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a b s t r a c t 

Persson’s theory allows for a fast and effective estimate of contact area and contact stress 

distributions when a flat and a self-affine rough surface are pressed into contact. For elas- 

tic bodies, the results of the theory have been shown to be in very good agreement with 

rather costly simulations. The theory has also been extended to plastic bodies. In this work, 

the results of Persson’s theory for plastic bodies are compared with those of discrete dis- 

location plasticity. The area–load curves obtained by theory and simulations are found to 

be in good agreement when the rough surface has a very small root-mean-square (rms) 

height. For larger rms heights, which are more realistic for metal surfaces, the agreement 

is no longer good unless in the theory, instead of a size-independent material strength, 

one uses a rms height- and resolution-dependent yield strength. A modification of this 

type, i.e., the use of a yield strength dependent on size, does however not lead to agree- 

ment between the probability distributions of the contact stress, which is much broader in 

the simulations than in the theory. The most likely reason for this discrepancy is that the 

theory, apart from neglecting plasticity size dependence, only applies to elastic-perfectly 

plastic bodies and therefore, neglects strain hardening. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

1. Introduction 

In the past decades, numerous experiments have confirmed that surfaces have a self-affine fractal character down to the

nanoscale ( Bouchaud, 1997; Bouchaud et al., 1990; Dauskardt et al., 1990; Imre et al., 1992; Krim and Palasantzas, 1995;

Lechenault et al., 2010; Majumdar and Tien, 1990; Mandelbrot et al., 1984; Plouraboué and Boehm, 1999 ). To account for

this, Persson (2001b) developed a contact model that includes the presence of roughness on successive length scales. At

a given nominal pressure, his theory can predict the contact area, contact stress distribution and interfacial separation of

elastic bodies in good agreement with experiments ( Lorenz and Persson, 20 09a; 20 09b; Persson, 20 01b ). Persson’s theory

has also been extended to study plasticity ( Persson, 2001a ). However, to the best of the authors knowledge, the validity

of Persson’s theory has never been tested for metal surfaces that deform plastically. Here, we intend to test the theory by

comparing its results with those of two-dimensional discrete dislocation plasticity simulations. 
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Fig. 1. Schematic representation of the metal slab indented by a rough surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metallic rough surfaces span various orders of length scales, with asperities as small as a few nanometers. Already at the

micro-scale, experiments have shown that plasticity is size dependent ( Fleck et al., 1994; Greer et al., 2005; Ma and Clarke,

1995; Volkert and Lilleodden, 2006 ). The size dependence entails that, differently from the elastic response, the plastic re-

sponse does not scale with size. Although the size effect cannot be captured by classical plasticity, which does not contain

any material length scale, it is captured by non-local plasticity theories ( Nix and Gao, 1998; Gurtin, 20 0 0 ) and by numerical

simulations of the type of discrete dislocation plasticity (DDP) ( El-Awady, 2015; Kraft et al., 2010; Nicola et al., 2003 ). The

latter contains various length scales, including the dislocation Burgers vector, and the average spacing between dislocation

sources and dislocation obstacles. Recently, Venugopalan and Nicola (2019) performed dislocation dynamics simulations to

study indentation of metal crystals by self-affine rigid indenters with various roughness parameters. Results showed indeed

a size dependence when scaling the dimensions of the rough body: the pressure-displacement response does not scale and

smaller bodies are stronger. This phenomenon is mostly caused by limited dislocation availability, i.e., when the stressed

subsurface regions become too small, they no longer contain a sufficient amount of dislocation sources to sustain plastic

deformation. The same phenomenon is observed in Venugopalan and Nicola (2019) when indenting a crystal with constant

size and a surface with smaller root mean square roughness: if pressure is normalized on the root mean square slope and

interference is normalized by the rms height, the results are elastically identical, but not plastically. The crystal indented

by the largest rms-height is subjected to a broader stressed region underneath the surface and is more susceptible to plas-

tic deformation and, therefore, is softer. The characteristic scale-independent material length scale is the average spacing

between dislocation sources. 

In order to include size-dependent plasticity in his theory, Persson suggested to replace the constant material yield

strength with a resolution-dependent yield strength, i.e., a yield strength that increases with decreasing the short wave-

length cut-off λs ( Persson, 2006 ). The exact dependence of yield strength on resolution was not specified and it might be

inferred by comparison with dislocation dynamics simulations, if the results are otherwise in agreement. 

Before proceeding with the comparison it is important to note that the GFDD simulations are based on the small strain

and small slope approximation. This means that for rms heights realistic for metals one can only reach partial closure of

the contact. Persson’s original theory is instead exact at full contact and requires a correcting factor at partial contact ( Dapp

et al., 2014; Manners and Greenwood, 2006; Wang and Müser, 2017 ). Therefore, for the sake of comparison, we will start

by showing the results of GFDD simulations for a very small rms height, which is not observed in typical metal surfaces

but allows to reach closure. This is the case for which the best agreement is found between simulation and theory. We will

then see that for surfaces with rms heights more typical for metals, the agreement is not good. 

2. Formulation of the problem 

A rigid indenter with self-affine roughness is pressed into contact against a metallic slab of finite height, see Fig. 1 . The

power spectrum of the indenter is 

C(q ) = C 0 

(
q 

q 0 

)−2(H+ 1 2 ) 

if q 0 < q < q s , 

C(q ) = 0 else , 

(1) 

where q 0 = 2 π/λl and q s = 2 π/λs are the wavenumbers corresponding to the long and short wavelengths cut-offs, i.e. λl 

and λs , respectively. C 0 is determined by the root-mean-square (rms) height h̄ as 

h̄ 

2 = 2 

∫ q s 

q 

C(q ) d q. (2) 

0 
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Assuming q s >> q 0 implies that 

C 0 = 

H ̄h 

2 

q 0 
, (3)

where H is the Hurst exponent. The power-law scaling for the surface height spectrum applies to wavenumbers between

cut-offs at long and short wave numbers q 0 < q < q s . 

The slab is taken to be elastically isotropic with Young’s modulus E = 70 GPa and Poisson’s ratio ν = 0 . 33 , representative

values for aluminum. Moreover, it has a finite height z m 

. The top surface of the crystal is frictionless at the points of contact,

σxz (x c , z c m 

) = 0 , and traction-free elsewhere, σxz (x nc , z nc 
m 

) = σzz (x nc , z nc 
m 

) = 0 The superscripts ‘c’ and ‘nc’ stand for points ‘in

contact’ and points ‘not in contact’, respectively. Furthermore, the bottom of the substrate is kept fixed: u x (x, 0) = u z (x, 0) =
0 . 

2.1. Persson’s theory for line contacts in solids with finite height 

Under the assumption that at resolution q the contact is full, Persson (2001a,b) states that on all length scales the dis-

tribution of contact stress σ is 

P (σ, q ) = 〈 δ(σ − σnom 

) 〉 . (4)

Here, σnom 

is the nominal contact stress when the surface roughness with wavenumbers larger than q have been smoothed

out and 〈 . . . 〉 stands for ensemble averaging over different surface roughness profiles. As finer roughness features are added,

the contact stress distribution becomes P (σ, q + �q ) = 〈 δ(σ − (σnom 

+ �σ )) 〉 . By expanding this equation to linear order in

�q 

∂P 

∂q 
= k (q ) 

∂ 2 P 

∂σ 2 
, (5)

where 

k (q ) = 

〈 �σ 2 〉 
2 �q 

. (6)

The partial differential Eq. (5) can be solved by imposing the following boundary conditions: 

P (0 , q ) = 0 , (7a)

P (σ, 0) = δ(σ − σ0 ) , (7b)

P (σY , q ) = 0 . (7c)

The boundary conditions enforce that: (7a) when the local contact stress reaches zero, contacting surfaces detach; (7b) at

the lowest resolution, the stress distribution is a delta function; (7c) the contact stress does not exceed the yield strength

σY . The latter condition entails that Persson’s theory for plasticity applies to ideal elasto-plastic solids that display no work

hardening. Notice also that solving an elastic contact problem is equivalent to imposing σY → ∞ in Eq. (7c) . 

Following Persson (2001a,b) , the solution to Eq. (5) with boundary conditions (7a)–(7c) can be written as 

P (σ, q ) = 

∞ ∑ 

n =1 

A n (q ) sin 

(
nπσ

σY 

)
. (8)

Substituting the expression above in Eq. (5) leads to the following partial differential equation: 

d A n 

d q 
= −k (q ) 

(
nπ

σY 

)2 

A n , (9)

which after solution leads to 

A n (q ) = 

2 

σY 

sin (αn ) exp 

[
−
(

nπ

σY 

)2 ∫ q 

q 0 

k (q ′ ) d q ′ 
]
. (10)

The full expression of the contact stress distribution is then given by 

P (σ, q ) = 

2 

σY 

∞ ∑ 

n =1 

sin (αn ) exp 

[
−α2 

n L (q ) 
]
sin 

(
nπσ

σY 

)
, (11)

where αn = 

nπσ0 

σY 
and L (q ) = 

∫ q 
q 0 

k (q ′ ) 
σ 2 

0 

d q ′ . In order to solve Eq. (5) , one must obtain k ( q ) from �σ ( q ). Wang and Müser

(2017) showed that for elastic substrates with a finite height, �σ is given by 

�σ(q ) = 

√ 

W (a r ) 

(
qE ∗ f (q ) 

2 

)
| ˜ h (q ) | , (12)



4 S.P. Venugopalan, N. Irani and L. Nicola / Journal of the Mechanics and Physics of Solids 132 (2019) 103676 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where a r is the relative contact area, and E ∗ is the effective elastic modulus. Moreover, W (a r ) is the correction introduced

by Wang and Müser (2017) for the low load regimes, i.e., when contact is partial. Furthermore, for frictionless elastic con-

tacts, a substrate of height z m 

, and a fixed bottom, f ( q ) is given by Venugopalan et al. (2017b) as 

f (q ) = 

cosh (2 qz m 

) + 2(qz m 

) 2 + 1 

sinh ( 2 qz m 

) − 2 qz m 

, (13) 

and 

k (q ) = 

〈 �σ 2 〉 
2�q 

= 

1 

2 

W [ a r (q )] 

(
qE ∗ f (q ) 

2 

)2 

| ˜ h (q ) | 2 . (14)

Finally, for the power spectrum C ( q ) in this work 

k (q ) = 

H ̄h 

2 q 0 
8 

W (a r ) ( E 
∗ f (q ) ) 

2 
(

q 

q 0 

)1 −2 H 

. (15) 

Having found k ( q ), we may then proceed to solve the partial differential Eq. (5) . 

Subsequently, from the contact stress distribution P( σ , q ), following Persson (2001a,b) , one can obtain the following

quantities: 

(i) The fraction of macro-contact area that is not in real contact a non 
r , that forms a plastic contact a 

plas 
r , and an elastic

contact a elas 
r : 

a non 
r = 

∫ q 

q 0 

k (q ′ ) ∂P 

∂σ
(0 , q ′ ) d q ′ 

= 

2 

π

∞ ∑ 

n =1 

sin (αn ) 

n 

(
1 − exp 

[
−α2 

n L (q ) 
])

, 

a plas 
r = −

∫ q 

q 0 

k (q ′ ) ∂P 

∂σ
(σY , q 

′ ) d q ′ 

= − 2 

π

∞ ∑ 

n =1 

(−1) n 
sin (αn ) 

n 

(
1 − exp 

[
−α2 

n L (q ) 
])

, 

a elas 
r = 1 − a plas 

r − a non 
r . (16) 

(ii) The relative contact area a r , comprising both the area in elastic and plastic contact: 

a r = 1 − a non 
r . (17) 

2.2. Green’s function dislocation dynamics 

At each time step of the simulation, the solution of the boundary value problem in Fig. 1 is obtained by the superposition

of two linear elastic solutions: The elastic analytical fields for dislocations in a homogeneous infinite solid, and the solution

to the complementary elastic boundary-value problem, which corrects for the boundary conditions. The methodology is sim-

ilar to Van der Giessen and Needleman (1995) , however, the solution to the complementary elastic boundary-value problem

is obtained through Green’s function molecular dynamics (GFMD) ( Venugopalan et al., 2017a ). 

The schematics of the indented single crystal is shown in Fig. 2 . Indentation is performed by applying the displacement

U z on top of the rigid indenter from which the value of the equivalent applied pressure σ 0 is obtained. 

Following Van der Giessen and Needleman (1995) , the dislocation dynamics are controlled by constitutive rules inspired

by atomic scale phenomena that control the nucleation and glide of the dislocations. The crystal is initially dislocation free,

and contains a given density of slip planes, dislocation sources, and obstacles that are randomly distributed. When the

stress in the body reaches the nucleation strength τ̄nuc on a dislocation source for a given amount of time t nuc , a dislocation

dipole is nucleated from the sources and glides on the slip plane resulting in plastic deformation. The velocity with which

the dislocations glide is controlled by the Peach-Koehler force acting on them. Dislocations are stopped by the obstacles, but

released when the resolved shear stress on them exceeds the critical strength associated to the obstacle, τobs . 

2.2.1. Choice of parameters for the simulations 

Dislocations are nucleated from randomly distributed nucleation sources on slip planes oriented at φ = 60 ◦, −60 ◦, and

90 ◦ with respect to the loading direction. The simulations are performed for a nucleation source density ρnuc = 40 μm 

−2 .

In both cases, the sources have a Gaussian strength distribution with the mean strength being τ̄nuc = 50 MPa. The nucle-

ation time t nuc = 10 ns. The density of obstacles is ρobs = 40 μm 

−2 and the obstacle strength is τobs = 150 MPa. The drag

coefficient for glide is B = 10 −4 Pa s and the critical distance for annihilation is L e = 6 b, where b = 2 . 5 × 10 −4 μm is the

magnitude of the Burgers vector. Moreover, in all calculations a time step of �t = 2 . 5 ns is employed. The GFDD simula-

tions are performed for 10 realizations of nucleation source and obstacle distributions. In the following, the presented results

are obtained by averaging over these 10 realizations. 
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Fig. 2. Schematic representation of the metal crystal indented by a rough surface. 

Table 1 

Default simulation parameters. 

Parameters Notation Value 

Angle between slip planes and loading direction φ 60 ◦, −60 ◦, 90 ◦

Source density ρnuc 40 μm 

−2 

Mean nucleation strength τ̄nuc 50 MPa 

Obstacle density ρobs 40 μm 

−2 

Obstacle strength τobs 150 MPa 

Drag coefficient B 10 −4 Pas 

Length of the Burger’s vector b 2.5 × 10 −4 μm 

Critical annihilation length L e 6 b 

Time step �t 2.5 ns 

Thermodynamic discretization εt 2 −1 

Fractal discretization εf 16 −1 , 32 −1 , 64 −1 

Continuum discretization εc 32 −1 

Hurst exponent H 0.8 

Long wavelength cut-off λl 10 μm 

Rms height h̄ 0.001, 0.01, 0.1 μm 

Height of the crystal z m 10 μm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The roughness of the indenter is obtained using the power spectral density method ( Campañá et al., 2008 ). The power

spectrum C ( q ) is used to construct a periodic self-affine surface with a Gaussian height distribution. The Fourier transform

of the height profile h ( r ) of the indenter is given as: 

˜ h (q ) = h 0 
˜ �G (q ) 

√ 

C(q ) = h 0 

˜ �G (q ) 

q 

(
1 
2 

+ H 
) , (18)

where h 0 is a real-valued constant which can be adjusted to obtain the required rms slope of the surface, ˜ �G (q ) is a

Gaussian random variable with random phase such that 〈 ̃  �G (q ) 〉 = 0 , and H is the Hurst exponent. For different realizations

of the rough surface, all parameters, including the cut-off values, are kept fixed except the Gaussian random variable ˜ �G (q )

whose phase is randomly varied. Furthermore, before starting the simulations the surfaces so generated are shifted such

that the lowest point touches the substrate at zero interfacial pressure. The fractal discretization, εf = λs /λl , defines the

range of wavelengths used to describe the surface. Here, the long wavelength cut-off is kept constant, i.e. λl = 10 μm and

the short wavelength cut-off is varied while εf is varied. The thermodynamic discretization is defined as εt = λl /L x = 1 / 2 ,

where L x is the width of the periodic unit cell. In the limiting case of εt → 0, which corresponds to the thermodynamic

limit, the surface is no longer periodic since L x → ∞ . Finally, the continuum discretization is defined as εc = a 0 /λs = 1 / 32

where a 0 is the spacing between the grid points that discretize the surface of the substrate. In the limiting case of εc → 0,

the grid spacing a 0 → 0 and hence the surface has a continuum representation, therefore the solution must converge to the

continuum mechanics solution. We selected for the Hurst exponent the value H = 0 . 8 , since it is typical for many metallic

surfaces ( Bouchaud et al., 1990; Dauskardt et al., 1990 ). The long wavelength cut-off λl is kept constant and equal to 10 μm.

The short wavelength cut-off is changed in the simulations to represent a change in the resolution in Persson’s theory. The

rms height values considered are h̄ = 0 . 001 , 0 . 01 , and 0 . 1 μm , the latter being the most realistic for metal surfaces. 

The simulation parameters are summarized in Table 1 . 
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Fig. 3. (a) Schematics of the uniaxial tensile test. (b) Uniaxial tensile stress–strain (σ − ε) curve from discrete dislocation plasticity. 

Fig. 4. (a) Relative contact area a r against reduced applied pressure σ ∗
0 for indenters with h̄ = 0 . 001 μm and three fractal discretizations εf . (b) Probability 

distribution of reduced contact stress σ ∗ for an indenter with εf = 16 −1 at three instances of applied pressure σ ∗
0 = 0 . 1 , 0.5 and 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. The yield strength 

While in Persson’s theory the yield stress is an input to the calculation, in discrete dislocation plasticity it is an output.

To calculate it, we perform a uniaxial tensile loading simulation on a single crystal with the material properties mentioned

above. 

The dimensions of the crystal are selected to be large enough to not experience size effects and are L = 12 . 5 μm and

W = 5 μm . The schematics of the uniaxial tensile test is shown in Fig. 3 (a). The predicted nominal tensile stress versus

applied strain ε = 2 U x /L is presented in Fig. 3 (b). This figure shows that the tensile yield strength of the crystal is σ Tensile 
Y 

=
60 MPa. It is important to highlight that the yield strength identified with σ Tensile 

Y 
, here and throughout the manuscript is a

size-independent quantity. 

3. Persson’s theory: correcting factor at low loads for various fractal discretizations 

The expression for the elastic energy in Persson’s theory was corrected by Wang and Müser (2017) in order to hold at

low loads. The correcting factor in the fractal limit, λs → 0 , was given by the authors as 

W [ a r (σ
∗
0 )] = 1 + c 1 (1 − a r (σ

∗
0 ) 

2 ) + c 2 (1 − a r (σ
∗
0 ) 

4 ) , (19)

where σ ∗
0 = 

σ0 

E ∗ḡ 
is the reduced pressure, σ 0 is the applied pressure and ḡ is the root-mean-square gradient of the indenter.

Selecting the values of 2/9 and −2/3 for the constants c 1 and c 2 leads to good correspondence between Persson’s theory

and elastic GFMD simulations. 

In this work, we intend to consider fractal discretizations also far from the limit, namely εf = 64 −1 , 32 −1 , or 16 −1 . To this

end, we first proceed to check to which extent the correction factor is independent of fractal discretization. This is done by

comparing in Fig. 4 (a) the results of Persson’s theory with our elastic GFMD calculations for an indenter with rms height

h̄ = 0 . 001 μm . 
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Table 2 

Coefficients c 1 and c 2 in Eq. (19) . 

εf = 16 −1 εf = 32 −1 εf = 64 −1 

c 1 −2.3 −0.6 0.19 

c 2 1.9 0.2 −0.6 

Fig. 5. (a) The correction factor W (a r ) for three different fractal discretizations εf . (b) Probability distribution of the reduced contact stress σ ∗ for an 

indenter with εf = 16 −1 at three instances of applied pressure σ ∗
0 = 0 . 1 , 0.5 and 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the relative contact area versus applied load in Fig. 4 (a) show that there is a small discrepancy between

GFMD and Persson’s theory at intermediate load. This corresponds to a non-negligible difference in the probability distribu-

tion of the contact stress P( σ ∗) for larger fractal discretizations, as shown in Fig. 4 (b). 

To assure that at least our elastic simulations agree well with Persson’s theory, we proceed to search for the c 1 and c 2
coefficients that minimize the difference between the area–load curves for theory and simulations. The values, which are

non-unique, are listed in Table 2 and lead to the correction factors in Fig. 5 (a) and to the contact stress distributions in

Fig. 5 (b). 

We have verified that the correction factors W (a r ) found for indenters with rms height h̄ = 0 . 001 μm are also appropri-

ate for the other rms heights used in this work, and are therefore used throughout the manuscript. 

4. Comparison between theory and simulations for indenters with small rms height 

We start by comparing Persson’s theory with GFDD simulations for the indentation of a metal crystal by a rigid indenter

with surface roughness with h = 0 . 001 μm and fractal discretization ε−1 
f 

= 64 . This allows to reach near full closure with

dislocation dynamics simulations while still obeying the small strain and small slope approximations. 

In Persson’s plasticity theory, the yield strength σY is an input parameter, which has been interpreted as either the tensile

yield strength of the material σ Tensile 
Y 

or the macroscopic indentation hardness, estimated by Johnson (1987) to be 3 σ Tensile 
Y 

.

By comparison between theory and simulations we assess which of the two definitions is most appropriate: Fig. 6 (a), shows

a much better agreement between the area–load curves when hardness is used for the definition of σY . 

Fig. 6 (b) shows, the relative contact area together with how the elastic a elas 
r and plastic a 

plas 
r fractions of contact change

with load. Remember that a elas 
r and a 

plas 
r are calculated separately in Persson’s theory (see Eq. (16) ). Thus, it is possible to see

that the portion of contact undergoing elastic deformations, a elas 
r , initially increases with load, σ ∗

0 
, and then decreases with

increasing plasticity. Instead, the relative plastic contact area, i.e. a 
plas 
r , continues to increase with load until the external

load reaches σ ∗
0 

= 1 . 3 . This load corresponds to the point at which the contact stress is everywhere plastic and equal to σY .

Notice that the contact in dislocation dynamics simulations never reach full closure, as can be seen from the decrease of the

interfacial gap in Fig. 7 (a) and a snapshot of the interface at σ ∗
0 

= 1 . 3 in Fig. 7 (b). The depth of the valleys formed during

deformation can be as large as the rms height h̄ of the indenter. This is in agreement with the observation of Bowden and

Tabor (2001) according to whom full closure is impossible for rough metal surfaces due to work hardening. 

Fig. 8 presents the distribution of contact stress for three instances of the applied pressure, σ ∗
0 

= 0 . 1 , 0.5, and 1.3. The

probability distribution function representing the plastic part of the contact is a delta peak at σ ∗ = σ ∗
Y 

. The other delta

peak at σ ∗ = 0 represents the part of the surface which is not in contact. The area under the probability distribution curve

in Persson’s theory is the elastic fraction of the contact area a elas 
r . This is different from the distribution function obtained

through GFDD simulations, where the area under the curve represents the relative contact area a r : elastic and plastic contact
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Fig. 6. Relative contact area a r calculated using GFDD and modified-Persson’s theory. In the latter, yield strength σY = σ Tensile 
Y 

and 3 σ Tensile 
Y 

were applied 

as an input. 

Fig. 7. (a) The average interfacial separation ū / ̄h are plotted against reduced applied pressure σ ∗
0 for the case of an indenter with h = 0 . 001 μm and 

ε−1 
f 

= 64 . The input yield strength to Persson’s theory is σY = 3 σ Tensile 
Y 

. (b) The snapshot of the contact between the indenter and the substrate at σ ∗
0 = 1 . 3 . 

Fig. 8. Probability distribution of the contact stress σ ∗ at three instances of loading, σ ∗
0 = 0 . 1 , 0.5, and 1.3, for an indenter with h = 0 . 001 μm and ε−1 

f 
= 64 . 

 

 

 

 

 

areas are not distinguished, nor distinguishable, and the deformation only ‘partially plastic’. Therefore, agreement between

the contact stress distribution obtained by Persson’s theory and by the GFDD simulations ceases to be good when plasticity

becomes relevant. The simulations predict a much broader stress distribution, with contact stresses larger and smaller than

the macroscopic hardness. The reason for this discrepancy can be partly attributed to the fact that Persson’s plasticity theory

does not account for material hardening. In our opinion, a better agreement with the simulations would be found, if the
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Fig. 9. (a) Reduced nominal pressure and (b) mean contact pressure are plotted against reduced displacement for three different rms heights. 

Fig. 10. (a) Relative contact area a r against reduced applied pressure σ ∗
0 for an indenter with εf = 64 −1 and three rms heights h̄ . The input yield strength 

to Persson’s theory is 3 σ Tensile 
Y 

. (b) The input yield strength to Persson’s theory is the indentation yield strength obtained through GFDD calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

theory would be slightly modified by making σ ∗
Y 

increase with plastic deformation. The plastic peak will then shift to the

right during indentation and the elastic contribution would become more pronounced than it is now. 

4.1. Size dependence 

It was shown by Venugopalan and Nicola (2019) that when indenting a metal crystal, indenters with different rms heights

give rise to the same reduced pressure for equal reduced interference values. However, they induce a different plastic re-

sponse. The smaller the rms height the later the onset of plastic deformation. This plasticity size dependence occurs be-

cause the size of the subsurface region where the dislocation nucleation strength is exceeded scales with rms height, but

the availability of dislocation sources does not scale accordingly: the spacing between dislocation sources is a material pa-

rameter which is scale independent. This is why a larger reduced pressure is required to induce nucleation in the case of a

small rms height. 

Fig. 9 presents curves of reduced pressure versus reduced interference, obtained through GFMD simulations, for three

indenters of rms heights h = 0 . 001 , 0 . 01 and 0 . 1 μm , together with the corresponding curves of mean contact pressure as

a function of displacement. Here, the mean contact pressure is calculated as p m 

≡ F / A , where F is the total interfacial force

and A is the true contact area. Notice that in Fig. 9 the difference between the curves is solely caused by plasticity. 

The relative contact area a r , as calculated by GFDD and modified Persson’s theory, are shown in Fig. 10 for indenters with

εf = 64 −1 and various rms-heights. For all indenters, the input yield strength to Persson’s theory is assumed to be 3 σ Tensile 
Y 

.

It can be seen that under this assumption, the contact area as predicted by the theory and GFDD are very different from

each other when h̄ = 0 . 01 μm . 

It is noteworthy that scaling rms height corresponds to a vertical shift in the power spectrum of the roughness, and

has no influence on the range of wavelengths considered in the problem: both large and small wavelength are the same as

before. Already this observation is sufficient to conclude that considering a resolution-dependent yield strength in Persson’s

theory, i.e. σ ( λs ), would not improve the agreement between simulations and theory in this case. Instead, it is possible to

see in Fig. 10 b that if the size-dependent yield strength obtained through dislocation dynamics simulations σ GFDD 
Y 

is used
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Fig. 11. Probability distribution of the contact stress σ ∗ for different yield strength as input to Persson’s theory compared to GFDD for indentation using 

h = 0 . 01 μm at σ ∗
0 = 0 . 06 . 

Fig. 12. (a) Dislocations, stress distribution and (b) contact tractions σ ∗ for an indenter with h̄ = 0 . 01 μm at an applied load σ ∗
0 = 0 . 06 . 

 

 

 

 

 

 

 

 

 

 

 

as the input yield strength σY in Persson’s theory, a much better agreement is found for the load–displacement curves. The

yield strength is calculated at 0.2% offset strain, as indicated in Fig. 9 b. 

However, this type of fix is not sufficient to obtain agreement between the probability distributions of the contact stress,

as one can see from Fig. 11 , where the probability distribution is shown for the simulations and for Persson’s theory with

and without correction for σY , for the indenter with h = 0 . 01 μm . While the fix gives agreement between the areas that are

not in contact, the simulations show a much higher probability of having smaller as well as larger contact stresses when

compared to the theory. The contact and body stresses obtained through GFDD in a single simulation are shown in Fig. 12 . 

4.2. Effect of short-wavelength cut-off

In this section, we perform simulations for different roughness resolution by changing the small wavelength, while keep-

ing the large wavelength constant. This corresponds to changing the fractal discretization εf . It is noteworthy that changing

resolution does not correspond to scaling the contact problem. Changing resolution involves extending the range between

small and large wavelength, i.e. adding smaller wavelengths to the surface, and therefore results in a different boundary

value problem, with a different elastic and thus plastic response. Such simulations are therefore not suitable to highlight a

plasticity size dependence. They might however give an indication on how appropriate it is to replace σY in Persson’s theory

with σ (λs ) , as suggested in Persson (2006) . 
Y 
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Fig. 13. Relative contact area a r against reduced applied pressure σ ∗
0 for indenters with h = 0 . 001 μm and three fractal discretizations εf . 

Fig. 14. Relative contact area a r against reduced applied pressure σ ∗
0 for indenters with h = 0 . 01 μm and three fractal discretizations εf . The input yield 

strength for Persson’s theory is taken as (a) σY = 3 σ Tensile 
Y 

(b) σY = σ GFDD 
Y 

. 

Fig. 15. Probability distribution of contact stress σ ∗ for different fractal discretizations εf for indentation for h = 0 . 01 μm at σ ∗
0 = 0 . 06 . The input yield 

strength for Persson’s theory is taken as (a) σY = 3 σ Tensile 
Y 

(b) σY = σ GFDD 
Y 

. 

 

 

 

 

 

 

 

Fig. 13 shows the increase of the relative contact area a r with load for indenters with h = 0 . 001 μm and three fractal

discretizations. The curves are insensitive to a change in λs suggesting against the use of a resolution-dependent σY . For all

resolutions there is a good agreement between simulations and theory. If one instead considers indenters with h = 0 . 01 μm

the agreement is poor for all discretizations (see Fig. 14 a). The agreement improves if again, instead of using σY = 3 σ Tensile
Y 

one uses σY = σ GFDD 
Y 

(see Fig. 14 ). 

Given that σ GFDD 
Y 

is resolution-dependent, we conclude that indeed a σY (λs ) should be used, as suggested in Persson

(2006) . However, the use of a resolution-dependent σY is not sufficient to obtain the agreement between the probability

distributions, as one can see in Fig. 15 . Also, the dependence of σY on resolution appears to be much more important than

the dependence of σ on rms height. 
Y 
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Table 3 

Normalized yield strength σ GFDD 
Y 

/ 3 σ Tensile 
Y 

. 

rms height εf = 4 −1 εf = 8 −1 εf = 16 −1 εf = 32 −1 εf = 64 −1 

h = 0 . 01 μm 1.4 1.7 2.0 2.7 4.1 

h = 0 . 1 μm 3 4.7 9.5 10.6 13.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here in Table 3 we provide the flow stress σ GFDD 
Y 

found through GFDD simulations for indenters with h = 0 . 01 μm

and h̄ = 0 . 1 μm that allows for good agreement for area–load curves in Persson’s theory. Data for h = 0 . 001 μm are not

reported, given that no correction is needed for agreement between area–load curves in that case. 

5. Concluding remarks 

In this paper, we have shown a comparison between dislocation dynamics simulations and Persson’s theory in the study

of contact between a flat metal body by a rigid indenter with self-affine roughness. Although there is a good agreement

between simulations and theory when the metal behaves elastically, the agreement ceases to be good when there is plas-

ticity. The best agreement for the area–load curves is found for small values of the rms height, when the response is close

to elastic up to large contact fractions. This is because for small rms height, the onset of plasticity in dislocation dynamics

simulations occurs at larger indentation depth than in a continuum theory, because there are only few discrete dislocation

sources in the subsurface region where the stress concentration is sufficiently large to induce dislocation nucleation. 

A good agreement between the area–load curves of simulations and theory is obtained also for larger rms heights if

the size independent yield strength in the theory is replaced by the size-dependent yield strength obtained through the

simulations. 

The necessity of using a resolution-dependent yield strength in his plasticity theory was already explicitly mentioned

by Persson. The fix is indeed important, because the plastic response depends on resolution. However, if one believes the

results of the simulations (of course they have limitations too, to mention a couple of them: they are two dimensional and

small strain), this fix is not sufficient. This is because it does not account for the plasticity size dependence that is observed

when one or more geometrical length in the problem under study are scaled down: To account for this, the yield strength

should become scale-dependent. 

Another point that is important to consider is that, although we found good agreement for area–load curves, when using

Persson’s theory with the yield strength obtained through dislocation dynamics (i.e. a yield strength that depends on rms

height and resolution) the contact stress probability distribution was still markedly different. The simulations predict a much

broader contact stress distribution compared with the theory. This is because in the theory the material behaves as perfectly

plastic, i.e., without any strain hardening. A possible improvement of the theory might be to use, instead of a constant yield

strength, a yield strength that increases with plastic deformation. This would translate in a plastic peak in the probability

distribution that moves towards larger pressures with increasing closure of the contact and a broader distribution in stresses

of the elastic part of the contact. 
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