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Abstract. The numerical simulation of modern engineering problems can easily incorporate
millions or even billions of unknowns. In several applications, sparse linear systems with symmetric
positive definite matrices need to be solved, and algebraic multigrid (AMG) methods represent com-
mon choices for the role of iterative solvers or preconditioners. The reason for their popularity relies
on the fast convergence that these methods provide even in the solution of large size problems, which
is a consequence of the AMG ability to reduce particular error components across their multilevel
hierarchy. Despite carrying the name ``algebraic,"" most of these methods still make assumptions on
additional information other than the global assembled matrix, such as the knowledge of the oper-
ator's near kernel, which limits their applicability as black-box solvers. In this work, we introduce
a novel AMG approach featuring the adaptive factored sparse approximate inverse (aFSAI) method
as a flexible smoother, as well as three new approaches to adaptively compute the prolongation
operator. We assess the performance of the proposed AMG through the solution of a set of model
problems along with real-world engineering test cases. Moreover, we perform comparisons to other
methods such as the aFSAI and BoomerAMG preconditioners, showing that our new method proves
to be superior to the first strategy and comparable to the second one, if not better, as in the solution
of linear elasticity models.
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1. Introduction. With the increasing availability of powerful computational
resources, scientific and engineering applications are becoming more and more de-
manding in terms of both memory and CPU time. The current simulation models
may quickly grow up to several millions or even billions of unknowns, and the efficient
solution to the related sparse linear systems of equations

(1) Ax = b,

with A \in \BbbR n\times n a symmetric and positive definite (SPD) matrix, b \in \BbbR n, and x \in \BbbR n,
may often represent one of the most expensive tasks in several numerical applications.
The sparse linear system of (1) can be solved by direct or iterative methods, the last
one often being the preferable choice for the solution of large-scale engineering prob-
lems due to its lower complexity and often higher scalability. It is well known that this
characteristic of iterative methods is driven by the suitable selection of the precon-
ditioner, which is an operator approximating the action of A - 1. Several techniques
for building this component are available in the literature and can be divided into
purely algebraic or either physics-based ones. Among the first class, i.e., those whose
set-up depends solely on the matrix coefficients, we cite incomplete factorizations
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[49, 42, 5], sparse approximate inverses [6, 54, 31, 34], domain decomposition tech-
niques [23, 61, 3, 39], and finally the algebraic multigrid (AMG) methods, which are
the focus of this paper.

AMG is a family of iterative methods commonly used as a preconditioner which
is built on a hierarchy of levels associated with linear problems of decreasing size.
There are five fundamental components characterizing this class of methods, i.e., the
restriction and prolongation (interpolation) operators, the coarsening process, and
smoothing and application strategies. Varying these elements gives rise to different
AMG methods; however, they share a common characteristic which is indeed the
central idea of AME: they all work by reducing the error between the iterative and
the true solution of the linear system (1) by targeting different error components
across their level hierarchy. The high-frequency part of the error is reduced in the
fine-level system, while the coarse levels handle the low-frequency counterpart. In
this way, optimality and efficiency are achieved by combining the two complementary
processes: relaxation and coarse grid correction.

AMG was first introduced in the early 1980s in the form of classical AMG, whose
main feature is that coarse-level nodes are obtained as a subset of the fine level nodes
and the interpolation operator is built upon the assumption that the constant vector is
the dominant component in the near-null space of A [45, 53, 12, 8]. Since then, much
research has been conducted in the direction of improving the components of classical
AMG as well as creating new AMG techniques with the final aim of improving AMG
efficiency and expanding its applicability to challenging problems characterized by
complex geometries, distorted grids, strong discontinuities in the physical properties,
and anisotropy.

The most important AMG variants comprise unsmoothed and smoothed aggre-
gation multigrid whose coarsening is based on agglomeration of nodes and the prolon-
gation operator is built in a columnwise fashion in order to interpolate a set of vectors
in the near-null space usually provided as an input [56, 57, 46]. The element-based
AMG family composed by the energy minimization AMGe [15], element-free AMGe
[29], and spectral AMGe [19], where the coarse spaces are constructed via an energy
minimization process, were proposed to improve the robustness of these methods by
alleviating the heuristics based on M-matrices properties implemented in classical
AMG. More recently the adaptive AMG and bootstrap AMG were designed for the
solution of harder problems where the classical and the smoothed AMG may fail or
show poor convergence [16, 17, 13, 10, 18, 11, 21]. The most important feature of the
above methods is that no preliminary assumption is made about the near-null space
of A but it is approximated adaptively during the AMG hierarchy construction by
starting from one or multiple candidate vectors. Moreover, the computed multigrid
hierarchy can be used itself as a smoother to better expose slow-to-converge modes in
a self-improvement fashion. On the one hand, this attribute renders those methods
more general and capable of achieving better convergence rates, but on the other,
it increases the set-up time substantially. A detailed review of the most recent and
effective AMG variants developed so far can be found in [59].

In this work, we propose a novel AMG package that we name aSP-AMG, where
the acronym aSP stands for adaptive smoothing and prolongation. The reason for the
choice of the word ``adaptive"" is manifold. The first motivation is that we follow the
perspective of adaptive and bootstrap AMG that is to assume no information about
the near-null space of A, but we construct the space of smooth vectors, denoted as test
space in the remainder of the paper, by testing an initial set of candidates, without,
however, making use of the self-improvement concept in the current implementation.



A192 V. A. P. MAGRI, A. FRANCESCHINI, AND C. JANNA

Another novel contribution provided by aSP-AMG is the introduction of the adaptive
pattern factorized sparse approximate inverse (aFSAI) as a smoother. This improves
the smoothing capabilities of the resulting method as aFSAI is more effective than
Jacobi and usually much sparser than Gauss--Seidel for the same accuracy. Moreover,
aFSAI has been shown to be, both theoretically and experimentally, strongly scalable
[34, 7], and this fact fosters the implementation of the package in massively parallel
computers, even if it is not our main focus at the moment. Coarsening is carried out as
in classical AMG by dividing variables into fine and coarse, but the strength of connec-
tion (S.C) is computed by means of the affinity between components of the test space,
which we believe is a concept that better adapts to general problems. Finally, the main
contribution that we want to stress consists of three new techniques for building the
prolongation operator that are based on different minimization processes. The ratio-
nale of the first two techniques derives from the adaptive block FSAI preconditioning
[32], while the third one, similarly to [10], is based on least squares, but with a dynamic
pattern selection scheme enhancing its quality especially in real-world problems.

The article is organized as follows. In section 2, the fundamentals of classical
AMG are reviewed and the set-up algorithm of aSP-AMG is presented. Section 3
introduces the aFSAI preconditioner as a smoother, pointing out its advantages over
other choices for relaxation and providing details of the set-up algorithm. Section
4 exposes how the near-null space of A is approximated via the calculation of the
small subspace of \BbbR n called test space. In section 5, we introduce the three new
aforementioned techniques for building prolongation. In section 6, the impact of each
configuration parameter on the aSP-AMG performance is evaluated for a challenging
linear elasticity problem. Also, an in-depth numerical study of the new prolongation
and smoother strategies of aSP-AMG is carried out for the rotated anisotropic Poisson
test case. Section 6 finalizes with a comparison between the preconditioners aSP-
AMG, BoomerAMG, and aFSAI for the solution of real-world test cases. In section
7, we close this work with conclusions.

2. The classical algebraic multigrid method. As mentioned before, there
are several families of AMG methods, each of them sharing common components such
as a multilevel hierarchy built upon interpolation operators, the use of smoothers, and
the quest for a suitable interplay between coarse-grid correction and relaxation. On
the other hand, these families of methods differ in the way they build those operators
and pursue the optimality characteristic. In the present work, we adopt the classical
AMG approach in which coarse variables are chosen as a subset of the fine-level ones
and the interpolation operators are usually built in a rowwise fashion.

We start by recalling the basic ideas behind classical AMGmethods; more detailed
and rigorous descriptions can be found, for instance, in the works [52, 55, 59]. For the
sake of clarity, we restrict our explanation here and in the remainder of the paper to a
two-levels-only scheme, since the multilevel version of the method is readily recovered
by applying the two-level scheme recursively to the coarse levels. With reference to the
SPD problem (1), to simplify the notation, we order the system matrix A according
to the fine/coarse (F/C) partition of the unknowns,

(2) A =

\biggl[ 
Aff Afc

AT
fc Acc

\biggr] 
,

even though this ordering is never really needed in the solver implementation.
The first component that needs to be defined in an AMG method is the smoother,

which is a stationary iterative method responsible for eliminating the error components
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associated with large eigenvalues of A, usually referred to also as the high-frequency
errors. Generally, it is given by a simple pointwise relaxation method such as (block)
Jacobi or Gauss--Seidel, with the second one often preferred even though its efficient
parallel implementation is not straightforward. In aSP-AMG, we introduce the usage
of the aFSAI [34] as a smoother. This choice, which will be detailed below, is dic-
tated by its almost perfect strong scalability and by its proved effectiveness in real
engineering problems [4, 33]. Regardless of the choice, the smoother operator S can
be represented by the equation

(3) S = I  - \omega M - 1A,

where I is the identity matrix, \omega the relaxation factor, and M - 1 a preconditioning
operator. The next step of the method consists in defining coarse variables that will be
used to construct the coarse grid correction operator and should be able to capture all
the error components which are not reduced by relaxation. Defining \Omega as the index set
1, 2, . . . , n, with n the size of A, we want to find two disjoint sets \scrF and \scrC representing
the fine and coarse nodes, respectively, such that \Omega = \scrC \cup \scrF denoting their size as
nf = | \scrF | and nc = | \scrC | . Numerous coarsening algorithms have been developed over
the years; among the most used we can cite RS0, CLJP, PMIS, and HMIS [60]. All
of them rely on the SoC concept, which measures the influences exerted between two
neighboring nodes and plays a fundamental role in guiding the selection process of
fine and coarse nodes. The commonly used definition of SoC, however, is based on the
assumption that A is an M-matrix or it is applied to the M-matrix relative of A, which
jeopardizes its applicability to more general discretizations. In this work, we employ
another definition of SoC based on the concept of affinity recently introduced by [43]
that we believe, more flexible and with a wider range of applicability. Affinity-based
SoC requires the availability of a suitable test space of size nt that should represent
as accurately as possible the algebraically smooth vectors. In several applications
this test space is already available as the kernel of A, e.g., as the constant vector
in Poisson problems or the rigid body modes in elasticity problems. Our current
implementation is able to both take advantage of an already existing test space, if
available, or estimate it through a Lanczos process as explained in section 4. In
any case, let us call X the n \times nt matrix whose columns form a base of \Phi , i.e.,
the test space, and let us denote as xT

i the ith row of X. Borrowing the notation
adopted in [59], we compute the connection strength between two adjacent nodes i
and j as

(4) SoC [i, j] =

\bigl( 
xT
i xj

\bigr) 2\bigl( 
xT
i xi

\bigr) \bigl( 
xT
j xj

\bigr) .
With this definition, the SoC matrix is formed initially on the same pattern of A
and then filtered by dropping weak connections. Coarse nodes are finally chosen
by finding a maximum independent set of nodes on the filtered adjacency graph.
Unfortunately, affinity-based SoC usually gives rise to connections whose numerical
values are distributed in a narrow interval, so it is difficult to define an adequate
threshold for dropping. For this reason, we prefer to control the sparsity of the
SoC matrix, and thus the rapidity of coarsening, by specifying the integer parame-
ter:

1. \theta , the average number of connections per node,
that is, we prescribe the maximum number of entries in Sc.
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Algorithm 1. Recursive AMG set-up.

1: procedure aSPAMG SetUp(Ak)
2: Define \Omega k as the set of the nk vertices of the adjacency graph of Ak;
3: if nk is small enough to allow for a direct factorization then
4: Compute Ak = LkL

T
k ;

5: else
6: Compute Mk such that M - 1

k \simeq A - 1
k ;

7: Define the smoother as Sk =
\bigl( 
Ik  - \omega kM

 - 1
k Ak

\bigr) 
;

8: Compute the nk \times nt test space matrix Xk;
9: Partition \Omega k into the disjoint sets \scrC k and \scrF k via coarsening;

10: Compute the prolongation matrix Pk from \scrC k to \Omega k;
11: Compute the new coarse level matrix Ak+1 = PT

k AkPk;
12: Call aSPAMG SetUp(Ak+1);
13: end if
14: end procedure

Once the nodes belonging to the fine level have been subdivided into the two sets
\scrF and \scrC , it is possible to set up the prolongation operator which is responsible for
tranferring information from the coarse to the fine space. Using the conventional F/C
ordering defined above in (2), the prolongation operator P will be written as

(5) P =

\biggl[ 
W
I

\biggr] 
,

where W is a nf \times nc matrix containing the weights for coarse-to-fine variable inter-
polation. Finally, as the system matrix is SPD, we assume a Galerkin approach in
defining the restriction operator R as the transpose of P , with the coarse-level matrix
Ac simply given by the triple matrix product:

(6) Ac = PTAP.

In practice, we want fast convergence with a rapid coarsening, i.e., high F/C ratios,
and possibly small sets of interpolatory variables to allow for small and relatively
sparse coarse grid operators. The construction of effective prolongation operators, as
those outlined in section 5, is then crucial to conciliate these conflicting requirements.

Once all the aforementioned components are well defined, the set-up phase of the
two-level multigrid method can be completed and its iteration matrix is given by

(7) (S)
\nu 2
\bigl( 
I  - PAc

 - 1PTA
\bigr) 
(S)

\nu 1

with \nu 1 and \nu 2 representing the number of pre- and post-smoothing steps, respectively.
As anticipated, extending this two-level approach to a more efficient multilevel

version is straightforward by using recursivity. Algorithms 1 and 2 briefly report
the general AMG set-up phase and application in a V-cycle, respectively, where it is
conventionally assumed that A0 = A, y0 = y, and z0 = z. The details regarding all
the computational building blocks used our implementation of 1 will be given in the
next sections.

3. Adaptive factored sparse approximate inverse as a smoother. The
factorized sparse approximate inverse (FSAI) preconditioner was originally proposed
by [36, 37] and improved by several authors in recent years [54, 31, 32, 34]. FSAI
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Algorithm 2. AMG application in a V-cycle.

1: procedure aSPAMG Apply(Ak, yk, zk)
2: if k is the last level then
3: Solve Akzk = yk using Lk, the exact Cholesky factor of Ak;
4: else
5: Compute sk by applying \nu 1 smoothing steps to Aksk = yk with s0 = 0;
6: Compute the residual rk = yk  - Aksk;
7: Restrict the residual to the coarse grid rk+1 = PT

k rk;
8: Call aSPAMG Apply(Ak+1, rk+1,dk+1);
9: Prolongate the correction to the fine grid dk = Pkdk+1;

10: Update sk \leftarrow sk + dk;
11: Compute zk by applying \nu 2 smoothing steps to Akzk = yk with z0 = sk;
12: end if
13: end procedure

belongs to the family of sparse approximate inverse preconditioners whose idea is to
approximate the exact inverse of a matrix as the product of two triangular matrices
explicitly stored in the memory. The essence of FSAI is to compute an approximation
G of the inverse of the exact lower Cholesky factor of an SPD matrix A without
needing access to the Cholesky factor itself. The main features of this preconditioner
are listed below.

\bullet By distinction to ILU preconditioners, its set-up is not affected by instability
of the factors G and GT by the occurrence of either zero or negative pivots
and the resulting preconditioner is always SPD.

\bullet Construction of the G factor is carried out row by row through an embar-
rassingly parallel process involving the solution of several small dense linear
systems, making it suitable for high performance computing implementation.

\bullet Its application involves only two sparse matrix-vector multiplication opera-
tions whose complexity is \scrO (nnz(G)).

\bullet In contrast to Jacobi or Gauss--Seidel relaxations, its accuracy can be easily
controlled by the user, allowing for larger densities.

The algebraic formula of FSAI is given by

(8) M - 1
FSAI = GTG \approx A - 1,

where G is a sparse lower triangular matrix. The formal computation of G is accom-
plished by solving the following minimization problem over the set of matrices \scrW \scrS 
sharing the same lower triangular nonzero pattern \scrS :

(9) min
G\in \scrW \scrS 

\| I  - GL\| 

with \| \cdot \| denoting the Frobenius norm of a matrix and L the exact lower Cholesky
factor of A. After some algebra [34], it can be shown that the G entries are computed
by solving the componentwise equation,

(10) [ \widetilde GA]ij = \delta ij \forall (i, j) \in \scrS ,

which results in the following set of small dense linear systems of equations:

(11) A[\scrI i, \scrI i]\widetilde gi =  - A[\scrI i, i], i = 1, . . . , n,
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where \scrI i refers to the off-diagonal column indices associated with the ith row of G,
and \widetilde gi is the dense vector containing the corresponding entries of \widetilde G. G is finally
found through a diagonal scaling:

(12) G = diag( \widetilde G) - 1
2 \widetilde G.

This way of computing G is slightly different, though equivalent, from the one orig-
inally proposed in [38] and used elsewhere, e.g., [7]. In this context, we prefer for-
mulation (11)--(12) because Algorithm 3 is made simpler. It can be shown that the
resulting factor G is optimal in the sense of the Kaporin number,

(13) \kappa (GAGT ) =

1

n
tr(GAGT )

det(GAGT )1/n
,

over all the matrices sharing the sparsity pattern \scrS [37]. An essential component
affecting the quality of FSAI, which is common also to the other sparse approxi-
mate inverses, is the nontrivial a priori choice of the nonzero pattern \scrS used in its
computation. For our smoother, we use the strategy proposed in [32], where the G
pattern is iteratively improved trying to include those positions contributing most to
the reduction of the Kaporin number of the current preconditioned matrix. This is
accomplished by observing that for a given G the following relation holds:

(14) \kappa (GAGT )n \propto 
n\prod 

i=1

\psi i,

where \psi i = \widetilde G[i, \scrI i]A \widetilde G[i, \scrI i]T . The key idea is that of computing for each row of
A the gradient of \psi i, \nabla \psi i, and then adding to the current pattern those positions
corresponding to its largest entries in absolute value. The procedure is then repeated
for each row until the relative improvement on the value of \psi i falls below a given
tolerance.

The density, hence accuracy, of the aFSAI preconditioner is controlled by the
following user-defined parameters:

1. kg, the maximum number of steps for the dynamic procedure;
2. \rho g, the number of entries added per row of each step;
3. \epsilon g, the exit tolerance based on relative reduction of \psi i.

Increasing the first two or decreasing the last one leads to a more accurate approx-
imation of A - 1 and a better smoother in terms of convergence. However, we note
that the cost of computing G is proportional to the fourth power of \mu FSAI [34]; thus,
an efficient aFSAI smoother must represent a good balance between set-up cost and
accuracy. In this direction, practical values for the input parameters of aFSAI are
discussed in section 6.1. Last, the complete procedure for the aFSAI set-up is outlined
in Algorithm 3.

4. Test space generation. A key ingredient for making our approach successful
is the accurate representation of slow-to-converge modes through the ad hoc genera-
tion of a suitable test space \Phi . It is a known fact that aFSAI, like most single-level
preconditioners, can represent the higher part of the spectrum of an SPD matrix ac-
curately, while it fails in the approximation of lower eigenpairs. The left frame of
Figure 1 shows a typical example of this fact, where the eigenspectra of a real-world
sparse matrix and the inverse of its aFSAI approximations (GTG) - 1 are compared.
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Fig. 1. Top: log-log plot of the eigenspectra of A and (GTG) - 1 for different aFSAI config-
urations. Bottom: plot of the respective symmetrized smoother (equation (17)) eigenspectrum. A
corresponds to the bcsstk38 matrix from the SuiteSparse Matrix Collection [22] (formerly known as
the University of Florida Sparse Matrix Collection).

No matter the degree of accuracy used in building G, the hundred smallest eigenvec-
tors remain poorly approximated, dampening the convergence ratio given by aFSAI.
In the right frame of Figure 1, we show the symmetrized smoother eigenspectra for
the same aFSAI configurations as before. Note that aFSAI enables the reduction
of different smooth modes when increasing its density. When aFSAI is used as a
smoother, the iteration matrix assumes the form

(15) S = I  - \omega GTGA

with the highest frequencies ofGTGA compromising the smoothing property of aFSAI,
while the lowest counterpart is responsible for the slow-to-converge modes. The first
issue can be handled by setting the relaxation factor as

(16) \omega =
2

\lambda max (GTGA)
,
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Algorithm 3. Adaptive FSAI computation.

1: procedure aFSAI SetUp(kg,\rho g,\epsilon g,A,G)

2: \widetilde G\leftarrow I;
3: for i = 1, n do
4: \psi 0,i \leftarrow [A]ii;
5: for k = 1, kg do
6: Compute \nabla \psi k,i;
7: Update \scrI i by adding the \rho g indices of the largest components of \nabla \psi k,i;
8: Gather A[\scrI i, \scrI i] and A[\scrI i, i] from A;
9: Solve A[\scrI i, \scrI i]\widetilde gi =  - A[\scrI i, i];

10: if \psi k,i \leq \epsilon g \cdot \psi k - 1,i then
11: Exit the loop over k;
12: end if
13: end for
14: \widetilde dii \leftarrow ( - \widetilde gT

i A[\scrI i, i]) - 
1
2 ;

15: gi \leftarrow \widetilde dii\widetilde gi;
16: Scatter the components of gi into G[i, \scrI i];
17: end for
18: end procedure

thus ensuring the overall smoother convergence. Such a remedy, however, does not
affect the lowest frequencies and their treatment has to be committed to the coarse
grid correction. Our aim here is to inexpensively, or at least at a low cost, find a good
approximation of the eigenvectors of S paired to the eigenvalues closer to 1, that is
a good approximation of the smooth vector space of A. To extract these eigenpairs
we elect to use the Lanczos algorithm [50], which is an effective method for this task.
In this research, we tried both simpler methods, such as the power method, and
more elaborate algorithms, such as the EigenValues Slicing Library (EVSL) [41, 40].
From our preliminary experimentation, we found that the original Lanczos algorithm,
without reorthogonalization, restart, and polynomial filtering, gives the best trade-
off between accuracy and computational cost to compute an approximation of the
test space \Phi . Other authors have already addressed this issue [10, 16, 17] and their
suggestion is to use multigrid eigensolvers, adaptivity, or self-improvement. A deeper
study on the best way to construct a proper test space will be the focus of future
research.

Since the Lanczos iterative method is designed for symmetric matrices, we need
to recast our problem as

(17) S = I  - GAGT

with matrix S similar to the operator S from (15), but symmetric. In this way, the
eigenvalues found by the iterative procedure will be the same as for S, while the
eigenvectors have to be transformed with a premultiplication by GT , because if v is
an eigenvector of S, then w = GTv will be the corresponding eigenvector of S.

The Lanczos algorithm is known to converge rapidly to the extreme eigenvalues
of a matrix; thus, in the case of S, these eigenvalues are close to one on the rightmost
part of the spectrum and to 1  - \lambda max(GAG

T ) on the other side. Both parts are
essential, as the former one represents the smooth vector space \Phi and the latter is
used to estimate \omega . The generation of the test space is controlled by the user-defined
parameters:
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1. nt, the dimension of the test space;
2. \epsilon t, the relative accuracy in estimating eigenpairs, i.e., (\lambda ,v) is added to the

test space if it satisfies
\bigm| \bigm| \bigm| \bigm| Sv  - \lambda v\bigm| \bigm| \bigm| \bigm| 

2
\leq \epsilon t | | v| | 2.

If an approximation of the near kernel of A is already available, using this infor-
mation can give a significant advantage, by simply adding known near-null modes to
the test space. For instance, when dealing with matrices arising from the linear elas-
ticity model, the rigid body modes of the structure can be inexpensively computed.
These are a good representation of the near-null space, widely used in AMG solvers
[2] and deflation-based methods [35, 4].

5. Prolongation operators. Once the coarsening stage is concluded and the
coarse unknowns are selected, we can define the prolongation operator P . To achieve
an effective two-grid method, it is crucial to compute a prolongator whose action is
complementary to the fine-level smoother, that is, P should be able to accurately
represent slow converging modes of the error. In this section, we present three new
techniques for building P , where the first two rely on approximating the ideal pro-
longation operator [24], while the last one approximates the optimal prolongation
[14].

5.1. Adaptive block FSAI. For a given F/C splitting of variables, the ideal
prolongation is the absolute minimizer of a weak approximation property [24, 58].
Recalling the form (5) of the prolongation, it can be completely defined by

(18) Wideal =  - A - 1
ffAfc.

Although attractive from a convergence viewpoint, the direct use of such an operator
is impractical. The simple reason is that computing A - 1

ff explicitly or its action to
an arbitrary vector is expensive and, in most practical cases, leads to dense Wideal

operators. In many AMG methods, prolongation operators are designed to target
the ideal form Wideal while mantaining sparsity and cheap set-up. For instance, the
standard interpolation employs a prescribed pattern toW and a few Jacobi or Gauss--
Seidel steps to improve its quality [55]; also, in [48], diverse energy minimization
techniques are proposed to approximate Wideal through a root-node multigrid type
[44]. It can be shown (see, e.g., Theorem 12.2 in [59]) that computing the ideal
interpolation (18) is equivalent to solving the trace minimization problem:

(19) P \ast = argmin
P\in \scrP 

tr(PTAP ),

where \scrP represents the set of n \times nc matrices of the form specified in (5). In the
adaptive block factorization (ABF) prolongation, we propose an approximation of
Wideal based on the work [32], where an adaptive procedure is developed for mini-
mizing each entry [FAFT ]ii for any i \in \{ 1, . . . , n\} with F a block lower triangular
matrix (see Theorem 2.4 in [32]). In this case, F belongs to a set of matrices \scrW \scrS \scrB 
sharing the same lower block triangular nonzero pattern \scrS \scrB \scrL . The analogy with ideal
prolongation is readily found by considering only two blocks with dimensions nf and
nc, respectively, and partioning F accordingly:

(20) F =

\biggl[ 
Inf

0\widetilde F Inc

\biggr] 
.
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Due to the format of F , the following identity holds:

tr(FAFT ) = tr

\biggl( \bigl[ 
Inf

0
\bigr] 
A

\biggl[ 
Inf

0

\biggr] \biggr) 
+ tr

\biggl( \Bigl[ \widetilde F Inc

\Bigr] 
A

\biggl[ \widetilde FT

Inc

\biggr] \biggr) 
= tr(Aff ) +

\sum 
i\in \scrC 

[FAFT ]ii.
(21)

Since the inequality
\bigl[ 
FAFT

\bigr] 
ii
> 0 is true for any entry i \in \scrC , the minimization of

(21) over the set \scrW \scrS \scrB can be written as

min
F\in \scrW \scrS \scrB 

tr(FAFT ) = tr(Aff ) +
\sum 
i\in \scrC 

min
F\in \scrW \scrS \scrB 

[FAFT ]ii,(22)

which shows that reaching the minimum of each [FAFT ]ii with\scrW \scrS \scrB becoming dense

is equivalent to choosing \widetilde F =WT
ideal. Using an approach similar to the one presented in

[26], we approximate the ideal prolongator by running Algorithm 3 with configuration
parameters kp, \rho p, and \epsilon p, where in place of computing the row vectors gi, we calculate
the column vectors wi of matrix W . In this way, at each step of the procedure
we compute, for the current pattern, a minimizer of tr(PTAP ) and select the most
promising entries to enlarge W .

5.2. Least squares corrected ABF. The ABF method finds a prolongation
operator that converges, in the limiting case, to (18). However, in its construction
process, we do not take advantage of any available information on slow-to-converge
modes, which have to be solved by coarse-grid correction for an efficient AMG scheme.
In the least squares corrected ABF (LS-ABF) prolongation, we add a correction step
to ABF by using a least squares minimization process similar to that suggested in
[10, 43, 48]. The idea here is to use information provided by the test space \Phi to
compute a correction

(23) \Delta P =

\biggl[ 
\Delta W
0

\biggr] 
such that \Phi \subseteq range(P + \Delta P ) while the resulting prolongation preserves the form
(5). Applying the same F/C ordering to an arbitrary base V for \Phi ,

(24) V =

\biggl[ 
Vf
Vc

\biggr] 
.

The above condition becomes

(W +\Delta W )Vc = Vf

\rightarrow \Delta W Vc = V f = Vf  - WVc
(25)

that can be recast in a set of nf linear systems where the vector of unknowns is the
ith row of \Delta W :

(26) V T
c \Delta wi = vf,i  - V T

c wi \forall i = 1, . . . , nf ,

where vT
f,i is the ith row of Vf . Even if we suppose that the F/C partition is such that

Vc has full rank, in practical applications the number of test vectors is much smaller
than the problem dimension, nt \ll nc, and systems (26) are overdetermined. For this
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Algorithm 4. Least squares correction of ABF prolongation.

1: procedure LSABF SetUp(Vf , Vc, W , \Delta W )
2: Compute V f = Vf  - WVc;
3: for all rows i \in W do
4: Form \scrJ i the set, of size ni, collecting the non-zero column indices in wT

i ;
5: Form the nt \times ni matrix B having as columns those rows of Vc in \scrJ i;
6: Form vT

f,i with the entries in the ith row of V f ;
7: Solve through least squares the nt \times ni system B\bfitdelta i = vf,i;
8: Correct wi with the entries in \bfitdelta i;
9: end for

10: end procedure

reason \Delta W is prescribed to have the same pattern of W and its entries are computed
through least squares minimization:

(27) min
\Delta \bfw i\in \scrW W,i

\bigm| \bigm| \bigm| \bigm| V T
c \Delta wi  - vf,i + V T

c wi

\bigm| \bigm| \bigm| \bigm| 
2

\forall i = 1, . . . , nf ,

where \scrW W,i is the set of nonzero entries prescribed on the ith row of W . The pro-
cedure to compute the least squares correction \Delta W , which gives rise to the LS-ABF
prolongation, is summarized in Algorithm 4.

5.3. Dynamic pattern least squares. The latter method usually provides a
more effective AMG cycle than the simple ABF. However, the pattern of W remains
constrained to the one selected by ABF, which may be too dense for achieving an
efficient AMG method. For this reason, we developed another strategy for computing
the prolongation operator where the nonzero pattern of W is selected through a least
squares minimization procedure inspired by the work [10].

A common way to select the nonzero pattern ofW is to choose for each row vector
wT

i of W nonzero coefficients in correspondence to coarse nodes with a sufficiently
small connecting path to i. Usually, a length equal to two is already enough for build-
ing good operators when using moderate coarsening ratios, while distance three might
be used in case of aggressive coarsening. Usually, to limit the number of non-zeros in
W , only strong connections are considered. However, the connectivity of the SoC ma-
trix may vary significantly, especially in difficult problems, with the consequence that
an a priori selected nonzero pattern may give rise to both overdetermined and under-
determined row systems (26). The first occurrence causes unnecessary large operator
complexity, while the latter prevents the construction of an effective prolongation
as the target range cannot be represented locally. Very often, to avoid the second
occurrence, it is necessary to include long-distance neighbors, thus producing dense
prolongation that needs to be postfiltered in order to limit set-up and application
costs.

With the dynamic pattern least squares (DPLS), we propose an iterative pro-
cedure, showing some analogies with approximate inverses [28, 32], that constructs
the prolongation pattern adaptively during set-up and uses test space information to
build weights. Its first stage is very similar to the static pattern selection of FSAI.
For any fine node i, we choose a set of coarse nodes that can be reached from i with
a path of strong connections shorter than a given distance dp and form the set \scrJ i of
potential column indices to be considered in row wT

i . The set \scrJ i is intentionally larger
than what is really needed and the selection procedure can be efficiently implemented
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through a level set traversal starting from i. Once \scrJ i is formed, the problem is to
choose a fixed number k of entries j \in \scrJ i such that there exists a linear combination
of vj giving the best possible approximation of vi in the Euclidean norm sense. When
k = 1, the optimal solution is easily found by selecting the index \=j for which the angle
between vi and v\=j is minimal or, in other words, the affinity

(28) \alpha i\=j =

\bigm| \bigm| vT
i v\=j

\bigm| \bigm| 
| | vi| | 2

\bigm| \bigm| \bigm| \bigm| v\=j

\bigm| \bigm| \bigm| \bigm| 
2

is maximal. To choose the second most promising entry, it is necessary to update the
affinity estimate by removing from both vi and all the vj the components along v\=j .
This operation is crucial, since, if not present, another connection carrying similar
information of node \=j could be added to the pattern of P . Orthogonalization can
be conveniently carried out by applying Householder reflections to vi and all the
remaining vj . Given a vector u \in \BbbR n, the rotation matrix Q nullifying its components
from k + 1 to n is given by

(29) Q = I  - 2hhT ,

where h = z / | | z| | 2 is a unit vector obtained from z whose components statisfy

(30) zi =

\left\{         
0 if i < k;

ui + sign(ui)\times 
\sqrt{} 

n\sum 
j=k

u2j if i = k;

ui if i > k.

The selection of interpolating coarse nodes from \scrJ i continues until the desired ac-
curacy is reached, that is, the relative difference between vi and the optimal linear
combination of selected vj falls below a prescribed tolerance:

(31)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| vi  - 

\sum 
j\in \scrJ i

\beta jvj

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

\leq \epsilon p | | vi| | 2 ,

where \scrJ i \subseteq \scrJ i contains only the selected entries. Obviously, if k reaches nt, the vector
vi is perfectly matched and the procedure stops anyway. For a better understanding,
we provide in Figure 2 a practical example of the procedure just described. The goal
is to compute the interpolation weights for the central fine node F, depicted in brown.
In this example, we set dp = 2 and \epsilon p = 10 - 2. Initially, i.e., the upper right frame, we
find the set of nodes that are strongly connected to F with distance up to dp. Note
that the first-level neighbors are depicted in green while the second-level neighbors
are in blue. Then, in frame 2, the set of interpolation candidates \scrJ i and the row
vectors xi are gathered from the test space matrix. In 3, we compute the affinities of
xi for i = \{ 2, 3, . . . , 7\} with respect to x1 and select the coarse node with the largest
one as the first interpolation node. In frame 4a, the affinities are updated according
to the Householder reflection defined by (29) and, again, the coarse candidate with
the largest value is included in the set \scrJ i. This procedure is repeated in frame 4b,
until convergence according to (31) is finally met. Last, in frame 5, the interpolation
weights for the selected coarse nodes are computed.

In summary, the DPLS prolongation is controlled by the user-defined parameters:
1. dp, the maximum path length for interpolation among fine and coarse nodes;
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Fig. 2. Practical demonstration of Algorithm 5 with numerical values taken from a linear
elasticity test case.

Algorithm 5. DPLS prolongation.

1: procedure DPLS SetUp(dp,\epsilon p,Sc,Vf ,Vc,W )
2: for all nodes i \in \scrF do
3: k \leftarrow 0; \scrC i \leftarrow \varnothing ; r\leftarrow vi; vi \leftarrow vi;
4: Form \scrJ i \leftarrow \{ j \in \scrC | there is a path from i to j shorter than dp\} ;
5: while \| r\| \geq \epsilon p\| vi\| do
6: k \leftarrow k + 1;
7: Select \=j \in \scrJ i \setminus \scrC i for which vj has maximal affinity with r;
8: Update \scrC i \leftarrow \scrC i \cup \{ \=j\} ;
9: Compute the Householder reflection operator Q by (29);

10: Compute r\leftarrow Q r;
11: for all j \in \scrJ i \setminus \scrC i do
12: Compute vj \leftarrow Qvj ;
13: end for
14: end while
15: Form the nt \times k upper triangular matrix R collecting vj for all j \in \scrC i;
16: Compute wi \leftarrow R - 1r;
17: end for
18: end procedure

2. \epsilon p, the relative exit tolerance in the iterative procedure.
Note that, with no danger of confusion, we use the same symbol \epsilon p for both ABF and
DPLS. Last, we present in Algorithm 5 the complete procedure for computing such
prolongation operator.

The ability of DPLS prolongation to adapt to the problem at hand is shown in
Figure 3, where an anisotropic diffusion problem is considered. The Poisson equation
is solved on a two-dimensional (2D) square domain characterized by different diffusion
tensors in the four regions NE, NW, SE, and SW. SW is isotropic, while in the other
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Fig. 3. Anisotropic diffusion problem. Computational grid (left) and adjacency graph of the
DPLS prolongation (right).

regions a ratio of 100 between diffusivities in orthogonal directions and a different
slope are used. Figure 3 (right) shows how aSP-AMG follows the material properties.

6. Numerical results. In this section, we present an analysis of the aSP-AMG
preconditioner in two stages. First, the impact of the configuration parameters in
terms of its performance is studied considering the solution of a linear elasticity model
problem. In the second stage, the computational performance in terms of CPU time
and memory occupation is evaluated for a set of SPD problems from the SuiteSparse
Matrix Collection [22] and compared to that of the native aFSAI algorithm as im-
plemented in the FSAIPACK package and the BoomerAMG solver as provided by
Hypre [25].

The right-hand-side vector used in the test cases discussed here is unitary. The
linear systems are solved by the preconditioned conjugate gradient (PCG) method
with initial solution equal to the null vector. Last, convergence is considered achieved
when the PCG iterative residual becomes smaller than 10 - 10 \cdot | | b| | 2.

To estimate the memory occupation and the cost of applying a single V(1,1)-cycle
of aSP-AMG, we use the classical definition of grid and operator complexities:

(32) Cgd =

nl - 1\sum 
l=0

nrows (Al)

nrows (A0)
, Cop =

nl - 1\sum 
l=0

nnz (Al)

nnz (A0)
,

where the first accounts for the space needed to store the sparse systems belonging to
the multigrid hieararchy, while the second measure is related to the size of auxiliary
vectors employed in the preconditioner application. Moreover, the grid complexity
also gives an idea of how fast unknowns are coarsened in the multilevel hierarchy
and can be easily related to the average grid contraction factor ravg by the following
expression:

(33) Cgd =

nl - 1\sum 
l=0

rlavg =
1 - rnlavg
1 - ravg

.
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The third measure is the cycle complexity which is borrowed from the work [44]. This
gives an estimate of the application cost of one AMG cycle with respect to the cost of
running an SpMV operation involving the original matrix A. This quantity accounts
for the cost of application of the smoother and interpolation operators as well as the
residual computations present in Algorithm 2. Also, it is dependent on the type of
multigrid cycle used. For the V (\nu 1, \nu 2)-cycle it is given by

(34) Ccv = 2

\Biggl[ 
nl - 1\sum 
l=0

\nu T [ nnz (Al) + nnz (Fl) ] + nnz (Pl)

\Biggr] \bigg/ 
nnz (A0),

in which \nu T = \nu 1+\nu 2, i.e., the sum of the pre- and post-smoothing steps, respectively,
per level.

Last, we consider the aFSAI density \mu G, i.e. the ratio between the nonzeros in
the G factor and the nonzeros in A, which gives an idea of the cost for storing as well
as for applying of aFSAI preconditioner:

(35) \mu G =
nnz (G)

nnz (A)
.

When aFSAI is considered as a smoother, its density is given by:

(36) \mu G =

nl - 1\sum 
l=0

nnz (Gl)

nnz (A0)
.

We stress once more that our focus is not on the parallelism of the proposed
approach but on its algorithmic definition. Nevertheless, to show that there are no
obstacles to its parallelization, we present a shared memory implementation developed
by using OpenMP directives and run all the tests on a workstation equipped with two
Intel Xeon E5-2643 processors at 3.30 GHz with 8 cores each and 256 GB of RAM.

6.1. Sensitivity analysis to the set-up parameters. Since the proposed
solver depends upon a considerable number of user-defined parameters, we build a
simple test case to measure their impact on the overall performance. To better un-
derstand the relative impact of each parameter, we vary only one or few of them at a
time, leaving the other unchanged to the ``default"" values listed in Table 1.

The model problem arises from 3D linear elasticity where the Cauchy indefinite
equilibrium equations are solved on a cube with unitary edges. The domain is first
discretized with 1,193 linear tetrahedral finite elements and a face is completely fixed
as a boundary condition. A constant Poisson ratio \nu = 0.3 is assumed, while the

Table 1
Default parameters for the sensitivity analysis.

Phase Method Parameter Value

Smoother aFSAI
kg 5
\rho g 3
\epsilon g 10 - 2

Test space Lanczos nt 20
Coarsening Affinity-based \theta 6

Prolongation

ABF
kp 20
\rho p 1
\epsilon p 10 - 2

LSCorr False

DPLS
dp 2
\epsilon p 10 - 2
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Fig. 4. FE discretization of the cube with element aggregates and jumps in the material prop-
erties.

Young modulus E varies in the range [10 - 3, 103]. For each element, Ei is computed
drawing \sigma i from a uniform distribution and computing Ei = 10\sigma i . Once the material
properties are defined in the whole domain, the mesh is refined, thus generating
610,816 tetrahedra with every new finite element inheriting the material properties of
the original tetrahedron in which it is located. In such a way, we have homogeneous
aggregates of finite elements with jumps in the material properties among aggregates.
The final numbers of unknowns and nonzero entries for this matrix are 393,102 and
15,767,442, respectively. Figure 4 provides the FE mesh with different colors used to
distinguish materials.

In particular, in each analysis we provide the number of levels (nl), the grid and
operator complexities (Cgd and Cop), the number of PCG iterations (nit) to converge,
the time spent in each stage of the preconditioning set-up (smoother and test space
set-up Tsm, coarsening Tcs, and prolongation Tpr) and the time used by PCG, i.e.,
the solution time (Ts).

We start the sensitivity analysis by varying the aFSAI smoother set-up param-
eters. To this aim, four different configurations associated with different levels of
accuracy on approximating A - 1 are used: (1) very low, corresponding to weighted
Jacobi relaxation; (2) optimal aFSAI, in terms of minimum total time, if used as a
single-level preconditioner; (3) default, as given by Table 1; and (4) very high. From
Table 2 we can see that in the first case the smoother is too poor and the number of
iterations is very high. Sets (2) and (3) have a very similar outcome, showing approx-
imately the same complexities and total numbers of iterations. As to solution and
total times, we see that it is better to avoid extreme parameters selection, because
too-high iteration counts negatively impact on the solution time, while an excessively
accurate smoother is too expensive to compute.

Varying the test space and coarsening parameters as in Table 3, it can be observed
that there are no substantial differences between the runs. If more effort is spent in
the generation of the test space and the prolongation, there is a corresponding reduc-
tion in the iteration count; however, the total time remains approximately unchanged.
That is, varying the above parameters has the only effect of moving the relative weight
between set-up and solution stages with a slight impact on the total time.

In Table 4, the ABF prolongation is tested. Despite the fact that both the number
of iterations and the solution time are significantly higher than the previous tests
where DPLS is used as default (see Table 3), it is seen that the only parameter really
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Table 2
aSP-AMG sensitivity to the smoother selection.

Parameters Results

kg \rho g \epsilon g nl Cgd Cop \mu G nit Tsm[s] Tcs[s] Tpr[s] Ts[s] Tt[s]

0 0 0 7 1.48 2.03 0.04 976 2.93 2.10 0.41 35.14 40.64
10 1 10 - 3 6 1.42 2.40 0.31 81 5.46 2.63 0.41 4.77 13.38
5 3 10 - 2 6 1.42 2.46 0.46 75 5.51 2.70 0.43 4.22 12.97
30 1 10 - 4 6 1.42 2.50 0.69 58 14.72 2.74 0.43 3.80 21.82

Table 3
aSP-AMG sensitivity to the test space and coarsening set-up parameters.

Parameters Results

nt \theta nl Cgd Cop nit Tsm[s] Tcs[s] Tpr[s] Ts[s] Tt[s]

10 6 6 1.42 2.42 83 5.00 2.60 0.31 5.21 13.23
20 6 6 1.42 2.46 75 5.51 2.70 0.43 4.22 12.97
30 6 6 1.42 2.45 71 6.06 2.69 0.56 4.66 14.08
20 10 6 1.26 2.15 83 4.77 2.46 0.58 4.34 12.19
20 3 8 1.64 2.55 76 5.86 2.54 0.25 4.84 13.55
20 1 9 1.75 2.09 100 5.65 1.80 0.17 5.92 13.59

Table 4
aSP-AMG sensitivity to ABF prolongation parameters.

Parameters Results

kp \epsilon p LSCorr nl Cgd Cop nit Tsm[s] Tcs[s] Tpr[s] Ts[s] Tt[s]

20 10 - 2 False 7 1.47 3.18 562 6.30 3.72 0.89 38.50 49.49
40 10 - 2 False 7 1.47 3.20 560 6.02 3.86 0.91 33.41 44.28
40 10 - 4 False 7 1.48 9.39 313 11.43 23.49 17.13 42.62 94.80
20 10 - 2 True 7 1.44 2.71 413 5.80 2.96 1.63 23.14 33.58
40 10 - 4 True 7 1.46 8.78 617 13.80 21.29 11.96 74.96 122.10

affecting this approach is the choice of the least square correction. When the pattern
of a poor ABF (e.g., kp = 20 and \epsilon p = 10 - 2) is used, updating the prolongation in
a least square sense reduces both the number of iterations and the solution time. In
contrast, in case of a very accuarate ABF (e.g., kp = 40 and \epsilon p = 10 - 4), the least
square correction increases both the number of iterations and the solution time.

In Table 5, the DPLS prolongation parameters are varied. It is seen that both
dp and \epsilon p are important. A too-large value of dp, e.g., dp = 3, causes a serious
increase in the operator complexity, with a larger preconditioning time, which is not
counterbalanced by a consequent reduction in the number of iterations. If \epsilon p is too
high, e.g., \epsilon p = 10 - 1, the prolongation is inaccurate and the AMG cycle becomes
ineffective.

This sensitivity analysis shows that the DPLS prolongation is by far the most ef-
fective one, and the only parameters that really impact the perfomance are those con-
trolling DPLS. As to the other parameters, especially those controlling the smoother,
it is better to avoid configurations leading to too-high set-up cost. According to this
general guideline, different choices in the user-defined parameters lead to almost the
same performance, which eases the tuning phase to get the optimal configuration of
aSP-AMG.
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Table 5
aSP-AMG sensitivity to DPLS prolongation parameters.

Parameters Results

dp \epsilon p nl Cgd Cop nit Tsm[s] Tcs[s] Tpr[s] Ts[s] Tt[s]

1 10 - 2 6 1.43 1.83 109 4.74 1.73 0.18 5.85 12.58
2 10 - 2 6 1.42 2.46 75 5.51 2.70 0.43 4.22 12.97
3 10 - 2 6 1.42 3.33 75 4.97 4.33 1.08 6.11 16.63
2 10 - 1 6 1.42 1.54 140 4.34 1.42 0.26 5.56 11.63
2 10 - 3 6 1.42 2.64 74 5.59 2.98 0.49 4.86 14.03

Table 6
Comparison between a priori (rigid body modes) and ad hoc generated (Lanczos) test spaces.

Description Results

Test space Cgd Cop nit Tsm[s] Tcs[s] Tpr[s] Ts[s] Tt[s]

Rigid body modes 1.30 1.72 293 1.70 0.97 0.17 95.65 105.07
Lanczos 1.32 1.73 52 2.76 0.89 0.16 20.33 32.08

Finally, the influence of an a priori known test space is evaluated. Since the test
case considered herein is a matrix from an elasticity problem, the rigid body modes
represent the near kernel space. We use the six rigid body modes computed from the
geometry of the grid, and we improve them with two smoothing iterations to enforce
boundary conditions. This a priori test space is compared with that generated by the
Lanczos procedure. For a fair comparison, we use a test space of dimension nt = 6.
Table 6 provides results obtained through a two-level AMG and shows how, for ill-
conditioned problems, test spaces generated ad hoc represent a more effective choice.

6.2. Anisotropic Poisson. In this section, we take a closer look to the per-
formance of the prolongation and smoother strategies introduced by aSP-AMG. For
this, we consider multilevel results for the 2D Poisson problem with rotated diffusion
tensor, a challenging test case for AMG solvers extensively studied by other works
such as [24, 9, 51, 44] just to name a few. This problem is given by the PDE

\nabla \cdot (K \nabla u) =  - 1 for \Pi \in \BbbR 2 | \Pi = [0, 1]2,

u = 0 on \partial \Pi ,
(37)

where K = QTDQ and

(38) D =

\biggl[ 
1 0
0 10 - 3

\biggr] 
, Q =

\biggl[ 
cos \theta  - sin \theta 
sin \theta cos \theta 

\biggr] 
.

A structured mesh composed of 131,072 (256\times 256\times 2) triangles is used to represent
the unitary square domain and discretization is carried out with P1 FEM. Figure
5 shows how the asymptotic convergence factor and cycle complexity of aSP-AMG
vary with different smoother configurations and anisotropy angles in the range of
[0, \pi ], while the configuration parameters controlling the coarsening and prolongation
phases are maintained fixed. Two configurations of aFSAI with \rho G = 1 and \epsilon G = 10 - 3
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Fig. 5. Top: asymptotic convergence factors given by the aFSAI, SGS, and ILU smoothers.
Two configurations of aFSAI with \rho G = 1 and \epsilon G = 10 - 3 are tested with kmax = 5 and kmax = 10,
respectively. Bottom: cycle complexity of aSP-AMG configured with the previous smoothers.

are used, the first considering kmax = 5 the second, kmax = 10. We see that both
aFSAI smoothers deliver better convergence than symmetric Gauss--Seidel (SGS) and
incomplete LU with no fill-in (ILU(0)) in the grid aligned case, i.e., angles 0, \pi /4, \pi /2,
and \pi . In the nonaligned case, the less accurate aFSAI performs similarly to SGS
and ILU(0), while the more accurate aFSAI (with kmax = 10) gives a slightly better
convergence. In terms of cycle complexity, we note that SGS and ILU(0) are perfectly
equivalent, but the latter method has a more expensive set-up. Also, we see that
the less accurate aFSAI configuration shows a similar complexity to SGS and ILU(0),
meaning that the application of the respective AMG cycles has similar cost; mean-
while, the more accurate aFSAI have a larger cost, jeopardizing its fast convergence.
Last, we note that the benefits of using the aFSAI smoother are more pronounced in
cases where the average number of nonzeros per row of A is larger than 20, such as
for 3D domains, high order discretizations, and systems of PDEs, since a sufficiently
accurate aFSAI can be computed with a density \mu G smaller than Cop leading to a
Ccv smaller than the one obtained with SGS or ILU(0).
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Fig. 6. Top: asymptotic convergence factors of the aSP-AMG method for different prolongation
strategies as well as for RN-AMG built with the energy minimization prolongation. Bottom: operator
complexities referred to the same test cases.

In Figure 6, we show a comparison of the asymptotic convergence factors and
operator complexities given by the three prolongation strategies proposed by aSP-
AMG as well as the energy minimization method introduced by [48] and present in the
root-node algebraic multigrid method (RN-AMG) [44], as implemented in the package
[47]. Aiming at a fair comparison, we use a weighted Jacobi relaxation method for
both AMG implementations. The DPLS and ABF approaches show a slightly better
convergence factor in comparison to RN-AMG and a much better one to that given
by ABF-LS. As for the smoother study presented in Figure 5, a better improvement
of aSP-AMG with respect to RN-AMG can be seen in the grid aligned scenario.
Regarding complexity, DPLS leads to much smaller values than ABF and ABF-LS,
while having similar values to RN-AMG.

6.3. Weak scalability. In this section, we evaluate the weak scalability of aSP-
AMG, that is, how the iteration count needed for convergence changes by varying
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the size of a problem arising from the discretization of PDEs. Due to its superior
effectiveness, only DPLS prolongation is considered in this analysis that comprises
two test problems, a diffusion and a linear elasticity test case. The software Gmsh [27]
is used to build the geometry and the meshes considered herein, while the numerical
discretization relies on the MFEM package [1]. For comparison purposes, we also
provide the results obtained with the BoomerAMG preconditioner configured with its
default parameters as available in the Hypre package [30], version 2.14, which is one of
the most commonly used classical AMG implementations available in the literature.

Starting with the diffusion test case, we consider an isotropic Poisson model with
unitary diffusivity coefficients and homogeneous boundary conditions, as described by
the PDE problem:

\Delta u = 1, for \Pi \in \BbbR 3 | \Pi = [0, 1]3,

u = 0 on \partial \Pi .
(39)

The system is discretized by linear hexahedral finite elements with size h. In Table 7,
we report the main characteristics of the sparse matrices generated from the Q1 FEM
discretization of (39) with different mesh refinements as well as the performance of
the two-level aSP-AMG(2), multilevel aSP-AMG(N),1 and multilevel BoomerAMG
preconditioners in terms of number of iterations to converge nit, grid complexity Cgd

and operator complexity Cop.
As expected, we note only a slight increase in the number of iterations for both

aSP-AMG(2) and aSP-AMG(N) preconditioners when refining the mesh. We highlight
the fact that aSP-AMG presents the same order of magnitude for nit when going from
the two-level version to the multilevel one. This is a relevant observation showing
that the inexact smoothing steps executed across the multigrid hierarchy degrade
only marginally its convergence performance. Last, we remark that aSP-AMG(N)
presents a very similar convergence behavior as BoomerAMG without having to raise
the operator complexity substantially.

The second problem concerns a unitary cube formed by a homogeneous material
under the hypothesis of small deformation. Linear elastic material property is as-
sumed, and the resulting PDE for calculating the deformation of this structure reads

Table 7
Weak scalability on the Poisson problem.

Matrix info aSP-AMG(2) aSP-AMG(N) BoomerAMG

h - 1 nrows nnz Cgd Cop nit Cgd Cop nit Cgd Cop nit

8 729 15,623 1.07 1.07 4 1.07 1.07 4 1.32 1.51 6
16 4,913 117,645 1.33 1.35 5 1.51 1.55 5 1.60 1.72 6
32 35,937 912,669 1.40 1.47 6 1.71 2.03 7 1.79 1.98 6
64 274,625 7,189,053 1.50 1.53 7 1.99 2.29 10 1.92 2.21 7
128 2,146,689 57,066,621 1.52 1.57 8 2.00 2.43 12 1.98 2.38 10

1 The number of levels N varies for each problem according to the maximum coarsest level size used,
which is set to 100.
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Table 8
Weak scalability on the linear elasticity problem.

Matrix info aSP-AMG(2) aSP-AMG(N) BoomerAMG

h - 1 nrows nnz Cgd Cop nit Cgd Cop nit Cgd Cop nit

8 2,187 140,625 1.36 1.48 10 1.51 1.73 12 1.67 1.87 14
16 14,739 1,058,841 1.38 1.59 11 1.54 2.00 13 1.65 1.97 17
32 107,811 8,214,057 1.41 1.68 11 1.56 2.26 13 1.68 2.15 19
64 823,875 64,701,513 1.41 1.73 12 1.56 2.40 14 1.69 2.28 24
128 6,440,067 513,599,625 1.40 1.76 14 1.54 2.42 21 1.70 2.35 31

\nabla \cdot 

\Biggl[ 
\lambda tr

\Biggl( \bigl( 
\nabla u+\nabla uT

\bigr) 
2

\Biggr) 
I + \mu 

\bigl( 
\nabla u+\nabla uT

\bigr) \Biggr] 
= 0 for \Pi = [0, 1]3,

u = 0 on \partial \Pi D = [0, 1]2 \times \{ 0\} ,
\bfitsigma \cdot n = 10 on \partial \Pi N = [0, 1]2 \times \{ 1\} ,
\bfitsigma \cdot n = 0 on \partial \Pi \setminus \{ \partial \Pi D \cup \partial \Pi N\} 

(40)

with \lambda and \mu the Lam constants corresponding to Young modulus and Poisson ratio
equal to 103 GPa and 0.3, respectively.

Again, the problem is discretized by using linear hexahedral finite elements and
the results are reported in Table 8. First of all, we observe that aSP-AMG shows
a slightly smaller increase of nit with mesh in comparison to the diffusion model
problem suggesting that this preconditioner is even more suitable for solving elasticity
problems. Finally, we mention that aSP-AMG(N) performance is very close to aSP-
AMG(2) and both lead to better convergence behaviors than BoomerAMG while still
having similar grid and operator complexities.

6.4. Real-world engineering problems. In this section we evaluate how the
aSP-AMG preconditioner behaves in the solution of sparse linear systems arising
from the application of different discretization techniques to real-world engineering
problems such as the the fluid flow in petroleum reservoirs, pressure-temperature field
evolution in porous media, geomechanical simulations, and mechanical equilibrium
of linear elastic materials. The matrices used for these tests have been chosen to
be representative of ill-conditioned problems characterized by complex geometries
and strong heterogeneities in both material properties and element size. The set of
matrices comprises the following:

\bullet pflow742, arising from a 3D simulation of the pressure-temperature field in
a multilayered porous media discretized by Q2 hexahedral FE;

\bullet finger, a 2D discretization of multiphase flow simulating viscous fingering
in porous media;

\bullet spe10, a finite volume discretization of the single-phase flow simulation in
a 3D heterogeneous reservoir with properties defined by the SPE10 dataset
[20];

\bullet bump2911, a 3D geomechanical model of a gas-reservoir discretized by linear
tetrahedral FE with mechanical properties of the medium varying in depth;

\bullet flan1565, a 3D mechanical equilibrium problem of a steel flange discetized
with linear hexahedral finite elements; the computational grid is a structured
mesh with regularly shaped elements;
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\bullet abq powtrain, a 3D powertrain model, provided by Dassault Syst\`emes Simu-
lia, mainly discretized by Q1 hexahedral elements, with nonlinear gaskets,
penalty frictional contact, and pretensions.

Table 9 lists the dimension, total number of nonzeros, and average number of
nonzeros per row together with a brief description of the above matrices. For the
sake of completeness, we also solve this set of problems with the BoomerAMG pre-
conditioner as well as with aFSAI as standalone preconditioner, in order to under-
stand how the multilevel hierarchy of aSP-AMG is able to complement its single-level
smoother.

Table 10 shows grid and operator complexities, aFSAI density, number of iter-
ations, and computational times for the preconditioners considered here. We note
that these results were obtained with the best possible configuration for each of the
preconditioners tested in terms of total solution time. In particular, for BoomerAMG,
a vast package collecting several options for any AMG components, we carried out
an optimization process involving all the available prolongation and coarsening algo-
rithms over an extensive range of values for their input parameters. We stress that,

Table 9
Test matrices representing the real-world engineering problems.

Matrix name nrows nnz Average nnzr. Short description

pflow742 742,793 37,138,461 49 3D fluid flow, Q2 FEM
finger 4,718,592 23,591,424 5 2D fluid flow, P1 FEM
spe10 1,122,005 7,780,175 6 3D fluid flow, FVM
bump2911 2,911,419 127,729,899 43 3D elasticity, P1 FEM
flan1565 1,564,794 114,165,372 72 3D elasticity, Q1 FEM
abq powtrain 1,609,950 68,660,476 42 3D elasticity, Q1 FEM

Table 10
Performance comparison among the aFSAI, BoomerAMG, and aSP-AMG preconditioners in

the solution of real-world engineering problems.

Matrix name Method Cgd Cop \mu G nit Tp[s] Ts[s] Tt[s]

pflow742 aFSAI --- --- 0.28 1465 1.4 24.9 26.3
BoomerAMG 1.31 1.14 --- 577 0.3 38.4 38.7
aSP-AMG 1.54 1.87 0.58 85 9.5 5.7 15.2

finger aFSAI --- --- 2.20 3711 5.2 199.0 204.2
BoomerAMG 1.67 2.21 --- 10 1.0 2.2 3.2
aSP-AMG 1.71 2.22 2.05 43 18.2 8.3 26.5

spe10 aFSAI --- --- 1.55 1767 1.0 22.7 23.7
BoomerAMG 1.55 2.23 --- 36 0.4 2.2 2.6
aSP-AMG 1.90 2.68 1.10 64 5.3 3.5 8.8

bump2911 aFSAI --- --- 0.46 507 13.6 45.3 58.9
BoomerAMG 1.58 1.62 --- 250 4.5 89.3 93.8
aSP-AMG 2.17 2.94 0.53 42 59.9 23.8 83.7

flan1565 aFSAI --- --- 0.22 4230 9.9 179.2 189.1
BoomerAMG 1.27 1.38 --- 244 2.0 73.1 75.1
aSP-AMG 1.38 1.74 0.21 136 31.9 30.6 62.5

abq powtrain aFSAI --- --- 0.72 2792 11.6 123.1 134.6
BoomerAMG 1.47 1.45 --- 526 3.7 241.4 245.1
aSP-AMG 1.49 2.06 0.56 123 27.7 24.7 52.4
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for elasticity problems, the parameter bs defining the block size used for interpola-
tion turned out to be of paramount importance to achieve fast convergence. Detailed
information about the input parameters used in the set-up of the preconditioners is
provided in Appendix A.

The main aspect to be noted here is that aSP-AMG leads to an efficient solution
method in all test cases. More precisely, comparing the aSP-AMG to aFSAI, we see
that the first one shows a reduction of up to 10 times in the number of iterations
nit. Also, the total computational time Tt is smaller in all experiments except for
bump2911 which already present a fairly good convergence behavior when solved with
aFSAI. However, even in these cases, we observe that the solution time Ts for aSP-
AMG is smaller by up to three times and if this preconditioner could be recycled such
as in some transient simulation, its set-up time would be amortized after two or three
linear solves only.

Another interesting fact observed for our AMG is that its aFSAI density \mu G is
always smaller than the operator complexity Cop, which in turn gives the cost for
Gauss--seidel smoothing. It follows that the aFSAI smoother yields a faster strategy,
besides showing a higher degree of parallelism, and thus is amenable to implementation
in massively parallel computers.

Comparing the results obtained with BoomerAMG and aSP-AMG, we note that
the first one provides a faster method in terms of set-up for all test cases, which
can be explained by the fact that in aSP-AMG we have two additional set-up phases
contributing to Tp, i.e., the construction of the smoother and the test space. However,
aSP-AMG is still competitive against BoomerAMG, as we can see in the pflow742,
bump2911, flan1565, and abq powtrain test cases (see Figure 7 for a comprehensive
comparison). Indeed, the high set-up time of aSP-AMG is compensated by the faster
convergence of the method providing a smaller total computation time Tt. Ultimately,
we observe that aSP-AMG tends to behave better in elasticity problems in comparison
to the diffusion problems. This fact was observed in the last section and suggests that
this method proves to be more efficient when employed in the solution of matrices
with larger near-null space dimension.

Fig. 7. Total time comparison relative to the aFSAI preconditioner. The lower segment of each
column represents the relative set-up time, while the upper segment denotes the solution counterpart.
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7. Conclusions. In this work we propose a novel AMG package featuring ap-
proximate inverse smoothing and three new strategies for computing the prolongation
operator. This method, called aSP-AMG, belongs to the recent adaptive and boot-
strap AMG family, which may not assume any information about the constitution of
the near-null space of A, rendering it more general and robust than the classical and
aggregation-based AMG methods.

A set of artificial and real-world problems are solved in order to assess the per-
formance of aSP-AMG. Initially, a sensitivity analysis is carried out to uncover the
most important configuration parameters for aSP-AMG as well as their suitable range
of usability. From this analysis, we show that the DPLS prolongation technique is
the most efficient one, followed by LS-ABF, and finally ABF. After this, it is verified
that the aSP-AMG preconditioner configured with the DPLS prolongation is weakly
scalable in the solution of two model problems discretized with linear finite elements
and having up to 6 million unknowns. Last, the performance of the aSP-AMG is com-
pared to the aFSAI and BoomerAMG preconditioners in the solution of real-world
problems showing that aSP-AMG leads to the faster solution method in most of the
cases in terms of both iteration time as well as total execution time.

The next steps of the present research will concern the implementation of other
application techniques such as the powerful F-cycle and K-cycle. Further, we want to
develop new techniques for predicting the smooth vector space, aiming to reduce the
set-up time as well as improving the quality of the test vectors, which play a funda-
mental role in defining coarse nodes and set-up interpolation. Another enhancement
could be the introduction of adaptivity also in the coarsening process. Last, a major
goal will be the efficient implementation of this package on modern massively parallel
computers for the solution of very large size problems.

Appendix A. Set-up parameters for the preconditioners. In Table 11
we show the input parameters used for configuring the BoomerAMG preconditioner
applied in the solution of the real-world problems. We kept fixed most of the config-
urable parameters for this preconditioner and varied only the ones that could most
impact the performance of the preconditioner, i.e., the interpolation and coarsening
methods, the block size of the matrix bs, the number of levels with aggressive coars-
ening nagg, the strong threshold \theta , and the maximum number of nonzeros per row
of the prolongation operator Pmax. Note that bs is the only input parameter which
depends on the problem being handled. The best configuration was selected as the
one which produced the fastest preconditioner in terms of total computational time
(Tt). For completeness, a list of other input parameters which were kept fixed are
given below:

\bullet relaxation method: symmetric-SOR/Jacobi with C/F ordering and \omega = 1.0;
\bullet coarse system solver: Gaussian elimination;

Table 11
Input parameters for configuring the BoomerAMG preconditioner.

Matrix name Interpolation Coarsening bs nagg \theta Pmax

pflow742 classical CLJP 1 1 0.99 ---
finger classical Falgout 1 0 0.25 ---
spe10 classical HMIS 1 1 0.70 10
bump2911 ext+i Falgout 3 1 0.99 5
flan1565 ext+i HMIS 3 1 0.70 5
abq powtrain classical Falgout 3 1 0.99 ---
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Table 12
Input parameters for aFSAI and aSP-AMG, respectively.

Matrix name
aFSAI aSP-AMG

kg \rho g \epsilon g kg \rho g \epsilon g nt \theta dp \epsilon p

pflow742 5 3 10 - 3 5 4 10 - 3 10 6 2 10 - 2

finger 5 2 0 5 1 10 - 3 5 5 1 10 - 3

spe10 10 2 10 - 3 3 1 0 8 4 1 10 - 2

bump2911 10 2 10 - 3 10 1 10 - 3 10 2 2 10 - 3

flan1565 15 1 0 5 2 0 15 8 2 10 - 2

abq powtrain 10 2 0 5 3 10 - 3 15 6 2 10 - 3

\bullet measure type: local;
\bullet interpolation truncation factor: 0.0;
\bullet interpolation maximum row sum: 0.9;
\bullet cycle type: V(1,1).

The input parameters for the aFSAI and aSP-AMG preconditioners are given in
Table 12. Finally, after an extensive optimization process for aSP-AMG, we remark
that the best parameters offer a very similar performance as given by the default
set-up configuration listed in Table 1.
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