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ABSTRACT

Curd samples (n = 83) from 3 European dairy com-
panies were analyzed for micellar and soluble mineral 
fractions content using inductively coupled plasma op-
tical emission spectrometry as a gold standard method. 
The same curd samples were analyzed through 3 differ-
ent near-infrared (NIR) instruments, and NIR spectra 
were merged with reference data. Prediction equations 
were developed using modified partial least squares 
analysis, and the accuracy of prediction was evaluated 
through leave-one-out cross validation. Overall, NIR 
spectroscopy was capable of predicting micellar and 
soluble mineral fractions in curd, but with differences 
among instruments. Fitting statistics showed that 
the visible NIR instrument in reflectance mode out-
performed the NIR instrument in transmittance mode 
as well as the portable NIR instrument in reflectance 
mode. Prediction accuracies for most of the analyzed 
mineral fractions can be used for curd quality control in 
dairy companies and to aid in decision-making during 
the cheesemaking process.
Key words: element, micellar fraction, soluble fraction, 
dairy

INTRODUCTION

Curd is a product of enzymatic coagulation or acidic 
precipitation of milk constituents. Cheese curd repre-
sents an important intermediate product in cheese man-
ufacturing, allowing easier conservation and transport 
compared with raw milk. Mineral equilibrium in milk 
plays an important role in curd manufactured through 
enzymatic coagulation because Ca and P are directly 
involved in curd formation through the stabilization of 
casein micelles (Holt, 2016). Together with milk Mg, 
milk Ca is also involved in paracasein reticulum forma-
tion, acting as a bridge between casein micelles (Lucey 

and Fox, 1993; Malacarne et al., 2014). On the other 
hand, mineral equilibrium in curd can have an effect 
on the determination of curd quality, the assessment 
of technological traits used for curd formation, and the 
understanding of the behavior of the curd (and miner-
als) in the following processing steps.

Although total mineral quantification in dairy 
products is a common procedure involving an acidic 
digestion step followed by direct quantification through 
different induced couple plasma protocols, the distinc-
tion between micellar and soluble mineral fractions 
is not negligible (Lante et al., 2006; Reykdal et al., 
2011). Recently, Franzoi et al. (2018) proposed a new 
method for the quantification of the 2 mineral fractions 
in milk based on a double step dilution of enzymatically 
coagulated samples. The method allows for the direct 
quantification of micellar and soluble fractions without 
the need of correction factors that could introduce a 
bias in estimated mineral amounts. Nevertheless, the 
method is still demanding in terms of trained person-
nel, costs, and time.

Near-infrared (NIR) spectroscopy has been recog-
nized as a methodology to overcome such problems 
because it is fast and cost-effective for the character-
ization of routine samples; it is already used in many 
dairy companies for the routine characterization of 
samples and as an internal check of final products (De 
Marchi et al., 2014). To our knowledge, there is limited 
information about curd mineral quantification using 
NIR spectroscopy, in particular as it regards mineral 
fractions. The aims of the present study were to (1) 
quantify soluble and micellar mineral fractions of com-
mercial curds, (2) assess the relationships between min-
eral fraction content and chemical composition, and (3) 
investigate the ability of NIR spectroscopy to predict 
the content of soluble and micellar fractions.

MATERIALS AND METHODS

Sample Collection

Eighty-three commercial curd samples intended for 
mozzarella cheese production were collected between 
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January and May of 2019 from 3 European dairy com-
panies. Thirty-five samples were imported frozen from 
European countries, and 48 samples were produced in 
Italy (16 using imported milk from European countries 
and 32 using Italian milk). The latter samples were 
immediately frozen and stored at −20°C until chemical 
analysis. Analyses were conducted in the laboratory of 
the Department of Agronomy, Food, Natural resources, 
Animals and Environment (DAFNAE, Legnaro, PD, 
Italy) of the University of Padova (Padova, Italy).

Samples were thawed at 4°C for 48 h, homogenized 
with a knife mill (Grindmix GM200; Retsch GmbH, 
Haan, Germany), and analyzed for total protein, soluble 
protein, humidity, fat, and ash content using FoodScan 
Lab calibrated with Foss Artificial Neutral Networks 
Dairy Calibration (Foss, Electric A/S, Hillerød, Den-
mark). Successively, curd samples were divided in 2 
aliquots: the first aliquot intended for mineral content 
analysis and the second aliquot intended for NIR spec-
tra collection.

Mineral Analysis

Ultrapure water was produced with Arium 611 UV 
(Sartorius, Monza Brianza, Italy), and all chemicals, if 
the supplier is not mentioned, were purchased from Sig-
ma-Aldrich (St. Louis, MO) at the highest available pu-
rity. Total, micellar, and soluble minerals were analyzed 
following the method proposed by Franzoi et al. (2018) 
with necessary modifications. After homogenization, 10 
g of curd was immediately frozen for quantification of 
total minerals, and 20 g was introduced in a tube with 
10 mL of ultrapure water. The tube was incubated for 
2 h at 37°C in a water bath. Samples were centrifuged 
at 5,000 × g for 20 min at 25°C, and 5 mL of the 
supernatant was collected and filtered with a 0.45-μm 
membrane (d1). Then, 5 mL of ultrapure water was 
added to the tube, vortexed for 20 s, and left for 1 h at 
37°C in a water bath to equilibrate the soluble phase. 
Samples were centrifuged as described previously, and 
5 mL of supernatant was collected and filtered with 
a 0.45-μm membrane (d2). To determine how and to 
what extent the use of ultrapure water could affect the 
pH, we determined the pH of the soluble phases before 
and after dilution. Differences in pH for tested samples 
were always between 0.0 and +0.2 (data not shown). 
All obtained fractions were stored frozen until the 
quantification procedure, which was performed using 
inductively coupled plasma optical emission spectrom-
etry (ICP-OES) as described by Visentin et al. (2016) 
and Franzoi et al. (2018). Briefly, samples were digested 
by nitric acid in a microwave Milestone Start D ap-
paratus (Milestone Srl, Sorisole, Italy) and analyzed 

through ICP-OES Spectro Arcos (Spectro Analytical 
Instruments GmbH, Kleve, Germany) using wave-
lengths 317.933 nm for Ca, 285.213 nm for Mg, 766.941 
nm for K, 177.495 nm for P, and 589.592 nm for Na. 
Calibrations of instrument were performed using single 
element solutions (Inorganic Ventures, Christiansburg, 
VA) in the range from 0 to 25 mg/L. The final amount 
of soluble minerals (Mw, g) was calculated as follows:

 Mw = (D × Cd1
2)/(Cd1 − Cd2), 

where D is the volume of supernatant collected for d1 (5 
mL), Cd1 is the concentration of mineral in the fraction 
d1 determined by ICP-OES, and Cd2 is the concentra-
tion of mineral in the fraction d2 determined by ICP-
OES. Soluble mineral concentration in curd was deter-
mined as the ratio of Mw to the weight of curd (wt/
wt). Micellar concentration was calculated as difference 
between total and soluble mineral concentration.

Preliminary analysis showed that results for all traits 
were normally distributed. Outliers were defined as 
values deviating more than 3 standard deviations from 
the mean, and no outliers were detected according to 
this procedure. Pearson correlations (r) between min-
eral fractions content and chemical composition were 
assessed using the CORR procedure of SAS software 
ver. 9.4 (SAS Institute Inc., Cary, NC).

Near-Infrared Spectroscopy Calibration Models

Near-infrared spectra were obtained using 2 labora-
tory instruments and 1 portable device in the range of 
visible and NIR spectra as follows: (1) NIR region—
FoodScan Lab, which operates in transmittance, col-
lecting spectral variables every 2 nm for wavelengths 
between 850 nm and 1,050 nm (Lab-NIR); (2) visible 
and near-infrared region—NIRS DS2500 (Foss, Electric 
A/S), which operates in reflectance, recording spec-
tral response every 0.5 nm between 400 nm and 2,500 
nm (Lab-VIS-NIR); (3) NIR region—Scio Portable 
Device (VeriFood LTD, Herzliya, Israel), which oper-
ates in reflectance, recording spectral response on each 
wavelength between 740 and 1,070 nm (portable NIR); 
for the latter instrument, 5 scans were averaged to ob-
tain the final spectrum.

Spectra were merged with reference values, and 
calibrations were developed using WinISI software (In-
frasoft International, Port Matilda, PA) and modified 
partial least squares regression analysis combined with 
scatter correction (NONE = no correction; DET = de-
trending; SNV = standard normal variate; SNV+D = 
standard normal variate + detrending; MSC = multi-
plicative scatter correction). Moreover, different math-
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ematical treatments were applied (0,0,1,1; 1,10,10,1; 
1,4,4,1; 1,8,8,1; 2,5,5,1; and 2,10,10,1; where the first 
digit is the derivative, the second is the range of wave-
length in which the derivative is calculated, the third is 
the number of wavelength used for the first smoothing, 
and the fourth is the number of wavelengths used for 
the second smoothing; Manuelian et al., 2017a). Near-
infrared spectra were excluded from prediction models 
when predicted data deviated more than 3 standard 
deviations from the mean of reference data. For each 
calibration model, the standard error in leave-one-out 
cross validation was calculated, and the mathematical 
treatment providing the best performance was selected. 
Fitting statistics were the standard error of calibra-
tion, the coefficient of determination in calibration, 
the coefficient of determination in leave-one-out cross 
validation, and the ratio of performance to deviation in 
leave-one-out cross validation (RPD).

RESULTS

Curd Composition

Total protein, soluble protein, humidity, fat, and ash 
of curd samples averaged 22.82, 2.08, 48.15, 27.16, and 
3.44%, respectively, and soluble protein and ash had the 
greatest coefficient of variation (Table 1). With regard 
to the curd mineral composition, the micellar fractions 
of Ca, Mg, and P were more abundant compared with 
their soluble fractions. Potassium was more present in 
the soluble phase, and Na was found only in the soluble 
phase. All minerals and their fractions had a coefficient 

of variation ≥0.15; in particular, total Na, soluble P, 
micellar K, and micellar Mg had coefficients of varia-
tion of 1.37, 0.48, 0.45, and 0.36, respectively (Table 1).

Prediction Models

Fitting statistics of calibration models for mineral 
fractions in curd are summarized in Table 2 for Lab-
NIR, Table 3 for Lab-VIS-NIR, and Table 4 for por-
table NIR. Prediction models developed using spectra 
collected with Lab-NIR had RPD values between 1.25 
(soluble Mg) and 3.36 (total Na). Total K and its frac-
tions had RPD lower than 2.00. The RPD values of 
total Ca and Mg were greater than their micellar and 
soluble fraction counterparts. Only micellar P could 
be predicted slightly better than total P (RPD of 2.88 
and 2.70, respectively; Table 2). The Lab-VIS-NIR per-
formed well for different minerals. Soluble P had RPD 
of 3.16, and micellar Ca and P showed RPD of 4.12 and 
3.53, respectively (Table 3). Considering total mineral 
content, Na and Ca had the best RPD (4.28 and 3.42, 
respectively). Total K, its fractions, and soluble Mg 
were poorly predicted with RPD lower than 2.00. In 
general, for portable NIR, RPD values were lower than 
those obtained from the other 2 instruments (Table 4).

Pearson Correlations

Total protein was positively associated with micellar 
fractions, having correlation from 0.43 with micellar K 
to 0.82 with micellar Ca (P < 0.001), and negatively as-
sociated with soluble Ca and P (r = −0.71; P < 0.001) 

Saugo et al.: CURD MINERAL COMPOSITION AND INFRARED PREDICTION

Table 1. Mean, SD, CV, minimum, and maximum of predicted chemical composition and minerals content 
(n = 83)

Trait Mean SD CV Minimum Maximum

Chemical composition (%)      
 Total protein 22.82 1.98 0.09 18.34 26.21
 Soluble protein 2.08 0.50 0.24 1.39 3.29
 Humidity 48.15 3.56 0.07 41.95 56.23
 Fat 27.16 1.92 0.07 22.68 32.08
 Ash 3.44 0.90 0.26 1.96 5.01
Mineral fraction (mg/g)     
 Ca total 6.95 1.43 0.21 3.83 11.15
 Ca soluble 1.38 0.38 0.27 0.73 2.00
 Ca micellar 5.57 1.72 0.31 2.43 10.42
 K total 0.88 0.13 0.15 0.46 1.17
 K soluble 0.61 0.10 0.16 0.36 0.87
 K micellar 0.27 0.12 0.45 <0.01 0.63
 Mg total 0.28 0.05 0.20 0.16 0.42
 Mg soluble 0.12 0.02 0.15 0.08 0.17
 Mg micellar 0.16 0.06 0.36 0.05 0.32
 Na total 0.89 1.22 1.37 0.10 5.31
 P total 4.76 0.82 0.17 2.96 7.25
 P soluble 0.56 0.26 0.48 0.19 0.73
 P micellar 4.20 1.03 0.24 2.41 7.06
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and soluble K (r = −0.35; P < 0.01) (Table 5). Overall, 
soluble protein was less associated with minerals com-
pared with total protein; in particular, soluble protein 
was moderately correlated with soluble P (r = −0.49: P 
< 0.001) and total Na (r = 0.33; P < 0.01), and weakly 
associated with other mineral fractions. Correlations of 

curd humidity with micellar fractions were moderately 
negative (from −0.67 to −0.40; P < 0.01), whereas cor-
relations with soluble Ca (P < 0.001), K (P < 0.05), 
and P (P < 0.001) were positive (0.24 to 0.52; Table 5). 
Moderate to strong associations (r = 0.42 to 0.86, in 
absolute value; P < 0.01) were estimated between ash 
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Table 2. Calibration and cross validation statistics of prediction models for minerals content for near-infrared 
instrument (FoodScan Lab; Foss, Electric A/S, Hillerød, Denmark)1

Mineral 
fraction 
(mg/g)  Model2 No. SEC R2 SEcv R2cv RPD

Ca total SND1441 76 0.34 0.92 0.37 0.91 3.29
Ca soluble SNV2551 80 0.16 0.83 0.19 0.75 2.02
Ca micellar SND0011 78 0.37 0.95 0.50 0.90 3.16
K total SND0011 75 0.07 0.65 0.10 0.39 1.29
K soluble MSC2551 75 0.05 0.70 0.06 0.54 1.48
K micellar SND0011 73 0.06 0.66 0.07 0.60 1.59
Mg total MSC110101 76 0.01 0.91 0.02 0.90 3.22
Mg soluble SNV2551 80 0.01 0.60 0.01 0.36 1.25
Mg micellar MSC2551 77 0.01 0.91 0.02 0.87 2.78
Na total SNV2551 79 0.25 0.95 0.33 0.91 3.36
P total MSC210101 76 0.22 0.89 0.25 0.86 2.70
P soluble SND2551 78 0.09 0.88 0.11 0.82 2.39
P micellar SND210101 76 0.27 0.91 0.30 0.88 2.88
1SEC = standard error of calibration; R2 = coefficient of determination in calibration; SEcv = standard error 
in cross validation; R2cv = coefficient of determination in cross validation; RPD = ratio of prediction to devia-
tion in cross validation.
2Scatter correction and statistical treatment used for spectra calibration; MSC (multiplicative scatter correc-
tion); SNV (standard normal variate); SND (standard normal variate + detrending). The first digit is the 
derivative, the second is the range of wave-length in which the derivative is calculated, the third is the number 
of wavelength used for the first smoothing, and the fourth is the number of wavelengths used for the second 
smoothing.

Table 3. Calibration and cross validation statistics of prediction models for minerals content for visible and 
near-infrared instrument (NIRS DS2500; Foss, Electric A/S, Hillerød, Denmark )1

Mineral 
fraction 
(mg/g)  Model2 No. SEC R2 SEcv R2cv RPD

Ca total MSC1441 78 0.32 0.93 0.35 0.91 3.42
Ca soluble SNV1441 78 0.09 0.94 0.16 0.81 2.32
Ca micellar SND1441 77 0.32 0.95 0.36 0.94 4.12
K total SNV110101 77 0.05 0.84 0.10 0.48 1.39
K soluble SND2551 75 0.03 0.92 0.06 0.59 1.58
K micellar NONE1441 73 0.05 0.70 0.07 0.41 1.31
Mg total NONE1441 78 0.01 0.92 0.02 0.89 3.04
Mg soluble SND1441 80 0.01 0.76 0.01 0.46 1.37
Mg micellar NONE1441 77 0.01 0.91 0.02 0.88 2.94
Na total MSC110101 79 0.16 0.98 0.26 0.94 4.28
P total DET0011 77 0.21 0.90 0.23 0.87 2.81
P soluble SND210101 78 0.03 0.99 0.08 0.90 3.16
P micellar SNV210101 75 0.21 0.94 0.24 0.92 3.53
1SEC = standard error of calibration; R2 = coefficient of determination in calibration; SEcv = standard error 
in cross validation; R2cv = coefficient of determination in cross validation; RPD = ratio of prediction to devia-
tion in cross validation.
2Scatter correction and statistical treatment used for spectra calibration; NONE (no scatter correction); DET 
(detrending); MSC (multiplicative scatter correction); SNV (standard normal variate); SND (standard normal 
variate + detrending). The first digit is the derivative, the second is the range of wave-length in which the 
derivative is calculated, the third is the number of wavelength used for the first smoothing, and the fourth is 
the number of wavelengths used for the second smoothing.
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and micellar and soluble mineral fractions (except for 
soluble Mg; P > 0.05). Finally, the correlations between 
fat and mineral content, total K and curd composition, 
and soluble Mg and curd composition were weak and 
not statistically significant (P > 0.05; Table 5).

Within each mineral, the soluble phase was negative-
ly correlated with total and micellar fraction (Table 6), 
except for the association between soluble and total K 
(r = 0.48; P < 0.001), whereas the correlation between 
total and micellar fraction was positive, ranging from 
0.72 for K to 0.99 for Ca (P < 0.001). Total and micel-
lar Ca were positively correlated with total K, Mg, Na, 

and P, exhibiting correlations from 0.24 (P < 0.05) to 
0.98 (P < 0.001), and with micellar K, Mg, and P (r = 
0.57 to 0.99; P < 0.001), whereas associations of total 
and micellar Ca with soluble K and P were negative 
(r = −0.82 to −0.29; P < 0.01; Table 6). Correlations 
between soluble Ca and other mineral fractions were of 
opposite sign compared with those of total and micellar 
Ca with other fractions. Similarly, total and micellar K 
correlated positively with total and micellar Mg and P 
(r = 0.25 to 0.74; P < 0.05), and soluble K correlated 
negatively with total and micellar Mg and P (r = −0.48 
to −0.27; P < 0.05). Moreover, soluble K correlated 
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Table 4. Calibration and cross validation statistics of prediction models for minerals content for near-infrared 
portable instrument (Scio Portable Device; VeriFood Ltd., Herzliya, Israel)1

Mineral 
fraction 
(mg/g)  Model2 No. SEC R2 SEcv R2cv RPD

Ca total DET1881 76 0.38 0.90 0.51 0.82 2.37
Ca soluble NONE1441 82 0.17 0.80 0.22 0.67 1.74
Ca micellar DET1881 76 0.39 0.93 0.55 0.86 2.73
K total DET2551 74 0.09 0.36 0.11 0.13 1.08
K soluble MSC210101 72 0.05 0.71 0.06 0.46 1.37
K micellar NONE0011 74 0.08 0.55 0.09 0.47 1.39
Mg total DET110101 78 0.02 0.88 0.02 0.80 2.25
Mg soluble MSC1441 80 0.01 0.69 0.01 0.46 1.38
Mg micellar DET0011 79 0.02 0.89 0.02 0.81 2.31
Na total SND1881 76 0.39 0.88 0.49 0.80 2.26
P total SNV2551 75 0.27 0.81 0.30 0.76 2.04
P soluble NONE1441 80 0.08 0.91 0.11 0.82 2.40
P micellar DET110101 76 0.37 0.83 0.41 0.79 2.19
1SEC = standard error of calibration; R2 = coefficient of determination in calibration; SEcv = standard error 
in cross validation; R2cv = coefficient of determination in cross validation; RPD = ratio of prediction to devia-
tion in cross validation.
2Scatter correction and statistical treatment used for spectra calibration; NONE (no scatter correction); DET 
(detrending); MSC (multiplicative scatter correction); SNV (standard normal variate); SND (standard normal 
variate + detrending). The first digit is the derivative, the second is the range of wave-length in which the 
derivative is calculated, the third is the number of wavelength used for the first smoothing, and the fourth is 
the number of wavelengths used for the second smoothing.

Table 5. Pearson correlations between curd chemical composition and major mineral fractions

Mineral 
fraction 
(mg/g)

Total 
protein 

(%)

Soluble 
protein 

(%)
Humidity 

(%)
Fat 
(%)

Ash 
(%)

Ca total 0.79*** 0.22* −0.65*** 0.02 0.85***
Ca soluble −0.71*** −0.22* 0.45*** 0.11 −0.71***
Ca micellar 0.82*** 0.24* −0.64*** −0.01 0.86***
K total 0.14 −0.18 −0.19 0.09 0.13
K soluble −0.35** −0.04 0.24* −0.01 −0.42**
K micellar 0.43*** −0.17 −0.40** 0.11 0.48***
Mg total 0.79*** 0.15 −0.65*** 0.04 0.82***
Mg soluble −0.10 0.18 0.002 0.06 −0.10
Mg micellar 0.79*** 0.09 −0.62*** 0.02 0.82***
Na total 0.38** 0.33** −0.39** 0.07 0.68***
P total 0.78*** 0.15 −0.67*** 0.07 0.83***
P soluble −0.71*** −0.49*** 0.52*** 0.04 −0.74***
P micellar 0.81*** 0.24* −0.67*** 0.05 0.85***

*P < 0.05; **P < 0.01; ***P < 0.001.
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positively (P < 0.01) with soluble Mg (r = 0.72) and 
P (r = 0.37). Correlations between total Mg and other 
fractions mirrored those of micellar Mg with other frac-
tions in terms of direction and magnitude (Table 6). 
Overall, moderate correlations were estimated between 
total Na and other mineral fractions ranging from 
−0.51 (P < 0.001) to 0.47 (P < 0.001).

DISCUSSION

Curd Composition

The great variability of mineral content for the 
analyzed samples could be due to (1) the different 
geographical origin of samples, (2) different milk types 
and milk compositions and, (3) different manufacturing 
protocols across dairy companies. The chemical compo-
sition of curd samples was in accordance with results 
obtained in cheese and pasta filata by Manuelian et 
al. (2017b). To our knowledge, this is the first study 
that dealt with the determination of mineral content 
in curd samples; indeed, the scientific literature reports 
only a few studies on mineral composition determined 
in different types of cheese (Hassan et al., 2004; Fox et 
al., 2017). Calcium content in mozzarella cheese was 
3.26 mg/g (Manuelian et al., 2017b) and 5.90 mg/g 
(Fox et al., 2017), and it was 6.34 mg/g (Hassan et al., 
2004) and 8.33 mg/g (Lucey and Fox, 1993) in Cheddar 
cheese. Cichoscki et al. (2002) reported concentrations 
of major minerals in semihard Prato cheese maturated 
for a very short period (1 d) that were greater than 
those reported in the present study. Curd samples ana-
lyzed in our study were intended for mozzarella cheese 
production. We found greater content of minerals in 
curd compared with mozzarella cheese (Manuelian et 
al., 2017b), and this is likely attributable to the high 
temperature during manufacturing of pasta filata cheese 
that removes part of minerals through the whey.

Regarding the differentiation between soluble and 
micellar fractions of major minerals, only few studies 
have characterized such traits, and all dealt with Ched-
dar cheese (Lucey and Fox, 1993; Hassan et al., 2004). 
Previous studies reported a decrease of micellar Ca 
content, and consequently an increase of soluble frac-
tion during ripening (Hassan et al., 2004; Lee and Lee, 
2009). Hassan et al. (2004) reported total Ca content 
of 8.33 mg/g and micellar Ca content of 6.44 mg/g at 
1 d of ripening, in agreement with results of the cur-
rent study. Further trials are needed to establish the 
equivalence and bias between the proposed method and 
the previously published protocols, and to assess its 
precision and effectiveness as a gold standard method 
for the assessment of NIR instruments performances 
(Hassan et al., 2004).
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Calibration Models

Near-infrared spectroscopy calibration models for 
major mineral contents in milk (Costa et al., 2019; 
Visentin et al., 2019) and cheese have been discussed 
in the literature (Manuelian et al., 2017a), whereas no 
information on the prediction of soluble and micellar 
fractions in cheese or curd is currently available. As 
proposed by Williams (2014), the accuracy of calibra-
tion models can be evaluated through RPD statistics. 
In particular, RPD values smaller than 2.0 are not rec-
ommended for industry application; values between 2.0 
and 3.0 limit the opportunity of using prediction models 
only for screening purposes; values between 3.1 and 3.4 
underline good prediction ability of the models and the 
opportunity of using them for quality control; values 
between 3.5 and 4.0 highlight good prediction models 
and the opportunity of using them for on-line control 
in food process operations; values greater than 4.00 are 
considered suitable for any application. Both in terms 
of RPD and R2, the Lab-VIS-NIR instrument showed 
the best performances. This is likely due to the broader 
wavelength spectrum and to the higher resolution of 
Lab-VIS-NIR (400–2,500 nm and 0.5 nm, respectively) 
compared with the wavelength spectra and resolutions 
of Lab-NIR (850–1,050 nm and 2 nm, respectively) and 
portable NIR (740–1,070 nm and 1 nm, respectively). 
Regarding NIR transmittance technology, prediction 
models showed RPD of 3.29, 1.29, 3.22, 3.36 and 2.70 
for Ca, K, Mg, Na, and P, respectively, which are lower 
than those reported by Manuelian et al. (2017a), except 
for Na. Possible reasons to explain differences between 
our results and those of Manuelian et al. (2017a) are the 
sample size and the variability of data. Manuelian et al. 
(2017a) used 145 cheese samples (different types, from 
fresh to hard cheeses), which resulted in high standard 
deviations compared with our study. The RPD values 
of prediction models developed using spectra collected 
by Lab-VIS-NIR (which works in reflectance mode) 
ranged from 1.39 (total K) to 4.28 (total Na). Lucas 
et al. (2008) investigated the feasibility of predicting 
mineral content in cheese using NIR reflectance spec-
troscopy in a data set of 445 samples and reported 
greater RPD for Ca (4.56) and K (2.14), and lower 
RPD for Mg (2.33) compared with the present study. 
Regarding portable NIR, previous studies investigated 
only prediction of fat and moisture content of cheese, 
testing different mathematical treatments. We focused 
on major minerals obtaining RPD between 1.08 and 
2.73, meaning that some calibration may be used for 
screening purposes. It is worth noting that portable 
NIR can predict micellar minerals with better accuracy 
compared with total minerals (Wiedemair et al., 2019).

Correlations

Considering that the matrix of the present study was 
curd, significant associations of total protein with mi-
cellar and total minerals were expected. Indeed, most 
of milk mineral is contained in the casein reticulum 
formed after milk coagulation; only a small fraction is 
lost in the soluble phase, especially during cheese man-
ufacturing (Fox et al., 2017). This was also confirmed 
by the association between total proteins and micellar 
minerals (Table 5). In regards to humidity, a significant 
positive correlation with soluble mineral fractions was 
expected because part of the minerals was lost with the 
whey after reaching mineral equilibrium in the curd 
matrix. It is worthy to report that the loss of micellar 
minerals depends also on the pH values of the curd 
under whey during the cheesemaking process. The tim-
ing of this manufacturing step may have influenced the 
mineral composition at a single curd level, and may 
explain (at least partially) the variability of mineral 
composition across curds involved in the present study. 
Instead, total mineral fraction showed negative correla-
tion with humidity because curd minerals were mostly 
composed by micellar minerals that were trapped in 
the curd matrix (Fox et al., 2017). The associations 
between ash, protein, and mineral contents were similar 
or higher than those reported by Cichoscki et al. (2002) 
for 108 cheese samples. In fact, those authors reported 
a correlation of 0.75 (P < 0.001) between ash and Na, 
and 0.51, 0.80, and 0.39 (P < 0.001) between protein 
content and Ca, P, and Mg, respectively. In particular, 
curd ash content tended to increase when the soluble 
phase of minerals decreased (Fox et al., 2017). The 
strong correlation between total and micellar phases in 
all minerals was expected, considering that curd can be 
imagined as a concentration of milk solids, and micellar 
fractions of Ca, P, and Mg are almost totally found 
in casein micelles. All correlations between total Na 
and total phase of other minerals were stronger and 
positive compared with those reported by Cichoscki 
et al. (2002), who observed correlations of −0.34 and 
−0.35 (P < 0.01) between Na and Mg, and Na and 
Ca, respectively. The very strong relationship between 
micellar Ca and P (r = 0.99) was expected, consider-
ing the strict chemical relationship they have as con-
stituents of the micellar calcium phosphate, which is an 
essential component of the casein micelle (Holt, 2016). 
The strong correlation between micellar phases of Mg, 
Ca, and P resembled those estimated by Lucas et al. 
(2008) for 445 samples of cheese. Moreover, a similar 
association between total Ca and total Mg (0.71; P 
< 0.001) was assessed by Cichoscki et al. (2002): Mg 
can be thought of as a competitor of Ca during the 
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curd formation process because both Ca and Mg act as 
a bond between casein micelles (Alexander and Ford, 
1957; Malacarne et al., 2014).

Implications

Calibrations described in the current study can be 
used for different purposes, from screening to process 
or quality control, with applications in field conditions. 
The portable device is cheaper, faster, and easier to 
be handled by operators compared with laboratory in-
struments, but it is useful only for screening purposes, 
whereas laboratory instruments are potentially useful 
to control any process that involves curd. According 
to the correlations estimated in the present study, the 
Italian dairy industry may be able to make decisions 
regarding curd management and handling from the 
knowledge of the concentration of a group of miner-
als or their micellar phase. In addition, the possibility 
to predict soluble and micellar mineral fractions could 
provide the industry a valuable instrument to rapidly 
evaluate the quality of curd according to an on-site or 
on-line approach.

CONCLUSIONS

The determination of mineral fractions is important 
to evaluate the quality of commercial frozen and fresh 
curds and for prompt decision-making at the industry 
level. The present study dealt with the characteriza-
tion of total, micellar, and soluble contents of 5 major 
minerals (Ca, Mg, K, P, Na) predicted in curd intended 
for mozzarella manufacture. The accuracy of predic-
tion of different NIR instruments was also discussed. 
Overall, micellar and total phase of the same mineral 
were strongly correlated; instead, the soluble phase was 
negatively associated with both micellar and total frac-
tions, especially for Ca and P. Considering calibration 
models in terms of RPD, the laboratory instrument 
operating in visible and NIR regions had higher perfor-
mances for all mineral fractions, except for micellar K, 
total Mg, and soluble Mg. In general, the portable NIR 
device showed lower precision compared with the labo-
ratory instruments, and its application is likely limited 
to screening purposes.
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