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Abstract
We analyze the spatio-temporal agglomeration dynamics that occurred in the Italian 
manufacturing industry during the recent period of the Great Recession. To study 
this phenomenon, we employ three different statistical methods—namely, Ellison 
and Glaeser’s index of industrial geographic concentration, the spatial K-function, 
and the space–time K-function—, and rely on a large sample of geo-referenced, sin-
gle-plant manufacturing firms observed over the period 2007–2012. First, we dem-
onstrate that different statistical techniques can lead to (very) different results. Sec-
ond, we find that most Italian manufacturing sectors experienced spatial dispersion 
processes during the period of the Great Recession. Finally, we show that space–
time dispersion processes occurred at small spatial distances and short time horizon, 
although we do not detect statistically significant space–time interactions.
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1 Introduction

The spatial agglomeration of economic activities is a key feature of the economic 
geography of many countries, regions, and clusters (Porter 1990). Well-known 
examples of such a phenomenon are Silicon Valley and Route 128 (Saxenian 
1994), the carpet manufacturing industry in Dalton (Krugman 1991), and the Ital-
ian industrial districts (Brusco 1982; Becattini 1990; Cainelli and Zoboli 2004).

The most recent literature on spatial agglomeration has focused on two main 
research topics. The first one refers to the empirical determinants of the geographic 
concentration of production activities, and tries to identify the reasons why some 
geographic areas are more agglomerated than others. According to the Marshal-
lian tradition (Marshall 1920), these factors are generally identified in knowledge 
spillovers, input sharing, and labor market pooling (Strange and Rosenthal 2001). 
The second literature stream refers to the effects of spatial agglomeration, and, pre-
cisely, of different types of local externalities, on firms’ economic performance. 
Thus, it aims at understanding whether location within an agglomerated area gener-
ates positive returns on the economic performance of firms (Henderson 2003; Mar-
tin et al. 2011), and, consequently, on the economic dynamism and growth of ter-
ritories as a whole (Glaeser et al. 1992; Henderson et al. 1995; Combes 2000).

A commonality characterizing most of these studies is that spatial agglom-
eration is treated as a static—i.e., time-invariant—phenomenon. To the best of 
our knowledge, only few contributions have investigated empirically the tem-
poral dynamics of spatial agglomeration processes, that is whether and how the 
spatial agglomeration of firms changes over time (e.g., Arbia et  al. 2010; Kang 
2010; Arbia et  al. 2014), and how these changes influence its firm-level eco-
nomic returns (e.g., Martin et al. 2011; Cainelli et al. 2016). Indeed, the temporal 
dynamics is a key dimension of spatial agglomeration (Ellison and Glaeser 1997), 
which is a complex process changing over both space and time. In fact, some 
industries experience processes of geographic clustering/concentration, while 
others spread over space. Moreover, geographic concentration/dispersion pro-
cesses can accelerate during some years (time clustering), while they can reduce 
during others (time dispersion). Spatial agglomeration may accelerate over time 
during the initial stages of the product life-cycle of a local industry/cluster, when 
a rapid increase in the number of new firms is generally observed (Klepper and 
Graddy 1990; Klepper 1996; Kang 2010); in years of ‘sudden changes’ associ-
ated with historical accidents, technological revolutions or discoveries, structural 
transformations (e.g., industrialization), external shocks (e.g., natural disasters, 
economic or financial crises); and, finally, during some specific periods of the 
business cycle (Arbia et  al. 2010; Kang 2010; Henderson et  al. 2018). On the 
contrary, spatial agglomeration may decelerate in years characterized by mature 
stages of the product life-cycle of a local industry/cluster, or during periods with-
out significant technological advances or structural changes. In all these cases, 
the underlying mechanism is the same, i.e., the entry (exit) of firms into (from) 
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the local industry/cluster that may change the agglomeration structure over both 
space and time. In other words, both the rate at which firms’ birth and death take 
place and their spatial location can have effects not only on the geographic con-
centration of economic activities, but also on the intensity of clustering processes 
(Devereux et al. 2004). This implies that spatial agglomeration cannot be inves-
tigated as a static phenomenon, given its intrinsic dynamic nature, such that the 
temporal dimension of agglomeration—the so-called time clustering—cannot be 
ignored. Moreover, it should be investigated at the sectoral level, since manufac-
turing sectors, which may be characterized by different levels of spatial agglom-
eration, do not behave homogeneously over both space and time.

The aim of this paper is to investigate the agglomeration dynamics that has char-
acterized the Italian manufacturing industry during the period of the Great Reces-
sion. We employ a large sample of geo-referenced, single-plant manufacturing firms 
observed over the period 2007–2012, and located in the Italian continental territory, 
to analyze the spatial and temporal dimensions of agglomeration processes at the 
two-digit sector level, as well as their potential interactions. The choice of focusing 
on the period 2007–2012 is justified by the fact that the effects of the Great Reces-
sion have been particularly relevant for the Italian economy during these years. 
Indeed, during this time period, firm demography—birth and death rates—changed 
significantly in many sectors, thus affecting their agglomeration structures.

We investigate agglomeration over time using three different statistical 
approaches. First, we compute the Ellison and Glaeser’s (1997) index of industrial 
geographic concentration for the years 2007 and 2012 at the two-digit sector level 
by adopting three different spatial units of analysis: the region, corresponding to the 
level 2 of the Nomenclature des Unités Territoriales Statistiques (NUTS) adopted by 
the European Union (EU); the province, corresponding to the NUTS-3 level; and the 
Local Labor Market (LLM), corresponding to a functional area defined according to 
economic—i.e., commuting patterns of workers—rather than administrative criteria.

As it is well-known, the Ellison and Glaeser’s (1997) index suffers from the so-
called Modifiable Areal Unit Problem (MAUP) that refers to the discretionary choice 
of the spatial unit used to analyze geographic-based phenomena (Arbia 1989; Amr-
hein 1995; Wong and Amrhein 1996). In fact, the use of pre-defined geographic units 
can introduce statistical biases in this kind of analysis. As suggested by the literature, 
a possible solution to the MAUP consists in relying on micro-geographic data, and 
adopting statistical methods that treat the space as a continuum (Arbia 2001).

Based on these insights, the second approach we adopt to study agglomeration 
over time consists in estimating Ripley’s (1976) spatial K-function that exploits geo-
graphic information on the location (latitude and longitude coordinates) of firms. 
The spatial K-function is a statistical tool employed in the context of spatial points 
pattern analysis, and, precisely, it is a distance-based method that estimates the 
expected number of point events realizing within a certain distance from any ran-
domly sampled point event. In our particular context, point events are represented 
by firms, and the spatial K-function allows us to evaluate whether sector-specific 
concentration/dispersion patterns took place—with respect to the benchmark case 
of complete spatial randomness (CSR) in the location choice of firms—in a given 
year. Therefore, this approach allows us to evaluate the geographic scale at which a 
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sector shows a clustering/dispersion pattern, if any, in a ‘single moment of time,’ but 
without imposing a priori spatial boundaries to the area under investigation (Marcon 
and Puech 2003; Duranton and Overman 2005; Arbia et al. 2008; Marcon and Puech 
2010; Kosfeld et al. 2011; Albert et al. 2012; Scholl and Brenner 2016). Given the 
‘static’ nature of the spatial K-function, the temporal dynamics of agglomeration 
processes can be analyzed in this context simply by comparing the values of the esti-
mated K-functions in different years. In other words, these univariate functions are 
used in a dynamic fashion by analyzing them separately, i.e., year by year, and then 
by assessing both whether sector-specific clustering/dispersion patterns took place in 
the pre-crisis year 2007 and in the last observational year 2012, and how they poten-
tially changed in the year 2012 with respect to the year 2007. This method, however, 
does not allow us to describe the dynamics of agglomeration patterns taking place 
over time, namely the agglomeration processes occurring between the years 2007 
and 2012. This can be a problem, since ‘different space–time processes can lead to 
resulting spatial patterns which look the same’ (Arbia et al. 2010, p. 312).

The third approach is aimed precisely at overcoming this limitation, and con-
sists in estimating the space–time K-function (Diggle et al. 1995) that can be used 
to analyze simultaneously the spatial and temporal dimensions of agglomeration 
processes, as well as the potential existence of space–time interactions. Thus, the 
space–time K-function represents an extension of the purely spatial K-function with 
respect to the analysis of the temporal dimension of spatial points patterns. Specifi-
cally, it estimates the expected number of point events per unitary area in the region 
under investigation and per unit of time that fall at a spatial distance and at a time 
interval equal to or lower than a certain radius and a certain time interval, respec-
tively, from a reference point (French et al. 2005). Thus, the space–time K-function 
allows us to identify not only the existence of concentration/dispersion processes 
in different years, but also the spatial and temporal threshold values at which these 
concentration/dispersion processes occur over both space and time—for example, a 
rapid acceleration over time in the process of spatial clustering of a sector. There-
fore, this third statistical approach provides us with a more comprehensive tool to 
analyze the dynamics of agglomeration processes, as it allows us to evaluate whether 
and how sector-specific agglomerative structures have exhibited different degrees of 
clustering/dispersion at different spatial scales along the temporal dimension.

The rest of the paper is organized as follows. The second Section describes the 
dataset used in the empirical analysis. The third Section presents the statistical 
approaches employed. The fourth Section presents and discusses the empirical evi-
dence on the agglomeration dynamics. The fifth Section concludes the work.
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2  The dataset

The analysis employs a large sample of single-plant manufacturing joint-stock com-
panies located in the Italian continental territory. The firm-level data are drawn from 
the AIDA database (Bureau Van Dijk) that provides personal information and bal-
ance sheet data for Italian firms.1

The original sample of 230,198 firms was first cleaned by removing multi-plant 
firms.2 The choice of focusing on single-plant firms is driven by the fact that the 
AIDA database provides the exact address of headquarters only. Therefore, the focus 
on single-plant firms allows us to study the agglomeration dynamics of firms by con-
sidering the exact location where the economic activity takes place. Second, firms 
without information on the exact address were removed, given the necessity to iden-
tify the pair of geographic coordinates for each individual observational unit. Third, 
firms located in the two main islands of Sicily and Sardinia, and into smaller islands, 
were removed. This choice is driven by the necessity of considering a continuous 
land space in order to evaluate firms’ concentration/dispersion processes through 
micro-geographic, distance-based statistical approaches. The cleaning procedure 
left us with a final sample of 149,135 manufacturing firms observed over the period 
2007–2012, corresponding to an unbalanced panel dataset of 614,220 observations.

The period of observation starts with the year 2007 that is generally regarded as 
a pre-crisis year, and ends with the year 2012 that corresponds to the first year the 
Italian economy entered a second wave of downturn after the recovery peak reached 
in 2011—see Figure A1 (Supplementary material 1).

The final sample includes firms operating in the two-digit sectors 10–33 of the 
NACE Rev. 2 classification of economic activities adopted by the EU, except for the 
two-digit sector ‘12—Manufacture of tobacco products’.3 Table A1 (Supplementary 
material 1) reports the sample distribution by two-digit sector, while Table A2 (Sup-
plementary material 1) reports the sample distribution by sector and year, as well 
as the percentage change in the number of firms between the years 2007 and 2012. 

1 The choice of using the AIDA database is somehow compulsory. In fact, alternative firm-level data-
bases providing information on the exact address of firms are not available in Italy for privacy reasons. 
As it is known, the greatest limitation of the AIDA database is that it considers only joint-stock compa-
nies, thus excluding partnerships. A potential consequence of this limitation is that many micro- and 
small-sized firms, which represent in Italy a large share of some sectors, could be ruled out. As a conse-
quence, the representativeness of micro- and small-sized firms could not be good. However, this is not 
the case. In fact, the coverage of the AIDA database in terms of micro- and small-sized firms is generally 
sufficiently high. This is the reason why firm-level datasets drawn from the AIDA database have been 
used in many empirical studies on the determinants or the effects of spatial agglomeration in Italy (e.g., 
Cainelli and Lupi 2010; Cainelli and Ganau 2018).
2 Single-plant firms in the AIDA database have been identified using information derived from the ASIA 
Archive provided by the Italian National Institute of Statistics (Istat) that collects selected information on 
the entire population of firms and local units operating in Italy.
3 The two-digit sector ‘12—Manufacture of tobacco products’ has been excluded a priori from the analy-
sis due to the very little number of firms operating in it, as well as their peculiar spatial distribution. 
According to the 2011 Industry and Services Census (Istat), there were only eight active local units oper-
ating in Italy, of which one in the Northern part of the country (Piedmont), six in the Central part of the 
country (two in Tuscany, one in Umbria, one in the Marches, two in Latium), and one in the Southern 
part of the country (Campania).
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Overall, the number of observational units has increased by 3.82% from the pre-
crisis year 2007 to the year 2012. Most two-digit sectors have observed an increase 
in the number of firms, ranging from 0.17%, concerning sector ‘32—Other manu-
facturing’, to 37.45%, concerning sector ‘33—Repair and installation of machinery 
and equipment’. On the contrary, eight out of the 23 sectors analyzed have shown a 
reduction in the number of firms, from − 0.37%, concerning sector ‘18—Printing 
and reproduction of recorded media’, to − 7.88%, concerning sector ‘14—Manufac-
ture of wearing apparel’.

Table  A3 (Supplementary material 1) complements the previous insights by 
providing the sample distribution by sector and NUTS-1 geographic area. Overall, 
60.3% of sample firms is located in Northern regions, 22.2% is located in Central 
Italy, while only 17.5% is located in the South. As Table A4 (Supplementary mate-
rial 1) shows, about all two-digit sectors have recorded a reduction in the average 
firm size—defined as average number of employees per firm—between the years 
2007 and 2012, ranging from − 0.27%, concerning sector ‘24—Manufacture of 
basic metals’, to − 20.41%, concerning sector ‘23—Manufacture of other nonmetal-
lic mineral products’. Only two sectors have shown an increase in the average firm 
size, namely sectors ‘19—Manufacture of coke and refined petroleum products’ 
(24.34%), and ‘21—Manufacture of basic pharmaceutical products and pharmaceu-
tical preparations’ (5.76%).

Interesting insights emerge looking at firms’ survival rate—see Table A5 (Supple-
mentary material 1), which reports the rate of firms observed in year t = 2007,… , 2011 
and survived over the subsequent periods t + n , with n = 1,… , 5.4 First, the survival 
rate has decreased over time from t + 1 to t + n . Second, the one-year survival rate 
for firms observed in the year 2007 is higher than the corresponding value for firms 
observed in the subsequent years. Third, the one-year survival rate for firms observed 
in 2010 is slightly higher than the corresponding values for firms observed in the years 
2009 and 2011. This last evidence could probably depend on the fact that the Italian 
economy reached a recovery peak in 2011 before entering a new phase of downturn in 
2012.

Figure A2 (Supplementary material 1) maps the spatial distribution of firms by 
two-digit manufacturing sector in the years 2007 and 2012. Finally, Tables A6–A10 
(Supplementary material 1) highlight that the AIDA sample provides a good represent-
ativeness of the Italian population of active local units included in the ASIA Archive.

3  Statistical modeling

3.1  The index of industrial concentration

The first step of our empirical analysis of agglomeration over time is based on Elli-
son and Glaeser’s (1997) index of industrial geographic concentration. This index 

4 The survival rate over the period t, t + n is defined as the share of firms observed at time t  and survived 
at time t + n over firms observed at time t .
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allows for the cross-sector comparison of the degree of geographic concentration, 
and, specifically, is employed to identify the clustering behavior in terms of spa-
tial concentration/dispersion of two-digit manufacturing sectors in the years 2007 
and 2012, as well as to evaluate how agglomeration patterns potentially changed 
between the two years.

We have considered three different spatial units to calculate the sector-specific 
concentration index. First, two administrative geographies defined at the NUTS lev-
els 2 and 3, and corresponding to 18 regions and 90 provinces, respectively.5 Sec-
ond, the LLM that consists of 559 functional areas.6 Formally, the index for the two-
digit sector s = 1,… , 23 at time t = 2007, 2012 is computed as follows (Ellison and 
Glaeser 1997):

where psgt denotes the employment share in sector s and geography g = 1,… ,G at 
time t ; pgt denotes the employment share in geography g at time t ; and zskt denotes 
the employment share of firm k in sector s at time t.

This index provides a simple and easy-to-understand measure to explore sector-
specific clustering behaviors. Given the benchmark case of CSR in the location 
choice of firms for E

(

�̂�s
)

= 0 , then positive values of the index provide evidence of 
concentration, while negative values provide evidence of firms locating more dif-
fusely than expected.

However, similarly to the many other region-based indexes of industrial geo-
graphic concentration—e.g., the Gini index used by Krugman (1991), or that pro-
posed by Maurel and Sédillot (1999), it suffers from a main shortcoming that is the 
MAUP. The MAUP refers to the discretionary choice of the spatial partition used 
to analyze geographic-based phenomena. In the context of the analysis of spatial 
agglomeration and clustering dynamics, the MAUP emerges because neither admin-
istrative regions nor (functional) LLMs can necessarily coincide with the real eco-
nomic areas where firms’ location processes take place. Consequently, the use of 
spatial units that differ in shape and size, and are characterized by pre-defined geo-
graphic boundaries, can introduce statistical biases related to both the level of aggre-
gation and the geographic scale (Arbia 1989).

(1)
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∑
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5 The NUTS-2 insular regions of Sicily and Sardinia, and the NUTS-3 regions located within these two 
main islands, have been excluded a priori from the analysis. During most of the period investigated, Italy 
was split into 107 NUTS-3 regions, nine (eight) of which located in Sicily (Sardinia). Considering the 
abovementioned exclusion criteria, the final number of NUTS-3 regions covered is equal to 90 spatial 
units.
6 Italian LLMs are defined according to the classification adopted by Istat in the 2001 Industry and Ser-
vices Census that, identified 686 geographic units. The exclusion of all insular municipalities has led 
to drop 77 LLMs located in Sicily, 45 LLMs located in Sardinia, two LLMs located in the Ischia island 
(Campania), and two LLMs located in the Elba island (Tuscany). In addition, the cleaning procedure of 
the firm-level data has led to drop firms located in the municipality of San Marcello Pistoiese (Tuscany), 
such that the final number of LLMs covered is equal to 559 spatial units.
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3.2  The spatial K‑function

Following Arbia (2001), a possible solution to relax the MAUP consists in relying 
on micro-geographic data. This means that spatial agglomeration and clustering 
dynamics are analyzed at the level of the individual firms, rather than considering 
spatially-aggregated patterns of industries. The literature suggests to rely on a class 
of spatial points statistics, namely the K-functions—originally proposed by Ripley 
(1976), and widely employed in ecology, molecular biology, and epidemiology—, 
in order to evaluate the geographic scale at which an industry shows a clustering 
pattern, if any (Marcon and Puech 2003; Duranton and Overman 2005; Arbia et al. 
2008; Marcon and Puech 2010; Kosfeld et al. 2011; Albert et al. 2012; Scholl and 
Brenner 2016). This type of spatial statistical approach is based on the idea of using 
the firm as the spatial unit of analysis, and of treating the space as continuous, rather 
than using pre-defined spatial areas.7

Therefore, the second step of the analysis is performed by employing Ripley’s 
(1976) spatial K-function to evaluate whether sector-specific clustering patterns took 
place in—and, potentially, how they changed between—the years 2007 and 2012. 
Ripley’s (1976) K-function is a distance-based method that measures the spatial 
concentration/dispersion of point events—in this case, firms—by counting the num-
ber of neighboring points j occurring within a circle of radius r centered at each ref-
erence point i , with j ≠ i , and then by comparing the observed pattern with the one 
that would be expected in a CSR situation. Formally, the estimate of the K-function 
for the two-digit sector s at time t = 2007, 2012 can be defined as follows:

where Nst denotes the total number of firms operating in sector s at time t and 
located in the area of the study region ( W ), with �̂�st = Nst∕AreaW denoting its esti-
mated density; d

xistx
j
st
 denotes the distance in kilometers between each pair of firms i 

and j operating in sector s and observed at time t—denoted by xi
st
 and xjst as spatial 

points identified by their geographic coordinates; I(⋅) denotes an indicator function 
taking value of 1 if d

xistx
j
st
≤ r , that is whether the distance between a pair of firms i 

and j ( d
xistx

j
st
 ) is lower than or equal to the radius r , and value of 0 otherwise; w

xistx
j
st
 

denotes the edge correction parameter that defines the length of the overlap between 
the circle with radius r centered in the reference firm xi

s
 and passing through the firm 

x
j
s which lies within the study region (Ripley 1977). The edge correction term avoids 

biased estimates of K̂st(r) which may occur in proximity to the boundaries of the 
study region, where increases in r are not accompanied by increases in the number 

(2)K̂st(r) =
1

�̂�stNst

∑

i

∑

j≠i

I
(

d
xistx

j
st

)

w
xistx

j
st

7 Economists and economic geographers have relied on micro-geographic data to analyze also agglom-
eration-related externalities on the performance of firms (e.g., Sorenson and Audia 2000; Rosenthal and 
Strange 2003; Baldwin et al. 2008; Cainelli and Lupi 2010; Eriksson 2011; Duschl et al. 2014; Duschl 
et al. 2015; Cainelli and Ganau 2018).
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of firms—indeed, the number of firms can be lower in proximity to rather than at 
longer distances from the study region’s boundaries, and there are no firms outside 
the study region.

Having estimated the sector- and time-specific K-functions, it is possible to test 
for the location pattern characterizing the observed firms against the CSR hypoth-
esis. Under the null hypothesis of CSR, then K̂st(r) = 𝜋r2 , such that it is possible 
to compute the difference between the empirical value of the K-function for the 
observed points pattern—namely, K̂st(r)—and the theoretical value under the CSR 
hypothesis. Following Albert et al. (2012), this difference—defined as M-function—
can be formalized as follows:

such that if K̂st(r) > 𝜋r2 , then the observed firms in sector s at time t will show a 
clustering pattern at a certain distance r , because the observed density of firms is 
greater than the theoretical one; if K̂st(r) < 𝜋r2 , then the observed firms will show 
a dispersion pattern; while if K̂st(r) = 𝜋r2 , then the observed firms will show a ran-
dom distribution in the space.

Although the spatial K-function represents a valuable statistical tool for test-
ing purposes, as it allows us to evaluate the extent of concentration/dispersion of 
firms with respect to a CSR scenario, it suffers from a main shortcoming related 
to its interpretation. In fact, the K-function requires to compare any value to �r2 , 
but area values are difficult to interpret directly (Marcon and Puech 2003; Kosfeld 
et  al. 2011). A solution to this problem comes from Besag (1977), who proposes 
the so-called L-function as a normalization of the K-function with respect to a zero-
benchmark case. Formally, the spatial L-function can be defined as follows:

such that if L̂st(r) = 0 , then the observed firms will show a random distribution in 
space; if L̂st(r) > 0 , then the observed firms will show a clustering pattern; while if 
L̂st(r) < 0 , then the observed firms will show a dispersion pattern.

It is worth noting, however, that we rely on the L-function simply to exploit its 
advantages in terms of graphical interpretation with respect to the K-function, such 
that it is used only to provide a better graphical comparison between the empirical 
values of the estimated K-functions for the years 2007 and 2012 by two-digit manu-
facturing sector in order to evaluate whether changes in the degree of concentration/
dispersion occurred between the two years.

3.3  The space–time K‑function

Although the use of micro-geographic data in the context of spatial points pattern 
analyses allows us to relax MAUP-related biases, a second issue emerges with 
respect to the temporal dimension characterizing clustering/dispersion processes 

(3)M̂CSR

st
(r) = K̂st(r) − 𝜋r2

(4)L̂st(r) =

√

K̂st(r)

𝜋
− r
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of firms. In fact, the spatial agglomeration of economic activities is the result of a 
dynamic process that evolves over both space and time.

As these processes occur over time, (sector-specific) agglomerative structures 
may potentially exhibit different degrees of clustering at different spatial scales 
along the temporal dimension. The contributions by Getis (1964) and Getis and 
Boots (1978) are among the first ones to highlight that time matters, besides 
space, in the analysis of spatial events. They suggest that it is the temporal evo-
lutionary perspective that can help understanding the (observed) resulting spa-
tial structure. Indeed, any spatial structure evolves over time, and, in particular, 
similar spatial patterns can be the result of very different space–time processes 
(Arbia et al. 2010). This line of reasoning fits perfectly the analysis of the spatial 
agglomeration of economic activities. As firm-level demographic and localization 
phenomena present both a spatial and a temporal feature, industrial clustering/
dispersion processes are likely to evolve along both dimensions, and, as a conse-
quence, the observed spatial agglomeration of firms could be the result of their 
interaction.

The joint analysis of the spatial and temporal processes underlying agglomerative 
structures has received little attention in the empirical literature. As underlined by 
Arbia et al. (2010, pp. 311–312), ‘[t]ime series methods have generally disregarded 
the spatial dimension while spatial clustering models have been essentially static 
and have only analysed the outcome of the dynamic adjustments as it is observed in 
one single moment of time.’ To the best of our knowledge, only few contributions 
have analyzed industrial clustering processes by dealing with the MAUP, and by 
accounting simultaneously for the spatial and temporal dimensions, as well as for 
their potential interaction. In particular, Arbia et  al. (2010) focus on the long-run 
localization process of firms located in Rome (Italy), and operating in the informa-
tion and communication technology sector. Kang (2010) studies relevant clusters of 
manufacturing and services sectors in the Columbus Metropolitan Statistical Area 
(USA). Finally, Arbia et  al. (2014) consider the entry and exit dynamics of phar-
maceutical and medical devices firms located in the Veneto region (Italy) over the 
period 2004–2009. These three contributions limit their investigation to a particular 
industrial sector, or a particular sub-national territory—either a city or a region—of 
a country. On the contrary, we try to provide a more general overview of spatial 
agglomeration processes by considering the entire manufacturing industry, and by 
looking at the whole Italian (continental) territory.

Following these previous contributions, the third statistical approach consists in 
estimating the space–time K-function (Diggle et al. 1995) in order to evaluate the 
existence of space–time concentration/dispersion processes, as well as to identify 
the threshold values at which these behavioral patterns take place over the spatial 
and temporal horizons. Specifically, the space–time K-function allows us to identify 
simultaneously at which spatial distance and point in time concentration/dispersion 
processes occur, i.e., it allows us to identify the geographic scale at which concen-
tration/dispersion process take place over the temporal dimension. In addition, this 
approach allows us to test for the potential existence of space–time interactions, i.e., 
to test whether increases/decreases in the incidence of point events are spatially and 
temporally localized.
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The space–time K-function measures the expected number of points per unitary area 
in the study region and per unit of time falling at a spatial distance and at a time interval 
equal to or lower than a radius r and a time interval t , respectively, from a reference 
point (French et  al. 2005). An unbiased edge-corrected estimator of the space–time 
K-function for the two-digit sector s over the observational period t = 1,… , T—
namely, from the year 2007 to the year 2012—can be defined as follows (Diggle et al. 
1995):

where Ns denotes the total number of firms operating in the two-digit sector s and 
located in the area of the study region ( W ), with �̂�RT

s
= Ns∕(AreaWT) denoting the 

spatial and temporal joint intensity of the points process; the terms d
xi
s
x
j
s
 and t

xi
s
x
j
s
 

denote the spatial distance and the temporal distance, respectively, between each 
pair of firms i and j operating in sector s ; the terms Ir(⋅) and It(⋅) denote indicator 
functions taking value of 1 if d

xi
s
x
j
s
≤ r and t

xi
s
x
j
s
≤ t , respectively, and value of 0 oth-

erwise; the terms w
xi
s
x
j
s
 and v

xi
s
x
j
s
 denote edge correction parameters, with w

xi
s
x
j
s
 defin-

ing the length of the overlap between the circle with radius r centered in the refer-
ence firm xi

s
 and passing through the firm xjs which lies within the study region, and 

v
xi
s
x
j
s
 defining the time segment of length t centered at the firm xi

s
 that lies within the 

total observed duration time between t = 1 and t = T .
Similar estimators can be derived for the purely spatial and temporal processes 

defining the space–time K-function, namely K̂R
s
(r) and K̂T

s
(t):

where �̂�R
s
= N∕AreaW denotes the spatial intensity, and captures the number of 

points per unit area of the study region; �̂�T
s
= N∕T  denotes the temporal intensity, 

and captures the number of points per unit time; and all other terms are defined as 
for Eq. (5).

Having estimated the sector-specific space–time K-functions, it is possible to test 
for the independence of the spatial and temporal processes under the hypothesis that 
K̂s(r, t) = K̂R

s
(r)K̂T

s
(t) in the absence of space–time interaction. The baseline test statis-

tic takes the following functional form (Gatrell et al. 1996):

(5)K̂s(r, t) =
1

�̂�RT
s
Ns

∑

i

∑

j≠i

Ir

(

d
xi
s
x
j
s

)

It

(

t
xi
s
x
j
s

)

w
xi
s
x
j
s
v
xi
s
x
j
s

(6)K̂R
s
(r) =

1

�̂�R
s
Ns

∑

i

∑

j≠i

Ir

(

d
xi
s
x
j
s

)

w
xi
s
x
j
s

(7)K̂T
s
(t) =

1

�̂�T
s
Ns

∑

i

∑

j≠i

It

(

t
xi
s
x
j
s

)

v
xi
s
x
j
s

(8)D̂s(r, t) = K̂s(r, t) − K̂R
s
(r)K̂T

s
(t)
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that is proportional to the increased number of points within distance r and time 
t compared to a process with the same spatial and temporal structures, but no 
space–time interaction. If D̂s(r, t) > 0 , then we can assume that space–time cluster-
ing takes place, while if D̂s(r, t) < 0 , then we can assume that space–time dispersion 
takes place (Kang 2010). Furthermore, visual inspection through a three-dimension 
plot of D̂s(r, t) against the spatial and temporal dimensions allows us to uncover the 
scale and nature of the dependence.

An alternative, and more intuitive, transformation of the functional defined in 
Eq. (8) has been proposed by Diggle et al. (1995) and French et al. (2005) to consider 
relative quantities rather than absolute numbers. The so-called ‘Diggle function’ allows 
for a perspective plot of the D̂s(r, t) surface through the following functional form:

that is proportional to the relative increase in the number of points within distance r 
and time t compared to a process with the same spatial and temporal structures, but 
no space–time interaction. Similarly to the previous case, the function D̂0

s
(r, t) can 

be visually inspected through a three-dimension plot against the spatial and tem-
poral dimensions in order to evaluate the existence of space–time interaction in the 
observed points process.

Furthermore, statistical inference on the empirical values of D̂s(r, t) can be drawn 
through a Monte Carlo approach. Since the exact distribution of D̂s(r, t) is unknown, 
its variance cannot be evaluated theoretically and no statistical test can be adopted. In 
order to deal with this issue, Diggle et al. (1995) suggest to obtain m simulated spa-
tio-temporal points patterns under the null hypothesis of no space–time interaction in 
order to compute m different estimates of D̂s(r, t) , such that the variance of the m esti-
mates, namely V̂ars(r, t) , can be used as an estimator of the variance of D̂s(r, t) . Having 
retrieved the estimated variance of D̂s(r, t) , it is possible to compute the ‘standardized 
residuals’ as follows:

which gives a measure of space–time interaction representing the excess number of 
points of K̂s(r, t) relative to K̂R

s
(r)K̂T

s
(t) . The advantage of plotting the ‘standardized 

residuals’ against K̂R
s
(r)K̂T

s
(t) is that a two-dimension plot is easier to visualize, even 

though the corresponding spatial and temporal scales are not explicit. Under the 
hypothesis of no space–time interaction, then E

[

R̂s(r, t)
]

= 0 and Var
[

R̂s(r, t)
]

= 1 , 
and one would expect to observe approximately 95% of the values lying in the 
interval [−2,+2] (French et  al. 2005; Arbia et  al. 2010). Thus, substantial values 
of R̂s(r, t) lying outside the interval [−2,+2] indicate the presence of space–time 

(9)D̂0

s
(r, t) =

D̂s(r, t)

K̂R
s
(r)K̂T

s
(t)

(10)R̂s(r, t) =
D̂s(r, t)

√

�Vars(r, t)
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interaction characterizing the observed points pattern, and this space–time structure 
can be visually interpreted from the plots of D̂s(r, t) or D̂0

s
(r, t).

However, the interpretation of the ‘standardized residuals’ plot could be 
misleading in the case of highly dependent residuals. Therefore, a final Monte 
Carlo-based test can be performed in order to assess the existence of space–time 
interaction. This test consists in comparing the observed sum of the functionals 
D̂s(r, t) over all values of r and t  with the empirical distribution of the m sums 
of the corresponding simulated estimates of D̂s(r, t) over all values of r and t  , 
such that there is evidence of overall space–time interaction if the observed sum 
shows a particularly high-ranked position relative to the simulated sums (Arbia 
et al. 2010).

Table 1  Ellison and Glaeser’s (1997) index of geographic concentration in 2007 and 2012

Authors’ elaboration on AIDA data. The reference for the calculation of the Ellison and Glaeser’s (1997) 
index is the AIDA sample of firms. Variations of the sector-specific indexes between the years 2007 and 
2012 are defined in percentage terms

NACE 
Rev. 2

NUTS-2 Region NUTS-3 Region LLM

�̂�
s Δ�̂�2007−2012

s
�̂�
s Δ�̂�2007−2012

s
�̂�
s Δ�̂�2007−2012

s

2007 2012 2007 2012 2007 2012

10 0.0233 0.0232 − 0.10 0.0094 0.0076 − 18.78 0.0041 0.0032 − 20.83
11 0.0367 0.0367 0.22 0.0170 0.0178 5.18 0.0055 0.0057 3.09
13 0.0617 0.0637 3.26 0.0400 0.0401 0.13 0.0389 0.0390 0.23
14 0.0205 0.0241 17.56 0.0099 0.0098 − 0.71 0.0071 0.0066 − 6.58
15 0.1287 0.1275 − 0.93 0.0472 0.0452 − 4.15 0.0371 0.0347 − 6.52
16 0.0137 0.0143 4.20 0.0100 0.0089 − 11.28 0.0050 0.0045 − 10.38
17 0.0027 0.0015 − 45.57 0.0039 0.0029 − 24.36 0.0027 0.0025 − 7.62
18 0.0061 0.0026 − 56.64 0.0092 0.0060 − 34.30 0.0092 0.0061 − 33.68
19 0.0281 0.0482 71.53 0.0073 0.0075 2.85 − 0.0005 0.0036 0.41
20 0.0319 0.0296 − 7.22 0.0188 0.0213 12.98 0.0162 0.0195 20.47
21 0.0857 0.0978 14.07 0.0748 0.0764 2.20 0.0851 0.0898 5.52
22 0.0078 0.0089 14.48 0.0036 0.0033 − 9.16 0.0027 0.0028 3.17
23 0.0209 0.0179 − 14.33 0.0094 0.0069 − 27.25 0.0075 0.0061 − 18.55
24 0.0344 0.0330 − 4.27 0.0153 0.0177 15.80 0.0062 0.0074 20.98
25 0.0025 0.0027 5.88 0.0021 0.0021 − 2.21 0.0012 0.0011 − 6.31
26 0.0166 0.0142 − 14.42 0.0239 0.0176 − 26.25 0.0225 0.0166 − 26.16
27 0.0090 0.0053 − 41.21 0.0050 0.0036 − 26.94 0.0046 0.0026 − 44.69
28 0.0137 0.0137 − 0.29 0.0032 0.0033 1.86 0.0020 0.0020 0.89
29 0.0465 0.0378 − 18.82 0.0244 0.0140 − 42.61 0.0147 0.0116 − 20.88
30 0.0329 0.0367 11.66 0.0168 0.0233 38.58 0.0114 0.0157 37.93
31 0.0640 0.0552 − 13.73 0.0310 0.0308 − 0.76 0.0219 0.0218 − 0.40
32 0.0263 0.0219 − 16.63 0.0204 0.0191 − 6.36 0.0172 0.0161 − 6.24
33 0.0092 0.0110 19.16 0.0058 0.0053 − 8.48 0.0040 0.0033 − 16.27
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4  Empirical evidence

4.1  Detecting spatial concentration/dispersion through Ellison and Glaeser’s 
(1997) index

Table 1 reports the calculated sector-specific Ellison and Glaeser’s (1997) indexes 
of geographic concentration for the years 2007 and 2012, as well as their percentage 
change, considering the three different geographic scales previously discussed. The 
first interesting insight concerns the high level of heterogeneity characterizing the 
degree of geographic concentration in the Italian manufacturing industry. In fact, 
the 2007 and 2012 indexes present high levels of cross-sector variation both within 
the same spatial unit of analysis, as well as across the three geographies consid-
ered. Indeed, the comparison of the sector-specific indexes among the three spa-
tial units suggests clearly that MAUP-related biases are likely to affect the evalua-
tion of the extent of industrial geographic concentration. This is a second relevant 
insight emerging from our analysis, which also offers a key justification for the use 
of micro-geographic data to investigate agglomeration-related phenomena, i.e., for 
analyzing the agglomeration dynamics at the firm level rather than considering spa-
tially-aggregated industrial patterns.

Following the classification proposed by Ellison and Glaeser (1997), who iden-
tify sectors as ‘lowly’ concentrated if �̂�st < 0.02 , ‘moderately’ concentrated if 
0.02 ≤ �̂�st ≤ 0.05 , and ‘highly’ concentrated if �̂�st > 0.05 , it emerges how individual 
sectors exhibit a different degree of concentration with respect to the different spa-
tial units. For example, the Italian manufacturing industry in 2007 consisted of four 
‘highly’ concentrated sectors—namely, ‘13—Manufacture of textiles’, ‘15—Manu-
facture of leather and related products’, ‘21—Manufacture of basic pharmaceutical 
products and pharmaceutical preparations’, ‘31—Manufacture of furniture’—when 
considering NUTS-2 regions, but only sector ‘21—Manufacture of basic pharma-
ceutical products and pharmaceutical preparations’ presented a value of the concen-
tration index higher than 0.05 when considering the NUTS-3 and LLM level geogra-
phies—see also Figure A3 (Supplementary material 1).8

In addition, the calculation based on different geographic scales leads to differ-
ent sector-specific temporal dynamics of concentration. As an example, sector ‘14—
Manufacture of wearing apparel’ exhibits an increase in the degree of geographic 
concentration between the years 2007 and 2012 when considering the NUTS-2 
geographic level, while a reduction is observed when the NUTS-3 and LLM geo-
graphic levels are considered. The opposite dynamics characterizes, for example, 
sector ‘20—Manufacture of chemicals and chemical products’—see also Figure 
A4 (Supplementary material 1). In other words, the use of different geographic 

8 It is not surprising that these manufacturing sectors result to be the most geographically concentrated 
at the NUTS-3 and LLM level, since the main Italian industrial districts/clusters operate in these produc-
tion activities. In fact, the textile districts of Prato and Carpi, the shoes districts of Fusignano and San 
Mauro Pascoli, and the biomedical/pharmaceutical sector of the metropolitan area of Milan are special-
ized in these productions (Brusco 1982; Becattini 1990; Cainelli and Zoboli 2004).
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units—regions, provinces, and LLMs—may lead to different results in terms of spa-
tial concentration/dispersion patterns. This means that these findings—and, gener-
ally speaking, analyses of agglomeration patterns based on arbitrarily pre-defined 
spatial units—must be interpreted carefully, since they can lead to a serious misun-
derstanding of the underlying economic phenomena.

More generally, this means that the choice of the geographic boundaries may 
have relevant consequences in many empirical studies focusing on the determinants 
or the effects of spatial agglomeration. It is known that some studies conducted their 
empirical analysis at the NUTS-3 or LLM level (for example, the majority of Italian 
studies), while others adopted as unit of analysis the NUTS-2 region (for example, 
the majority of European studies). According to our findings, the choice of the geo-
graphic unit of analysis does not seem to be neutral, thus leading to results and con-
clusions which can be very different. This is something that has never been empha-
sized sufficiently.

4.2  Dealing with the MAUP: evidence based on the spatial K‑function

The analysis based on Ellison and Glaeser’s (1997) index has highlighted not only 
the existence of heterogeneity in the spatial agglomeration dynamics of firms oper-
ating in different sectors, but also that region-based measures of clustering suffer 
from MAUP-related biases that may lead to (very) imprecise conclusions. Drawing 
on this last insight, in this section we present and discuss the results obtained by 
employing the spatial K-function.9 Table  2 summarizes the key insights from the 
analysis, while Figure A5 (Supplementary material 1) reports the plots of the esti-
mated values of the spatial K- and M-functions by two-digit sector for the years 
2007 and 2012.

As summarized in Table 2, the empirical evidence suggests that all Italian manu-
facturing sectors were characterized by a spatial concentration pattern occurring at 
all distances from zero to about 250 km in both years 2007 and 2012, as K̂s(r) > 𝜋r2 
for all sectors in both years. Thus, the evidence suggests that the location of Italian 
manufacturing firms is not ‘random,’ but rather seems to follow a geographic clus-
tering pattern. In other words, the Italian manufacturing firms (within each sector) 
tend to be spatially concentrated rather than spatially dispersed or randomly located 
in the space. This result could appear surprising, as one may expect that only few 
‘traditional’ manufacturing sectors—such as textiles, leather, footwear, furniture—
would be characterized by spatial concentration patterns, since the most important 
Italian industrial districts are specialized in these production activities (Brusco 
1982; Becattini 1990; Cainelli and Zoboli 2004). On the contrary, and according to 
our findings based on the spatial K-function, the non-random spatially concentrated 
distribution of manufacturing firms seems to be a general empirical ‘regularity’.

However, despite this ‘common’ feature, the detected geographic patterns can dif-
fer significantly in intensity and shape across sectors. A deeper analysis of Table 2 

9 The analysis based on the spatial K-function has been performed using the ‘spatstat’ library available 
for the R software.
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highlights some interesting insights. In fact, the comparison of the estimated empiri-
cal values of K in the years 2007 and 2012 suggests that 14 out of 23 two-digit 
sectors experienced a reduction in the degree of spatial concentration between 
the years 2007 and 2012 at all distances. This means that these sectors, although 
characterized by significant spatial concentration in both years, have experienced a 
slight process of spatial dispersion in the year 2012 with respect to the year 2007. 
The opposite dynamics has characterized sector ‘15—Manufacture of leather and 
related products’ that experienced an increase in the degree of spatial concentration 
at all distances in the year 2012 with respect to the year 2007. The remaining sec-
tors present different dynamics: some of them show an increase (decrease) in the 
degree of spatial concentration between the years 2007 and 2012 at short distances, 
while a decrease (increase) at longer distances; other sectors exhibit more compli-
cated dynamics characterized by alternating increases and reductions in the degree 
of spatial concentration between the years 2007 and 2012 over different distance 
intervals.10

Further interesting evidences can be derived from the analysis of the spatial 
L-function, which comes simply as a normalization of the spatial K-function, but 
has the advantage of providing a clearer graphical representation of the intensity/
strength of concentration at each specific distance. Thus, the L-function allows us to 
identify and compare the intensity of concentration that has characterized each two-
digit sector at different distances in the years 2007 and 2012. Figure A6 (Supple-
mentary material 1) reports the plots of the sector-specific spatial L-functions esti-
mated for the years 2007 and 2012. Two stylized facts emerge from the plots. First, 
it is confirmed that the majority of the Italian manufacturing sectors experienced a 
process of spatial dispersion during the years of the Great Recession, i.e., the dis-
tance-specific intensity of spatial concentration in the year 2012 has been lower than 
in the year 2007 for most two-digit sectors. For some sectors, this process of spatial 
dispersion has been concentrated in the first 50 km, thus affecting the geographic 
area with the highest firm density of the sector—in some cases, the main ‘pole’ of 
the industrial district/cluster. For other sectors, this process occurred at longer dis-
tances. The first pattern could be explained by a higher death rate of firms located 
within the ‘core’ of the industrial cluster, while the second pattern could be the 
result of a higher mortality of firms located in the ‘periphery’ of the cluster. Despite 
most sectors experienced a process of spatial dispersion, we find also evidence of 
few two-digit sectors that have been characterized by a general increase in the inten-
sity of spatial concentration in the year 2012 with respect to the year 2007. This 
increase in the strength of spatial concentration has interested sector ‘15—Manu-
facture of leather and related products’, sector ‘17—Manufacture of paper and paper 
products’ (from about 40 km) and, to a lower extent, sector ‘30—Manufacture of 
other transport equipment’, while an alternating dynamics has characterized sector 
‘19—Manufacture of coke and refined petroleum products’.

10 The sector-specific comparison of the estimated empirical K values between the years 2007 and 2012 
is evaluated considering sector- and year-specific mean values of the estimated empirical K values aver-
aged over distance bands of 10 km in the interval [0, 250].
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The second stylized fact emerging from the analysis of the spatial L-function 
is that the intensity of concentration changes at different distances. For some ‘tra-
ditional’ sectors, such as textile, leather and furniture, the intensity of agglom-
eration tends to increase very rapidly, reaching high values within the first 10 
to 20  km. This result is consistent with the literature on spatial agglomeration/
clustering, which shows that most localization activities occur at distances below 
10–20  km, and then tend to decline. This is the typical ‘spatial’ organization 
of many industrial districts/clusters, where a high number of small firms is co-
located within a bounded geographic area. We find a similar pattern also for a 
high-tech sector such as the pharmaceutical one. In this case, the L-function rises 
up to a distance of 20 km, and then declines. In other words, also in this case the 
spatial structure of the sector is typical of an industrial cluster.

Finally, additional insights emerge also from Table A11 (Supplementary mate-
rial 1), which reports the sector-specific minimum and maximum values of the 
estimated spatial L-functions with the corresponding distances for the years 2007 
and 2012. According to Table A11, the maximum value of this function for the 
pharmaceutical sector is reached at a distance of about 45 km. In this sense, the 
pharmaceutical sector is not only the most spatially concentrated manufactur-
ing sector in Italy, but also that characterized by the productive activity where 
the concentration grows more rapidly at short distances. This is not surpris-
ing, since these high-tech firms take advantage of knowledge spillovers whose 
intensity tends to increase within bounded geographic spaces. A similar result 
emerges also for the textile industry, where the maximum value of the L-function 
is reached at about 57 km.

More generally, each sector shows its own geographic pattern, whose intensity 
at short distances can change significantly. For the ‘traditional’ sectors and the 
pharmaceutical one, agglomeration effects at short distances may be particularly 
strong. Thus, it is likely that firms operating in these sectors benefit from intra-
industry knowledge spillovers. For other sectors, the geographic clustering pro-
cess takes place over longer distances that include one or more neighbor regions. 
It is likely that firms operating in sectors characterized by this pattern of geo-
graphic concentration exploit other types of locational advantages, which produce 
their effects at larger geographic scales. As recently suggested by the literature, 
some of these localization advantages can be identified with inter-industry knowl-
edge spillovers or input–output (vertical) linkages which generally exert their 
effects at long distances (e.g., Cainelli and Ganau 2018).

As already mentioned, a relevant limit of this kind of analysis is that it does 
not allow us to describe the dynamics of agglomeration occurring between two 
different ‘moments of time,’ i.e., the so-called agglomeration over time. This can 
be a problem, since, at the sectoral level, the ‘same’ agglomeration pattern can 
be the result of quite different space–time dynamics. Understanding these pro-
cesses is therefore quite important in order to identify the (potential) effects pro-
duced on these patterns by factors such as the stage of the product life-cycle of a 
local industry/cluster, historical accidents, technological revolutions, and external 
shocks (e.g., natural disasters and economic crises).
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4.3  The space–time agglomeration dynamics

Agglomeration tends to evolve not only over space, but also over time. Indeed, firms’ 
agglomeration dynamics is not a static phenomenon, such that its analysis requires 
to evaluate its spatial and temporal dimensions simultaneously. Moving from these 
premises, and drawing on the previous findings, this sub-section presents the results 
concerning the agglomeration dynamics obtained by employing the space–time 
K-function approach, and using the firm-level data for each observational period 
between the year 2007 and the year 2012.11

Table  3 summarizes the key insights emerging from the analysis, while Fig-
ure A7 (Supplementary material 1) reports the plots of the estimated values of the 
D̂s(r, t) functional, the D̂0

s
(r, t) functional, the ‘standardized residuals’ R̂s(r, t) versus 

K̂R
s
(r)K̂T

s
(t) , and the empirical frequency distribution of the sum of the differences 

between the space–time K-function and the product of the separate space and time 
K-functions in 99 simulations resulted from the Monte Carlo test.

First, based on the visual inspection of the estimated D̂0
s
(r, t) functionals, we find 

that, overall, all two-digit manufacturing sectors recorded a space–time dispersion 
process that occurred with a higher intensity at relatively small distance and short 
time horizon.12 This evidence suggests that the Italian manufacturing industry has 
been characterized by a general dispersion process of firms that occurred simultane-
ously in space and time, but at a small spatial scale and during the first years of the 
period analyzed. These evidences have two interesting implications. First, while it 
is generally recognized that agglomeration processes take place at short spatial dis-
tances (Cainelli and Ganau 2018), it is less clear that these dynamics may accelerate 
during short periods of time. A prejudice underlying the literature is that agglomera-
tion is characterized by strong path-dependence. This is the reason why most studies 
assume agglomeration as a time-invariant phenomenon. Our analysis shows that this 
is not true, at least during a period of rapid changes such as the Great Recession. 
Unfortunately, we do not have a counterfactual. In fact, it is not unlikely that changes 
in agglomeration patterns could have occurred at a slower rate ‘before’ or ‘after’ 
the Great Recession. However, in a ‘specific moment of time’—in our case, associ-
ated with the dramatic 2008–2009 economic and financial crisis—an acceleration 
of spatial dispersion in many manufacturing sectors can be observed. Similar pro-
cesses might also occur during the initial stages of the product life-cycle of a local 
industry/cluster, characterized by a rapid increase in the number of new firms, or in 
years of ‘sudden changes’ associated with historical accidents, technological revolu-
tions or discoveries, and structural transformations. The second implication of our 

11 The analysis based on the space–time K-function has been performed using the ‘splancs’ library avail-
able for the R software.
12 It is worth noting that the D̂0

s
(r, t) functional does not measure the intensity of spatial concentration/

dispersion, but rather describes the space–time dynamics of the agglomeration process. Therefore, while 
the spatial K- and L-functions provide a static picture of the spatial structure of each sector in a particu-
lar year (in our case, the years 2007 and 2012), the space–time K-function offers a dynamic description 
of the sector-specific agglomeration processes occurred over a period of time (in our case, between the 
years 2007 and 2012). Thus, we do interpret our findings in this sense.
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analysis concerns the impact of these dynamics on the structure and organization of 
local industries. We do not have direct evidences on these phenomena, but it is likely 
that a process of spatial dispersion at short distances and concentrated in few years 
has strongly changed the nature and the intensity of local externalities (the so-called 
Marshallian effects), inter-firm (horizontal and vertical) relationships, and the role 
and positioning of leader firms. This is coherent with some recent studies suggest-
ing that Italian industrial clusters experienced a process of radical transformation 
during the Great Recession (e.g., De Marchi and Grandinetti 2014). Our evidences 
of spatial dispersion in many manufacturing sectors may be interpreted as a further 
‘indirect’ support to this ‘vision’ of the evolution of the Italian industrial districts 
over the Great Recession.

Second, the analysis allows us to identify three main ‘behavioral’ patterns that 
have characterized different two-digit sectors. The first pattern (Model 1) concerns 
all but three sectors—namely, ‘15—Manufacture of leather and related products’, 
‘25—Manufacture of fabricated metal products, except machinery and equipment’, 
and ‘30—Manufacture of other transport equipment’. The space–time dispersion 
process that characterized the sectors belonging to the first group occurred at small 
distance (within about 30 km) and short time horizon (2007–2009), and exhibited 
time dispersion decreasing over time (from 2009 to 2012) in its intensity. In addi-
tion, it is worth noting that sectors characterized by this general pattern did not 
behave exactly in the same way. In other words, even within this group it is possible 
to detect heterogeneity in the time dispersion pattern. As an example, sector ‘13—
Manufacture of textiles’ recorded a slightly different time dispersion process that 
occurred smother over time with respect to the other sectors belonging to this first 
group. The second pattern (Model 2) concerns sectors ‘15—Manufacture of leather 
and related products’ and ‘30—Manufacture of other transport equipment’. These 
two sectors recorded a deep space–time dispersion that occurred at small distance 
and over the period 2007–2008, but then recorded a light process of time cluster-
ing over the period 2009–2012. It is not surprising that these dynamics were also 
detected through the spatial K-function approach. However, through the space–time 
K-function approach, we are also able to describe the time evolution of these pro-
cesses. The third pattern (Model 3) concerns only sector ‘25—Manufacture of fabri-
cated metal products, except machinery and equipment’, that recorded a space–time 
dispersion process at small distance (about 25 km) over the period 2007–2008, but 
time dispersion has been increasing from the year 2007 onwards. Figure 1 reports 
one example of the estimated D̂0

s
(r, t) functional for each identified ‘behavioral’ 

pattern.
These three different patterns do not seem to depend on specific characteristics 

of the sectors in terms of industrial organization, technology, or firm size composi-
tion. In other words, we are not able to detect any empirical regularity characterizing 
these patterns due to the fact that the observed firms belong to both traditional and 
high-tech industries. This is an interesting result that requires further investigation.

Finally, although the analysis highlights clearly the existence of space–time 
dispersion processes, inferential testing does not point to the existence of statisti-
cally significant space–time interaction—see the last two columns of Table 3, and 
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Table A12 (Supplementary material 1).13 Overall, the absence of space–time inter-
action could depend on the fact that the time period we analyze is too short, together 
with the reduced number of replications performed in the Monte Carlo procedure.14 
Both issues will be addressed in future extensions of this work.

5  Conclusions

The spatial and temporal evolution of firms’ agglomerates is one of the key phenom-
ena occurring in many industrialized and emerging countries. Despite its relevance, 
only few studies have investigated the dynamics of agglomeration over both space 
and time. To the best of our knowledge, this is one of first papers that attempt to 
investigate empirically these processes by employing a battery of statistical meth-
ods, and using a large sample of geo-referenced, single-plant firms covering almost 
the entire Italian manufacturing industry.

In particular, our contribution to this literature is twofold. The first one is meth-
odological. In fact, we show that different statistical techniques, generally employed 
in economic geography and regional economics for studying spatial agglomeration 
phenomena, can lead to different results. In the case of the Ellison and Glaeser’s 

Fig. 1  Examples of ’behavioral’ patters—D̂
0

s
(r, t) functional. Note: Estimated D̂0

s
(r, t) functionals for 

two-digit sectors ‘10—Manufacture of food products’ (Model 1), ‘15—Manufacture of leather and 
related products’ (Model 2), and ‘25—Manufacture of fabricated metal products, except machinery and 
equipment’ (Model 3)

13 As suggested by a Reviewer, the absence of space–time interaction for two-digit sectors belonging to 
Models (1) and (2) emerges clearly looking at the plots of the estimated D̂0

s
(r, t) functional, as the major-

ity of points lies on the surface representing the ‘no interaction’ plane. On the contrary, the absence of 
space–time interaction appears as less obvious from a purely graphical inspection with respect to sector 
‘25—Manufacture of fabricated metal products, except machinery and equipment’, i.e., the only sector 
belonging to Model (3). In this case, the corresponding plot shows large and diffuse deviations over all 
horizons, but the p-value of the Monte Carlo test (which is equal to 0.19) does not allow us to reject the 
null hypothesis of no space–time interaction.
14 The Monte Carlo procedure is based on only 99 replications for reasons related to computational 
speed. Indeed, the size of our dataset is particularly large when compared to previous studies relying on 
similar methodologies.
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(1997) index, this depends on two main issues, namely the MAUP, and the fact that 
the temporal dimension characterizing agglomeration processes is not accounted 
for adequately. The spatial K-function approach (Ripley 1976) allows us to relax 
MAUP-related issues, but does not help us solving the second problem, i.e., the 
empirical identification of the agglomeration dynamism. In this context, this can 
be done only by comparing the values of the estimated spatial K-functions in two 
separate moments of time. In other words, this statistical method does not allow us 
to describe the dynamics of agglomeration patterns taking place between different 
moments of time. The only approach allowing for this ‘temporal’ evaluation is the 
space–time K-function (Diggle et al. 1995), through which we can analyze simulta-
neously the spatial and temporal dimensions of agglomeration processes, as well as 
the potential existence of space–time interactions.

The second contribution of our analysis concerns the empirical identification 
of the agglomeration dynamics of a sample of Italian manufacturing firms during 
the period of the Great Recession. In fact, we find that Italian manufacturing sec-
tors experienced a process of space–time dispersion during the period of the Great 
Recession, although with slightly different intensity and patterns. Finally, although 
our analysis does not detect any statistical evidences of space–time interaction, we 
observe that the process of space–time dispersion has been more intense at small 
spatial distances and short time horizons. To the best of our knowledge, this is the 
first paper that describes these types of agglomeration dynamics across different 
manufacturing sectors.

Our analysis, and, particularly, the identification of space–time processes in 
agglomeration patterns, have relevant implications in terms of generation and dif-
fusion of local externalities, inter-firm relationships, and level of concentration and 
hierarchy of local industries. In fact, all these features of a local industry/cluster are 
likely to change significantly as a consequence of spatial and temporal changes of 
the agglomeration dynamics. This is an aspect that should be taken into account 
seriously in the analysis of the empirical determinants of spatial agglomeration, and 
of its effects on firms’ economic performance and local economic growth.

Of course, our analysis comes with some limitations. First, the period of anal-
ysis—i.e., only 6 years—is not long enough to justify the presence of statistically 
significant space–time interaction. Second, although our intent was to provide a 
broader picture of the agglomeration dynamics occurred in the Italian manufactur-
ing industry, the use of industrial sectors at the two-digit level could not be com-
pletely appropriate for analyzing these phenomena. All these limitations will be 
addressed in future developments of this research.
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