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CONTROL TO FLOCKING OF THE
KINETIC CUCKER–SMALE MODEL∗

BENEDETTO PICCOLI† , FRANCESCO ROSSI‡ , AND EMMANUEL TRÉLAT§

Abstract. The well-known Cucker–Smale model is a macroscopic system reflecting flocking, i.e.,
the alignment of velocities in a group of autonomous agents having mutual interactions. In the present
paper, we consider the mean-field limit of that model, called the kinetic Cucker–Smale model, which
is a transport PDE involving nonlocal terms. It is known that flocking is reached asymptotically
whenever the initial conditions of the group of agents are in a favorable configuration. For other
initial configurations, it is natural to investigate whether flocking can be enforced by means of an
appropriate external force, applied to an adequate time-varying subdomain. In this paper we prove
that we can drive to flocking any group of agents governed by the kinetic Cucker–Smale model, by
means of a sparse centralized control strategy, and this, for any initial configuration of the crowd.
Here, “sparse control” means that the action at each time is limited over an arbitrary proportion of
the crowd, or, as a variant, of the space of configurations; “centralized” means that the strategy is
computed by an external agent knowing the configuration of all agents. We stress that we do not
only design a control function (in a sampled feedback form), but also a time-varying control domain
on which the action is applied. The sparsity constraint reflects the fact that one cannot act on the
whole crowd at every instant of time. Our approach is based on geometric considerations on the
velocity field of the kinetic Cucker–Smale PDE, and in particular on the analysis of the particle flow
generated by this vector field. The control domain and the control functions are designed to satisfy
appropriate constraints, and such that, for any initial configuration, the velocity part of the support
of the measure solution asymptotically shrinks to a singleton, which means flocking.

Key words. Cucker–Smale model, transport PDEs with nonlocal terms, collective behavior,
control
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1. Introduction. In recent years, the study of collective behavior of a crowd
of autonomous agents has drawn great interest from scientific communities, e.g., in
civil engineering (for evacuation problems), robotics (coordination of robots), com-
puter science and sociology (social networks), and biology (crowds of animals). In
particular, it is well known that some simple rules of interaction between agents can
provide the formation of special patterns, like formations of bird flocks, lines, etc.
This phenomenon is often referred to as self-organization. Beyond the problem of
analyzing the collective behavior of a “closed” sytem, it is interesting to understand
what changes of behavior can be induced by an external agent (e.g., a policy maker)
to the crowd. In other words, we are interested in understanding how one can act on
a group of agents whose movement is governed by some continuous model of collective
behavior. For example, one can try to enforce the creation of patterns when they are
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4686 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

not formed naturally, or break the formation of such patterns. This is the problem of
control of crowds, that we address in this article for the kinetic (PDE) version of the
celebrated Cucker–Smale model introduced in [19].

From the analysis point of view, one needs to pass from a big set of simple rules
for each individual to a model capable of capturing the dynamics of the whole crowd.
This can be solved via the so called mean-field process, that permits us to consider
the limit of a set of ordinary differential equations (one for each agent) to a PDE for
the density of the whole crowd.

In view of controlling such models, two approaches do emerge: one can either ad-
dress a control problem for a finite number of agents, solve it, and then pass to the limit
in some appropriate sense (see, e.g., [5, 24, 25]), or one can directly address the control
problem for the PDE model; this is the point of view that we adopt in this paper.

In this paper, we consider the controlled kinetic Cucker–Smale equation

(1.1) ∂tμ+ 〈v, gradxμ〉+ divv ((ξ[μ] + χωu)μ) = 0,

where μ(t) is a probability measure on Rd × Rd for every time t (if μ(t, x, v) =
f(t, x, v) dx dv, then f is the density of the crowd), with d ∈ N

∗ fixed, and ξ[μ]
is the interaction kernel, defined by

(1.2) ξ[μ](x, v) =

∫
Rd×Rd

φ(‖x− y‖)(w − v) dμ(y, w)

for every probability measure μ on Rd × Rd, and for every (x, v) ∈ Rd × Rd. The
function φ : R → R is a nonincreasing, Lipschitz continuous, and positive function,
accounting for the influence between two particles, depending only on their mutual
distance. The term χωu is the control, which consists of

• the control set ω = ω(t) ⊂ R
d × R

d (on which the control force acts);
• the control force u = u(t, x, v) ∈ Rd.

We stress that the control is not only the force u, but also the set ω on which the
force acts. Physically, u represents an acceleration (as in [10] for the finite-dimensional
model), and ω(t) is the portion of the space-velocity space on which one is allowed to
act at time t. It is interesting to note that, in the usual literature on control, it is not
common to consider a subset of the space as a control.

There are many results in the literature treating the problem of self-organization
of a given crowd of agents, like flocks of birds (see [3, 8, 16, 17, 38, 42, 49, 51]),
pedestrian crowds (see [18, 37]), robot formations (see [36, 39]), or socioeconomic
networks (see [4, 32]). A nonexhaustive list of references on the subject from the
scientific, biological, and even political points of view are the books [2, 7, 33, 35]
and the articles [15, 34, 40, 41, 46, 45, 49]. In particular, in [41, 45] the authors
classify interaction forces into flocking centering, collision avoidance, and velocity
matching. Clearly, both the Cucker–Smale and the kinetic Cucker–Smale models deal
with velocity matching forces only.

A fundamental tool for this topic is the notion of mean-field limit, where one
obtains a distribution of a crowd by considering a crowd with a finite number N
of agents and by letting N tend to infinity. The result of the mean-field limit is
also called a “kinetic” model. For this reason, we call the model in (1.1) the kinetic
Cucker–Smale model. The mean-field limit of the finite-dimensional Cucker–Smale
model was first derived in [30] (see also [14, 29]). Other mean-field limits of alignment
models are studied in [8, 13, 12, 21, 47]. Many other mean-field limits of models
defined for a finite number of agents have been studied (see, e.g., [9, 22, 48]).
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CONTROL OF KINETIC CUCKER–SMALE 4687

Assuming now that one is allowed to apply an action on the system, it is very
natural to try to steer the system asymptotically to flocking. This may have many
applications. We refer the reader to examples of centralized and distributed control
algorithms in [6] (see also the references therein). All these examples are defined
for a finite number of agents, possibly very large. Instead, the control of mean-field
transport equations is a recent field of research (see, e.g., [24, 31]; see also stochastic
models in [26]).

Note that (1.1) is a transport PDE with nonlocal interaction terms. As is evident
from the expression of ξ[μ], the velocity field ξ[μ] acting on the v variable depends
globally on the measure μ. In other words, if μ has a density f , then ξ[μ](x) is not
uniquely determined by the value of f(x), but it depends on the value of f in the
whole space Rd ×Rd. Existence, uniqueness, and regularity of solutions for this kind
of equation with no control term (u = 0) have been established quite recently (see
[1]). We will establish the well-posedness of (1.1) in section 2.

In the present paper, our objective is to design an explicit control χωu, satisfy-
ing realistic constraints, able to steer the system (1.1) from any initial condition to
flocking. Let us first recall what flocking is.

Throughout the paper, we denote by P(Rd ×Rd) the set of probability measures
on Rd×Rd, by Pc(R

d×Rd) the set of probability measures on Rd×Rd with compact
support, and by Pac

c (Rd×Rd) the set of probability measures on Rd×Rd with compact
support and that are absolutely continuous with respect to the Lebesgue measure. We
denote with supp(μ) the support of μ.

Given a solution μ ∈ C0(R,Pc(R
d ×Rd)) of (1.1), we define the space barycenter

x̄(t) and the velocity barycenter v̄(t) of μ(t) by

(1.3) x̄(t) =

∫
Rd×Rd

x dμ(t)(x, v), v̄(t) =

∫
Rd×Rd

v dμ(t)(x, v)

for every t ∈ R. If there is no control (u = 0), then v̄(t) is constant in time. If
there is a control, then, as we will see further, we have ˙̄x(t) = v̄(t) and ˙̄v(t) =∫
ω(t) u(t, x, v) dμ(t)(x, v).

Definition 1.1. Let μ ∈ C0(R,Pc(R
d × Rd)) be a solution of (1.1) with u ≡ 0.

We say that μ converges to flocking if the two following conditions hold:
• there exists XM > 0 such that supp(μ(t)) ⊆ B(x̄(t), XM ) × Rd for every
t > 0;

• Λ(t) =
∫
Rd×Rd |v − v̄|2 dμ(t) −→ 0 as t→ +∞.

We also define the flocking region as the set of configurations μ0 ∈ Pc(R
d ×Rd) such

that the solution of (1.1) with u ≡ 0 and initial data μ(0) = μ0 converges to flocking.
Note that, defining the velocity marginal of μ(t) by μv(t)(A) = μ(t)(Rd × A) for

every measurable subset A of Rd, this definition of flocking means that μv(t) converges
(vaguely) to the Dirac measure δv̄, while the space support remains bounded around
x̄(t).

Intuitively, μ(t) is the distribution at time t of a given crowd of agents in space
x and velocity v. Asymptotic flocking means that, in infinite time, all agents tend to
align their velocity component, as a flock of birds that, asymptotically, align all their
velocities and then fly in a common direction. Flocking can also be more abstract
and the variable v can represent, for instance, an opinion: in that case flocking means
consensus. Then, the techniques presented here may be adapted for similar problems
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4688 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

for consensus (reaching a common value for all state variables) or alignment (reaching
a common value in some coordinates of the state variable).

In order to steer a given crowd to flocking, the control term in (1.1) means that
we are allowed to act with an external force, of amplitude u(t, x, v), supported on the
control domain ω(t). Our objective is then to design appropriate functions t �→ u(t, ·)
and t �→ ω(t) leading to flocking. In order to reflect the fact that, at every instant
of time, one can act only on a small proportion of the crowd, with a force of finite
amplitude, we impose some constraints on the control function u and on the control
domain ω.

Let c > 0 be arbitrary. We consider the class of controls χωu, where
u ∈ L∞(R × Rd × Rd) and ω(t) is a measurable subset of Rd × Rd for every time
t, satisfying the constraints

(1.4) ‖u(t, ·, ·)‖L∞(Rd×Rd) � 1

for almost every time t and

(1.5) μ(t)(ω(t)) =

∫
ω(t)

dμ(t)(x, v) � c

for every time t.
The constraint (1.4) means that the control function (representing the external

action) is bounded, and the constraint (1.5) means that one is allowed to act only
on a given proportion c of the crowd. In (1.5), μ(t) is the solution at time t of
(1.1), associated with the control χω. The existence and uniqueness of solutions will
be established while assuming that χωu ∈ L∞([0,+∞),Lip(Rd × Rd,Rd)), where
Lip(Rd × Rd,Rd) is the space of Lipschitz continuous functions defined by

Lip(Rd × R
d,Rd) =

{
f ∈ C0(Rd × R

d,Rd) | ∃K = K(f) > 0,Lip(f) � K
}

with

(1.6) Lip(f) = sup

{
|f(x)− f(y)|

‖x− y‖ | x, y ∈ R
d × R

d, x 
= y

}
.

As a variant of (1.5), we will consider the following constraint as well:

(1.7) |ω(t)| =
∫
ω(t)

dx dv � c

for every time t.
The fact that the action is limited either to a given (possibly small) proportion

of the crowd, or the space of configurations, is related to the concept of sparsity, in
which one aims at controlling a system (or, reconstructing some information) with a
minimal amount of action, like a shepherd dog trying to maintain a flock of sheep.

Note that it is obviously necessary to allow the control domain to move because, if
the control domain ω is fixed (in time), then it is not difficult to construct initial data
μ0 that cannot be steered to flocking, for any control function u. Indeed, consider
the example of a particle model without control that is not steered to flocking1 and
consider a fixed control set ω, disjoint of the trajectories of the system (for example,
a control set with velocity coordinates that are larger than the maximum of the
velocities of the particles). Then, replace the particles with absolutely continuous

1An example in dimension one with two agents for the finite-dimensional Cucker–Smale model
is given in [19].
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CONTROL OF KINETIC CUCKER–SMALE 4689

measures centered around them, that is, (x, v) is replaced with χ[x−ε,x+ε]×[v−ε,v+ε].
Choosing ε sufficiently small, the dynamics of the resulting measure with the same ω
is close to the dynamics of the particle model, hence it does not converge to flocking.

In this paper, we will prove the following result.
Theorem 1.2. Let c > 0 be arbitrary. For every μ0 ∈ Pac

c (Rd ×R
d), there exists

a control χωu ∈ L∞([0,+∞),Lip(Rd × Rd,Rd)), satisfying the constraints (1.4) and
(1.5) (or, as a variant, the constraints (1.4) and (1.7)), such that the corresponding
unique solution μ ∈ C0(R;Pac

c (Rd×Rd)) of (1.1) with μ(0) = μ0 converges to flocking
as t tends to +∞.

Note that, given any initial measure that is absolutely continuous and of compact
support, the control χωu that we design generates a solution of (1.1) that remains
absolutely continuous and of compact support. It is important to note that, from
a technical point of view, we will be able to prove existence and uniqueness of the
solution as long as the control function χωu remains Lipschitz with respect to state
variables. Since μ converges to flocking, μ becomes singular only in infinite time.

Remark 1. The proof of Theorem 1.2 is based on the construction of an ex-
plicit control χωu steering the system (1.1) to flocking, that we describe in section 4.
Moreover, this control shares the following properties:

• ω(t) is piecewise constant in t;
• u(t, x, v) is piecewise constant in t for (x, v) fixed, continuous, and piecewise
linear in (x, v) for t fixed;

• for any initial configuration μ0 ∈ Pac
c (Rd×Rd), there exists a time T (μ0) � 0

such that u(t, x, v) = 0 for every t > T (μ0).
Note that the control that we design is “centralized,” in the sense that the external
agent acting on the crowd has to know the configuration of all agents, at every instant
of time.

As we will see, the solution μ(t) of (1.1) is exactly the pushforward of the initial
measure under the controlled particle flow, which is the flow of a given vector field
involving the control term. Our strategy for designing a control steering the system
to flocking consists in interpreting it as a particle system and in choosing the control
domain and the control function such that the velocity field points inwards to the
domain, so that the size of the velocity support of μ(t) decreases (exponentially) in
time. Our construction goes by considering successive (small enough) intervals of
times along which the control domain remains constant, whence the property of being
piecewise constant in time.

The third item above means that the control is not active for every time t > 0.
Indeed, we prove in Theorem 3.1 that, for the uncontrolled equation (1.1) (i.e., with
u ≡ 0), if the support of μ(t0) is “small enough” at some time t0, then μ converges to
flocking, without requiring any action on the crowd. As a consequence, if the initial
crowd is in a favorable configuration at the initial time (if it is not too much dispersed),
then the crowd will naturally converge to flocking, without any control. Then our
control strategy consists in applying an appropriate control, until μ(t) reaches the
flocking region defined in Definition 1.1, in which its support is small enough so that
μ converges naturally (without any control) to flocking. This means that we switch off
the control after a time T (μ0), depending on the initial distribution μ0; it is expected
that T (μ0) is larger as the initial measure μ0 is more dispersed.

We stress that, in our main result (Theorem 1.2), we do not only prove the
existence of a control driving any initial crowd to flocking. Our procedure, described
in section 4, is constructive. In our strategy, we construct a control action u depending
on (t, x, v), and we design a control domain ω depending on μ(t). Hence, in this sense,
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4690 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

we design a sampled feedback. The control domain is piecewise constant in time, but
this piecewise constant domain is designed as a function of μ.

Remark 2. In [10, 11], the concept of componentwise sparse control was intro-
duced, meaning that, for a crowd of N agents whose dynamics are governed by the
finite-dimensional Cucker–Smale system, one can act, at every instant of time, only
on one agent. At this step an obvious remark has to be done. In finite dimension,
it is intuitive that the action on only one agent can have some consequences for the
whole crowd, because of the (even weak) mutual interactions. In infinite dimension,
this property is necessarily lost and should be replaced by the action on a small pro-
portion of the population. More precisely, assume that, for the finite-dimensional
model, one is allowed to act on a given proportion c of the total number of agents.
Then, when the number of agents tends to infinity, the same constraint can be for-
mally defined, giving a meaning to the limit of this type of sparsity constraint. We
will give in section 2.3 a precise relationship between the finite-dimensional and the
infinite-dimensional models.

By the way, note that Theorem 1.2 with the control constraints (1.4) and (1.7)
can be compared with the results of [10, 11], in which sparse feedback controls were
designed for the finite-dimensional Cucker–Smale model, by driving, at every instant
of time, the farthest agent to the center. In contrast, dealing with the constraint (1.5)
is more difficult and requires a more complicated construction.

In [25] the authors introduce another kind of feedback control. They consider
a system of particles with a feedback function action over the whole domain, which
is globally Lipschitz. Then they pass to the limit on the number of particles. In
contrast, in our paper the action is limited over a (moving) sub-domain ω, and our
control χωu consists in particular of a characteristic function.

Remark 3. The function φ accounting for the influence between particles is as-
sumed to be positive, nonincreasing, and Lipschitz continuous. The positivity of φ
corresponds to velocity matching forces (see [41, 45]), and it is not clear whether our
results are still valid or not if this positivity condition fails, as it is the case when φ
has compact support.

Note that the assumption of having φ nonincreasing can be relaxed to φ � ψ > 0
with ψ positive and nonincreasing.

The continuity of φ is required in definition (1.2) for the vector field ξ[μ] when
dealing with measures μ. Lipschitz continuity is required to guarantee the regularity
of the flow Φ defining the measure solution of (1.1) (see Theorem 2.3 further).

One can consider less regular interaction kernels φ with bounded variation, with
the additional requirement of having μ absolutely continuous with respect to the
Lebesgue measure and with an L∞ density function (see [27]).

The structure of the paper is the following.
In section 2, we recall or extend some results stating the well-posedness of the

kinetic Cucker–Smale equation (1.1), and in particular we recall that a solution of
(1.1) is the image measure of the initial measure through the particle flow, which is
the flow associated with the time-dependent velocity field ξ[μ]+χωu (sections 2.1 and
2.2). We also provide (in section 2.3) a precise relationship with the finite-dimensional
Cucker–Smale model, in terms of the controlled particle flow.

In section 3, we study the kinetic Cucker–Smale equation (1.1) without control
(i.e., u ≡ 0). We provide a simple sufficient condition on the initial measure ensuring
convergence to flocking, which is a slight extension of known results.

Theorem 1.2 is proved in section 4. In that section, after having established
preliminary estimates (in sections 4.1 and 4.2), we first prove Theorem 1.2 in the one-
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CONTROL OF KINETIC CUCKER–SMALE 4691

dimensional case, that is, for d = 1, in section 4.3. Our strategy is based on geometric
considerations, by choosing an adequate control, piecewise constant in time, such
that the velocity field is pointing inwards towards the support, in such a way that the
velocity support decreases in time. We apply this strategy iteratively, until we reach
(in finite time) the flocking region, and then we switch off the control and let the
solution evolve naturally to flocking. The general case d > 1 is studied in section 4.4.
The variant, with the control constraints (1.4) and (1.7), is studied in section 4.5.
Main proofs are collected in the appendix.

2. Existence and uniqueness. In this section, we provide existence and unique-
ness results for (1.1). Note that, since 〈v, gradxμ〉 = divx(vμ), the PDE (1.1) can be
written as

∂tμ+ div(x,v)

((
v

ξ[μ] + χωu

)
μ

)
= 0.

This is a transport equation in conservative form. Let us then recall some facts on
such equations.

2.1. Transport PDEs with nonlocal velocities. In this section, we consider
the general nonlocal transport PDE

(2.1) ∂tμ+ div(V [μ]μ) = 0,

where μ ∈ P(Rn) is a probability measure on Rn, with n ∈ N∗ fixed. The term V [μ]
is called the velocity field and is a nonlocal term. Since the value of a measure at a
single point is not well-defined, it is important to observe that V [μ] is not a function
depending on the value of μ in a given point, as it is often the case in the setting of
hyperbolic equations in which V [μ](x) = V (μ(x)). Instead, one has to consider V as
an operator taking as an input the whole measure μ and giving as an output a global
vector field V [μ] on the whole space Rn. These operators are often called “nonlocal,”
as they consider the density not only in a given point, but in a whole neighborhood.

We first recall two useful definitions to deal with measures and solutions of (2.1),
namely, the Wasserstein distance and the pushforward of measures. For more details
see, e.g., [50].

Definition 2.1. Given two probability measures μ and ν on Rn, the 1-Wasserstein
distance between μ and ν is

W1(μ, ν) = sup

{∫
Rn

f d(μ− ν) | f ∈ C∞(Rn), Lip(f) � 1

}
,

where Lip(f) is the Lipschitz constant of the function f defined in (1.6).
This formula for the Wasserstein distance, which can be taken as a definition,

comes from the Kantorovich–Rubinstein theorem. Note that the topology induced by
W1 on Pc(R

n) coincides2 with the weak topology (see [50, Theorem 7.12]). We now
define the pushforward of measures.

Definition 2.2. Given a Borel map γ : Rn → Rn, the pushforward of a measure
μ ∈ P(Rn) is defined by

γ#μ(A) = μ(γ−1(A))

for every measurable subset A of Rn.

2Actually, the distance W1 metrizes the weak convergence of measures only if their first moment
is finite, which is true for measures with compact support.
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4692 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

We now provide an existence and uniqueness result for (2.1).
Theorem 2.3. We assume that, for every μ ∈ Pc(R

n), the velocity field V [μ] is
a function of (t, x) with the regularity

V [·] : P(Rn) −→ Lip(Rn) ∩ L∞(Rn),
μ �−→ V [μ],

satisfying the following assumptions:
• there exist functions L(·) and M(·) in L∞

loc(R) such that

‖V [μ](t, x)− V [μ](t, y)‖ � L(t)‖x− y‖, ‖V [μ](t, x)‖ �M(t)(1 + ‖x‖)

for every μ ∈ Pc(R
n), every t ∈ R, and all (x, y) ∈ Rn × Rn;

• there exists a function K(·) in L∞
loc(R) such that

‖V [μ]− V [ν]‖L∞(R;C0(Rn)) � K(t)W1(μ, ν)

for all (μ, ν) ∈ (Pc(R
n))2.

Then, for every μ0 ∈ Pc(R
n), the Cauchy problem

(2.2) ∂tμ+ div(V [μ]μ) = 0, μ|t=0
= μ0,

has a unique solution in C0(R;Pc(R
n)), where Pc(R

n) is endowed with the weak topol-
ogy, and μ is locally Lipschitz with respect to t, in the sense of the Wasserstein distance
W1. Moreover, if μ0 ∈ Pac

c (Rn), then μ(t) ∈ Pac
c (Rn) for every t ∈ R.

Furthermore, for every T > 0, there exists CT > 0 such that

(2.3) W1(μ(t), ν(t)) � eCT tW1(μ(0), ν(0))

for all solutions μ and ν of (2.2) in C0([0, T ];Pc(R
n)).

Moreover, the solution μ of the Cauchy problem (2.2) can be made explicit as
follows. Let Φ(t) be the flow of diffeomorphims of Rn generated by the time-dependent
vector field V [μ], defined as the unique solution of the Cauchy problem Φ̇(t) = V [μ(t)]◦
Φ(t), Φ(0) = IdRn, or in other words,

∂tΦ(t, x) = V [μ(t)](t,Φ(t, x)), Φ(0, x) = x.

Then, we have

μ(t) = Φ(t)#μ(0),

that is, μ(t) is the pushforward of μ0 under Φ(t).
Proof. The proof is a slight generalization of results established in [44]. We give

a detailed proof in Appendix A.1.
Remark 4. Theorem 2.3 can be generalized to mass-varying transport PDEs, that

is, in the presence of sources (see [43]).

2.2. Application to the kinetic Cucker–Smale equation. In the case of
the kinetic Cucker–Smale equation (1.1), we have n = 2d, and for a given control χωu
the time-dependent velocity field is given by

Vω,u[μ(t)](t, x, v) =

(
v

ξ[μ](x, v) + χω(t)u(t, x, v)

)
.
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We denote by Φω,u(t) the so-called “controlled particle flow,” generated by the time-
dependent vector field Vω,u[μ(t)], defined by ∂tΦω,u(t, x) = Vω,u[μ(t)](t,Φω,u(t, x))
and Φω,u(0, x) = x. The flow Φω,u(t) is built by integrating the characteristics

(2.4) ẋ(t) = v(t), v̇(t) = ξ[μ(t)](x(t), v(t)) + χω(t)u(t, x(t), v(t)),

which give the evolution of (controlled) particles: the trajectory t �→ (x(t), v(t)) is
called the particle trajectory passing through (x(0), v(0)) at time 0, associated with
the control χωu. From Theorem 2.3, we have the following result.

Corollary 2.4. Let u ∈ L∞(R × Rd × Rd,Rd) be a control function and,
for every time t, let ω(t) be a Lebesgue measurable subset of R

d × R
d. Let μ0 ∈

Pc(R
d×Rd). The controlled kinetic Cucker–Smale equation (1.1) has a unique solution

μ ∈ C0(R,P(Rd × Rd)) such that μ(0) = μ0, and moreover we have

μ(t) = Φω,u(t)#μ
0

for every t ∈ R. Moreover, if μ0 ∈ Pac
c (Rd ×Rd), then μ(t) ∈ Pac

c (Rd ×Rd) for every
t ∈ R, and

(2.5) supp(μ(t)) = Φω,u(t)(supp(μ
0)).

Remark 5. If the initial measure μ(0) has a density with respect to the Lebesgue
measure that is a function of class Ck on Rd × Rd, and if the vector field is also of
class Ck, then, clearly, we have μ(t) = f(t) dx dv with f of class Ck as well, because
of the property of pushforward of measures.

In this paper, we do not investigate further the Ck regularity from the control
point of view: our control function u will be designed in a Lipschitz way with respect
to the space-velocity variables. Nevertheless, we could easily modify the definition of
u outside of the sets where u = 0 and u = 1, in order to design u as a function of
class Ck that drives the solution to flocking, and that also keeps Ck regularity if the
initial data is of class Ck (see also Remark 8 further).

2.3. Relationship with the finite-dimensional Cucker–Smale model. In
this section, we explain in which sense the kinetic equation (1.1) is the natural limit,
as the number of agents tends to infinity, of the classical finite-dimensional Cucker–
Smale model (whose controlled version is considered in [10, 11]), and we explain the
natural relationship between them in terms of particle flow.

2.3.1. The finite-dimensional Cucker–Smale model. Consider N agents
evolving in Rd, and interacting together. We denote with (xi, vi) the space-velocity
coordinates of each agent for i = 1, . . . , N . The general Cucker–Smale model (without
control) is written as

ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

φ(‖xj(t)− xi(t)‖)(vj(t)− vi(t)), i = 1, . . .N,
(2.6)

where φ : R → R is a nonincreasing positive function, modeling the influence between
two individuals (which depends only on their mutual distance). This simple model,
initially introduced in [19], has many interesting features. The most interesting prop-
erty is that the model reflects the ability of the crowd to go to self-organization for
favorable initial configurations. Indeed, if the influence of each agent on the others is
sufficiently large (that is, if φ does not decrease too fast), then the crowd converges
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4694 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

to flocking, in the sense that all variables vi(t) converge to the common mean velocity
v̄. By analogy with birds flocks, this phenomenon was called flocking (see [19]).

To be more precise, first observe that the velocity barycenter v̄ = 1
N

∑N
i=1 vi(t)

is constant in time, and that, defining the space barycenter x̄(t) = 1
N

∑N
i=1 xi(t), we

have ˙̄x(t) = v̄. Then, define Γ(t) =
∑N

i=1 |xi(t)− x̄(t)|2 and Λ(t) =
∑N

i=1 |vi(t)− v̄|2.
It is proved in [28, 29] that, if Λ(0) <

∫∞
Γ(0)

φ(x) dx, then Λ(t) → 0 as t → +∞, that

is, the crowd converges to flocking. To the contrary, if the initial configuration is “too
dispersed” and/or the interaction between agents is “too weak,” then the crowd does
not converge to flocking (see [19]).

Many variants and generalizations were proposed in the recent literature, but it
is not our objective, here, to list them. A controlled version of (2.6) was introduced
and studied in [10, 11], consisting of adding controls at the right-hand side of the
equations in vi, turning the system into

ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

φ(‖xj(t)− xi(t)‖)(vj(t)− vi(t)) + ui(t), i = 1, . . .N,
(2.7)

where the controls ui, taking their values in Rd, can be constrained in different ways.
Since it is desirable to control the system (2.7) with a minimal number of actions (for
instance, acting on a few agents only), in [10, 11] the concept of sparse control was
introduced. This means that, at every instant of time, at most one component of the
control is active, that is, for every time t all ui(t) but one are zero.3 It was shown
how to design a sparse feedback control (t, x, v) �→ u(t, x, v) steering the system (2.7)
asymptotically to flocking.

2.3.2. Towards the kinetic Cucker–Smale model. In the absence of con-
trol, the finite-dimensional Cucker–Smale model (2.6) was generalized to an infinite-
dimensional setting in measure spaces via a mean-field limit process in [14, 29, 30];
see also [23]. The limit is taken by letting the number of agents N tend to infinity.
Considering the pointwise agents as Dirac masses, it is easy to embed the dynamics
(2.6) in the space of measures, and using Corollary (2.4), we infer the following result.

Proposition 2.5. Let u ∈ L∞(R× Rd × Rd,Rd) be a control function, and, for
every time t, let ω(t) be a Lebesgue measurable subset of Rd×Rd. Let μ0 ∈ P(Rd×Rd)

be defined by μ0 = 1
N

∑N
i=1 δ(x0

i ,v
0
i )

for some (x0i , v
0
i ) ∈ Rd × Rd, i = 1, . . . , N . Then

the unique solution of (1.1) such that μ(0) = μ0, corresponding to the control χωu, is
given by

μ(t) =
1

N

N∑
i=1

δ(xi(t),vi(t)),

where (xi(t), vi(t)), i = 1, . . . , N , are solutions of

ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

φ(‖xj(t)− xi(t)‖)(vj(t)− vi(t)) + χω(t)(xi(t), vi(t))u(t, xi(t), vi(t)),

such that xi(0) = x0i and vi(0) = v0i , for i = 1, . . . , N .

3This property was called componentwise sparsity. Actually, in order to prevent the system from
chattering in time, also a notion of time sparsity was considered in [10, 11].
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CONTROL OF KINETIC CUCKER–SMALE 4695

Proof. Equation (1.1) being stated in the sense of measures, we have, for any
g ∈ C∞(Rd × Rd),

0 = ∂t

∫
g(x, v) dμ(t)(x, v) +

∫
g(x, v) divx(vμ(t)(x, v))

+

∫
g(x, v) divv

(
(ξ[μ(t)](x, v) + χω(t)(x, v)u(t, x, v))μ(t)(x, v)

)
= ∂t

∫
g(x, v) dμ(t)(x, v) −

∫
〈v, gradxg(x, v)〉 dμ(t)(x, v)

−
∫ 〈

ξ[μ(t)](x, v) + χω(t)(x, v)u(t, x, v)), gradvg(x, v)
〉
dμ(t)(x, v),

and taking μ(t) = 1
N

∑N
i=1 δ(xi(t),vi(t)) gives

1

N

N∑
i=1

(〈ẋi(t), gradxg(xi(t), vi(t))〉 + 〈v̇i(t), gradvg(xi(t), vi(t))〉)

=
1

N

N∑
i=1

(
〈vi(t), gradxg(xi(t), vi(t))〉

+ 〈ξ[μ](xi(t), vi(t)) + χω(xi(t), vi(t))u(t, xi(t), vi(t)),

gradvg(xi(t), vi(t))〉
)

with

ξ[μ(t)](x, v) =
1

N

N∑
j=1

φ(‖xj(t)− x‖)(vj(t)− v),

from which we infer the finite-dimensional Cucker–Smale system stated in the proposi-
tion (it suffices to consider functions g localized around any given particle (xi(t), vi(t))).
We conclude by uniqueness, using Corollary (2.4).

Remark 6. In accordance with the discussion made in Remark 2 concerning
sparsity, we see clearly that the control domain ω(t), in finite dimension, represents
the agents on which one can act at the instant of time t. This shows that the way
to pass to the limit a sparsity control constraint on the finite-dimensional model is to
consider proportions either of the total crowd or of the space of configurations.

3. Convergence to flocking without control. In this section, we investigate
the kinetic Cucker–Smale equation (1.1) without control, that is, we assume that
u ≡ 0.

First of all, note that, as in finite dimension, the velocity barycenter
v̄ =

∫
Rd×Rd v dμ(t) is constant in time, and the space barycenter x̄(t) =

∫
Rd×Rd x dμ(t)

is such that ˙̄x(t) = v̄ (see, e.g., [30, Prop. 3.1]).
In the following theorem, we provide a simple sufficient condition on the initial

probability measure ensuring flocking, in the spirit of results established in [14, 29].
The main difference with respect to [29] is that we study the size of the support,
instead of the variance of positions and velocities. Estimates given here generalize
results of [14] without the assumption of being in the flocking region.

Theorem 3.1. Let μ0 ∈ Pc(R
d × Rd). We set x̄0 =

∫
Rd x dμ

0(x, v) and v̄ =∫
Rd v dμ

0(x, v) (space and velocity barycenters of μ0), and we define the space and
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4696 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

velocity support sizes

X0 = inf
{
X � 0 | supp(μ0) ⊂ B(x̄0, X)× R

d
}
,

V 0 = inf
{
V � 0 | supp(μ0) ⊂ R

d ×B(v̄, V )
}
.

Let μ be the unique solution of (1.1) (with u ≡ 0) such that μ(0) = μ0. If

(3.1) V 0 <

∫ +∞

X0

φ(2x) dx,

then there exists XM > 0 such that

(3.2) supp(μ(t)) ⊂ B(x̄0 + tv̄, XM )×B
(
v̄, V 0e−φ(2XM )t

)
for every t � 0. In particular, μ(t) converges to flocking as t tends to +∞.

In particular, every μ0 with support satisfying (3.1) belongs to the flocking region.
Note that, under the sufficient condition (3.1), according to (3.2), the size of the

velocity support converges exponentially to 0. This result can be easily proved from
corresponding results established in finite dimension in [14, 29] (using mean-fields
limits), where the estimate (3.3) of Lemma 3.2 below is proved independently of the
number of agents. Hereafter, we rather use the particle flow and provide a simple
proof.

Before proving Theorem 3.1, we prove an auxiliary lemma giving some insight on
the evolution of the size of supports.

Lemma 3.2. Given a solution μ of (1.1) (with u ≡ 0), for every time t, we define

X(t) = inf
{
X � 0 | supp(μ(t)) ⊂ B(x̄(t), X)× R

d
}
,

V (t) = inf
{
V � 0 | supp(μ(t)) ⊂ R

d ×B(v̄, V )
}
.

The functions X(·) and V (·) are absolutely continuous, and we have

(3.3) Ẋ(t) � V (t), V̇ (t) � −φ(2X(t))V (t)

for almost every t � 0.
Proof. Since displacements of the support have bounded velocities, both X(·)

and V (·) are absolutely continuous functions, and hence are differentiable almost
everywhere.

From section 2.2, and in particular from (2.5) (with u ≡ 0), the support of μ(t)
is the image of the support of μ(0) under the particle flow Φ(t) at time t. De-
noting by (x(·, x0, v0), v(·, x0, v0)) the (particle trajectory) solution of (2.4) (with
u ≡ 0) such that (x(0, x0, v0), v(0, x0, v0)) = (x0, v0) at time 0, this means that
(x(t, x0, v0), v(t, x0, v0)) ∈ supp(μ(t)), for every (x0, v0) ∈ supp(μ0), and it follows
that

X(t) = max
{
‖x(t, x0, v0)− x̄(t)‖ | (x0, v0) ∈ supp(μ0)

}
,

V (t) = max
{
‖v(t, x0, v0)− v̄‖ | (x0, v0) ∈ supp(μ0)

}
for every t � 0. Note that the maximum is reached because it is assumed that supp(μ0)
is compact. For every t � 0, we denote by KX

t ⊂ supp(μ0) (resp., KV
t ⊂ supp(μ0))

the set of points (x0, v0) such that the maximum is reached in X(t) (resp., in V (t)).
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CONTROL OF KINETIC CUCKER–SMALE 4697

By definition, we have X(t)2 = ‖x(t, x0, v0)− x̄(t)‖2 for every (x0, v0) ∈ KX
t , and

it follows from the Danskin theorem (see [20]) and from the fact that ∂tx(t, x
0, v0) =

v(t, x0, v0) that

X(t)Ẋ(t) = max
{
〈x(t, x0, v0)− x̄(t), v(t, x0, v0)− v̄〉 | (x0, v0) ∈ KX

t

}
,

and therefore, using the Cauchy–Schwarz inequality, we infer that

Ẋ(t) � ‖v(t, x0, v0)− v̄‖ � V (t).

Similarly, we have V (t)2 = ‖v(t, x0, v0)− v̄‖2 for every (x0, v0) ∈ KV
t . Note that,

by the first definition of V (t), we have supp(μ(t)) ⊂ Rd × B(v̄, ‖v(t, x0, v0) − v̄‖).
Using again the Danskin theorem and (2.5) (with u ≡ 0), we have

V (t)V̇ (t) = max
{〈
v(t, x0, v0)− v̄, ξ[μ(t)](x(t, x0, v0), v(t, x0, v0))

〉
| (x0, v0) ∈ KV

t

}
,

and, using (1.2), we have

〈
ξ[μ(t)](x(t, x0 , v0), v(t, x0, v0)), v(t, x0, v0)− v̄

〉
=

∫
supp(μ(t))

φ(‖x(t, x0, v0)− y‖)〈w − v(t, x0, v0), v(t, x0, v0)− v̄〉 dμ(t)(y, w)

for every t � 0. In the integral, we have (y, w) ∈ supp(μ(t)), and hence w ∈ B(v̄, V (t))
and therefore 〈w − v(t, x0, v0), v(t, x0, v0) − v̄〉 � 0 by convexity, because v(t, x0, v0)
belongs to the boundary of the ball B(v̄, V (t)), by construction. Since φ is non-
increasing and ‖x(t, x0, v0)− y‖ � 2X(t) for every (y, w) ∈ supp(μ(t)), we infer that

〈
ξ[μ(t)](x(t, x0 , v0), v(t, x0, v0)), v(t, x0, v0)− v̄

〉
� φ(2X(t))

∫
supp(μ(t))

〈w − v(t, x0, v0), v(t, x0, v0)− v̄〉 dμ(t)(y, w).

Since
∫
supp(μ(t))

w dμ(t)(y, w) = v̄ and
∫
supp(μ(t))

dμ(t)(y, w) = 1, it follows that

〈
ξ[μ(t)](x(t, x0 , v0), v(t, x0, v0)), v(t, x0, v0)− v̄

〉
� −φ(2X(t))V (t)2.

Finally, we conclude that V̇ (t) � −φ(2X(t))V (t).
Let us now prove Theorem 3.1.
Proof of Theorem 3.1. We prove (3.2), which implies the flocking of μ. Using (3.1),

we can prove that there existsXM > 0 such thatX(t) � XM and V (t) � V 0e−φ(2XM )t

for every t � 0, with X(t), V (t) defined in Lemma 3.2.
The reasoning is similar to the proof of [29, Theorem 3.2]. Using (3.1), since φ is

nonnegative, there exists XM > 0 such that V 0 <
∫ XM

X0 φ(2x) dx. By contradiction,
let us assume that X(T ) > XM for some T � 0. Using (3.3), we infer that

V (T ) � V 0−
∫ T

0

φ(2X(t))Ẋ(t) dt = V 0−
∫ X(T )

X(0)

φ(2x) dx � V 0−
∫ XM

X0

φ(2x) dx < 0,

which contradicts the fact that V (t) � 0 for every t � 0. ThereforeX(t) � XM for ev-
ery t � 0. Since φ is nonincreasing, we have V̇ (t) � −φ(2X(t))V (t) � −φ(2XM )V (t),
and thus V (t) � V 0e−φ(2XM )t for every t � 0. The theorem is proved.
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4698 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

In order to prove our main results, we will use Theorem 3.1 as follows.
Corollary 3.3. Let μ0 ∈ Pc(R

d × Rd). Assume that there exist (x0, v0) ∈
Rd×Rd and some positive real numbers X̃0 and Ṽ 0 such that supp(μ0) ⊂ B(x0, X̃0)×
B(v0, Ṽ 0). If

(3.4) 2Ṽ 0 �
∫ +∞

2X̃0

φ(2x) dx,

then μ converges to flocking as t tends to +∞.
In particular, every μ0 with support satisfying (3.4) belongs to the flocking region.
Proof. It suffices to note that the barycenter (x̄0, v̄) of μ0 is contained in B(x0, X)×

B(v0, V ), and hence that supp(μ0) ⊆ B(x̄0, 2X)×B(v̄, 2V ).

4. Proof of Theorem 1.2. In this section, we prove Theorem 1.2.
We first establish some useful estimates on the interaction kernel ξ[μ] in sec-

tion 4.1, for any measure μ. These technical estimates will be useful in the proof of
the main theorem.

In section 4.2, we provide some general estimates on absolutely continuous solu-
tions of (1.1).

After these preliminaries, we focus on the proof of Theorem 1.2. Given any initial
condition μ0, our objective is to design a control satisfying the constraints (1.4) and
(1.5), steering the system (1.1) to flocking.

The strategy that we adopt is the following. We first steer the system to the
flocking region (defined in Definition 1.1) within a finite time T by means of a suit-
able control. This control is piecewise constant in time: we divide the time interval
[0, T ] into subintervals [tk, tk+1) and the control is computed as a function of μ(tk).
After reaching the flocking region at time T , we switch off the control and let the
uncontrolled equation (1.1) (with u ≡ 0) converge (asymptotically) to flocking.

The time T depends on the initial distribution μ0 of the crowd: the more “dis-
persed” μ0 is, the larger T is. Of course, if μ0 already belongs to the flocking region,
then it is not necessary to control the equation (hence T = 0 in that case).

We proceed in two steps. In section 4.3, we design an effective control χωu in
the one-dimensional case d = 1. In section 4.4, we extend the contruction to any
dimension d � 1. Section 4.5 is devoted to the proof of the variant of Theorem 1.2,
with control constraints (1.4) and (1.7).

4.1. Preliminary estimates on the interaction kernel ξ[μ]. Let μ ∈
Pc(R

d × Rd) be arbitrary. We study the dependence on the support of μ of the
interaction kernel ξ[μ] defined by (1.2).

Recall that the space of configurations (x, v) is Rd×R
d. We consider the canonical

orthonormal basis (e1, . . . , e2d) of R
d × Rd, in which we denote x = (x1, . . . , xd) and

v = (v1, . . . , vd).
For simplicity of notation, we assume that, for every k ∈ {1, . . . , d}, the kth

component of the spatial variable satisfies xk ∈ [0, Xk], eventually after a translation
in the spatial variables, where Xk � 0 is the size of the support in the variable xk.
Similarly, we assume that vk ∈ [0, Vk], where Vk � 0 is the size of the support in
the variable vk. Note that, with this choice, we have invariance of the positive space
[0,+∞)d × [0,+∞)d.

We start with an easy lemma.
Lemma 4.1. Let μ ∈ Pac

c (Rd × Rd) be such that supp(μ) ⊂ Rd × [0, V∗]k−1 ×
[0, Vk]× [0, V∗]d−k for some V∗ � 0 and Vk � 0. Then, for every (x, v) ∈ Rd×Rd such
that vk � Vk (resp., vk � 0), we have 〈ξ[μ](x, v), ek〉 � 0 (resp., 〈ξ[μ](x, v), ek〉 � 0).
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CONTROL OF KINETIC CUCKER–SMALE 4699

supp(µ)

(x, v)
v

x

Fig. 1. Vector field ξ[μ].

The lemma is obvious by using the expression

ξ[μ](x, v) =

∫∫
supp(μ)

φ(‖x− y‖)(w − v) dμ(y, w),

since φ is nonnegative and w ∈ supp(μ) implies that wk � Vk, hence 〈(w − v), ek〉 =
wk − vk � 0. Lemma 4.1 implies that, if (x, v) /∈ R× [0, V∗]k−1 × [0, Vk]× [0, V∗]d−k,
then the vector field ξ[μ] is pointing inwards (see Figure 1). Note that this is in
accordance with the fact that the velocity part of supp(μ) has a trend to shrink, as
proved (more precisely) by the differential inequality (3.3) of Lemma 3.2.

Let us now establish a more technical result, which will be instrumental in order
to prove Theorem 1.2.

Lemma 4.2. Let μ ∈ Pc(R
d × Rd) with velocity barycenter v̄ = (v̄1, . . . , v̄d). We

assume that there exist x̃ ∈ Rd, a real number ak, and nonnegative real numbers X,
V∗, Vk such that

supp(μ) ⊂ B(x̃, X)× [0, V∗]k−1 × [ak, ak + Vk]× [0, V∗]d−k.

Let (x, v) ∈ Rd × Rd be such that vk − v̄k > r+ with

(4.1) r+ =
φ(0)

φ(0) + φ(2X)
(Vk + ak − v̄k).

Then 〈ξ[μ](x, v), (vk − v̄k)ek〉 < 0.
Similarly, let (x, v) ∈ Rd × Rd be such that vk − v̄k < −r− with

(4.2) r− =
φ(0)

φ(0) + φ(2X)
(v̄k − ak).

Then 〈ξ[μ](x, v), (vk − v̄k)ek〉 < 0.
Proof. We prove the result with ak = 0 only, by observing that the case ak 
= 0

can be recovered by translation of the kth velocity variable. We give the proof of the
first case only, in which vk− v̄k > r+ (for the second case, it suffices to use the change
of variable vk �→ Vk − vk). Observe that r+ � 0, then in particular vk − v̄k > 0.
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4700 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

We want to prove that

(4.3)

∫
Rd×Rd

φ(‖x− y‖)(wk − vk)(vk − v̄k) dμ(y, w) < 0.

Writing wk − vk = (wk − (v̄k + r+)) + ((v̄k + r+)− vk), and noting that∫
Rd×Rd

φ(‖x− y‖)((v̄k + r+)− vk)(vk − v̄k) dμ(y, w) < 0,

since φ is nontrivial and nonnegative, ((v̄k + r
+)− vk) < 0, vk − v̄k > 0, and since μ is

a measure with positive mass, it follows that, to prove (4.3), it suffices to prove that

(4.4)

∫
Rd×Rd

φ(‖x− y‖)(wk − (v̄k + r+))(vk − v̄k) dμ(y, w) � 0.

The space Rd×Rd is the union of the three (disjoint) subsets A, B, and C defined
by

A = {(y, w) ∈ R
d × R

d | v̄k + r+ � wk},
B = {(y, w) ∈ R

d × R
d | v̄k � wk < v̄k + r+},

C = {(y, w) ∈ R
d × R

d | wk < v̄k}.

Note that, since (wk − (v̄k + r+)) < 0 in B and vk − v̄k > 0, we have∫
B

φ(‖x − y‖)(wk − (v̄k + r+))(vk − v̄k) dμ(y, w) � 0.

As a consequence, we will prove (4.4) by establishing the (stronger) inequality

(4.5)

∫
A

φ(‖x− y‖)(wk − (v̄k + r+))(vk − v̄k) dμ(y, w)

�
∫
C

φ(‖x− y‖)((v̄k + r+)− wk)(vk − v̄k) dμ(y, w).

Noting that φ(2X) � φ(‖x− y‖) � φ(0) since φ is decreasing and ‖x− y‖ � 2X , and
using the definitions of A and of r+, we get∫

A

φ(‖x− y‖)(wk − (v̄k + r+))(vk − v̄k) dμ(y, w)

� μ(A)φ(0)(Vk − (v̄k + r+))(vk − v̄k) = μ(A)
φ(0)φ(2X)

φ(0) + φ(2X)
(Wk − v̄k)(vk − v̄k),

and∫
C

φ(‖x−y‖)((v̄k+r+)−wk)(vk− v̄k) dμ(y, w) � φ(2X)

∫
C

(v̄k−wk)(vk− v̄k) dμ(y, w).

Since vk − v̄k > 0 and φ(2X) > 0, to prove (4.5), it suffices to prove that

(4.6) μ(A)
φ(0)

φ(0) + φ(2X)
(Vk − v̄k) = μ(A)r+ �

∫
C

(v̄k − wk) dμ(y, w).

By definition of the velocity barycenter v̄ of μ, we have
∫
Rd×Rd〈w− v̄, z〉 dμ(y, w) = 0,
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for any z ∈ Rd. Choosing z = ek, we get that

(4.7)

∫
A

(wk − v̄k) dμ(y, w) +

∫
B

(wk − v̄k) dμ(y, w) =

∫
C

(v̄k − wk) dμ(y, w).

By definition of the sets A, B, and C, all integrals in (4.7) are nonnegative, and in
particular we infer that∫

A

(wk − v̄k) dμ(y, w) �
∫
C

(v̄k − wk) dμ(y, w).

Since wk − v̄k � r+ in A, the inequality (4.6) follows. The lemma is proved.

4.2. Estimates on the solutions of (1.1) with control. Recall that the space
barycenter x̄(t) and the velocity barycenter v̄(t) of μ(t) are defined by (1.3). Due to
the action of χωu, the velocity barycenter is not constant. We have the following
result.

Lemma 4.3. Let μ ∈ C0(R,Pc(R
d × Rd)) be a solution of (1.1). We have

˙̄x(t) = v̄(t), ˙̄v(t) =

∫
ω(t)

u(t, x, v) dμ(t)(x, v)

for every t ∈ R.
Proof. Proceeding as in the proof of Proposition 2.5, considering (1.1) in the sense

of measures, we compute

˙̄xk(t) = ∂t

∫
Rd×Rd

xk dμ(t)(x, v) =

∫
Rd×Rd

divx(xkv) dμ(t)(x, v)

=

∫
Rd×Rd

vk dμ(t)(x, v) = v̄k(t)

for every k ∈ {1, . . . , d}. Similarly, using the fact that
∫
Rd×Rd ξ[μ] dμ = 0 (by anti-

symmetry), we get

˙̄vk(t) = ∂t

∫
Rd×Rd

vk dμ(t)(x, v) =

∫
Rd×Rd

χω(t)uk(t, x, v) dμ(t)(x, v)

for every k ∈ {1, . . . , d}.
Let us now consider solutions μ(t) = f(t) dx dv of (1.1) that are absolutely con-

tinuous. Let us then estimate the evolution of the L∞ norm of f(t).
Lemma 4.4. Let μ = f dx dv ∈ C0(R,Pac

c (Rd ×Rd)) be a solution of (1.1), with
a Lipschitz control χωu. For every p ∈ [1,+∞], we have the estimate
(4.8)
d

dt
‖f(t, ·, ·)‖Lp(Rd×Rd) �

p− 1

p
‖f(t, ·, ·)‖Lp(Rd×Rd)

(
φ(0)d + ‖divv(u(t, ·, ·))‖L∞(ω(t))

)
for every t ∈ R, with the agreement that p−1

p = 1 for p = +∞.

Proof. The proof is a generalization of the proof of [30, Proposition 3.1]. Using
(1.1), we have

d

dt

∫
Rd×Rd

fp dx dv(4.9)

= p

∫
Rd×Rd

−fp−1〈v, gradxf〉 dx dv − p

∫
Rd×Rd

fp−1divv(ξ[f ]f) dx dv

− p

∫
Rd×Rd

fp−1divv(χωuf) dx dv.
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4702 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

Let us compute the three terms on the right-hand side of (4.9). The first term is equal
to −

∫
Rd×Rd divx(f

pv) dx dv and hence is equal to 0 since fp has compact support.

For the second term, noting that fp−1divv(ξ[f ]f) = fpdivv(ξ[f ]) + fp−1〈ξ[f ],∇vf〉,
and that

divv (ξ[f ]f
p) = divv(ξ[f ])f

p + 〈ξ[f ],∇vf
p〉 = divv(ξ[f ])f

p + pfp−1〈ξ[f ],∇vf〉,

we infer that

pfp−1divv(ξ[f ]f) = (p− 1)fp divv(ξ[f ]) + divv (ξ[f ]f
p) .

It follows that

p

∣∣∣∣
∫
Rd×Rd

fp−1divv(ξ[f ]f) dx dv

∣∣∣∣ = (p− 1)

∣∣∣∣
∫
Rd×Rd

fp divv(ξ[f ]) dx dv

∣∣∣∣
� (p− 1)‖f‖p

Lp(Rd×Rd)
‖divv(ξ[f ])‖L∞(supp(f)).

Similar estimates are done for the third term by replacing ξ[f ] with χωu, which is a
Lipschitz vector field. Using (4.9), we get

d

dt
‖f‖Lp(Rd×Rd) �

p− 1

p
‖f‖Lp(Rd×Rd)

(
‖divv(ξ[f ])‖L∞(supp(f)) + ‖divv(u)‖L∞(ω(t))

)
.

Finally, noting that∣∣∣∣∂vk
∫
Rd×Rd

φ(‖x− y‖)(wk − vk)f(y, w) dy dw

∣∣∣∣ =
∣∣∣∣−
∫
Rd×Rd

φ(‖x− y‖)f(y, w) dy dw
∣∣∣∣

� φ(0),

for every k ∈ {1, . . . , d}, it follows that ‖divv(ξ[f ])‖L∞(supp(f)) � φ(0)d, and this
yields (4.8).

4.3. Proof of Theorem 1.2 in the one-dimensional case. Throughout this
section, we assume that d = 1.

We first define the fundamental step S of our algorithm in section 4.3.1. We prove
in section 4.3.2 that a finite number of iterations of this fundamental step S provides
convergence to flocking.

4.3.1. Fundamental step S. Hereafter, we define the fundamental step S of
our strategy. The strategy takes, as an input, a measure μ0 = μ(0) (absolutely
continuous) standing for the initial data of (1.1), and provides, as outputs, a time
T 0 and a measure μ1 = μ(T 0) (which will be proved to be absolutely continuous),
standing for the time horizon and the corresponding solution of (1.1) at time T 0 for
some adequate control χωu.

In the definition below, the bracket subscript stands for the index of a given
sequence. It is used in order to avoid any confusion with coordinates subscripts.

Definition of the control χωu along the time interval [0, T 0] (fundamental step S).
In order to define the control, we need to define, at every time t, the control set ω(t)
(on which the control acts), and the control force u(t, x, v) for every (x, v) ∈ ω(t). We
are actually going to set

u(t, x, v) = −ψ(t, x, v) v − v̄(0)

|v − v̄(0)|

for every t ∈ [0, T 0], and every (x, v) ∈ Rd × Rd, where the function ψ, constructed
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CONTROL OF KINETIC CUCKER–SMALE 4703

Fig. 2. Definition of ψ[i].

below, is piecewise constant in t for (x, v) fixed, continuous, and piecewise linear in
(x, v) for t fixed (see Figure 2), and where the control set ω(t) is piecewise constant
in t.

Since the construction of the control is quite technical, we first provide an intuitive
idea of how to define it. According to Lemma 4.2, the set R×[v̄(t)−r−(t), v̄(t)+r+(t)]
is invariant under the particle flow dynamics, and therefore, inside this invariant set,
it is not useful to act, and hence we set u = 0 there. Outside of that set, we want
to push the population inwards. Since the invariant set is variable in time, we make
precise estimates to have a larger set that is invariant on the whole interval [0, T 0].
Since the population outside of such a set can have a mass larger than the constraint
c, due to the control constraint (1.4) it is not possible to act on that population in
its whole at any time t, and our strategy consists of splitting the domain into “slices”
Ωi(t) such that each slice contains a mass c

2 , and then we will act on each of those
slices, on successive small time intervals. With precise estimates on the displacement
of mass, we will then check that Ωi(t) satisfies the constraint μ(Ωi(t)) � c for every
t ∈ [0, T 0].

We now give a more precise definition of the control. Let μ0 = f0 dx dv ∈
Pac
c (R × R) be an initial datum. Using a translation, we assume that supp(μ0) ⊂

[0, X0]× [0, V 0], where X0 � 0 is the size of the support in the variable x and V 0 � 0
is the size of the support in the variable v. By defining a Lipschitz control χωu below,
we have that there exists a unique solution μ of (1.1) such that μ(0) = μ0, which is
absolutely continuous. We then write that supp(μ(t)) ⊂ [0, X(t)]× [a(t), a(t) +V (t)],
where

X(t) = max {|x| | (x, v) ∈ supp(μ(t))} , a(t) = min {|v| | (x, v) ∈ supp(μ(t))} ,
V (t) = max {|v| | (x, v) ∈ supp(μ(t))} − a(t),

Z(t) = X(t) +W (t)

with4 X(0) = X0, V (0) = V 0, and a(0) = 0.

4Observe that Z(t) is a rough estimate of the size of the support in the space variable at time
t+ 1, since X(t + 1) � X(t) + V (t) = Z(t).
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4704 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

Let v̄(t) ∈ (a(t), a(t)+V (t)) be the velocity barycenter5 of μ(t). We set v̄0 = v̄(0).
We define the functions

α+(t) =
φ(0)

φ(0) + φ(Z(t))
(V (t) + a(t)− v̄(t)), β+(t) =

1

3
(V (t) + a(t)− α+(t)− v̄(t)),

α−(t) =
φ(0)

φ(0) + φ(Z(t))
(v̄(t)− a(t)), β−(t) =

1

3
(v̄(t)− a(t)− α−(t)),

α(t) = max
(
α+(t), α−(t)

)
, β(t) = max

(
β+(t), β−(t)

)
,

and we set α0 = α(0) and β0 = β(0).
We divide the set [0, X0] × [0, V 0] into n =

⌈
2
c

⌉
(integer part) sets of the form

Ω0
[i] = [x[i−1], x[i]] × [0, V 0] such that6 μ0(Ω0

[i]) � c
2 , and the control sets ω[i] as the

union of two rectangles: ω+
[i] = [x[i−1] − 2ε0, x[i] + 2ε0]× [v̄0 +α0 + β0, v̄0 +α0 + 4β0]

and ω−
[i] = [x[i−1] − 2ε0, x[i] + 2ε0]× [v̄0 − α0 − 4β0, v̄0 − α0 − β0]. We choose ε0 > 0

as the largest positive real number7 such that

μ0([x[i] − 3ε0, x[i+1] + 3ε0]× [0, V 0]) � c ∀i ∈ {1, . . . , n}.

We define the functions ψ[i], i = 1, . . . , n, on R × R, as in Figure 2. Define
ψ[i] = 1 in both rectangles [x[i−1] − ε0, x[i] + ε0]× [v̄0 + α0 + 2β0, v̄0 + α0 + 3β0] and

[x[i−1] − ε0, x[i] + ε0] × [v̄0 − α0 − 3β0, v̄0 − α0 − 2β0]. Then define ψ[i] = 1 linearly
decreasing to 0 up to the boundary of ω[i].

We now define the (positive) time T 0 by

T 0 = min

(
ε0

V 0
,
β0

2c
, 1

)
,

and consider a regular subdivision of the time interval [0, T 0] into n subintervals,

[0, T 0] =
n⋃

i=1

[
(i − 1)T 0

n
,
iT 0

n

)
,

and, along each time subinterval [ (i−1)T 0

n , iT
0

n ), we set ω(t) = ω[i] and ψ(t, x, v) =

ψ[i](x, v). We finally recall the definition of the control, that is

u(t, x, v) = −ψ(t, x, v) v − v̄(0)

|v − v̄(0)| .

Remark 7. The meaning of such definitions is that we want to act on the rectangles
[x[i−1], x[i]]× [v̄0±α0± 2β0, v̄0 ±α0± 3β0]. We then define the control u = ∓ψ = ∓1
on them, and regularize it outside. The definition of ε0 and time T 0 is chosen so that
the mass in ω[i], having value c

2 at time 0, does not exceed the required value c.
Also observe that the definition of ψ Lipschitz and ψ = 0 on the boundary of ω

implies that the vector field ξ[μ] + χωu is Lipschitz (and not discontinuous), allowing
us to use Theorem 2.3 to establish existence, uniqueness, and regularity of the solution
of (1.1).

Remark 8. In connection with Remark 5 about higher regularity of the solution,
one can easily adapt the definition of χωu to preserve regularity in the following sense.

5Note that a(t) < v̄(t) < a(t)+V (t), with a strict inequality because μ(t) is absolutely continuous.
6Existence of such x[i] is guaranteed by absolute continuity of μ(t).
7Also in this case, existence of such ε0 is guaranteed by absolute continuity of μ(t).
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CONTROL OF KINETIC CUCKER–SMALE 4705

Let μ0 ∈ Pac
c (Rd × Rd) such that its density is a function of class Ck on Rd × Rd.

Then, define the set ω[i] as before and a more regular φ[i] ∈ Ck−1(Rd × Rd) with
ψ[i] = 1 on the same rectangle and decreasing to zero at the boundary of ω[i]. Then,
by applying the same strategy given below, one has flocking with similar estimates.

We now state some key properties for the control defined above and the corre-
sponding dynamics.

Lemma 4.5. Let μ0 = f0 dx dv ∈ Pac
c (R×R), with compact support contained in

[0, X0] × [0, V 0]. There exists a unique solution μ ∈ C0([0, T 0],Pc(R × R)) of (1.1),
corresponding to the control χωu defined by S. Moreover,

• the solution μ remains, like μ0, absolutely continuous and with compact sup-
port;

• V (T 0) � V 0 − T 0

n ;
• the control satisfies the constraints (1.4) and (1.5).

Proof. See Appendix A.2.

4.3.2. Complete strategy S. The complete strategy consists of repeating the
fundamental step S, until reaching a prescribed size η of the velocity support. We
choose η satisfying the estimate of Corollary 3.3, which ensures flocking.

Complete strategy S. Let μ0 = f0 dx dv ∈ Pac
c (R × R) be such that supp(μ0) ⊂

[0, X0]× [0, V 0], and let η > 0. We apply the fundamental step S iteratively, replacing

the superscript 0 by the superscript i: while V i > η, we compute μi+1 = μ(
∑i

j=0 T
i).

The complete strategy has some key properties, stated in the following lemma.
Lemma 4.6. Let μ0 = f0 dx dv ∈ Pac

c (R× R) be such that supp(μ0) ⊂ [0, X0]×
[0, V 0], and let η > 0. There exists k ∈ N∗ such that the probability measure
μk = fk dx dv computed with the complete strategy S, with support contained in
[0, Xk] × [ak, ak + V k], is such that V k � η. Moreover, we have μk = μ(

∑k
j=0 T

j)

with
∑k

j=0 T
j � V 0� 2

c �, and we have Xk � X0 +(V 0)2� 2
c �. Furthermore, the control

satisfies the constraints (1.4) and (1.5).
Proof. See Appendix A.3.
We now use the previous lemma to prove controllability to flocking, for any initial

configuration μ0 ∈ Pac
c (R× R).

Theorem 4.7 (flocking in one dimension (1D)). Let μ0 ∈ Pac
c (R × R) be such

that supp(μ0) ⊂ [0, X0]× [0, V 0]. Let c > 0 be arbitrary. Then the complete strategy
S, applied with

η =
1

2

∫ +∞

2(X0+� 2
c �(V 0)2)

φ(2x) dx,

provides a control satisfying the constraints (1.4) and (1.5), which steers the system
from μ0 to the flocking region in time T � V 0� 2

c �. Then μ(t) converges to flocking.
Proof. Applying the strategy S with the given η yields μk such that V k � η. By

Lemma 4.6, we have Xk � X0 + � 2
c �(V 0)2, and hence

2V k � 2η =

∫ ∞

2(X0+� 2
c �(V 0)2)

φ(2x) dx �
∫ ∞

2Xk

φ(2x) dx.

Then, it follows from Corollary 3.3 that μ(t) converges to flocking. The estimate on
T is given by Lemma 4.6.

4.4. Proof of Theorem 1.2 in dimension d > 1. In dimension larger than
one, we adapt the fundamental step S and the complete strategy S of the one-
dimensional case, as follows.
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4706 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

First of all, let us focus on a given coordinate. Let j ∈ {1, . . . , d} be arbitrary.
Below, we describe the fundamental step Sj , adapted from the fundamental step S in
1D.

Fundamental step Sj for the jth component. Let μ0 ∈ Pac
c (Rd ×Rd) be an initial

datum. Using translations, we assume that supp(μ0) ⊂
∏d

j=1[0, X
0
j ] ×

∏d
j=1[0, V

0
j ],

where X0
j is the size of the support in the variable xj and V

0
j is the size of the support

in the variable vj . As for the case d = 1, admitting temporarily that the control that
we will define produces a well-defined absolutely continuous solution μ(t), we assume

that supp(μ(t)) ⊂
∏d

j=1[0, Xj(t)] ×
∏d

j=1[aj(t), aj(t) + Vj(t)]. We have Xj(0) = X0
j ,

aj(0) = 0, and Vj(0) = V 0
j , for j = 1, . . . , d. We define the functions

X (t) =
√
d

d∏
j=1

Xj(t), V(t) =
√
d

d∏
j=1

(Xj(t) + Vj(t))−X (t),

and we set X 0 = X (0) and V0 = V(0).
We define the fundamental step Sj similarly to S, with the following changes:

• α+(t) = φ(0)
φ(0)+φ(X (t)+V(t))(Vj(t)+aj(t)− v̄j(t)), and similarly for β+(t), α−(t),

and β−(t);
• the rectangle sets Ω[i] are defined by

Ω[i] = [0, X0
1 ]×· · ·×[0, X0

j−1]×[xj,[i−1], xj,[i]]×[0, X0
j+1]×· · ·×[0, X0

d ]×
d∏

j=1

[0, V 0
j ]

with the same mass requirements;
• ε0 is the largest positive real number such that

μ0(R · · · × [xj,[i−1] − 3ε0, xj,[i] + 3ε0]× · · · × R) � c ∀i ∈ {1, . . . , n};

• similarly, ω[i] is defined with the interval [xj,[i−1]− 2ε0, xj,[i]+2ε0] on the jth
coordinate only;

• the function ψ[i] is defined as in the one-dimensional case, but depending on
the coordinates (xj , vj) only;

• we define u(t, x, v) = ψ(t, x, v)
vj−v̄j(0)
|vj−v̄j(0)| .

Lemma 4.8 (fundamental step Sj for the jth component.). The statement of
Lemma 4.5 holds true for the fundamental step Sj, with the following changes:

• X1
l � X0

l + V 0
l , for l = 1, . . . , n;

• the domain Rd×Rj−1× [v̄j(0)−α0−β0−k−, v̄j(0)+α0+β0+k+]×Rd−j−1

is invariant under the controlled particle flow Φω,u(t), for all k− � 0 and
k+ � 0; moreover, all sets Rd × Rl−1 × [0, V 0

l ] × Rd−l−1, l = 1, . . . , d, are
invariant as well;

• either [a1j , a
1
j + V 1

j ] ⊂ [0, V 0
j − T 0

n ] or [a1j , a
1
j + V 1

j ] ⊂ [T
0

n , V
0
j ], which implies

that V 1
j � V 0

j − T 0

n ;

• 12ε0‖f0‖L∞(Rd×Rd)

d∏
k=1

k �=j

X0
k

d∏
k=1

V 0
k � c.

Proof. The proof is similar to the one of Lemma 4.5 and is skipped. Notice that
T 0 � 1 implies that the size of the support in the spatial variable xj increases from
X0

i at most to X0
i + V 0

i , which implies that the size of the spatial support is at most
X 0 + V0. The computation of α+, β+, α−, β−, gives all invariance properties.
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CONTROL OF KINETIC CUCKER–SMALE 4707

Complete strategy Sj for the jth component. Let η > 0. We apply the fundamental

step Sj iteratively: while V i
j > η, we compute μi+1 = μ(

∑i
l=0 T

l).
With arguments similar to the ones used to prove Lemma 4.6, we establish that

the above iteration terminates.
Lemma 4.9. The statement of Lemma 4.6 holds true for the complete strategy

Sj, with the following changes:
• for every j ∈ {1, . . . , d}, there exists kj ∈ N∗ such that the probability measure

μkj = fkj dx dv, with support contained in [0, X
kj

j ]× [a
kj

j , a
kj

j + V
kj

j ], is such

that V
kj

j � η;

• μkj = μ(
∑kj

l=0 T
l) with

∑kj

l=0 T
l � V 0

j � 2
c �;

• Xk
l � X0

l + V 0
l V

0
j � 2

c � for every l ∈ {1, . . . , d}.
Complete strategy S∗. The complete strategy consists of applying successively

the strategies Sj , for j = 1, . . . , d. In other words, by iteration on each component,
we reduce the size of the velocity support in this component (with a bound η). In
this process, the velocity support in the other components does not increase (but
the spatial support may increase, according to Lemma 4.8). At the end of these d
iterations, the velocity support is small enough (with a bound η) in all components.
If η is adequately chosen, then this means that we have reached the flocking region.
Then, as in the one-dimensional case, it follows from Corollary 3.3 that μ(t) converges
to flocking.

Theorem 4.10 (flocking in multidimensions). Let μ0 ∈ Pac
c (R2) be such that

supp(μ0) ⊂
∏d

j=1[0, X
0
j ]×

∏d
j=1[0, V

0
j ]. Let c > 0 be arbitrary. We set

V∗ =

⌈
2

c

⌉ d∑
j=1

V 0
j , Ṽ =

√
d

d∏
j=1

(X0
j + V 0

j V∗).

Then the strategy S, applied with

η =
1

2
√
d

∫ ∞

Ṽ

φ(2x) dx,

provides a Lipschitz control satisfying the constraints (1.4) and (1.5), which steers the
system (1.1) from μ0 to the flocking region in time less than or equal to V∗. Then
μ(t) converges to flocking.

Proof. Let us consider the jth step of the strategy, along which we apply Sj , and
at the end of which we have obtained μj . By construction, the velocity size in the jth
component is less than or equal to η, while the velocity size in the other components
does not increase, as a consequence of Lemma 4.8.

Note that, using Lemma 4.9, the duration of this jth step is less than or equal to
V 0
j � 2

c �. Hence, the total time of the procedure is less than or equal to � 2
c �
∑d

l=1 V
0
l =

V∗.
Let us now investigate the evolution of the size of the velocity support in the vari-

able vj along the whole procedure. After having applied the strategies S1, . . . , Sj−1,
the size of the velocity support in the variable vj is less than or equal to V 0

j ; the
application of the stragegy Sj decreases this size at some value less than or equal to η;
then, the application of the strategies Sj+1, . . . , Sd keeps this size at some value less
than or equal to η. As a result, the size of the velocity supports of each component
is less than or equal to η at the end of the procedure. Finally, the velocity support

of μd is contained in the ball B(ṽ, η
√
d

2 ) with ṽ = (ã1, ã2, . . . , ãd) +
η
2 (1, . . . , 1), where

ãi = min(vi ∈ R | (x, v) ∈ supp(μd)).
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4708 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

Let us now investigate the evolution of the size of the spatial support. Consider
the evolution of the size of the space support in the variable xj for the whole algorithm.
Since the size of the velocity support in the variable vj is always bounded by V 0

j , it

follows that Xj may increase at most V 0
j V∗. Then the space support of μd is contained

in the ball B(x̃, Ṽ2 ) with x̃ = (x̃1, . . . , x̃d) and x̃j =
X0

j +V 0
j V∗

2 .
Now, to conclude that μ(t) converges to flocking, it suffices to apply Corollary 3.3,

since 2
√
dη
2 = 1

2

∫∞
2 Ṽ

2
φ(2x) dx <

∫∞
Ṽ
φ(2x) dx.

4.5. Proof of the variant of Theorem 1.2. In this section, we consider the
controlled kinetic Cucker–Smale equation (1.1) with the control constraints (1.4) and
(1.7). We restrict our study to the one-dimensional case, the generalization to any
dimension being similar to that done in section 4.4.

We first define the fundamental step of our strategy. Here, the goal is to decrease
the size of the velocity support from [0, V 0] to [0, η]. We only act on the upper part
of the interval. For this reason, we need to define α0, β0 only (and not α+, β+, α−,
β−, as in the problem of control with constraint on the crowd). We also can assume
a = 0 for all times.

Fundamental step T . Let μ0 ∈ Pac
c (R × R) be such that supp(μ0) ⊂ [0, X0] ×

[0, V 0]. Let v̄0 ∈ (0, V 0) be the velocity barycenter of μ0. Using notations similar to
those used in section 4.3.1, we define the functions

α(t) =
φ(0)

φ(0) + φ(X(t) + V (t))
(V (t)− v̄(t)),

β(t) =
1

3

φ(X(t) + V (t))

φ(0) + φ(X(t) + V (t))
(V (t)− v̄(t)),

and we set α0 = α(0), β0 = β(0), and

ε0 = min

(
1

2
β0,

√
(X0)2 + 2c(V 0 + 1)−X0

2(V 0 + 2)

)
.

We define the (positive) time T 0 = ε0. The fact that ε0 represents both a distance
and a time is due to the fact that the velocity constraint on u is equal to 1.

Along the time interval [0, T 0], we define the constant control set ω(t) = ω0, with
ω0 = [−ε0, X0 + ε0V 0 + ε0] × [V 0 − 2ε0, V 0 + 2ε0], and we define the (constant in
time) control function u(t, x, v) = u0(x, v) with u0(x, v) = ψ(x)ζ(y), and

ψ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x < −ε0,
x+ε0

ε0 if x ∈ [−ε0, 0),
1 if x ∈ [0, X0 + ε0V 0),
−x+X0+ε0V 0+ε0

ε0 if x ∈ [X0 + ε0V 0, Y 0 + ε0V 0 + ε0),
0 if x � X0 + ε0V 0 + ε0,

and

ζ(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if v < V 0 − 2ε0,
V 0−2ε0−v

ε0 if v ∈ [V 0 − 2ε0, V 0 − ε0),
−1 if v ∈ [V 0 − ε0, V 0 + ε0),
v−(V 0+2ε0)

ε0 if v ∈ [V 0 + ε0, V 0 + 2ε0),
0 if v � V 0 + 2ε0.
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CONTROL OF KINETIC CUCKER–SMALE 4709

The next result states that the fundamental step T is well defined, and that this
control strategy makes the velocity support of the crowd decrease.

Lemma 4.11. Let μ0 = f0 dx dv ∈ Pac
c (R × R), with compact support contained

in [0, X0]× [0, V 0]. There exists a unique solution μ ∈ C0([0, T 0],P(R×R)) of (1.1),
corresponding to the control χωu defined by T . Moreover,

• μ ∈ C0([0, T 0],Pac
c (R×R)), that is, the solution μ remains, like μ0, absolutely

continuous and of compact support; in particular, at time T 0, we have μ1 =
μ(T 0) ∈ Pac

c (R× R);
• the sets R × [0, V 0] and R × [0, V 0 − ε0] are invariant under the controlled
particle flow Φω,u(t) (defined in Corollary 2.4);

• setting X1 = X(T 0) we have X1 � X0 + ε0V 0 and 0 � V 1 � V 0 − ε0;
• the control satisfies the constraints (1.4) and (1.7).

Proof. See Appendix A.4.
As in the previous case, the complete strategy consists of applying iteratively the

fundamental step T until the size of the velocity support decreases under a threshold
η.

Complete strategy T. Let η > 0. We apply the fundamental step T iteratively:
while V i > η, we compute μi+1 = μ(

∑i
j=0 T

j).
As before, we establish that the above iteration terminates.
Lemma 4.12. Let μ0 ∈ Pac

c (R×R) be such that supp(μ0) ⊂ [0, X0]× [0, V 0], and
let η > 0. Then there exists k ∈ N

∗ such that the probability measure μk = fk dx dv,
with support contained in [0, Xk] × [0, V k], is such that V k � η. Moreover, we have

μk = μ(
∑k

j=0 T
j) with

∑k
j=0 T

j � V0, and we have Xk � X0 + (V 0)2. Furthermore,
the control satisfies the constraints (1.4) and (1.7).

Proof. See Appendix A.5.
Now, it suffices to choose adequately η to obtain flocking.
Theorem 4.13 (flocking in 1D). Let μ0 ∈ Pac

c (R × R) be such that supp(μ0) ⊂
[0, X0]× [0, V 0], and let c > 0 be arbitrary. Then, the strategy T applied with

η =
1

2

∫ ∞

2(X0+(V 0)2)

φ(2x) dx

provides a control satisfying the constraints (1.4) and (1.7), which steers the system
(1.1) to the flocking region in time less than or equal to V 0. Then μ(t) converges to
flocking.

Proof. By Lemma 4.12, we have Xk � X0 + (V 0)2 and

2V k � 2η =

∫ ∞

2(X0+(V 0)2)

φ(2x) dx �
∫ ∞

2Xk

φ(2x) dx.

Using Corollary 3.3, the flocking property follows. The estimate on the time at which
μ(t) has reached the flocking region follows from Lemma 4.12, and the conditions on
the control follow from Lemma 4.12.

Appendix A.

A.1. Proof of Theorem 2.3. In this section, we prove Theorem 2.3. As already
said, the proof is a slight generalization of results established in [44].

Let us first recall some properties of the Wasserstein distance with respect to
pushforward of measures under flow actions.
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Proposition A.1 (see [43]). Let v, w be two bounded and Lipschitz vector fields
of Lipschitz constant L, and let μ, ν ∈ Pc(R

n). Denoting by Φt
v,Φ

t
w the flows of v, w

respectively, we have,

1. Wp(Φ
v
t#μ,Φ

v
t#ν) � e

p+1
p LtWp(μ, ν),

2. Wp(μ,Φ
v
t#μ) � t ‖v‖C0,

3. Wp(Φ
v
t#μ,Φ

w
t #ν) � e

p+1
p LtWp(μ, ν) +

eLt/p(eLt−1)
L ‖v − w‖C0 .

Let us first prove the last statement of Theorem 2.3. Assume that μ∗(t) is a
solution of

(A.1) ∂tμ
∗ + div(V [μ∗]μ∗) = 0, μ∗

|t=0
= μ0,

which is locally Lipschitz continuous in time. We define the time-dependent vector
field v(t, x) = V [μ∗(t)](x). It is locally Lipschitz. Then μ∗ is a solution of

∂tμ
∗ + div(v(t, x)μ∗) = 0, μ∗

|t=0
= μ0,

and, by Cauchy uniqueness, we have μ(t) = Φt
v#μ0, where Φt

v is the flow generated
by the vector field v (see [50]), and thus, by identification, μ∗(t) = Φ(t)#μ0.

Let us prove that, if μ0 ∈ Pac
c (Rn), then μ∗(t) ∈ Pac

c (Rn) for every t ∈ [0, T ].
Since the vector field v(t, x) defined above is locally Lipschitz, then the flow Φt

v is
locally Lipschitz as well. Since μ∗(t) = Φ(t)#μ0, then μ0 ∈ Pac

c (Rn) implies μ∗(t) ∈
Pac
c (Rn).

Let us now prove existence of a solution of (A.1). Let T > 0 be fixed and
μ0 ∈ Pc(R

d). We set L′ = ess supt∈[0,T ] L(t), M
′ = ess supt∈[0,T ]M(t), K ′ =

ess supt∈[0,T ]K(t). Note that L′,M ′,K ′ are (finite) real numbers, because L(·),M(·),
K(·) ∈ L∞

loc(R). Then, we have

‖V [μ](t, x) − V [μ](t, y)‖ � L′‖x− y‖, ‖V [μ](t, x)‖ �M ′(1 + ‖x‖),
‖V [μ]− V [ν]‖L∞(R;C0(Rn)) � K ′W1(μ, ν)

for all μ, ν ∈ Pc(R
d), t ∈ [0, T ], (x, y) ∈ R

n × R
n.

We now define a sequence of curves μk : [0, T ] → Pc(R
d)) as follows. Define

τk = T
2k

and

• μk(0) = μ0;
• μk(lτk + t) = Φt

V [μk(lτk)]
#μk(lτk) for all l = 0, . . . , 2k − 1 and t ∈ (0, τk].

We now prove that the sequence μk is both equi-Lipschitz continuous with respect to
the Wasserstein distance and with equibounded support. Equi-Lipschitz continuity is
obvious, since we have

W1(μ
k(lτk + t), μk(lτk)) � tLip(V [μk(lτk)]) � tL′,

and iteratively, by the triangular inequality, we haveW1(μ
k(t), μk(s)) � |t−s|L′ with

L′ not depending on k. Since μk(0) = μ0 for every k, the Ascoli–Arzelà theorem
implies the existence of a subsequence (that we do not relabel) uniformly converging
to some curve μ∗ : [0, T ] → P1(Rn), where P1(Rn) is the space of measure with
finite 1-moment. This is the space for which we have completeness with respect
to Wasserstein distance W1 (see [50]). Note that μ∗ satisfies μ∗(0) = μ0 and it is a
Lipschitz continuous curve with respect to the Wasserstein distanceW1, with Lipschitz
constant L′.
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CONTROL OF KINETIC CUCKER–SMALE 4711

We now prove that the μk have equibounded support, which implies that μ∗

has the same equibounded support, and hence μ∗(t) ∈ Pc(R
n) for every t ∈ [0, T ].

Denote by Rk(t) a radius such that μk(t) satisfies supp(μk(t)) ⊂ B(0, Rk(t)) for
every t ∈ [0, T ]. Note that supp(μk(lτk)) ⊂ B(0, Rk(lτk)) implies ‖V [μk(lτk)](x)‖ �
M ′(1 + Rk(lτk)). The corresponding flow Φt

V [μk(lτk)]
then generates a displacement

bounded by tM ′(1 + Rk(lτk)), hence supp(μk(lτk + t)) ⊂ B(0, Rk(lτk) + tM ′(1 +
Rk(lτk))). Applying it for t = τk, we have Rk((l + 1)τk) � (1 + τk)R

k(lτk) + τkM
′,

which implies by iteration

Rk(lτk) � (1 + τk)
lRk(0) + τkM

′(1 + (1 + τk) + (1 + τk)
2 + · · ·+ (1 + τk)

l−1),

and in particular,

Rk(lτk) � Rk(T ) �
(
1 +

T

2k

)2k

Rk(0) +M ′
((

1 +
T

2k

)2k

− 1

)
< eT (R0 +M ′),

where R0 is such that supp(μ0) ⊂ B(0, R0). Since such an estimate does not depend
on k, we have supp(μ∗(t)) ⊂ B(0, eT (R0 +M ′)) for every t ∈ [0, T ].

We now prove that μ∗ is a solution of (A.1). It suffices to prove that

(A.2)

∫ T

0

∫
Rn

(∂tf +∇f · V [μ(t)]) dμ∗(t) dt = 0

for every f ∈ C∞
c ([0, T ]× Rn). By construction, we have

2k−1∑
l=0

∫ (l+1)τk

lτk

∫
Rn

(
∂tf +∇f · V [μk(lτk)]

)
dμk(t) dt = 0

for every k. We then prove (A.2) by proving the three following conditions:

lim
k→∞

∫ T

0

∫
Rn

∂tf d(μ
∗(t)− μk(t)) dt = 0,(A.3)

lim
k→∞

2k−1∑
l=0

∫ (l+1)τk

lτk

∫
Rn

∇f · (V [μ∗(t)]− V [μk(lτk)]) dμ
∗(t) dt = 0,(A.4)

lim
k→∞

2k−1∑
l=0

∫ (l+1)τk

lτk

∫
Rn

∇f · V [μk(lτk)] d(μ
∗(t)− μk(t)) dt = 0.(A.5)

To establish (A.3), note that ∂tf is a globally Lipschitz continuous function, and that
the Kantorovich–Rubinstein theorem together with the uniform convergence of μk to
μ∗ yields

lim
k→∞

∣∣∣∣∣
∫ T

0

∂tf d(μ
∗(t)− μk(t)) dt

∣∣∣∣∣ � lim
k→∞

∫ T

0

Lip(∂tf)W1(μ
∗(t), μk(t)) dt

� lim
k→∞

T Lip(∂tf) sup
t∈[0,T ]

W1(μ
∗(t), μk(t)) = 0.

D
ow

nl
oa

de
d 

04
/1

9/
21

 to
 1

47
.1

62
.2

2.
10

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4712 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

To establish (A.4), recall that V [μ] is K ′-Lipschitz with respect to μ. Then, in every
time interval [lτk, (l + 1)τk], we have

‖V [μ∗(t)]− V [μk(lτk)]‖ � K ′W1(μ
∗(t), μk(lτk))

� K ′ (W1(μ
∗(t), μk(t)) +W1(μ

k(t), μk(lτk))
)

� K ′W1(μ
∗(t), μk(t)) +K ′L′ T

2k
,

where we have also used that μk is L′-Lipschitz continuous. This implies that

lim
k→∞

∣∣∣∣∣∣
2k−1∑
l=0

∫ (l+1)τk

lτk

∫
Rn

∇f · (V [μ∗(t)]− V [μk(lτk)]) dμ
∗(t) dt

∣∣∣∣∣∣
� lim

k→∞

∣∣∣∣∣2k T2k ‖∇f‖L∞

(
K ′ sup

t∈[0,T ]

W1(μ
∗(t), μk(t)) +K ′L′ T

2k

)∣∣∣∣∣ = 0,

where we have used that ∇f is bounded.
To establish (A.5), similarly to (A.3), note that both ∇f and V [μk(lτk)] are Lip-

schitz continuous and bounded, and in particular the constants L′, M ′ for V [μk(lτk)]
do not depend on k. As a consequence, ∇f · V [μk(lτk)] is Lipschitz continuous, with
a constant L′′ not depending on k. By the Kantorovich–Rubinstein theorem, we infer
that

lim
k→∞

∣∣∣∣∣∣
2k−1∑
l=0

∫ (l+1)τk

lτk

∫
Rn

∇f · V [μk(lτk)] d(μ
∗(t)− μk(t)) dt

∣∣∣∣∣∣
� lim

k→∞
2k
T

2k
Lip(∇f · V [μk(lτk)]) sup

t∈[0,T ]

W1(μ
∗(t), μk(t))

� TL′′ sup
t∈[0,T ]

W1(μ
∗(t), μk(t)) = 0.

This proves that μ∗ is a solution of (A.1).
We now prove that a solution of (A.1) is unique. For simplicity, we prove unique-

ness in [0, T ] only. By contradiction, assume that we have two solutions μ and ν of
(A.1). Note that they are both locally Lipschitz continuous in C0(R,Pc(R

d)) with
respect to the Wasserstein distance W1, and thus they are globally Lipschitz con-
tinous along [0, T ]. By the last statement of Theorem 2.3 proved above, we define
v(t, x) = V [μ(t)](x), w(t, x) = V [ν(t)](x) and we note that, since V is Lipschitz con-
tinuous, both v and w are globally Lipschitz continuous with a Lipschitz constant
denoted by P . We set t0 = inf{t ∈ [0, T ] | W1(μ(t), ν(t)) 
= 0}, that is the infimum
of times for which μ and ν do not coincide. By the third item of Proposition A.1, we
have

(A.6) W1(μ(t0 + s), ν(t0 + s))

� e2PsW1(μ(t0), ν(t0)) + ePs e
Ps − 1

P
sup

τ∈[t0,t0+s]

‖v(τ, .)− w(τ, .)‖C0 .

By continuity of the W1 distance, we have W1(μ(t0), ν(t0)) = 0. For a sufficiently
small s, we have ePs � 1 + 2Ps. By the definition of v, w, and since V [·] is K ′-
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CONTROL OF KINETIC CUCKER–SMALE 4713

Lipschitz continuous, we have

W1(μ(t0 + s), ν(t0 + s)) � 2K ′sePs sup
τ∈[t0,t0+s]

W1(μ(τ), ν(τ)).

We choose s′ > 0 satisfying both ePs′ � 1 + 2Ps′ and 2K ′s′ePs′ < 1. Applying the
previous estimate to every s ∈ [0, s′], we obtain

sup
s∈[t0,t0+s′]

W1(μ(s), ν(s)) � 2K ′s′ePs′ sup
s∈[t0,t0+s′]

W1(μ(s), ν(s)).

This implies that W1(μ(s), ν(s)) = 0 for every s ∈ [t0, t0 + s′], and in particular

t0 < inf{t ∈ [0, T ] | W1(μ(t), ν(t)) 
= 0}.

This is a contradiction.
We finally prove that, for every T > 0, there exists CT > 0 such that

(A.7) W1(μ(t), ν(t)) � eCT tW1(μ(0), ν(0))

for all solutions μ and ν of (2.2) in C0([0, T ];Pc(R
n)). As in the previous proof of

uniqueness, we define v(t, x) = V [μ(t)](x), w(t, x) = V [ν(t)](x) and we note that both
v and w are globally Lipschitz continuous with a Lipschitz constant denoted by P .
The estimate (A.6) holds true as well. Then we define φ(t) = supτ∈[0,t]W1(μ(τ), ν(τ))

and we note that (A.6) gives φ(t + s) � e2Psφ(t) + 2K ′sePsφ(t + s). This estimate,
together with the continuity of φ(t), implies that φ(t) is Lipschitz continuous and that
φ̇(t) � (2P + 2K)φ(t). This implies (A.7).

A.2. Proof of Lemma 4.5. In this section, we prove Lemma 4.5. Actually, let
us establish the following more precise result.

Lemma A.2. Let μ0 = f0 dx dv ∈ Pac
c (R × R), with compact support contained

in [0, X0]× [0, V 0]. There exists a unique solution μ ∈ C0([0, T 0],P(R×R)) of (1.1),
corresponding to the control χωu defined by S. Moreover,

• μ ∈ C0([0, T 0],Pac
c (R×R)), that is, the solution μ remains, like μ0, absolutely

continuous and with compact support; in particular, at time T 0, we have
μ1 = μ(T 0) ∈ Pac

c (R× R);
• setting X1 = X(T 0), a1 = a(T 0), and V 1 = V (T 0), such that supp(μ1) ⊂
[0, X1]× [a1, a1 + V 1], it holds X1 � X0 + V 0;

• the domain R× [v̄0 −α0 − β0 − k−, v̄0 +α0 + β0 + k+] is invariant under the
controlled particle flow Φω,u(t) (defined in Corollary 2.4), for all k− � 0 and
k+ � 0;

• either [a1, a1+W 1] ⊂ [0,W 0− T 0

n ] or [a1, a1+W 1] ⊂ [T
0

n ,W
0], which implies

that W 1 �W 0 − T 0

n ;

• 12ε0‖f0‖L∞(Rd×Rd)W
0 � c;

• the control satisfies the constraints (1.4) and (1.5).
Proof. By construction, for every i ∈ {1, . . . , n}, the function ψ[i] is Lipschitz and

piecewise C∞. Therefore, the vector fields V[0] = (v, ξ[f ]) and V[i] = (v, ξ[μ]+χω[i]
u[i]),

i = 1, . . . , n, are regular enough to ensure existence and uniqueness of the solution μ of
(1.1) over the whole interval [0, T 0]. Indeed, it suffices to apply Theorem 2.3 iteratively

over each time subinterval [ (i−1)T 0

n , iT
0

n ) (with initial datum μ((i − 1)T 0/n)), and
moreover, the solution μ remains absolutely continuous and with compact support.
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4714 B. PICCOLI, F. ROSSI, AND E. TRÉLAT

We claim that the domain R × [0,W 0] is invariant under the controlled particle
flow Φω,u. Indeed, the vector fields ξ(μ) and u[i] (by construction) always point
inwards along the boundary of that domain. Since T 0 � 1 by definition, and since
supp(μ0) ⊂ [0, X0] × [0, V 0], it follows that supp(μ(t)) ⊂ [0, X0 + V 0] × [0, V 0] for
every t ∈ [0, T 0].

Let k− and k+ be arbitrary nonnegative real numbers. Let us prove that the
domain Dk−,k+ = R× [v̄0−α0−β0−k−, v̄0+α0+β0+k+] is invariant under the flow
Φω,u. To this aim, it suffices to prove that the velocity vector ξ[μ(t)] points inwards
along the boundary of Dk−,k+ , that is, since we are in dimension one,

ξ[μ(t)](x, v̄0 + α0 + β0 + k+)

+ χω[i]
(x, v̄0 + α0 + β0 + k+)u[i](t, x, v̄

0 + α0 + β0 + k+) < 0,

ξ[μ(t)](x, v̄0 − α0 − β0 − k−)
+ χω[i]

(x, v̄0 − α0 − β0 − k−)u[i](t, x, v̄0 − α0 − β0 − k−) > 0.

We start with the case k− = k+ = 0. First of all, note that D0,0 ∩ ω[i] = ∅,
which means that the control does not act on D0,0. Then, it suffices to prove that
ξ[μ(t)](x, v̄0 +α0 + β0) < 0 and that ξ[μ(t)](x, v̄0 −α0 − β0) > 0 for every t ∈ [0, T 0].
To this aim, we first study the evolution of v̄(t). Since ˙̄v =

∫
ω
u (see Lemma 4.3),∣∣∫

ω u
∣∣ � c, and T 0 � β0

2c , we get that |v̄(t) − v̄0| � β0

2 < β(t). Let t ∈ [0, T 0] be
arbitrary. We assume that v̄(t) � v̄0 (the case v̄(t) � v̄0 is treated similarly). We
now make use of Lemma 4.2. First, noting that supp(μ(t)) ⊂ [0, X0 + V 0] × [0, V 0]
for every t ∈ [0, T 0], it follows that the scalar number r+, defined by (4.1), is equal to
α+(0) � α0. Similarly, the scalar number r−, defined by (4.2), is equal to α−(0) � α0.
Both functions r+(t) and r−(t) are constant in time along [0, T 0], since the size of
the domain has been estimated with constants along that time interval. Now, since
v̄0 + α0 + β0 − v̄(t) � α0 � r+, Lemma 4.2 implies that ξ[μ(t)](x, v̄0 + α0 + β0) <
0. Similarly, since v̄0 − α0 − β0 − v̄(t) � −α0 � −r−, Lemma 4.2 implies that
ξ[μ(t)](x, v̄0 − α0 − β0) > 0.

Similar arguments yield invariance of all domains R × [v̄0 − α0 − β0 − k−, v̄0 +
α0 + β0 + k+] for arbitrary k− � 0 and k+ � 0. Indeed, we have the same properties
of the vector field ξ[f ] pointing inwards, with the control χω[i]

u[i] (when it is nonzero)
pointing inwards as well.

Let us now prove that either [a1, a1+V 1] ⊂ [0, V 0− T 0

n ] or [a1, a1+V 1] ⊂ [T
0

n , V
0].

We first assume that β0 = β+(0). Define the set Ω[i](t) as the image of the
rectangle Ω0

[i] under the controlled particle flow (2.4). Remark that it is not a rectangle

in general. We distinguish between three cases, according to whether t ∈ [0, iT
0

n ), or

t ∈ [iT
0

n , (i+ 1)T
0

n ), or t ∈ [(i + 1)T
0

n ), T 0].

For every t ∈ [0, iT
0

n ), noting that the set R× [0, V 0] is invariant, Ω0
[i] ⊂ R× [0, V 0]

implies that Ω[i](i
T 0

n ) ⊂ R× [0, V 0].

For every t ∈ [iT
0

n , (i+ 1)T
0

n ), we define

b(t) = sup
{
v ∈ R | (x, v) ∈ Ω[i](t)

}
so that Ω[i](t) ⊂ R × [a(t), b(t)] with 0 � a(t) � b(t) � V 0. Note that a(t) � 0 for

every t ∈ [iT
0

n , (i+1)T
0

n ) since the set R× [0, V 0] is invariant. For b(t), we have either
of two cases:
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CONTROL OF KINETIC CUCKER–SMALE 4715

• b(t) � V 0 − β0 for some t ∈ [iT
0

n , (i+1)T
0

n ). In this case, the set R× [0, v̄0 +
α0+2β0] is invariant since both sets R×[0, V 0] and R×[v̄0−α0−β0, v̄0+α0+
β0 + k+] with k+ = β0 are invariant and hence their intersection is invariant
as well. Then

b

(
(i + 1)

T

n

)
� V 0 − β0 � V 0 − 2T 0c � V 0 − 4

T 0

n
< V 0 − T 0

n
.

• b(t) � V 0 − β0 on the whole interval [iT
0

n , (i + 1)T
0

n ). Since β0 = β+(0),
we have V 0 − v̄0 � v̄0, which implies that α0 = α+(0), and hence that
b(t) � v̄0 + α0 + 2β0. Let (x, v) ∈ Ω[i](t) be such that v = b(t). Note
that (x, v) ∈ Ω[i](t) implies that d(x,Ω0

[i]) � V 0T 0 � ε0. We also have

v = b(t) � v̄0+α0+2β0. The two conditions imply that ψ[i](x, v) = 1, which
in turn implies that χω[i]

u[i](x, v) = −1. Then, the velocity component of the
vector field acting on (x, v) is ξ[μ(t)]−1. Recall that ξ[μ(t)](x, v) < 0 because
v− v̄(t) > α0. Since this estimate holds for any (x, v) ∈ Ω[i](t) with v = b(t),

then ḃ(t) < −1. Since this holds on the whole interval [iT
0

n , (i + 1)T
0

n ) and

b(iT
0

n ) � V 0, then b((i+ 1)T
0

n ) � V 0 − T 0

n .

In both cases, we have obtained that Ω[i]((i + 1)T
0

n ) ⊂ R× [0, V 0 − T 0

n ].

Finally, for every t ∈ [(i+ 1)T
0

n , T
0], since the set R× [0, V 0 − T 0

n ] is invariant, it

follows that Ω[i](T
0) ⊂ R× [0, V 0 − T 0

n ].
Since the estimate holds for all sets Ω[i](t), we conclude that the support of

μ1 = μ(T 0) is contained in R× [0, V 0 − T 0

n ].

The case where β0 = β−(0) is similar, by proving that a(T 0) � T 0

n and b(t) � V 0.
Let us now prove that ε0 � c

12‖f0‖∞V 0 . Consider the mass contained in the set

[x[i]− �, x[i+1]+ �]× [0, V 0] for � � 0. Since the mass contained in [x[i], x[i+1]]× [0, V 0]
is equal to c

2 , then, with a simple geometric observation, it is clear that the mass
contained in [x[i]− �, x[i+1]+ �]× [0, V 0] is less than or equal to c

2 +2‖f0‖∞�V 0. Since
we want to keep a mass less than or equal to c (this is the control constraint), we
need to have � � c

4‖f0‖∞V 0 . Then, we choose 3ε0 = �.

Let us finally prove the last item of the lemma. The regularity of χωu is obvious,
since u is piecewise constant with respect to t and it is Lipschitz and piecewise C∞ with
respect to (x, v). The constraint (1.4) is satisfied by definition of ψ[i]. To prove that the
constraint (1.5) is satisfied, let us establish the stronger condition

∫
ω[i]

f(t) dx dv � c

for every i ∈ {1, . . . , n}, where μ(t) = f(t) dx dv. Since ẋ(t) = v(t) � V 0 for every
t ∈ [0, T 0], it follows that the mass can travel along the x coordinate with a distance
at most T 0V 0 � ε0. Hence, we have∫

ω[i]

f(t) dx dv =

∫ x[i+1]+2ε0

x[i]−2ε0

∫
f(t) dv dx �

∫ x[i+1]+3ε0

x[i]−3ε0

∫
f0 dv dx = c.

The lemma is proved.

A.3. Proof of Lemma 4.6. In this section we prove Lemma 4.6. Let us first
prove that the iteration terminates. Assuming that we are at the step i of the iteration,
consider the real numbers βi, εi, V i, and T i obtained by applying the fundamental

step S to μi. From Lemma 4.5, we have V i+1 � V i − T i

n . Since V j � 0 for every j,

we have
∑i

j=1 T
j � nV 0 for every i. We set T̄ =

∑∞
j=1 T

j; note that T̄ � nV 0. It

follows that X i � X0 + n(V 0)2 for every i.
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The sequence (V i)i∈N∗ is nonnegative, bounded above (by V 0), and is decreasing
(since T i > 0), therefore it converges to some V̄ � 0. Let us prove that V̄ = 0. By
contradiction, let us assume that V̄ > 0. For any given i, we have either V i − v̄i �
V i

2 � V̄
2 or v̄i � V i

2 � V̄
2 . In both cases we have

βi � 1

3

φ(X i + V i)

φ(0) + φ(X i + V i)

V̄

2
� φ(X0 + n(V 0)2 + V0)

φ(0) + φ(V̄ )

V̄

2
,

where we have used that 0 � X i � X0 + n(V 0)2, that V̄ � V i � V 0, and that φ is
decreasing. Since the estimate does not depend on i, we have obtained that βi � β̄

for every i, with β̄ = φ(X0+n(V 0)2+V 0)

φ(0)+φ(V̄ )
V̄
2 > 0. Recalling that μ(t) = f(t) dx dv, let

us consider the function t �→ ‖f(t)‖∞ on the interval [0, T̄ ) (note that the interval is
open at T̄ because we have not yet proved the convergence of the complete strategy).
Using the definition of ψi, we get

∥∥∥divv(ui[k])∥∥∥
L∞(ωi

[k]
)
=

∥∥∥∥∂v
(
ψi
[k](x, v)

v − v̄i

|v − v̄i|

)∥∥∥∥
L∞(ωi

[k]
)

� 1

βi
+ 1 � 1

β̄
+ 1

for every t ∈ [0, T̄ ). Then, applying the estimate (4.8) of Lemma 4.4, we get
‖f(t)‖L∞ � F̄ with F̄ = ‖f0‖L∞ exp((φ(0) + 1/β̄ + 1)T̄ ) < +∞. It follows that
‖f i‖∞ � F̄ for every i, which implies, by Lemma 4.5, that εi � c

2‖fi‖∞V i � ε̄ with

ε̄ = c
2F̄ V 0 > 0. At this step, we have obtained that βi � β̄ and εi � ε̄ for every i, and

besides, we have V i � V 0 for every i. Therefore T i = min( εi

W i ,
βi

2c , 1) � min( ε̄
V 0 ,

β̄
2c , 1)

does not converge to 0, and hence T̄ =
∑∞

j=1 T
j = +∞. This contradicts the fact

that T̄ � nV 0. We conclude that V̄ = 0.
Since V i converges to 0 as i tends to +∞, it follows that there exists k ∈ N∗ such

that V k < η. This means that the iterative procedure terminates.
Recalling that n = � 2

c �, the above arguments show that μk = μ(
∑k

j=0 T
j) with∑k

j=0 T
j � V 0� 2

c �, and we have Xk � X0 + (V 0)2� 2
c �.

Finally, the constraints on the control follow from an iterative application of
Lemma 4.5.

A.4. Proof of Lemma 4.11. In this section we prove Lemma 4.11. The proof
of the fact that μ ∈ C0([0, T 0],Pac

c (R× R)) is similar to the proof of Lemma 4.5.
The set R× [0, V 0] is invariant under the controlled particle flow Φω,u(t), because

by construction the vector field ξ[μ(t)] and u0 point inwards along the boundary
of that domain. Since supp(μ0) ⊂ [0, X0] × [0, V 0], it follows that supp(μ(t)) ⊂
[0, X0 + ε0V 0] × [0, V 0] for t ∈ [0, T 0] because T 0 = ε0. In particular we get that
X1 � X0 + ε0V 0.

The proof of the fact that the set R× [0, V 0−ε0] is invariant under the controlled
particle flow Φω,u(t) is similar to the proof of Lemma 4.5, noting that the velocity
barycenter v̄(t) satisfies |v̄(t)− v̄(0)| < β0 and thus that the vector field ξ[μ(t)] points
inwards at any point (x, v) such that v � v̄(0) + α0 + β0.

Recall that [0, V (t)] is the velocity support of μ(t). Since the set R × [0, V 0] is
invariant, we have V (t) � V 0 for every t ∈ [0, T 0]. Let us prove that V 1 = V (T 0) �
V 0 − ε0. By contradiction, let us assume that V 1 > V 0 − ε0. Then V (t) > V 0 − ε0

for every t ∈ [0, T 0], otherwise there would exist t̄ ∈ [0, T 0] such that V (t̄) � V 0 − ε0,
and then V 1 = V (T 0) � V 0 − ε0 by invariance of the set R × [0, V 0 − ε0] under the
controlled particle flow. Since β0 > ε0, it follows that V (t) � V 0 − β0 on the whole
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interval [0, T 0], and then the velocity component of the vector field acting on any
(x, v) with v = V (t) is ξ[μ(t)](x, v) + u(x, v). But one has ξ[μ(t)](x, v) < 0 because
v − v̄(t) > α0, and u(x, v) = −1 by definition of u. Since this estimate holds for any
(x, v) ∈ ω0(t) with v = V (t), it follows that V̇ (t) < −1. Since this holds true for every
t ∈ [0, T 0], we infer that V (T ) � V 0 − ε0, which is a contradiction.

Finally, let us prove that the control satisfies the constraints. The control χωu
satisfies (H) and ‖u(t)‖L∞(Rd×Rd) � 1 by construction. The constraint |ω(t)| � c
follows from the choice of ε0. Indeed, by construction we have |ω(t)| � 4ε0(X0 +
ε0V 0 + 2ε0), and solving the equation 4ε(X0 + εV 0 + 2ε) = c yields

ε = (
√
(X0)2 + c(V0 + 2)−X0)/2(V0 + 2)

But we have chosen ε0 such that ε0 � (
√
(X0)2 + 2cV 0 + 2c−X0)/2(V 0 + 2).

A.5. Proof of Lemma 4.12. In this section we prove Lemma 4.12. Consider
the sequence of positive real numbers εi obtained by the iterative application of the
fundamental step T . According to Lemma 4.11, we have V i+1 � V i − εi for every
i, and since V i � 0, it follows that

∑i
j=1 ε

i � V0 for every i. Setting T̄ =
∑+∞

j=1 T
j,

we have T̄ � V 0. As a consequence, the controlled particle flow Φω,u(t) lets the
set [0, X0 + (V 0)2] × [0, V 0] be invariant, for every time t ∈ [0, T̄ ), where the time
interval is open at T̄ since we have not proved yet the convergence of the complete
procedure. Note that this implies that X i � X0 + (V 0)2 for every i. Since the
sequence (V i)i∈N∗ is bounded below by 0, bounded above by V 0, and is decreasing
(because V i+1 � V i − εi with εi > 0), it converges to some limit V̄ � 0. Let us prove
that V̄ = 0. By contradiction, let us assume that V̄ > 0. Then, for any given i, we

have V i � V̄ and either V i − v̄i � V i

2 � V̄
2 or v̄i � Vi

2 � V̄
2 . In both cases, we have

βi � 1

3

φ(X i + V i)

φ(0) + φ(X i + V i)

V̄

2
� φ(X0 + (V 0)2 + V 0)

φ(0) + φ(V̄ )

V̄

2
,

where we have used that 0 � X i � (X0 + V 0)2, that V̄ � V i � V 0, and that φ is
decreasing. Since the estimate does not depend on i, it follows that βi � β̄ for every

i, with β̄ = φ(X0+(V 0)2+V 0)
φ(0)+φ(V̄ )

V̄
2 > 0. Similarly, note that V̄ � V i � V 0 implies

√
(X i)2 + 2cV i + 2c−X i

2(V i + 2)
�
√
(X i)2 + 2cV̄ + 2c−X i

2(V 0 + 2)
= h(X i).

The function h is decreasing with respect to X i in the interval X i ∈ [0, X0 + (V 0)2],
and reaches its minimum for X i = X0 + (V 0)2, therefore√

(X i)2 + 2cV i + 2c−X i

2(V i + 2)
� γ̄ =

√
(X0 + (V 0)2)2 + 2cV̄ + 2c− (X0 + (V 0)2)

2(V 0 + 2)
> 0.

It follows that εi � min
(
1
2 β̄, γ̄

)
, and since β̄ and γ̄ do not depend on i, εi does not

converge to 0. This contradicts the fact that
∑∞

j=1 T
j =

∑∞
j=1 ε

j � V 0. Therefore,

V i converges to 0 as i tends to +∞, and it follows that there exists k such that
V k < η, which means that the algorithm terminates.

For i = k, we have obtained μk = μ(
∑k

j=0 T
j) with

∑k
j=0 T

j � V0, and Xk �
X0 + (V 0)2.

To prove that the constraints on the control are satisfied, it suffices to apply
Lemma 4.11 for the k steps.
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