, without requiring any action on the crowd. As a consequence, if the initial
crowd is in a favorable configuration at the initial time (if it is not too much dispersed),
then the crowd will naturally converge to flocking, without any control. Then our
control strategy consists in applying an appropriate control, until u(t) reaches the
flocking region defined in Definition 1.1, in which its support is small enough so that
1 converges naturally (without any control) to flocking. This means that we switch off
the control after a time 7'(1"), depending on the initial distribution p°; it is expected
that T'(u°) is larger as the initial measure p° is more dispersed.

We stress that, in our main result (Theorem 1.2), we do not only prove the
existence of a control driving any initial crowd to flocking. Our procedure, described
in section 4, is constructive. In our strategy, we construct a control action u depending
on (t,z,v), and we design a control domain w depending on p(t). Hence, in this sense,
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we design a sampled feedback. The control domain is piecewise constant in time, but
this piecewise constant domain is designed as a function of u.

Remark 2. In [10, 11], the concept of componentwise sparse control was intro-
duced, meaning that, for a crowd of N agents whose dynamics are governed by the
finite-dimensional Cucker—Smale system, one can act, at every instant of time, only
on one agent. At this step an obvious remark has to be done. In finite dimension,
it is intuitive that the action on only one agent can have some consequences for the
whole crowd, because of the (even weak) mutual interactions. In infinite dimension,
this property is necessarily lost and should be replaced by the action on a small pro-
portion of the population. More precisely, assume that, for the finite-dimensional
model, one is allowed to act on a given proportion ¢ of the total number of agents.
Then, when the number of agents tends to infinity, the same constraint can be for-
mally defined, giving a meaning to the limit of this type of sparsity constraint. We
will give in section 2.3 a precise relationship between the finite-dimensional and the
infinite-dimensional models.

By the way, note that Theorem 1.2 with the control constraints (1.4) and (1.7)
can be compared with the results of [10, 11], in which sparse feedback controls were
designed for the finite-dimensional Cucker—Smale model, by driving, at every instant
of time, the farthest agent to the center. In contrast, dealing with the constraint (1.5)
is more difficult and requires a more complicated construction.

In [25] the authors introduce another kind of feedback control. They consider
a system of particles with a feedback function action over the whole domain, which
is globally Lipschitz. Then they pass to the limit on the number of particles. In
contrast, in our paper the action is limited over a (moving) sub-domain w, and our
control x,u consists in particular of a characteristic function.

Remark 3. The function ¢ accounting for the influence between particles is as-
sumed to be positive, nonincreasing, and Lipschitz continuous. The positivity of ¢
corresponds to velocity matching forces (see [41, 45]), and it is not clear whether our
results are still valid or not if this positivity condition fails, as it is the case when ¢
has compact support.

Note that the assumption of having ¢ nonincreasing can be relaxed to ¢ > ¥ > 0
with 1 positive and nonincreasing.

The continuity of ¢ is required in definition (1.2) for the vector field &[n] when
dealing with measures p. Lipschitz continuity is required to guarantee the regularity
of the flow ® defining the measure solution of (1.1) (see Theorem 2.3 further).

One can consider less regular interaction kernels ¢ with bounded variation, with
the additional requirement of having p absolutely continuous with respect to the
Lebesgue measure and with an L> density function (see [27]).

The structure of the paper is the following.

In section 2, we recall or extend some results stating the well-posedness of the
kinetic Cucker-Smale equation (1.1), and in particular we recall that a solution of
(1.1) is the image measure of the initial measure through the particle flow, which is
the flow associated with the time-dependent velocity field &[u] + x,u (sections 2.1 and
2.2). We also provide (in section 2.3) a precise relationship with the finite-dimensional
Cucker—Smale model, in terms of the controlled particle flow.

In section 3, we study the kinetic Cucker-Smale equation (1.1) without control
(i.e., u = 0). We provide a simple sufficient condition on the initial measure ensuring
convergence to flocking, which is a slight extension of known results.

Theorem 1.2 is proved in section 4. In that section, after having established
preliminary estimates (in sections 4.1 and 4.2), we first prove Theorem 1.2 in the one-
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dimensional case, that is, for d = 1, in section 4.3. Our strategy is based on geometric
considerations, by choosing an adequate control, piecewise constant in time, such
that the velocity field is pointing inwards towards the support, in such a way that the
velocity support decreases in time. We apply this strategy iteratively, until we reach
(in finite time) the flocking region, and then we switch off the control and let the
solution evolve naturally to flocking. The general case d > 1 is studied in section 4.4.
The variant, with the control constraints (1.4) and (1.7), is studied in section 4.5.
Main proofs are collected in the appendix.

2. Existence and uniqueness. In this section, we provide existence and unique-
ness results for (1.1). Note that, since (v, grad,u) = div,(vu), the PDE (1.1) can be
written as

Opt + div (g 0) ((f[,u] ‘tXwU) M) = 0.

This is a transport equation in conservative form. Let us then recall some facts on
such equations.

2.1. Transport PDEs with nonlocal velocities. In this section, we consider
the general nonlocal transport PDE

(2.1) Opr + div(V]u)p) = 0,

where € P(R™) is a probability measure on R”, with n € N* fixed. The term V]
is called the wvelocity field and is a nonlocal term. Since the value of a measure at a
single point is not well-defined, it is important to observe that V[u] is not a function
depending on the value of x in a given point, as it is often the case in the setting of
hyperbolic equations in which V[u](z) = V(u(x)). Instead, one has to consider V as
an operator taking as an input the whole measure p and giving as an output a global
vector field V[p] on the whole space R™. These operators are often called “nonlocal,”
as they consider the density not only in a given point, but in a whole neighborhood.

We first recall two useful definitions to deal with measures and solutions of (2.1),
namely, the Wasserstein distance and the pushforward of measures. For more details
see, e.g., [50].

DEFINITION 2.1. Given two probability measures p and v on R™, the 1- Wasserstein
distance between p and v is

ey =sup{/Rnfd(u—V) | f e C=(®™), Lip(f) < 1},

where Lip(f) is the Lipschitz constant of the function f defined in (1.6).

This formula for the Wasserstein distance, which can be taken as a definition,
comes from the Kantorovich—-Rubinstein theorem. Note that the topology induced by
W1 on P.(R™) coincides? with the weak topology (see [50, Theorem 7.12]). We now
define the pushforward of measures.

DEFINITION 2.2. Given a Borel map v : R™ — R™, the pushforward of a measure
€ P(R™) is defined by

v#u(A) = p(y~'(4))

for every measurable subset A of R™.

2 Actually, the distance W metrizes the weak convergence of measures only if their first moment
is finite, which is true for measures with compact support.
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We now provide an existence and uniqueness result for (2.1).
THEOREM 2.3. We assume that, for every p € P.(R™), the velocity field V{u] is
a function of (t,x) with the regularity

V[]: P(R") — Lip(R") N L>®(R"),
poo— Vgl

satisfying the following assumptions:
e there exist functions L(-) and M(-) in L{

loc

(R) such that
IVIkl (@t 2) = Vgt ol < L@z =yl VIRl < M@+ [|l)

for every p € P.(R™), every t € R, and all (x,y) € R™ x R";
e there exists a function K(-) in LS (R) such that

loc
IVIk] - V[V]||L°°(R;CO(R")) < K(@Wi(p,v)

for all (p,v) € (Po(R™))2.
Then, for every u° € P.(R™), the Cauchy problem

(2.2) Opp+ div(Vulp) = 0, py,_, = p°,

has a unique solution in C°(R; P.(R™)), where P.(R™) is endowed with the weak topol-
0gy, and p is locally Lipschitz with respect to t, in the sense of the Wasserstein distance
W1. Moreover, if u° € P2¢(R™), then u(t) € P(R™) for every t € R.

Furthermore, for every T > 0, there exists Cp > 0 such that

(2.3) Wi (u(t), v(t)) < e“T' Wi (p(0),v(0))

for all solutions j and v of (2.2) in CO([0, T]; P(R™)).

Moreover, the solution p of the Cauchy problem (2.2) can be made explicit as
follows. Let ®(t) be the flow of diffeomorphims of R™ generated by the time-dependent
vector field V[p], defined as the unique solution of the Cauchy problem ®(t) = V[u(t)]o
®(t), ®(0) = Idrn, or in other words,

h®(t,x) = Viu®)(t, ®(t,z)), @(0,z)==.
Then, we have

u(t) = @) #u(0),

that is, u(t) is the pushforward of u° under ®(t).

Proof. The proof is a slight generalization of results established in [44]. We give
a detailed proof in Appendix A.1. O

Remark 4. Theorem 2.3 can be generalized to mass-varying transport PDEs, that
is, in the presence of sources (see [43]).

2.2. Application to the kinetic Cucker—Smale equation. In the case of
the kinetic Cucker—Smale equation (1.1), we have n = 2d, and for a given control y,u
the time-dependent velocity field is given by

Vo ulp@®](t, z,v) = <§[u](x,v) i+ xw<t)u(t7wav)> '
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We denote by @, ,(t) the so-called “controlled particle flow,” generated by the time-
dependent vector field V,, ,[u(t)], defined by 0; @, »(t,z) = Vi, u[p(t)](t, Puwu(t, z))
and @, ,(0,2) = x. The flow @, ,(t) is built by integrating the characteristics

(2.4) a(t) =o(t),  0(t) = Ep®l(@(t), v(t)) + X ult, z(t), v(?)),

which give the evolution of (controlled) particles: the trajectory ¢ +— (x(t),v(t)) is
called the particle trajectory passing through (z(0),v(0)) at time 0, associated with
the control y,u. From Theorem 2.3, we have the following result.

COROLLARY 2.4. Let u € L¥(R x RY x RY RY) be a control function and,
for every time t, let w(t) be a Lebesque measurable subset of R x R, Let u° €
P.(R¥xR?). The controlled kinetic Cucker—Smale equation (1.1) has a unique solution
p € COR, P(R? x RY)) such that 11(0) = u°, and moreover we have

(1(t) = B () F1°

for every t € R. Moreover, if u° € P2¢(R? x R?), then u(t) € P2(R? x RY) for every
teR, and

(2.5) supp(p(t)) = Py (t) (supp(u°)).

Remark 5. If the initial measure 1(0) has a density with respect to the Lebesgue
measure that is a function of class C* on R¢ x R?, and if the vector field is also of
class CF, then, clearly, we have u(t) = f(t)dx dv with f of class C* as well, because
of the property of pushforward of measures.

In this paper, we do not investigate further the C* regularity from the control
point of view: our control function u will be designed in a Lipschitz way with respect
to the space-velocity variables. Nevertheless, we could easily modify the definition of
u outside of the sets where u = 0 and u = 1, in order to design u as a function of
class C* that drives the solution to flocking, and that also keeps C* regularity if the
initial data is of class C* (see also Remark 8 further).

2.3. Relationship with the finite-dimensional Cucker—Smale model. In
this section, we explain in which sense the kinetic equation (1.1) is the natural limit,
as the number of agents tends to infinity, of the classical finite-dimensional Cucker—
Smale model (whose controlled version is considered in [10, 11]), and we explain the
natural relationship between them in terms of particle flow.

2.3.1. The finite-dimensional Cucker—Smale model. Consider N agents
evolving in RY, and interacting together. We denote with (z;,v;) the space-velocity
coordinates of each agent for i = 1, ..., N. The general Cucker—Smale model (without
control) is written as

Jil(t) = Ui(t),
N
B0t = = 3ol — m @D ()~ ), = LN,

Jj=1

where ¢ : R — R is a nonincreasing positive function, modeling the influence between
two individuals (which depends only on their mutual distance). This simple model,
initially introduced in [19], has many interesting features. The most interesting prop-
erty is that the model reflects the ability of the crowd to go to self-organization for
favorable initial configurations. Indeed, if the influence of each agent on the others is
sufficiently large (that is, if ¢ does not decrease too fast), then the crowd converges
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to flocking, in the sense that all variables v;(t) converge to the common mean velocity
0. By analogy with birds flocks, this phenomenon was called flocking (see [19]).

To be more precise, first observe that the velocity barycenter v = + SV u(t)
is constant in time, and that, defining the space barycenter z(t) = % Zfil x;(t), we
have #(t) = 0. Then, define I(t) = SN | |2:(t) — 2(t)|? and A(t) = SN, Jui(t) — o]
It is proved in [28, 29] that, if A(0) < fI‘OFO) ¢(x) dz, then A(t) — 0 as ¢t — +oo, that
is, the crowd converges to flocking. To the contrary, if the initial configuration is “too
dispersed” and/or the interaction between agents is “too weak,” then the crowd does
not converge to flocking (see [19]).

Many variants and generalizations were proposed in the recent literature, but it
is not our objective, here, to list them. A controlled version of (2.6) was introduced

and studied in [10, 11], consisting of adding controls at the right-hand side of the
equations in v;, turning the system into

ii (t) = U; (t),

N
@1 ) = % S 6l () — w05 (1) —vi(t)) + wit), i=1,...N,
j=1

where the controls u;, taking their values in R?, can be constrained in different ways.
Since it is desirable to control the system (2.7) with a minimal number of actions (for
instance, acting on a few agents only), in [10, 11] the concept of sparse control was
introduced. This means that, at every instant of time, at most one component of the
control is active, that is, for every time t all u;(t) but one are zero.® It was shown
how to design a sparse feedback control (¢, z,v) — u(t,z,v) steering the system (2.7)
asymptotically to flocking.

2.3.2. Towards the kinetic Cucker—Smale model. In the absence of con-
trol, the finite-dimensional Cucker—Smale model (2.6) was generalized to an infinite-
dimensional setting in measure spaces via a mean-field limit process in [14, 29, 30];
see also [23]. The limit is taken by letting the number of agents N tend to infinity.
Considering the pointwise agents as Dirac masses, it is easy to embed the dynamics
(2.6) in the space of measures, and using Corollary (2.4), we infer the following result.

PROPOSITION 2.5. Let u € L=¥(R x R? x R R%) be a control function, and, for
every time t, let w(t) be a Lebesque measurable subset of R x R?. Let u® € P(RYx R?)
be defined by p° = % Zfil 5(13,1;?) for some (29,09) € RT x R?, i =1,...,N. Then

0

the unique solution of (1.1) such that p(0) = u°, corresponding to the control x,u, is

given by

1 N
wt) =« D S
=1

where (x;(t),v;(t)), i =1,..., N, are solutions of
i (t) = vi(t),

N
bi(t) = % Z Ol (t) = i (B)]) (05 (1) = vi(E)) + Xy (@i (), vi(£)Jult, z:(t), vi(t)),

such that z;(0) = 29 and v;(0) =, fori=1,...,N.

3This property was called componentwise sparsity. Actually, in order to prevent the system from
chattering in time, also a notion of time sparsity was considered in [10, 11].
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Proof. Equation (1.1) being stated in the sense of measures, we have, for any
g € C®(R4 x RY),

0=, [ gl.v) du)(a,0) + [ gla,o) diva (wnt) ., 0)

+ [ gta0)div, (€)@, 0) + xaoe. ult. 2, 0)t) )
=0, [ g(a.v)au(t)(a,) - [ (v gradgle,0) due) o v)

— [ (€le,0) + ot 2,0t 2,0, grad g a,0) ) o 0)

and taking u(t) = % Efil 5(11(@7%@)) gives

N
% D (@), grad,g(z:(1), vi(t))) + (03(t), grad, g (z:(1), vi(t))))

’i:ll N

(€l (6),01(8)) + X i 0), vi ()l (1), (1)),
grad, g(wi(t), vi(1))) )

with
X
Eu@®(z,v) = & Z o2 (t) — 2)(v;(t) — v),

Jj=1

from which we infer the finite-dimensional Cucker—Smale system stated in the proposi-
tion (it suffices to consider functions g localized around any given particle (x;(t), v;(t))).
We conclude by uniqueness, using Corollary (2.4). d

Remark 6. In accordance with the discussion made in Remark 2 concerning
sparsity, we see clearly that the control domain w(¢), in finite dimension, represents
the agents on which one can act at the instant of time ¢. This shows that the way
to pass to the limit a sparsity control constraint on the finite-dimensional model is to
consider proportions either of the total crowd or of the space of configurations.

3. Convergence to flocking without control. In this section, we investigate
the kinetic Cucker-Smale equation (1.1) without control, that is, we assume that
u=0.

First of all, note that, as in finite dimension, the velocity barycenter
U= Jpayga v du(t) is constant in time, and the space barycenter () = [pa, ga © dpu(t)
is such that z(t) = v (see, e.g., [30, Prop. 3.1]).

In the following theorem, we provide a simple sufficient condition on the initial
probability measure ensuring flocking, in the spirit of results established in [14, 29].
The main difference with respect to [29] is that we study the size of the support,
instead of the variance of positions and velocities. Estimates given here generalize
results of [14] without the assumption of being in the flocking region.

THEOREM 3.1. Let pi° € P(R? x RY). We set 2° = [p,xdp®(z,v) and v =
fRdvduo(x,v) (space and velocity barycenters of u°), and we define the space and
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velocity support sizes

X% =inf{X >0 |supp(p’) C B(z°, X) x R?},
VO =inf{V >0 |supp(u’) C R? x B(v,V)}.

Let u be the unique solution of (1.1) (with u =0) such that u(0) = u°. If

(3.1) VY < /+°O ¢(2x) du,

X0

then there exists Xpr > 0 such that
(3.2) supp(u(t)) € B(z° + o, Xar) x B (@, v0e7¢<2XM>t)

for every t = 0. In particular, p(t) converges to flocking as t tends to +00.

In particular, every u® with support satisfying (3.1) belongs to the flocking region.

Note that, under the sufficient condition (3.1), according to (3.2), the size of the
velocity support converges exponentially to 0. This result can be easily proved from
corresponding results established in finite dimension in [14, 29] (using mean-fields
limits), where the estimate (3.3) of Lemma 3.2 below is proved independently of the
number of agents. Hereafter, we rather use the particle flow and provide a simple
proof.

Before proving Theorem 3.1, we prove an auxiliary lemma giving some insight on
the evolution of the size of supports.

LEMMA 3.2. Given a solution u of (1.1) (withuw =0), for every time t, we define

X(t) =inf {X >0 | supp(u(t)) C B(z(t), X) x Rd} ,
V(t) =inf{V >0 | supp(u(t)) C RY x B(7, V)}.

The functions X () and V(-) are absolutely continuous, and we have
(3.3) X)) <V(E), V()< —-82X1)V(¢t)

for almost every t > 0.

Proof. Since displacements of the support have bounded velocities, both X (-)
and V(-) are absolutely continuous functions, and hence are differentiable almost
everywhere.

From section 2.2, and in particular from (2.5) (with u = 0), the support of p(?)
is the image of the support of ;(0) under the particle flow ®(¢) at time ¢. De-
noting by (x(-,2%,v°),v(-,2°,v%)) the (particle trajectory) solution of (2.4) (with
u = 0) such that (z(0,2°,0%),v(0,2°,v°%)) = (2% 0°) at time 0, this means that
(x(t,2°,0°),v(t, 2°,0%)) € supp(u(t)), for every (z°,0°) € supp(u?), and it follows
that

X (t) = max {||z(t,2° %) = 2(®)|| | (2°,0°) € supp(u°)} ,
V(t) = max {{Ju(t, 2%, v") — 0 | (2%,v") € supp(u°) }

for every t > 0. Note that the maximum is reached because it is assumed that supp(u?)
is compact. For every t > 0, we denote by K;X C supp(u®) (resp., K C supp(u°))
the set of points (2°,v%) such that the maximum is reached in X (t) (resp., in V(¢)).
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By definition, we have X ()2 = ||z(t, 2%, v%) — 2(¢)|? for every (2°,2°) € KX, and
it follows from the Danskin theorem (see [20]) and from the fact that d,x(t, 2%, v°) =
v(t,2°,0%) that

X(OX () = max {(a(t,2%, %) = 2(t), v(t, ", 0°) — 5) | (a°,0°) € K},
and therefore, using the Cauchy—Schwarz inequality, we infer that
X(t) < |vt,2%,0%) — 0| < V().

Similarly, we have V (t)2 = ||v(t,2°,v°) — 9% for every (z°,v°) € K. Note that,
by the first definition of V'(¢), we have supp(u(t)) € R? x B(v, ||v(t, 2°,2°) — o).
Using again the Danskin theorem and (2.5) (with u = 0), we have

V(t)V(t) max{< (t, 2%, v )—ﬁ,f[u(t)]( (t, 2°,0%), v(t, 2° UO))> | (2°,2°) € Ktv},

and, using (1.2), we have

<§[u(t)](x(t, 29, 0°), v(t, 2°,0°)), v(t, 2°,0°) — 17>
=/ o) o([l(t, 2%, 0°) = yl)(w — vt 2°,0°), v(t, 2%, 0°) = 0) du(t) (y, w)

for every t > 0. In the integral we have (y, w) € supp(u(t)), and hence w € B(v, V(1))
and therefore (w — v(t,2°%,0°),v(t,2°% v°) — ¥) < 0 by convexity, because v(t, 2%, %)
belongs to the boundary of the ball B(v,V(t)), by construction. Since ¢ is non-
increasing and ||z (¢, 2°,v°) — y|| < 2X(t) for every (y,w) € supp(u(t)), we infer that

() ((t, 20, 00), o(t, 2°, %)), v(t, 2°,0°) — 1)
< B2X (1)) / (w — v(t,2°,0°), v(t, 2%, 0) — B) du(t) (4, v).

supp(4(t))

Since fupp(u(t wdp(t)(y,w) = v and fupp(u(t y dp(t)(y, w) =1, it follows that
(Elu®)](@(t,2°,0%), v(t, 2% 0°)), v(t,2°,0") = B) < —d(2X(1))V ()%

Finally, we conclude that V() < —¢(2X (¢))V (t). O

Let us now prove Theorem 3.1.

Proof of Theorem 3.1. We prove (3.2), which implies the flocking of 1. Using (3.1),
we can prove that there exists X5, > 0 such that X () < Xy and V(t) < V0 ¢(Xm)?
for every ¢t > 0, with X (¢), V(t) defined in Lemma 3.2.

The reasoning is similar to the proof of [29, Theorem 3.2]. Using (3.1), since ¢ is
nonnegative, there exists X, > 0 such that V0 < XM ¢(2x) dz. By contradiction,
let us assume that X (T") > X, for some T' > 0. Usmg (3.3), we infer that

T . X(T) XM
- / S2X (1) X (1) dt = VO — / 6(20)de <VO— [ 6(22)dz <0,
0 X(0) X0

which contradicts the fact that V' (¢) > 0 for every ¢ > 0. Therefore X (t) < Xy for ev-
ery t > 0. Since ¢ is nonincreasing, we have V (t) < —p(2X (¢))V (t) < —¢(2X )V (1),
and thus V(t) < V0e—¢Xm)t for every t > 0. The theorem is proved. a
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In order to prove our main results, we will use Theorem 3.1 as follows.

COROLLARY 3.3. Let u° € P.(R? x RY). Assume that there exist (2°,0°) €
R?x RY and some positive real numbers X° and VO such that supp(u®) C B(2°, X0) x
B(°, VY. If

+oo
(3.4) 20 < /~ ¢(2z) dz,
2X0
then p converges to flocking as t tends to +oc0.
In particular, every u° with support satisfying (3.4) belongs to the flocking region.
Proof. It suffices to note that the barycenter (z°, ) of u° is contained in B(2°, X)x
B(v°, V), and hence that supp(u®) C B(z°,2X) x B(9,2V). O

4. Proof of Theorem 1.2. In this section, we prove Theorem 1.2.

We first establish some useful estimates on the interaction kernel £[u] in sec-
tion 4.1, for any measure u. These technical estimates will be useful in the proof of
the main theorem.

In section 4.2, we provide some general estimates on absolutely continuous solu-
tions of (1.1).

After these preliminaries, we focus on the proof of Theorem 1.2. Given any initial
condition pg, our objective is to design a control satisfying the constraints (1.4) and
(1.5), steering the system (1.1) to flocking.

The strategy that we adopt is the following. We first steer the system to the
flocking region (defined in Definition 1.1) within a finite time 7" by means of a suit-
able control. This control is piecewise constant in time: we divide the time interval
[0,T] into subintervals [tx,tx4+1) and the control is computed as a function of p(ty).
After reaching the flocking region at time 7', we switch off the control and let the
uncontrolled equation (1.1) (with u = 0) converge (asymptotically) to flocking.

The time T depends on the initial distribution p° of the crowd: the more “dis-
persed” uY is, the larger T is. Of course, if u° already belongs to the flocking region,
then it is not necessary to control the equation (hence T'= 0 in that case).

We proceed in two steps. In section 4.3, we design an effective control y,u in
the one-dimensional case d = 1. In section 4.4, we extend the contruction to any
dimension d > 1. Section 4.5 is devoted to the proof of the variant of Theorem 1.2,
with control constraints (1.4) and (1.7).

4.1. Preliminary estimates on the interaction kernel &[u]. Let p €
P.(R? x RY) be arbitrary. We study the dependence on the support of y of the
interaction kernel £[u] defined by (1.2).

Recall that the space of configurations (x, v) is R x R?. We consider the canonical
orthonormal basis (ey,...,esq) of R? x R? in which we denote = (z1,...,z4) and
v=(v1,...,0q).

For simplicity of notation, we assume that, for every k € {1,...,d}, the kth
component of the spatial variable satisfies x;, € [0, X}], eventually after a translation
in the spatial variables, where X > 0 is the size of the support in the variable .
Similarly, we assume that vy € [0, V], where Vj, > 0 is the size of the support in
the variable vg. Note that, with this choice, we have invariance of the positive space
[0, +00)? x [0, +00)?.

We start with an easy lemma.

LeEMMA 4.1. Let p € P(R? x RY) be such that supp(u) € R? x [0, Vi]F=1 x
[0, V3] x [0, Vi]?=F for some Vi =0 and Vi, > 0. Then, for every (z,v) € R x R? such
that v, = Vi (resp., vy < 0), we have (E[p](z,v),er) <0 (resp., ([p](z,v),ex) =0).
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(2,0)

supp(p1)

Fia. 1. Vector field &[p].

The lemma is obvious by using the expression

[l (z0) = / / Ol =yl o) du ),

since ¢ is nonnegative and w € supp(u) implies that wy < Vi, hence {((w — v),e) =
wy, — vp < 0. Lemma 4.1 implies that, if (z,v) ¢ R x [0, V.]*=! x [0, V4] x [0, Vi]?—F,
then the vector field £[u] is pointing inwards (see Figure 1). Note that this is in
accordance with the fact that the velocity part of supp(u) has a trend to shrink, as
proved (more precisely) by the differential inequality (3.3) of Lemma 3.2.

Let us now establish a more technical result, which will be instrumental in order
to prove Theorem 1.2.

LEMMA 4.2. Let pu € Pe(R% x RY) with velocity barycenter v = (v1,...,04). We
assume that there exist & € R, a real number aj, and nonnegative real numbers X,
Vi, Vi such that

supp(p) C B(&, X) x [0, Vi]*71 x [ag, ar + Vi] x [0, Vi]47F.

Let (z,v) € R x R? be such that vy, — vy, > r+ with

__ 900) )
(41) 7’+ = M(Vk +ap — Uk).

Then ([u)(z,v), (vs — Tk )ex) < 0.
Similarly, let (z,v) € R x R? be such that v, — vy, < —1~ with

_ #(0) _
(4.2) rTo= ¢(O)+¢(2X)(vk ay).
Then (&[u](z,v), (v, — Tk )ex) < 0.

Proof. We prove the result with ax = 0 only, by observing that the case ap # 0
can be recovered by translation of the kth velocity variable. We give the proof of the
first case only, in which v, — vy > 7+ (for the second case, it suffices to use the change
of variable vy — Vi, — v). Observe that r™ > 0, then in particular vy — vy > 0.
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We want to prove that
(4.3) / o1z — yl) (wx — vi) (v — B) dpa(y, w) < 0.
R4 x R4
Writing wg — vk = (wg — (U +77)) + (0 +71) — vg), and noting that
/ oz — ) (@ + 1) — vg) ok — 8) dpy, w) < 0,
Rd xRd

since ¢ is nontrivial and nonnegative, ((0x +r1) —vy) < 0, vy — U > 0, and since p is
a measure with positive mass, it follows that, to prove (4.3), it suffices to prove that

(4.4) / S|l — yl) (wi — (@ + 7)) (v — &) dp(y, w) < 0.
R xR4
The space R? x R? is the union of the three (disjoint) subsets A, B, and C' defined
by
{(yw) € RTX R | g + 77" <},
{(y,w) e R x R | 0, < wp < O +77},
{(y,w) e R x R | wy, < T, }.

QW =
I

Note that, since (wy, — (0 +7r7)) < 0 in B and v, — 0y > 0, we have

/B ol — yl)(we — (B + 1)) 0k — B) dpa(y, w) < 0.

As a consequence, we will prove (4.4) by establishing the (stronger) inequality

(4.5) /A o1l — ), — (@ + 7))ok — ) dia(y )
< / &1l — yll) (k + 1) — wi) ok — B8 dply, w).
C

Noting that ¢(2X) < ¢(||lz — y||) < ¢(0) since ¢ is decreasing and ||z — y|| < 2X, and
using the definitions of A and of rT, we get

/A &1l — ylI) (k. — (5 + 1)) vk — ) da(y, )

$(0)p(2X)

< u(A)p(0)(Vie — (0r + 1)) (v, — t) = HA SO T o)

(Wi — t) (v — Tr),
and

[ o=y (@)= 0) iy ) > 62) [ @) on=01) d(y. ).
Since vy — U > 0 and ¢(2X) > 0, to prove (4.5), it suffices to prove that

(4.6) u(A)%(Vk — ) = p(A)rt < /c(fzk — wg) du(y, w).

By definition of the velocity barycenter o of p, we have fRded (w—10,z)du(y,w) =0,
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for any z € R%. Choosing z = ey, we get that

(4.7) /A (wk — k) dp(y, w) + / (wx — k) dp(y, w) = /C (0k — wi) du(y, ).

B

By definition of the sets A, B, and C, all integrals in (4.7) are nonnegative, and in
particular we infer that

/(w;~C — ) dp(y, w) < / (U — wg) du(y, w).
A c

Since wy, — U = T in A, the inequality (4.6) follows. The lemma is proved. d

4.2. Estimates on the solutions of (1.1) with control. Recall that the space
barycenter Z(t) and the velocity barycenter (¢t) of u(t) are defined by (1.3). Due to
the action of x,u, the velocity barycenter is not constant. We have the following
result.

LEMMA 4.3. Let i € CO(R,P.(R% x RY)) be a solution of (1.1). We have

B =o(t),  B(t) = / s 0

for every t € R.
Proof. Proceeding as in the proof of Proposition 2.5, considering (1.1) in the sense
of measures, we compute

() = 0, /R (b)) = /R i) dut) (o,

_ / v dp(t) (,v) = T (1)
R4 xRd

for every k € {1,...,d}. Similarly, using the fact that [;, p.&[u]dp = 0 (by anti-
symmetry), we get

v (t) = O /Rd » v dp(t)(z,v) = /]Rd y Xow(t) Uk (t, 2, 0) du(t) (z,v)

for every k € {1,...,d}. O

Let us now consider solutions p(t) = f(t) dz dv of (1.1) that are absolutely con-
tinuous. Let us then estimate the evolution of the L> norm of f(¢).

LEMMA 4.4. Let p= f dzdv € CO°(R, P2¢(R? x R?)) be a solution of (1.1), with
a Lipschitz control x,u. For every p € [1,+00], we have the estimate

(4.8)
d p—1 .
Eﬂf(t’ 5 M Lr e xRy < THf(t, S e@axray (@(0)d + [[divy (w(t, -5 ) Lo w(e)))

or every t € R, with the agreement that =L — 1 for p = 400.
p

Proof. The proof is a generalization of the proof of [30, Proposition 3.1]. Using
(1.1), we have

d
4.9 —/ fPdxdv
( ) dt RA xR

i / PV o, grad, f) da dv — p / £ iy, (€1f)f) dac dv
R4 xRd R4 x R4

_p/ fp_ldivv(xwuf) dx dv.
R4xR4
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Let us compute the three terms on the right-hand side of (4.9). The first term is equal
t0 — Jpaypa dive(fPv) dzdv and hence is equal to 0 since fP has compact support.
For the second term, noting that fP~1div,(&[f]f) = fPdiv,(E[f]) + fPHE[f], Vo f),
and that

div, (E[f1/7) = divo (E[DSP + €[f], Vo f?) = divy (€[N 7 + pfP~HEf], Vo ),

we infer that

pfP ivy (E[£1F) = (p — 1) P divy (E[f]) + div, (E[£17) -
It follows that

» / vy (Ef1f) dadv| = (p— 1)
R4 xRd

[ (el dedo
R4 xRd

< (P = DI gt v (LA o tsupp(r)-

Similar estimates are done for the third term by replacing &[f] with x.u, which is a
Lipschitz vector field. Using (4.9), we get

d p—1 . .
aﬂf”m(n«dxn@d) < THfHLP(Rded) ([1dive (€[N Lo supp(r)) + 1dive ()] oo ey ) -

Finally, noting that

0. | <z><||x—y|><wk—mf(y,w)dydw\ - }— [ ol =yl wdyae
R4 x R4 R4 x R4

< ¢(0),

for every k € {1,...,d}, it follows that ||div, (§[f])||Le(supp(s)) < ¢(0)d, and this
yields (4.8). O

4.3. Proof of Theorem 1.2 in the one-dimensional case. Throughout this
section, we assume that d = 1.

We first define the fundamental step S of our algorithm in section 4.3.1. We prove
in section 4.3.2 that a finite number of iterations of this fundamental step S provides
convergence to flocking.

4.3.1. Fundamental step S. Hereafter, we define the fundamental step S of
our strategy. The strategy takes, as an input, a measure u’ = pu(0) (absolutely
continuous) standing for the initial data of (1.1), and provides, as outputs, a time
T° and a measure u' = p(T°) (which will be proved to be absolutely continuous),
standing for the time horizon and the corresponding solution of (1.1) at time 7° for
some adequate control yu.

In the definition below, the bracket subscript stands for the index of a given
sequence. It is used in order to avoid any confusion with coordinates subscripts.

Definition of the control x,u along the time interval [0, T°] (fundamental step S).
In order to define the control, we need to define, at every time ¢, the control set w(t)
(on which the control acts), and the control force u(t, z,v) for every (x,v) € w(t). We
are actually going to set

v —0(0)

u(t, z,v) = —W“)m

for every t € [0,7°], and every (x,v) € R? x R%, where the function 1, constructed
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F1G. 2. Definition of 9.

below, is piecewise constant in t for (x,v) fixed, continuous, and piecewise linear in
(z,v) for t fixed (see Figure 2), and where the control set w(t) is piecewise constant
in ¢.

Since the construction of the control is quite technical, we first provide an intuitive
idea of how to define it. According to Lemma 4.2, the set R x [o(t) —r~ (¢), v(t)+r(¢)]
is invariant under the particle flow dynamics, and therefore, inside this invariant set,
it is not useful to act, and hence we set u = 0 there. Outside of that set, we want
to push the population inwards. Since the invariant set is variable in time, we make
precise estimates to have a larger set that is invariant on the whole interval [0,77].
Since the population outside of such a set can have a mass larger than the constraint
¢, due to the control constraint (1.4) it is not possible to act on that population in
its whole at any time ¢, and our strategy consists of splitting the domain into “slices”
Q;(t) such that each slice contains a mass §, and then we will act on each of those
slices, on successive small time intervals. With precise estimates on the displacement
of mass, we will then check that §2;(t) satisfies the constraint p(£2;(t)) < ¢ for every
t €1[0,79.

We now give a more precise definition of the control. Let pu® = f0drdv €
P2(R x R) be an initial datum. Using a translation, we assume that supp(u®) C
[0, X9 x [0, V9], where X° > 0 is the size of the support in the variable x and V° > 0
is the size of the support in the variable v. By defining a Lipschitz control x,u below,
we have that there exists a unique solution p of (1.1) such that u(0) = u°, which is
absolutely continuous. We then write that supp(u(t)) C [0, X (¢)] x [a(t), a(t) + V(¢)],
where

X(t) = max{lz| | (z,v) € supp(u(t))},  a(t) =min{fv| | (z,v) € supp(u(t))},
V(t) = max{[v| | (2,v) €supp(u(t))} — a(t),
Z(t) =X(t)+ W(t)

with? X (0) = X9, V(0) = V°, and a(0) = 0.

40Observe that Z(t) is a rough estimate of the size of the support in the space variable at time
t+ 1, since X(t+1) < X(t) +V(t) = Z(t).
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Let 9(t) € (a(t),a(t)+V(t)) be the velocity barycenter® of u(t). We set 2° = v(0).
We define the functions

= —¢(0) a(t) —v = 1 a(t) —a —v
o) = S sz (VO o) 00, 50 = 5V + e — o ()~ (1),
_ o d)(O) v —a - — 1 v —a — o
)= gy r ey P —a®) B () = 3(0() —alt) —a™(0)),
a(t) = max (o™ (t),a” (1)), B(t) = max (B7(t),87 (1)),

and we set o’ = a(0) and £Y = £(0).

We divide the set [0, X°] x [0,V°] into n = [2] (integer part) sets of the form
Q?i] = [zp—q), 2] x [0, V9] such that® uO(Q?i]) < §, and the control sets wy;) as the
union of two rectangles: wfg] = [z — 2¢0, xp) + 269 x [0¥ +a® + 8%, 90 + a® + 48°]
and Wy = [Tp—1] — 250,95[1-] + 269 x [0° — a® —48°, 9% — a® — 39]. We choose £ > 0
as the largest positive real number” such that

,LLO([$[Z'] — 350, Zli+1] T 360] x [0, VO]) <c Viedl,...,n}.

We define the functions ), ¢ = 1,...,n, on R x R, as in Figure 2. Define
Yy =1 in both rectangles [z;_1] — %,z 4+ €°] x [0° + o +26°, 0" + o + 34°] and
[T[i—1] — €9, T+ g% x [0 — a® — 38°,0° — a® — 28°]. Then define Yr;) = 1 linearly
decreasing to 0 up to the boundary of wy;.

We now define the (positive) time T° by

0 0
0 __ . g ﬁ
T = min (W,Z—C,:l),

and consider a regular subdivision of the time interval [0, 7°] into n subintervals,

0.7 = [L=0E, 1),

e