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Abstract

Let V be a valuation domain with quotient field K. We show how to
describe all extensions of V to K(X) when the V -adic completion K̂ is
algebraically closed, generalizing a similar result obtained by Ostrowski
in the case of one-dimensional valuation domains. This is accomplished
by realizing such extensions by means of pseudo-monotone sequences, a
generalization of pseudo-convergent sequences introduced by Chabert.
We also show that the valuation rings associated to pseudo-convergent
and pseudo-divergent sequences (two classes of pseudo-monotone se-
quences) roughly correspond, respectively, to the closed and the open
balls of K in the topology induced by V .
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1 Introduction

Throughout the paper, V will denote a valuation domain with quotient field
K and maximal ideal M , v will denote its valuation and Γv its value group.
We also fix an algebraic closure K of K. The study of extensions of V is
one of the central parts of valuation theory, which naturally splits into the
study of algebraic and purely transcendental extensions. The former can be
considered a generalization of the fundamental problems of algebraic number
theory, and is well-studied through the concepts of inertia, decomposition
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and ramification (in what is known as ramification theory). The latter –
which is essentially the study of extensions of V to function fields – is less
well understood, but plays a main role in several facets and applications
of the theory (see [11] and the references therein). The first step of this
problem is to classify all the extensions of V to the rational function field
K(X).

In case V has rank one, there are two classical approaches to this prob-
lem: the most famous one, due to MacLane, uses key polynomials and aug-
mented valuations and works for arbitrary fields K, but requires the valu-
ation ring to be discrete [14]; it has been recently generalized by Vaquiè in
[23] for general valuation domains. The second approach, due to Ostrowski,
“makes no discreteness assumptions” but “requires an elaborate construc-
tion to obtain values of K from those of K”, as MacLane acknowledged
in his paper [14, p. 380]. More precisely, Ostrowski showed that, for a
given extension W of V to K(X), there exists a pseudo-convergent sequence
E = {sn}n∈N ⊂ K with respect to a extension u of v to K (we refer to §2.3
for the definition) such that the valuation w associated to W is given by the
real limit w(φ) = limn→∞ u(φ(sn)), for all φ ∈ K(X); for its importance,
Ostrowski called this result Fundamentalsatz [16, §11, IX, p. 378]. To our
knowledge, Ostrowski’s Fundamentalsatz seems to have been mostly forgot-
ten (except in the survey [21]), even if pseudo-convergent sequences have
enjoyed some success: for example, Kaplansky used them to characterize
immediate extensions of a valued field and maximal fields in [10], and they
are linked to the recently introduced notion of approximation type (see [12]).

In generalizing Ostrowski’s Fundamentalsatz, we realized that when deal-
ing with the general case (i.e., when the rank of V or of the extension of V to
K(X) is not one), pseudo-convergent sequences are not enough to construct
all extensions of V to K(X) (see Example 4.4): for this reason, we use the
more general notion of pseudo-monotone sequences, used in [17] to encom-
pass Ostrowski’s notion of pseudo-convergent sequence and the two other
kinds of sequences introduced by Chabert in 2010 (namely pseudo-divergent
and pseudo-stationary sequences) in order to characterize the so-called poly-
nomial closure in the context of rings of integer-valued polynomials. We re-
call that, given a subset S of V , the ring of integer-valued polynomials over S
is classically defined as Int(S, V ) = {f ∈ K[X] | f(S) ⊆ V }, and the polyno-
mial closure of S is the largest subset S ⊆ V such that Int(S, V ) = Int(S, V ).
One of the main results of Chabert was to prove that, when V has rank one,
the polynomial closure is the closure operator associated to a topology on
K (extending the case when V is discrete, originally proved by McQuillan
in [15, Lemma 2]). Chabert obtained his result by describing S through the
set of pseudo-limits of the pseudo-monotone sequences contained in S.

In this paper, continuing our earlier work in [19], we describe the exten-
sions of V to K(X) by means of pseudo-monotone sequences of K, gener-
alizing a natural construction of Loper and Werner, who were interested
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in studying when the ring of integer-valued polynomials over a pseudo-
convergent sequence is a Prüfer domain [13]. More precisely, we associate
to every pseudo-monotone sequence E = {sν}ν∈Λ ⊂ K (see §2.3 for the
definition) the valuation domain

VE = {φ ∈ K(X) | φ(sν) ∈ V, for all sufficiently large ν ∈ Λ}.

We first study the properties of VE in relation with the properties of E;
subsequently, we analyze when and how it is possible to associate to an ar-
bitrary extension a pseudo-monotone sequence. Our main result (Theorem
6.2) proves that every extension of V to K(X) can be realized in this way if
and only if the v-adic completion K̂ of K is algebraically closed. In particu-
lar, the statement holds if K is algebraically closed, giving a generalization
of Ostrowski’s result. We also show that, under the same condition, every
extension of V to K(X) which is not immediate is a monomial valuation, a
natural way of constructing extensions to the field of rational functions (see
§2.1).

The structure of the paper is as follows. In Section 2, after settling the
notation used throughout the paper, and the notions of monomial valuation
and divisorial ideal, we give the definition of pseudo-monotone sequence in
a general valued field (K, v); we note that Chabert’s original definitions of
pseudo-divergent and pseudo-stationary sequences were given only for a rank
one valuation, but they easily extend to the general case. We then intro-
duce the notions of pseudo-limit, breadth ideal and gauge separately for the
three different types of pseudo-monotone sequences: pseudo-convergent se-
quences (§2.3.1), pseudo-divergent sequences (§2.3.2) and pseudo-stationary
sequences (§2.3.3). In the last part of that section, we characterize pseudo-
limits and breadth ideals of pseudo-monotone sequences according to their
type (Lemmas 2.5 and 2.6).

In Section 3 we show that the sequence of values of the images under
a rational function of a pseudo-monotone sequence is eventually monotone
(Proposition 3.2); the result is accomplished by introducing the notion of
dominating degree of a rational function φ ∈ K(X) with respect to a pseudo-
monotone sequence E ⊂ K (Definition 3.1), which roughly speaking counts
the number of roots of φ in K which are pseudo-limits of E. By means of this
result, we show that, for each pseudo-monotone sequence E, the ring VE is a
valuation domain ofK(X) extending V (Theorem 3.4). We then describe the
main properties of VE (residue field, value group and associated valuation) in
Proposition 3.7, and show that the image of a pseudo-convergent or a pseudo-
divergent sequence under a rational function is eventually either pseudo-
convergent or pseudo-divergent (Proposition 3.8), improving the analogous
result of Ostrowski [16, III, §64, p. 371] on images of pseudo-convergent
sequences under polynomial mappings.

In Section 4, we associate to each extension W a subset L(W ) of K
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(which corresponds to the notion of pseudo-limit of a pseudo-monotone se-
quence) and show that if K is algebraically closed, then L(W ) (if nonempty)
uniquely determines W (Proposition 4.5). In Section 5, we use the results
of the previous section to completely describe (for any field K) when two
different pseudo-monotone sequences of K give rise to the same associated
extension of V to K(X). Subsequently, in Section 6 we give the proof of the
aforementioned main Theorem 6.2.

In the final Section 7, we illustrate the different containments which
may occur among the valuation domains VE of K(X). We conclude with a
modern proof of Ostrowski’s Fundamentalsatz (Theorem 7.4).

2 Background and notation

For an extension U or W of V to a field F containing K, we denote the
associated valuation with the corresponding lower case letter (i.e., u or w,
respectively). We recall that an extension V ⊂ U is immediate if U and V
have the same value group and same residue field. We denote by K̂ and V̂ ,
respectively, the completion ofK and V with respect to the topology induced
by the valuation v. The elements of K̂ can be constructed as limits of
Cauchy sequences {aν}ν∈Λ, where Λ is a well-ordered set; Λ is not necessarily
countable, but can be considered of cardinality equal to the cofinality of
the ordered set Γv. See for example [8, Section 2.4] for the details of the
construction. For a sequence {sν}ν∈Λ of elements in K, the set of indices Λ
will always be a well-ordered set without a maximum.

2.1 Monomial valuations

We recall the definition of monomial valuations, a standard way of extending
a valuation v of K to K(X).

Definition 2.1. Let Γ be a totally ordered group containing Γv, and let
α ∈ K and δ ∈ Γ. For every polynomial f(X) = a0 + a1(X − α) + . . . +
an(X − α)n ∈ K[X], define

vα,δ(f) = inf{v(ai) + iδ | i = 0, . . . , n},

and, for a rational function φ = f/g (with f, g polynomials), define vα,δ(φ) =
vα,δ(f)− vα,δ(g). Then, vα,δ is a valuation on K(X), and it is called mono-
mial valuation [4, Chapt. VI, §. 10, Lemma 1]. We denote by Vα,δ the
associated valuation domain of K(X).

For example, the Gaussian extension vG = v0,0 of v, defined as vG(
∑

i≥0 aiX
i) =

infi{v(ai)}, is a monomial valuation. In general, vα,δ is residually tran-
scendental over v (i.e., the residue field of Vα,δ is transcendental over the
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residue field of V ) if and only if δ is torsion over Γv [17, Lemma 3.5]. Fur-
thermore, every residually transcendental extension of V can be written as
Wα,δ∩K(X), where w is an extension of v to K and (α, δ) ∈ K×Γw ([1, 3]).

2.2 Divisorial ideals

Let V be a valuation domain with maximal ideal M , and let F(V ) be the
set of fractional ideals of V . The v-operation (or divisorial closure) on V is
the map sending each I ∈ F(V ) to the ideal Iv equal to the intersection of
all principal fractional ideals containing it; equivalently, Iv = (V : (V : I)),
where, for a fractional ideal I of V , we set (V : I) = {x ∈ K | xI ⊆ V } [9,
Theorem 34.1]. If I = Iv, we say that I is a divisorial ideal.

If the maximal ideal M of V is principal, then each fractional ideal I
of V is divisorial; on the other hand, if M is not principal, then (see for
example [9, §34, Exercise 12, p. 431])

Iv =

{
cV, if I = cM for some c ∈ K
I, otherwise.

We say that I is strictly divisorial if I is equal to the intersection of all
principal fractional ideals properly containing it; in particular, each strictly
divisorial ideal is divisorial. We now characterize these ideals.

Lemma 2.2. I is not strictly divisorial if and only if I = cM for some
c ∈ K.

Proof. Suppose first that I is not principal. Then, I is strictly divisorial
if and only if it is divisorial; furthermore, I is not divisorial if and only if
I = cM for some c ∈ K and M is not principal, by the above remark.
Hence, the claim holds in this case.

Suppose that I = c′V is principal: if also I = cM for some c, then cV
is the minimal principal ideal properly containing I, and I is not strictly
divisorial. Conversely, if I is not strictly divisorial, then there is a mini-
mal principal ideal cV properly containing I; this implies that c′/c is the
generator of the maximal ideal of V , and so I = cM .

2.3 Pseudo-monotone sequences

The central concept of the paper is the following, which along with Os-
trowski’s notion of pseudo-convergent sequence includes also other two re-
lated notions introduced by Chabert in [5].

Definition 2.3. Let E = {sν}ν∈Λ ⊂ K be a sequence. We say that the
sequence E is:

- pseudo-convergent if v(sρ − sν) < v(sσ − sρ) for all ν < ρ < σ ∈ Λ;
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- pseudo-divergent if v(sρ − sν) > v(sσ − sρ) for all ν < ρ < σ ∈ Λ;

- pseudo-stationary if v(sν − sµ) = v(sν′ − sµ′) for all ν 6= µ ∈ Λ,
ν ′ 6= µ′ ∈ Λ.

If E satisfies any of these definitions, we say that E is a pseudo-monotone
sequence ([17]). We say that E is strictly pseudo-monotone if E is ei-
ther pseudo-convergent or pseudo-divergent. If E and F are two pseudo-
monotone sequences that are either both pseudo-convergent, both pseudo-
divergent or both pseudo-stationary we say that E and F are of the same
kind.

We note that Ostrowski’s and Chabert’s original definitions required the
above condition to be valid only for all ν large enough. Instead, we adopt Ka-
plansky’s convention that the condition is valid for all ν, both since it is not
restrictive for our purposes (see Definition 3.3) and in view of the following
remark. If E = {sν}ν∈Λ is a sequence in K and E′ = {sν}ν≥N is pseudo-
monotone for some N ∈ Λ, we say that E is eventually pseudo-monotone
(and analogously for eventually pseudo-convergent, pseudo-divergent and
pseudo-stationary).

Remark 2.4. Strictly pseudo-monotone sequences are “rigid”, in the sense
that, given a set E, there is at most one way to index E to make it pseudo-
monotone. Indeed, if the indexing {sν}ν∈Λ makes E pseudo-convergent,
then the equality v(sν − sµ) = v(sν − sµ′) (for µ 6= µ′) implies that both µ
and µ′ are greater than ν; thus, the elements of E that appear before sν are
exactly the t such that v(sν − t) 6= v(sν − t′) for all t 6= t′, and this condition
depends only on the set E. In the same way, if E is pseudo-divergent, then
the elements of E appearing after sν are the t such that v(sν−t) 6= v(sν−t′)
for all t 6= t′. In particular, if E = {sν}ν∈Λ and F = {tν}ν∈Λ are two strictly
pseudo-monotone sequences that are equal as sets, then sν = tν for every
ν ∈ Λ.

On the other hand, pseudo-stationary sequences are “flexible”: any per-
mutation of E = {sν}ν∈Λ is again pseudo-stationary. For this reason, it may
be more apt to call them “pseudo-stationary sets”, but we will continue to
treat them as sequences for analogy with the strictly pseudo-monotone case.

In this paper, we shall treat pseudo-monotone sequences in a general
framework in order to build extensions of the valuation domain V to the
field of rational functions K(X), and to give theorems valid for all kind
of such sequences. However, there are slight differences in how the main
concepts concerning pseudo-monotone sequences (for example the breadth
ideal, the pseudo-limit and the gauge) are defined in each of the three cases;
hence, we shall describe them separately.
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2.3.1 Pseudo-convergent sequences

Let E = {sν}ν∈Λ be a pseudo-convergent sequence in K. Then, if ν is fixed,
the value v(sρ− sν), for ρ > ν, does not depend on ρ. We denote by δν ∈ Γv
this value; the sequence {δν}ν∈Λ (which, by definition, is a strictly increasing
sequence in Γv) is called the gauge of E.

The breadth ideal Br(E) of E is the set

Br(E) ={x ∈ K | v(x) > δν for all ν ∈ Λ};

this set is always a fractional ideal of V . If cν = sρ − sν , for some ρ > ν,
then Br(E) =

⋂
ν∈Λ cνV . If Br(E) is a principal ideal, say generated by

an element c ∈ K, then δν converges to an element δ ∈ Γv (and, clearly,
v(c) = δ). When this happens, we call δ the breadth of E. Note, however,
that the breadth of a pseudo-convergent sequence may not always be defined;
if V has rank 1 (that is, if Γv can be embedded as a totally ordered group
into R), then δν always converges to an element δ ∈ R, which may not belong
to Γv. See [19] and [17, Lemma 2.3] for this case.

An element α ∈ K is a pseudo-limit of E if v(α− sν) = δν for all ν ∈ Λ
or, equivalently, if v(α − sν) < v(α − sρ) for all ν < ρ ∈ Λ. It also suffices
that these conditions hold only for ν ≥ N , for some N ∈ Λ. If the gauge
{δν}ν∈Λ is cofinal in Γv (or, equivalently, if E is a Cauchy sequence), then it
is well-known that E converges to a unique pseudo-limit α in the completion
K̂, which in this case is called simply limit.

Following Kaplansky [10], we say that E is of transcendental type if
v(f(sν)) eventually stabilizes for every f ∈ K[X]; on the other hand, if
v(f(sν)) is eventually increasing for some f ∈ K[X], we say that E is of
algebraic type. As we have already remarked in [19], it follows from the
work of Kaplansky in [10] that a pseudo-convergent sequence E ⊂ K is of
algebraic type if and only if E admits pseudo-limits in K, with respect to
some extension u of v. Note that any pseudo-convergent sequence satisfies
either one of these two conditions, because the image of a pseudo-convergent
sequence by a polynomial is an eventually pseudo-convergent sequence (see
[16, III, §64, p. 371] or Proposition 3.8 below).

2.3.2 Pseudo-divergent sequences

Let E = {sν}ν∈Λ be a pseudo-divergent sequence in K. Symmetrically to
the case of pseudo-convergent sequences, for a fixed ν, we have that v(sρ−sν)
is constant for all ρ < ν; if ν is not the minimum of Λ, we denote by δν ∈ Γv
this value. The sequence {δν}ν∈Λ is a strictly decreasing sequence in Γv,
called the gauge of E.

The breadth ideal Br(E) of E is the set

Br(E) ={x ∈ K | v(x) > δν for some ν ∈ Λ};
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this set is a fractional ideal of V if and only if the gauge of E is bounded
from below, while otherwise Br(E) = K. In particular, unlike in the pseudo-
convergent case, Br(E) may not be a fractional ideal. If for each non-minimal
ν ∈ Λ we set cν = sρ−sν , for some ρ < ν, then Br(E) =

⋃
ν∈Λ cνV . Contrary

to the case of a pseudo-convergent sequence, it is easily seen that the breadth
ideal of a pseudo-divergent sequence is never a principal ideal. However, if
δν ↘ δ, for some δ ∈ Γv, then Br(E) = {x ∈ K | v(x) > c} = cM , where
c ∈ K has value δ. As in the case of a pseudo-convergent sequence, when
this condition holds we call δ the breadth of F .

An element α ∈ K is a pseudo-limit of E if v(α − sν) = δν for all
(sufficiently large) ν ∈ Λ or, equivalently, if v(α − sν) > v(α − sρ) for all
(sufficiently large) ν < ρ ∈ Λ. Every element of E is a pseudo-limit of E:
see [17, §2.1.3] and Lemma 2.5 below.

2.3.3 Pseudo-stationary sequences

Let E = {sν}ν∈Λ be a pseudo-stationary sequence in K. Note that the
residue field of V is necessarily infinite (see [17, §2.1.2]). The element δ =
v(sν − sµ) ∈ Γv, for ν 6= µ, is called the breadth of E. In analogy with
pseudo-convergent and pseudo-divergent sequences, we define the gauge of
E to be the constant sequence {δν = δ}ν∈Λ.

The breadth ideal Br(E) of E is the set

Br(E) ={x ∈ K | v(x) ≥ δ};

this set is always a principal fractional ideal of K, generated by any c ∈ K
whose value is δ. In particular, we can take c = sν′ − sν for any ν ′ 6= ν.

An element α ∈ K is a pseudo-limit of E if v(α−sν) = δ for all sufficiently
large ν ∈ Λ or, equivalently, if v(α− sν) = δ for all but at most one ν ∈ Λ.
As in the pseudo-divergent case, every element of E is a pseudo-limit of E:
see [17, §2.1.2] and Lemma 2.5 below.

2.4 Pseudo-limits and the breadth ideal

In general, if E ⊂ K is a pseudo-monotone sequence, we denote the set
of pseudo-limits of E in K by LE and the breadth ideal by Br(E) (or LvE
and Brv(E), respectively, if we need to underline the valuation). We will
constantly use the following trivial remark: if u is an extension of v to an
overfield F of K, then E is a pseudo-monotone sequence in the valued field
(F, u); in particular, LuF will denote the set of pseudo-limits of E in the
valued field (F, u). We use the notation LE and Br(E) also in the case E is
only eventually pseudo-monotone.

The first part of the next result generalizes the classical result of Kaplan-
sky for pseudo-convergent sequences ([10, Lemma 3]) to pseudo-monotone
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sequences. The proof is actually the same, but for the sake of the reader we
give it here.

Lemma 2.5. Let E = {sν}ν∈Λ ⊂ K be a pseudo-monotone sequence and
let α ∈ K be a pseudo-limit of E. Then the set of pseudo-limits LE of E
is equal to α + Br(E). Moreover, E ∩ LE = ∅ if E is a pseudo-convergent
sequence and E ⊂ LE if E is either pseudo-divergent or pseudo-stationary.

Proof. Let β = α+ x, for some x ∈ Br(E). If E is either pseudo-convergent
or pseudo-divergent, then it is easy to see that for any ν ∈ Λ we have

v(β − sν) = v(α− sν + x) = v(α− sν) = δν

so that β is a pseudo-limit of E. If E is pseudo-stationary, then we have
v(β − sν) ≥ δ = v(sν − sµ) = v(sν − β + β − sµ) and therefore for at most
one ν ∈ Λ we may have the strict inequality v(β − sν) > δ. So, also in this
case β is a pseudo-limit of E.

Conversely, if β is a pseudo-limit of E, then v(α−β) = v(α−sν+sν−β) ≥
δν , so that α− β ∈ Br(E), as we wanted to show.

We prove the last claim. If E is a pseudo-convergent sequence, then
it is clear (both if E is of algebraic type or of transcendental type). If
the sequence E is either pseudo-divergent or pseudo-stationary, the claim is
proved in [17, §2.1.2 & §2.1.3].

In particular, since pseudo-divergent and pseudo-stationary sequences
always admit a pseudo-limit in K, in these cases there is no analogue of the
notion of pseudo-convergent sequences of transcendental type.

The following result characterizes which fractional ideals of V are breadth
ideals for some pseudo-monotone sequence E of K, and which cosets are the
set of pseudo-limits for some pseudo-monotone sequence.

Lemma 2.6. Let I be a fractional ideal of V and let α ∈ K; let L = α+ I.

(a) L = LE for some pseudo-convergent sequence E if and only if I is
strictly divisorial; in particular, if the maximal ideal of V is not prin-
cipal this happens if and only if I is divisorial.

(b) L = LE for some pseudo-divergent sequence if and only if I is not
principal.

(c) If V/M is infinite, L = LE for some pseudo-stationary sequence if and
only if I is principal.

Proof. It is easily seen that, if LE 6= ∅ for some pseudo-monotone sequence
E = {sν}ν∈Λ, for every β ∈ K the set β + LE is the set of pseudo-limits
of β + E = {β + sν}ν∈Λ; hence, it is enough to prove the claims for α = 0.
Furthermore, by Lemma 2.5, under this hypothesis we have LE = Br(E),
and thus we only need to find which ideals are breadth ideals.
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If I = Br(E) for some pseudo-convergent E = {sν}ν∈Λ, for each ν let
cν = sρ − sν , for some ρ > ν; then I =

⋂
ν cνV , and each cνV properly

contains I. Therefore I is a strictly divisorial ideal. Conversely, if I =⋂
a∈A aV , where for each a ∈ A we have I ( aV , we can take a well-ordered

subset {aν}ν∈Λ such that I =
⋂
ν aνV and aρV ( aνV for all ρ > ν; then,

{aν}ν∈Λ is a pseudo-convergent sequence having 0 as a pseudo-limit and
breadth ideal I. The last remark follows from Lemma 2.2.

Likewise, if I = Br(E) for some pseudo-divergent E = {sν}ν∈Λ, for each
ν let cν = sρ−sν , for some ρ < ν; then I =

⋃
ν cνV , while if I is not principal

we can find a well-ordered sequence E = {aν}ν∈Λ ⊂ V which generates I
and such that aνV ⊂ aρV for every ν < ρ, so that E is a pseudo-divergent
sequence and I is its breadth ideal.

If I = Br(E) for some pseudo-stationary sequence E = {sν}ν∈Λ, then
I = (sν − sµ)V , for any ν 6= µ; conversely, if I = cV , then we can find a
well-ordered set E = {sν}ν∈Λ of distinct elements of valuation v(c) whose
cosets modulo cM are different (because the residue field of V is infinite);
then, E is pseudo-stationary with breadth ideal E.

3 Valuation domains associated to pseudo-monotone
sequences

Let φ ∈ K(X) be a rational function: if α ∈ K is a zero or a pole of φ,
we say that α is a critical point of φ. We denote by Ωφ the multiset of
critical points of φ. Let S = {α1, . . . , αk} be a submultiset of Ωφ. The
weighted sum of S is the sum

∑
αi∈S εi, where εi = 1 if αi is a zero of φ

and εi = −1 if αi is a pole of φ. The S-part of φ is the rational function
φS(X) =

∏
αi∈S(X − αi)εi , where εi is as above.

The following definition generalizes [19, Definition 3.5] to pseudo-monotone
sequences.

Definition 3.1. Let E = {sν}ν∈Λ be a pseudo-monotone sequence in K,
let u be an extension of v to K and let φ ∈ K(X). The dominating degree
degdomE,u(φ) of φ with respect to E and u is the weighted sum of the
elements of Ωφ which are pseudo-limits of E with respect to u.

The next proposition is a generalization to pseudo-monotone sequences
of [19, Theorem 3.3]; in particular, it shows that the dominating degree does
not depend on the chosen extension of v to K.

Proposition 3.2. Let E = {sν}ν∈Λ ⊂ K be a pseudo-monotone sequence of
gauge {δν}ν∈Λ, and let φ ∈ K(X). Let u be an extension of v to K and let
λ = degdomE,u(φ). Then there exist γ ∈ Γv and ν0 ∈ Λ such that for each
ν ≥ ν0 we have

v(φ(sν)) = λδν + γ.
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Furthermore, if β ∈ K is a pseudo-limit of E with respect to u, then γ =

u
(
φ
φS

(β)
)

, where S is the set of critical points of φ which are pseudo-limits

of E with respect to u.
Moreover, the dominating degree of φ does not depend on u; that is, if

u′ is another extension of v to K, then degdomE,u(φ) = degdomE,u′(φ).

Proof. If E is a pseudo-convergent sequence, then the statement is the same
as in [19, Proposition 3.6].

If the sequence E is pseudo-divergent, then the proof is essentially the
same as when E is pseudo-convergent: let β ∈ K be a pseudo-limit of E
and let ∆ = ∆E be the least final segment of QΓv containing the gauge
of E (if Br(E) = K, just take ∆ = Γv). Take τ ∈ Γv ∩ ∆ such that
C = {s ∈ K | u(s − β) ∈ ∆ ∩ (−∞, τ)} contains no critical points of φ.
Then, sν ∈ C for all large ν and, by construction, the weighted sum of the
subset S of Ωφ of those elements α such that u(α − β) > ∆ ∩ (−∞, τ) is
exactly λ = degdomE,u(φ). Therefore, we can apply [19, Theorem 3.3] to
the convex set ∆ ∩ (−∞, τ), and thus there is a ν0 ∈ Λ such that for each
ν ≥ ν0 we have

v(φ(sν)) = λv(sν − β) + γ = λδν + γ,

where γ = u
(
φ
φS

(β)
)

, as in the statement of the proposition, again by [19,

Theorem 3.3]. Since v(φ(sν)) ∈ Γv and does not depend on β, the same
happens for γ. For the final claim the proof is analogous to [19, Proposition
3.6(c)].

If E is pseudo-stationary, we cannot apply directly [19, Theorem 3.3],
but the same general method works: let φ ∈ K(X) and write φ(X) =
c
∏n
i=1(X − αi)εi , where c ∈ K, αi ∈ K and εi ∈ {1,−1}. Let u be a fixed

extension of v to K, let β ∈ K be a pseudo-limit of E and let S be the
multiset of critical points of φ which are pseudo-limits of E with respect to
u. If α ∈ Ωφ \ S, then u(sν − α) = u(β − α) < δ for all sufficiently large
ν ∈ Λ; on the other hand, if α ∈ S, then there is at most one ν (say ν0)
such that u(sν0 − α) > δ, while u(sν − α) = δ for all ν 6= ν0. Hence, for all
large ν we have u(sν − α) = δ. Note that, if α /∈ S, then u(β − α) does not
depend on the chosen pseudo-limit β of E. In particular, u(sν −α) ≤ δ and
equality holds if and only if α is a pseudo-limit of E, in complete analogy
with [19, Remark 4.7(a)]. Now, let λ be the weighted sum of S (which is

equal to degdomE,u(φ)) and γ = u
(
φ
φS

(β)
)

: then, for all large ν, sν is not

a critical point of φ and we have

v(φ(sν)) = v(c) +
∑
α∈S

εiu(sν − α) +
∑

α∈Ωφ\S

εiu(sν − α) = λδ + γ

It is clear as before that γ ∈ Γv and does not depend on the chosen pseudo-
limit β of E, by the above remark. To conclude, we only need to prove that
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the dominating degree of φ with respect to a pseudo-stationary sequence E
does not depend on the extension of v to K. Let u, u′ be two extensions of
v to K. By Lemma 2.5, it follows that LE = s+ cV , where a pseudo-limit s
of E can be chosen in K and c ∈ K has value δE . Now, by the same Lemma
we also have that LuE = s + cU and Lu′E = s + cU ′; in particular, LuE and
Lu′E are conjugate under the action of the Galois group of K over K. It is
then clear that Ωφ∩LuE and Ωφ∩Lu

′
E are conjugate too, so degdomE,u(φ) =

degdomE,u′(φ), as desired

Note that by Proposition 3.2 we may drop the suffix u in the dominating
degree of a rational function. However, note that given a pseudo-monotone
sequence E ⊂ K without pseudo-limits in K, different extensions of v to
K give rise to different set of pseudo-limits, which are conjugate under the
action of the Galois group of K over K.

Moreover, if E = {sν}ν∈Λ is a pseudo-stationary sequence and φ ∈
K(X), the values of φ on E are eventually constant, namely v(φ(sν)) =
λδ + γ, where λ = degdomE(φ), δ = δE and γ ∈ Γv, for all sufficiently large
ν.

Definition 3.3. Let E = {sν}ν∈Λ ⊂ K be a pseudo-monotone sequence.
We define

VE = {φ ∈ K(X) | φ(sν) ∈ V, for all sufficiently large ν ∈ Λ}.

Theorem 3.4. Let E = {sν}ν∈Λ ⊂ K be a pseudo-monotone sequence.
Then VE is a valuation domain with maximal ideal

ME = {φ ∈ K(X) | φ(sν) ∈M, for all sufficiently large ν ∈ Λ}.

Proof. The proof is exactly as the one of [19, Theorem 3.8], but we repeat
it here for completeness.

The set VE is a ring since if φ(sν), ψ(sν) ∈ V for all sufficiently large ν,
then also (φ+ ψ)(sν) and (φψ)(sν) are eventually in V .

Let φ ∈ K(X). By Proposition 3.2, we have v(φ(sν)) = λδν + γ, for all
ν ∈ Λ sufficiently large, for some λ ∈ Z and γ ∈ Γv. In particular, the values
of φ over E are either eventually positive, eventually negative or eventually
constant, so either φ(sν) ∈ V or φ(sν)−1 = φ−1(sν) ∈ V (in both cases for
all ν ∈ Λ sufficiently large), which shows that VE is a valuation domain.

The claim about the maximal ideal of VE follows immediately.

We call VE the extension of V associated to the pseudo-monotone se-
quence E. Note that, if E is a pseudo-convergent sequence and its gauge is
cofinal in Γv (or, equivalently, E is a Cauchy sequence), then VE = Vα =
{φ ∈ K(X) | φ(α) ∈ V̂ }, where α is the (unique) limit of E in the completion
K̂. See [18] for a study of these valuation domains.
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The main properties of the valuation domain VE and its associated valu-
ation vE are summarized in Proposition 3.7 below, which is a generalization
of [19, Proposition 3.11]. We need to introduce another definition.

Definition 3.5. Let E ⊂ K be a pseudo-monotone sequence. We denote
by PE the set of the irreducible monic polynomials p ∈ K[X] which have
at least one root in K which is a pseudo-limit of E (with respect to some
extension of v to K), or, equivalently, such that degdomE(p) > 0.

We note that PE is nonempty if and only if E has a pseudo-limit in
K; that is, PE is empty if and only if E is a pseudo-convergent sequence
of transcendental type. If E is a pseudo-convergent sequence of algebraic
type which is also a Cauchy sequence, then PE contains a unique element,
namely the minimal polynomial of the (unique) limit of E in K̂ (and by
Lemma 2.5 this is the only case in which PE has only one element).

Lemma 3.6. Let E be a strictly pseudo-monotone sequence having a pseudo-
limit in K, and let p ∈ K[X]. Then:

(a) vE(p) /∈ Γv if and only if some irreducible factor of p is in PE;

(b) if vE(p) /∈ Γv, then vE(p) is not torsion over Γv;

(c) if p1, p2 ∈ PE are of minimal degree, then vE(p1) = vE(p2).

Proof. Let p ∈ K[X]. Then, vE(p) = v(t) for some t ∈ K if and only if
v(t) = v(p(sν)) = degdomE(p)δν + γ for all ν sufficiently large (Proposition
3.2); since E is strictly pseudo-monotone, it follows that vE(p) ∈ Γv if and
only if degdomE(p) = 0. Since degdomE(q1 · · · qn) =

∑
i degdomE(qi), (a)

follows.
(b) is a consequence of the previous point applied to the powers pn of p.
Finally, if p1, p2 ∈ PE are polynomials of minimal degree, then p1−p2 = r

for some r ∈ K[X] of lower degree, because p1, p2 are monic; by minimality,
no factor of r belongs to PE , and so vE(r) ∈ Γv. Hence, it must be vE(p1) =
vE(p2) (otherwise vE(p1 − p2) = min{vE(p1), vE(p2)} which is not in Γv),
and (c) holds.

Proposition 3.7. Let E = {sν}ν∈Λ ⊂ K be a pseudo-monotone sequence.
If PE is nonempty, we let ∆E = vE(p) for some p ∈ PE of minimal degree.

(a) If E is either pseudo-convergent of algebraic type or pseudo-divergent,
then ΓvE = ∆EZ⊕ Γv (as groups) and VE/ME

∼= V/M .

(b) If E is pseudo-convergent of transcendental type, then V ⊂ VE is im-
mediate.
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(c) If E is pseudo-stationary, then ΓvE = Γv and VE/ME is a purely
transcendental extension of V/M : more precisely, VE/ME = V/M(t),
where t is the residue of X−α

c modulo ME, where c ∈ K satisfies
v(c) = δE and α ∈ LE.

(d) If E is not pseudo-convergent of transcendental type, then ΓvE =
〈Γv,∆E〉. Furthermore, ∆E does not depend on p and, if E is a
pseudo-stationary sequence, ∆E = δE.

(e) If E has a pseudo-limit β ∈ K, then vE = vβ,∆E
.

Proof. (a) In both cases, E has a pseudo-limit in K with respect to some
extension of v, and so PE 6= ∅. Fix a polynomial p ∈ PE of minimal degree,
and let ∆E = vE(p), which does not depend on p and is not torsion over Γv by
Lemma 3.6. For every q ∈ K[X], we can write q = r0+r1p+r2p

2+· · ·+rnpn,
for some (uniquely determined) r0, . . . , rn ∈ K[X] such that deg ri < deg p.
Since ∆E is not torsion over Γv and vE(ri) ∈ Γv for each i by minimality of
the degree of p, we have

vE(rip
i) = vE(ri) + i∆E 6= vE(rj) + j∆E = vE(rjp

j)

for every i 6= j; therefore, vE(q) = min{vE(r0), vE(r1p), . . . , vE(rnp
n)}, and

in particular vE(q) ∈ Γv ⊕∆EN. Hence, ΓvE = Γv ⊕∆EZ.
We now show that VE/ME = V/M . If E has a pseudo-limit α in K,

then as in [19, Proposition 3.11] by Lemma 3.6 we have vE = vα,∆E
and by

[4, Chap. VI, §10, 1., Proposition 1] VE and V have the same residue field.
Suppose instead LE = ∅ (in particular, E must be a pseudo-convergent
sequence, by Lemma 2.5), and let φ be a unit of VE . Let u be an extension
of v to K and let α ∈ LuE . Then, the residue field of UE is equal to the
residue field of U (by the previous case); hence, there is a unit β of U such
that φ − β ∈ MUE . Thus, φ(sν) ∈ β + MU for all ν bigger or equal than
some N ∈ Λ.

Since φ is a unit of VE , φ(sν) is a unit of V for all large ν; without loss
of generality, for ν ≥ N . Let a be such that φ(sN ) ∈ a+M : then, for every
ν > N we have φ(sν)−φ(sN ) ∈MU ∩V = M , and thus also φ(sν) ∈ a+M .
Hence, the image of φ is in V/M , and so V/M = VE/ME . The claim is
proved.

(b) This follows from Kaplansky’s results in [10].
(c) Suppose that E is a pseudo-stationary sequence. It is clear that,

without loss of generality, we may suppose that K is algebraically closed. In
order to prove the claim, by [16, §11, IV, p. 366] it is sufficient to show that
vE(X − α − β) = min{vE(X − α), v(β)} for each β ∈ K. By Proposition
3.2, we have vE(X − α) = δ. If δ 6= v(β) we are done. If δ = v(β), then
by Lemma 2.5, α+ β is a pseudo-limit of E, so again by Proposition 3.2 we
have vE(X − α− β) = δ.
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(d) For pseudo-convergent sequences of algebraic type or pseudo-divergent
sequences the claim follows from the proof of part (a). For a pseudo-
stationary sequence E, ∆E = vE(X −α) = δE for all pseudo-limits α ∈ LE ,
and we are done. (e) follows in the same way.

The next proposition constitutes an important generalization of [10,
Lemma 5] and [16, III, §64, p. 371], which says that the image under a poly-
nomial of a pseudo-convergent sequence is an eventually pseudo-convergent
sequence.

Proposition 3.8. Let E = {sν}ν∈Λ ⊂ K be a strictly pseudo-monotone
sequence and let φ ∈ K(X) be non-constant. Then φ(E) = {φ(sν)}ν∈Λ is
an eventually strictly pseudo-monotone sequence, which is of the same kind
of E if degdomE(φ) > 0, and not of the same kind if degdomE(φ) < 0; if
degdomE(φ) 6= 0, then Lφ(E) = Br(φ(E)). Furthermore, if φ(E) is eventu-
ally pseudo-convergent, then φ(X) is a pseudo-limit of φ(E) with respect to
vE.

Proof. Let λ = degdomE(φ). Suppose first that λ > 0 and E is a pseudo-
convergent sequence. By Proposition 3.2 we have v(φ(sν)) = λδν + γ <
v(φ(sµ)) = λδµ + γ for all ν < µ sufficiently large (say greater than some
ν0 ∈ Λ), which shows that φ(E) is an eventually pseudo-convergent sequence
with gauge {λδν + γ}ν∈Λ. Since v(φ(sν)) increases, 0 is a pseudo-limit of
φ(E), and thus by Lemma 2.5 we have the equality Lφ(E) = Br(φ(E)). Since

v(φ(sρ)) > v(φ(sν)) if ρ > ν (sufficiently large), we have vE

(
φ(X)
φ(sν)

)
> 0 for

all ν sufficiently large; hence, eventually, vE(φ(X)−φ(sν)) = vE(φ(sν)), and
in particular {vE(φ(X) − φ(sν))}ν∈Λ is strictly increasing. Hence, φ(X) is
a pseudo-limit of φ(E).

If λ > 0 and E is a pseudo-divergent sequence, then as above φ(E) is
eventually pseudo-divergent. If λ < 0, then in the same way we can prove
that φ(E) is strictly pseudo-monotone, not of the same kind of E, and φ(X)
is a pseudo-limit of φ(E) with respect to vE .

Suppose now that λ = 0 and E is a pseudo-convergent sequence. With-
out loss of generality, we may also suppose that K = K. Let φ(X) =
p(X)/q(X), where p, q ∈ K[X]. Since K is algebraically closed, we can write
q(X) = q1(X)q2(X) in such a way that all zeros of q1 are pseudo-limits of
E while no zero of q2 is a pseudo-limit of E (if E has no pseudo-limits,
then q(X) = q2(X) and q1(X) = 1). In particular, deg q1 = degdomE(q1).
Dividing p by q1, we have

φ(X) =
p(X)

q(X)
=
a(X)q1(X) + b(X)

q(X)
=

a(X)

q2(X)
+
b(X)

q(X)
,

where a, b ∈ K[X] and deg b < deg q1. The rational function φ2(X) = b(X)
q(X)
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has dominating degree

degdomE(φ2) = degdomE(b)− degdomE(q1) ≤ deg b− deg q1 < 0,

and thus, by the previous part of the proof, {φ2(sν)}ν∈Λ is an eventually
pseudo-divergent sequence.

Consider now φ1(X) = a(X)
q2(X) . If E has a pseudo-limit in K = K, let

α ∈ LE . If not, then E is a pseudo-convergent sequence of transcendental
type, and we can extend v to a transcendental extension K(z) of K such
that z is a pseudo-limit of E ([10, Theorem 2]), and we set α = z; with a
slight abuse of notation, we still denote by v this extension to K(z). Note
that in any case q2(α) 6= 0 since degdomE(q2) = 0. Consider the following
rational function over K(α):

ψ(X) = φ1(X)− φ1(α) =
a(X)q2(α)− a(α)q2(X)

q2(α)q2(X)
.

Since ψ(α) = 0, the dominating degree of the numerator of ψ is posi-
tive; on the other hand, degdomE(q2(α)q2) = degdomE(q2) = 0. Hence,
degdomE(ψ) > 0, and by the previous part of the proof {ψ(sν)}ν∈Λ is an
eventually pseudo-convergent sequence in K(α). Thus, also {φ1(sν)}ν∈Λ =
{ψ(sν)+φ1(α)}ν∈Λ is eventually pseudo-convergent inK(α); however, φ1(sν) ∈
K for every ν, and thus {φ1(sν)}ν∈Λ is a eventually pseudo-convergent se-
quence in K.

By definition, φ(sν) = φ1(sν) + φ2(sν) and, by the previous points, the
sequences {φ1(sν)}ν∈Λ and {φ2(sν)}ν∈Λ are eventually pseudo-convergent
and eventually pseudo-divergent, respectively. In particular, for large ν,
v(φ1(sρ) − φ1(sν)), ρ > ν, is increasing and v(φ2(sρ) − φ2(sν)), ρ > ν, is
decreasing; it follows that v(φ(sρ)−φ(sν)), ρ > ν, is eventually equal to one
of the two. Hence, φ(sν) is eventually strictly pseudo-monotone, as claimed.

Suppose in particular that φ(E) is eventually pseudo-convergent: then,

vE(φ(X)− φ(sν)) = vE((φ1(X)− φ1(sν)) + (φ2(X)− φ2(sν))).

By the case λ > 0, we have vE((φ1(X)−φ1(sν)) = vE(φ1(sν)) for all large ν.
On the other hand, since φ(E) is pseudo-convergent we have vE(φ1(sν)) <
vE(φ2(sρ)) for all large ν < ρ; in particular, we also have vE(φ2(X)) ≥
vE(φ1(X)) and so vE(φ2(X) − φ2(sν)) is bigger than both vE(φ1(X)) and
vE(φ1(sn)). Hence,

vE(φ(X)− φ(sν)) = vE(φ1(X)− φ1(sν)) = vE(φ1(sν)),

which is eventually strictly increasing. Hence, φ(X) is a pseudo-limit of
φ(E) with respect to vE , as claimed.

If E is pseudo-divergent, the same reasoning applies (with the only differ-
ence that φ1(E) will be pseudo-divergent and φ2(E) pseudo-convergent).
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4 Extensions

We now start the proof of our generalization of Ostrowski’s Fundamentalsatz
(Theorem 6.2): we want to show that, under some hypothesis, we can obtain
every extension W of V to K(X) as a valuation domain VE associated to
a pseudo-monotone sequence E contained in K. In order to accomplish
this objective, we want to associate to each such extension W a subset of
K which is the analogue of the set of pseudo-limits of a pseudo-monotone
sequence.

Definition 4.1. Let W be an extension of V to K(X). We define the
following subsets of K:

L1(W ) ={α ∈ K | w(X − α) /∈ Γv};
L2(W ) ={α ∈ K | w(X − α) ∈ Γv, and w(X − α+ c) = w(X − α) if w(X − α) = v(c)};
L(W ) =L1(W ) ∪ L2(W ).

Equivalently, α ∈ L2(W ) if w(X − α) = v(c) for some c ∈ K, and the
image of X−α

c in the residue field of W does not belong to the residue field
of V .

Proposition 4.2. Let W be an extension of V to K(X).

(a) Suppose K is algebraically closed. Then V ⊂ W is immediate if and
only if L(W ) = ∅.

(b) If α ∈ L(W ), then w(X−α) ≥ w(X−β) for each β ∈ K, and equality
occurs if and only if β ∈ L(W ).

(c) If L(W ) 6= ∅, then exactly one of L1(W ) and L2(W ) is nonempty.

(d) If L1(W ) 6= ∅ is nonempty, then it is equal to K or to α+ I for some
α ∈ K and some (fractional) ideal I.

(e) If L2(W ) 6= ∅ is nonempty, then it is equal to α+cV for some α, c ∈ K
with v(c) = w(X − α).

Note that (b) above is a generalization of [19, Proposition 3.11, (a)].

Proof. (a) Suppose K is algebraically closed. If V ⊂ W is immediate, then
Γw = Γv (so L1(W ) = ∅); furthermore, since W/MW = V/M , also L2(W ) =
∅. Conversely, suppose that V ⊂ W is not immediate. If Γv 6= Γw, then
w(p) /∈ Γv for some p ∈ K[X], and thus w(p′) /∈ Γv for some irreducible
factor p′ of p; since K is algebraically closed, p′(X) = X−α and α ∈ L1(W ).
If Γv = Γw, then V/M (W/MW and this extension must be transcendental
(since K is algebraically closed, so is V/M). By the proof of [1, Proposition
2], we can find α, c ∈ K such that w(X − α) = v(c) and the image of X−α

c

17



is transcendental over V/M ; it follows that α ∈ L2(W ), which in particular
is nonempty.

(b)-(e) If L(W ) 6= ∅ and L(W ) 6= K, let α ∈ L(W ). Then, if β ∈ K we
have:

w(X−β) = w(X−α+α−β) =

{
w(X − α), if v(α− β) ≥ w(X − α)

v(α− β), if v(α− β) < w(X − α)
(1)

Suppose α ∈ L1(W ). Since w(X −β) is equal either to w(X −α) /∈ Γv or to
v(α− β), in the former case β ∈ L1(W ), while in the latter β /∈ L1(W ) and
w(X−β) < w(X−α). Moreover, L1(W ) = α+{x ∈ K | v(x) > w(X−α)},
and the latter set is an ideal.

If α ∈ L2(W ) and v(α− β) ≥ w(X − α), then w(X − β) = w(X − α) =
v(c) ∈ Γv, for some c ∈ K, so β ∈ L2(W ) because (X − β)/c = (X −
α)/c + (β − α)/c: over the residue field of W (X − α)/c is not in V/M so
it follows that the same holds for (X − β)/c. Similarly, if β ∈ L2(W ) it can
be proved that v(α − β) ≥ w(X − α) and so w(X − β) = w(X − α). If
v(α− β) < w(X − α), then as before w(X − β) < w(X − α). In particular,
L2(W ) = α + {x ∈ K | v(x) ≥ w(X − α)} = α + cV , and L1(W ) = ∅
(because α ∈ L2(W ) and (1)). Note that this argument shows that at most
one of the sets Li(W ), i = 1, 2, can be non-empty.

In all cases, w(X − α) ≥ w(X − β) for all α ∈ L(W ) and β ∈ K, and
equality occurs if and only if β ∈ L(W ).

Proposition 4.3. Let E ⊂ K be a pseudo-monotone sequence.

(a) If E is a strictly pseudo-monotone sequence, then L1(VE) = LE.

(b) If E is pseudo-stationary, then L2(VE) = LE.

In both cases, L(VE) is the set of pseudo-limits of E in K.

Proof. Suppose first that E = {sν}ν∈Λ is a strictly pseudo-monotone se-
quence. Let α ∈ K, and suppose w(X − α) = w(c) for some c ∈ K. Then,
(X − α)/c is a unit of W , and in particular for large ν both (sν − α)/c and
c/(sν − α) belong to V . Therefore, v(sν − α) = v(c) for large ν; hence,
w(X − α) ∈ Γv if and only if α /∈ LE . Thus, L1(VE) = LE ; further-
more, by Proposition 3.7(a), VE/ME = V/M , and so L2(VE) = ∅. Hence,
L(VE) = LE .

Suppose now that E is pseudo-stationary: then, by Proposition 3.7(e),
vE = vα,δE . By Proposition 4.2(e), L(VE) = L2(VE) = α+ cV , where c ∈ K
has value vE(X − α) = δE . By Lemma 2.5 this is precisely LE .

Example 4.4. Proposition 4.3 allows to show that there are extensions
of V to K(X) which cannot be realized as VE , for any pseudo-convergent
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sequence E ⊂ K. For example, consider the following valuation domain of
K(X) introduced in [18]:

V∞ = {φ ∈ K(X) | φ(∞) ∈ V },

where φ(∞) is defined as ψ(0), where ψ(X) = φ(1/X). Then, V∞ is the
image of V0 = {φ ∈ K(X) | φ(0) ∈ V } under the K-automorphism Φ
of K(X) sending X to 1/X. The valuation domain V0 is equal to VF ,
where F = {tν}ν∈Λ is a Cauchy sequence with limit 0. Consider E =
{sν = t−1

ν }ν∈Λ: by Proposition 3.8, E is pseudo-divergent with Br(E) = K
(since, as v(tν) is cofinal in Γv, v(sν) is coinitial). Thus, V∞ = VE has
L(V∞) = LE = K, which is different from L(VG) = LG for every pseudo-
convergent sequence G (by Lemma 2.6). In particular, V∞ 6= VG. Note also
that V∞ is contained in the DVR K[1/X](1/X) ([18, Proposition 2.2]).

Proposition 4.2(a) is false without the assumption on K: in fact, if
E ⊂ K is a pseudo-convergent sequence of algebraic type without pseudo-
limits in K, then, for some extension u of v to K, by Proposition 4.3 we have
L(UE) = LuE 6= ∅, so by contracting down to K we have L(VE) = LE = ∅
while V ⊂ VE is not immediate by Proposition 3.7.

Proposition 4.5. Suppose K is algebraically closed, and let W1,W2 be two
extensions of V to K(X). If either L1(W1) = L1(W2) 6= ∅ or L2(W1) =
L2(W2) 6= ∅, then W1 = W2.

Proof. Let L = L(W1) = L(W2); we shall use w to indicate either w1 or w2.
Fix also α ∈ L.

Let φ ∈ K(X), and write it as φ(X) = c
∏
γ∈Ω(X − γ)εγ , where Ω is the

multiset of critical points of φ, c ∈ K and εγ ∈ {−1,+1}.
For every γ /∈ L, by Proposition 4.2(b) w(X − γ) < w(X − α), so

w(X−γ) = v(α−γ); furthermore, if γ1, γ2 ∈ L, then w(X−γ1) = w(X−γ2).
Hence, w(φ) = w(ψ), where ψ(X) = d(X − α)t for some d ∈ K, t ∈ Z
(more precisely, d = c

∏
γ∈Ω\L(α − γ)εγ and t =

∑
γ∈Ω∩L εγ .) Note that, in

particular, we have both w1(φ) = w1(ψ) and w2(φ) = w2(ψ).
If t = 0, then w(φ) = v(d) and so its sign does not depend on whether

w = w1 or w = w2; i.e., φ ∈ W1 if and only if φ ∈ W2. If t 6= 0, then
ψ = (e(X − α)ε)|t|, where e ∈ K is such that e|t| = d and ε = t/|t|; thus,
ψ ∈Wi if and only if e(X − α)ε ∈Wi, for i = 1, 2, since a valuation domain
is integrally closed.

Suppose now that α ∈ L1(W ) and t > 0. Then,

w(e(X − α)) ≥ 0 ⇐⇒ w(X − α) ≥ v(e−1) ⇐⇒ w(X − α+ e−1) = v(e−1)

(since w(X−α) /∈ Γv), i.e., if and only if α−e−1 /∈ L1(W ). Since L1(W1) =
L1(W2), it follows that w1(e(X − α)) ≥ 0 if and only if w2(e(X − α)) ≥ 0,
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i.e., φ ∈W1 if and only if φ ∈W2, as claimed. Analogously, if t < 0, then

w

(
e

X − α

)
≥ 0 ⇐⇒ w(X − α) ≤ v(e) ⇐⇒ w(X − α+ e) = w(X − α),

that is, if and only if α− e ∈ L1(W ). As before, this implies that φ ∈W1 if
and only if φ ∈W2; hence, W1 = W2.

Suppose now that α ∈ L2(W ). If t > 0, then w(e(X − α)) ≥ 0 if and
only if w(X − α) > w(f) for all f ∈ K such that v(e−1) > v(f); that is,
if and only if w(X − α + f) = v(f) for all such f . This happens if and
only if α − f /∈ L for all these f ; since v(e−1) > v(f) depends only on V ,
it follows as before that w1(e(X − α)) ≥ 0 if and only if w2(e(X − α)) ≥ 0,
i.e., φ ∈ W1 if and only if φ ∈ W2, as claimed. If t < 0, then, in the same
way, w(e/(X − α)) ≥ 0 if and only if w(X − α) < v(f) for all f such that
v(f) < v(e); as above, this implies that φ ∈ W1 if and only if φ ∈ W2.
Hence, W1 = W2.

Example 4.6. In Proposition 4.5 we can’t drop the hypothesis that K is
algebraically closed: for example, take α ∈ K and let δ ∈ QΓv \Γv. Let E ⊂
K be a pseudo-convergent sequence having a pseudo-limit α and such that
Br(E) = I = {x ∈ K | v(x) > δ}; by Proposition 4.3(a), L1(VE) = α+I 6= ∅.
Take now the monomial valuation w = vα,δ: then, L1(W ) = α+I = L1(VE),
but W 6= VE since the value group of w is contained in the divisible hull of
the value group of v, while ΓvE = Γv ⊕∆EZ is not (by Proposition 3.7 and
Lemma 3.6).

Joining the previous propositions, we can prove that if K is algebraically
closed, then any extension of V to K(X) is in the form VE for some pseudo-
monotone sequence E; however, we postpone this result to Theorem 6.2 in
order to cover a more general case.

Proposition 4.7. Let E ⊂ K be a pseudo-monotone sequence, and let U
be an extension of V to K. Then UE is the unique common extension of U
and VE to K(X). Moreover, if F ⊂ K is another pseudo-monotone sequence
such that E and F are either both pseudo-stationary or both strictly pseudo-
monotone, then VE = VF if and only if UE = UF .

Proof. The first claim can be proved in the same way as [19, Theorem 5.7],
but we repeat the proof for clarity. Clearly, UE extends both U and VE .
Suppose there is another extension W of U and VE to K(X): then, by [4,
Chapt. VI, §8, 6., Corollary 1], there is a K(X)-automorphism σ of K(X)
such that UE = σ(W ). Let ρ = σ−1: then,

ρ(UE) ={ρ ◦ φ ∈ K(X) | φ(sν) ∈ U eventually} =

{ρ ◦ φ ∈ K(X) | σ ◦ ρ(φ(sν)) ∈ U eventually}.
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Since sν ∈ K and ρ|K is the identity, ρ(φ(sν)) = (ρ ◦ φ)(sν); hence,

ρ(UE) ={ρ ◦ φ ∈ K(X) | σ((ρ ◦ φ)(sν)) ∈ U eventually} =

{ψ ∈ K(X) | σ(ψ(sν)) ∈ U eventually}.

In particular, note that ρ(UE) = ρ(U)E .
Since both UE and W are extensions of U , for any t ∈ K we have that

t ∈ U if and only if σ(t) ∈ U ; in particular, this happens for t = ψ(sν). It
follows that ρ(UE) = W = UE , as claimed.

We prove now the last claim. One direction is clear, since VE = UE ∩K
and VF = UF ∩K. The other implication follows from the previous claim,
since UE is the unique common extension of VE and U and UF is the unique
common extension of VF and U .

5 Equivalence of pseudo-monotone sequences

Using the results of the previous sections, we can now tackle the problem of
when two pseudo-monotone sequences have the same associated extension
of V to K(X).

Proposition 5.1. Let E,F ⊂ K be two pseudo-monotone sequences that
are either both pseudo-stationary or both strictly pseudo-monotone. Let u be
an extension of v to K. If LuE 6= ∅, then VE = VF if and only if LuE = LuF .
Furthermore, if LE 6= ∅, then the previous condition is also equivalent to the
corresponding one over K.

Proof. By Proposition 4.7, it is enough to show that UE = UF if and only
if LuE = LuF .

Suppose LuE 6= ∅. Then U ⊂ UE is not immediate by Proposition 3.7, and
by Proposition 4.3 LuE = L2(UE) if E is pseudo-stationary and LuE = L1(UE)
if E is strictly pseudo-monotone. Hence, if LuE = LuF , then also LuF 6= ∅;
if E and F are both pseudo-stationary, then L2(UF ) = L2(UE) 6= ∅ and so
UE = UF by Proposition 4.5, while if E and F are strictly pseudo-monotone
the same conclusion holds by the same proposition. Conversely, if UE = UF ,
then LuE = L(UE) = L(UF ) = LuF and so E and F have the same pseudo-
limits (in K).

Suppose now LE 6= ∅. If LuE = LuF then LE = LF . Conversely, if LE =
LF , then by Lemma 2.5 Br(E) = Br(F ). In particular, Bru(E) = Bru(F )
so by the same Lemma LuE = LuF .

Remark 5.2.

1. Note that, under the same assumptions of Proposition 5.1, by Lemma
2.5 E and F have the same set of pseudo-limits (either over K or over
K) if and only if they have the same breadth ideal and they have at
least one pseudo-limit in common.
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2. It is possible to have VE = VF even if E is pseudo-convergent and F is
pseudo-divergent: for example, if I is not finitely generated and it is
not equal to cM for any c ∈ K, we can find both a pseudo-convergent
sequence E and a pseudo-divergent sequence F such that I = 0 + I
is the set of pseudo-limits of E and F (Lemmas 2.5 and 2.6). By
Proposition 5.1, VE = VF .

3. If E,F are pseudo-divergent sequences with Br(E) = K = Br(F )
(that is, if the gauges of E,F are not bounded from below, see §2.3.2),
then LE = K = LF , and so VE = VF . This extension is exactly the
valuation domain V∞ considered in Example 4.4.

Let E,F be two Cauchy sequences with limits xE , xF ∈ K, respectively.
By Proposition 5.1, VE = VF if and only if xE = xF ; by extending v to
the completion K̂, we see that this can happen even if the limits are not in
K. Thus, the condition VE = VF generalizes the notion of equivalence be-
tween Cauchy sequences: for this reason, we say that two pseudo-monotone
sequences are equivalent if VE = VF . We now want to characterize this
notion in a more intrinsic way, but we need to distinguish between the dif-
ferent types. The first result, involving pseudo-convergent sequences, is a
generalization of [19, Theorem 5.4].

Proposition 5.3. Let E = {sν}ν∈Λ, F = {tµ}µ∈Λ ⊂ K be pseudo-convergent
sequences. Then E and F are equivalent if and only if Br(E) = Br(F ) and,
for every κ ∈ Λ, there are ν0, µ0 ∈ Λ such that, whenever ν ≥ ν0, µ ≥ µ0,
we have v(sν − tµ) > v(tρ − tκ), for any ρ > κ.

Note that the condition of the proposition is not symmetrical in E and F ,
despite the fact that the definition of the equivalence relation is symmetric.

Proof. By Proposition 5.1, without loss of generality we can suppose that
K is algebraically closed. Let {δν}ν∈Λ, {δ′ν}ν∈Λ be the gauges of E and F ,
respectively. We will use the following remark: Br(E) ⊆ Br(F ) if and only
if for each µ ∈ Λ there exists ν ∈ Λ such that δ′µ ≤ δν .

We assume first that the conditions of the statement hold. Suppose that
E is of algebraic type: then, E has a pseudo-limit β ∈ K. Fix µ ∈ Λ. By the
above remark, there exists ν0 ∈ Λ such that for all ν ≥ ν0, δν > δ′µ. There
also exist ι0, µ0 ∈ Λ such that for all ν ≥ ι0, κ ≥ µ0, we have v(sν−tκ) > δ′µ.
Then, for ν ≥ max{ι0, ν0} and κ > max{µ, µ0} we have

v(β − tµ) = v(β − sν + sν − tκ + tκ − tµ) = δ′µ

so that β is a pseudo-limit of F . Therefore, F is of algebraic type and
LE ⊆ LF . The reverse inclusion is proved symmetrically, and VE = VF
follows from Proposition 5.1.

Suppose now that E is of transcendental type: by the previous part
of the proof, also F must be of transcendental type. We can repeat the
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previous reasoning by using X instead of β (since X is a pseudo-limit of E
with respect to vE : see [19, Theorem 3.8] or Theorem 3.4); this proves that
X is a pseudo-limit of F with respect to vF . The fact that VE = VF now
follows from [10, Theorem 2].

Assume now that VE = VF . Suppose first that E is of algebraic type:
then, LE 6= ∅, and by Proposition 5.1 we must have LF = LE , and thus F
is also of algebraic type. In particular, Br(E) = Br(F ). Let α ∈ LE = LF .
Then,

v(sν − tµ) = v(sν − α+ α− tµ) ≥ min{δν , δ′µ}.

By the remark, for every κ there is an ι0 such that δι0 > δ′κ; choosing µ0 > κ
we have that E and F satisfy the conditions of the statement.

Suppose now that E is of transcendental type; as before, this implies
that also F is of transcendental type. Without loss of generality we may
suppose that Br(F ) ⊆ Br(E). If this containment is strict, then there exists
a c ∈ Br(E) \ Br(F ). Then, c

X−α is in VE for each α ∈ K (because X is a
pseudo-limit of E with respect to vE and E has no pseudo-limits in K). On
the other hand, for every ν we have c

X−tν /∈ VF , a contradiction. Therefore
Br(E) = Br(F ). We know that X is a pseudo-limit of F with respect to vF ,
so that {vF (X − tµ)}µ∈Λ is a (eventually) strictly increasing sequence. In
particular, since VE = VF implies that λ ◦ vE = vF for some isomorphism
of totally ordered groups λ : ΓvE → ΓvF , it follows that {vE(X − tµ)}µ∈Λ

is a (eventually) strictly increasing sequence, so that X is a pseudo-limit of
F with respect to vE . Thus vE(X − tµ) = δ′µ, for each µ ∈ Λ (sufficiently
large). The proof now proceeds as above, replacing a pseudo-limit α of E
and F by X (which is a pseudo-limit of E and F with respect to vE). Hence,
the conditions of the statement holds.

The cases of pseudo-divergent and pseudo-stationary sequences are very
similar, with the further simplification that in these cases we do not need to
consider sequences of transcendental type (which do not exist).

Proposition 5.4. Let E = {sν}ν∈Λ, F = {tµ}µ∈Λ ⊂ K be pseudo-divergent
sequences. Then E and F are equivalent if and only if Br(E) = Br(F ) and
there exist ν0, µ0 ∈ Λ such that for all ν ≥ ν0, µ ≥ µ0 there exists κ ∈ Λ
such that v(sν − tµ) ≥ v(tρ − tκ), for any ρ < κ.

Note that the above condition amounts to saying that sν−tµ is eventually
in the breadth ideal Br(E) = Br(F ).

The following is the analogous result for pseudo-stationary sequences.

Proposition 5.5. Let E = {sν}ν∈Λ, F = {tµ}µ∈Λ ⊂ K be pseudo-stationary
sequences with breadth δE and δF , respectively. Then E and F are equivalent
if and only if δE = δF = δ and v(sν − tµ) ≥ δ for all ν, µ ∈ Λ.
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Proof. The conditions of the statement say (using Lemma 2.5) that E ⊂ LF
and F ⊂ LE . By the same Lemma, this is equivalent to LE = LF , which is
equivalent to VE = VF by Proposition 5.1.

6 A generalized Fundamentalsatz

In general, not all the extensions of V to K(X) can be realized via a pseudo-
monotone sequence contained in K. For example, let V be the ring of p-
adic integers Zp, for some prime p ∈ Z. It is not difficult to see that for
α ∈ Qp \ Qp, the valuation domain Vp,α = {φ ∈ Qp(X) | φ(α) ∈ Zp} of
Qp(X), where Zp is the unique valuation domain of Qp, is not of the form
VE , for any pseudo-monotone sequence E ⊂ Qp (for example, by Proposition
3.7 and [18, Proposition 2.2 & Theorem 3.2], see also the proof of Theorem
6.2).

In this section, we show when all extensions of V to K(X) are induced
by pseudo-monotone sequences in K. We start with a lemma which allows
us to reduce to the algebraically closed case.

Lemma 6.1. Let L be an extension of K and U a valuation domain of L
lying over V such that Γu = Γv. Let F ⊂ L be a pseudo-monotone sequence
with respect to u having a pseudo-limit β ∈ K. Then:

(a) if F is strictly pseudo-monotone, there is a sequence E ⊂ K of the
same kind as F that is equivalent to F (with respect to u);

(b) if F is pseudo-stationary and the residue field of V is infinite, there
is a pseudo-stationary sequence E ⊂ K that is equivalent to F (with
respect to u).

Proof. Let F = {tν}ν∈Λ.
(a) For every ν, there is a cν ∈ K such that u(tν − β) = u(cν) = δν ; let

sν = cν + β and let E = {sν}ν∈Λ. Then, E ⊂ K (since β ∈ K) and

u(sµ − sν) = u(cµ + β − cν − β) = u(cµ − cν) = δν

for every µ > ν, so E is pseudo-monotone of the same kind as F and the
gauges of E and F coincide; in particular, Bru(E) = Bru(F ). By Proposition
5.1, E and F are equivalent.

(b) Since u(tν − β) = δ ∈ Γv and the residue field of V is infinite, we
can find an infinite set {cν}ν∈Λ ⊂ V such that u(cν − β) = δ and such that
u(cν − cµ) = δ for every ν 6= µ. Setting sν = cν + β, as in the previous
case we can take E = {sν}ν∈Λ, and E and F are equivalent by Proposition
5.1.
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Theorem 6.2. Let V be a valuation domain with quotient field K. Then,
every extension W of V to K(X) is of the form W = VE for some pseudo-
monotone sequence E ⊂ K if and only if K̂ is algebraically closed. In this
case, we have the following.

(a) If V ⊂ W is immediate, then E is necessarily a pseudo-convergent
sequence of transcendental type.

(b) If V ⊂W is not immediate, then:

(b1) if L(W ) = ∅, then E is a pseudo-convergent Cauchy sequence of
algebraic type whose limit is in K̂ \K;

(b2) if L1(W ) = α + I 6= ∅ and I is a divisorial fractional ideal, then
E can be taken to be pseudo-convergent of algebraic type;

(b3) if L1(W ) = α+ I 6= ∅ and I is not a principal ideal, then E can
be taken to be pseudo-divergent;

(b4) if L2(W ) = α+ I 6= ∅, then E is necessarily a pseudo-stationary
sequence.

Note that, since every nondivisorial ideal is nonprincipal, cases (b2) and
(b3) cover all possibilities. Furthermore, these two cases are not mutually
exclusive: see Remark 5.2.

Proof. Throughout the proof we will use the fact that K̂ is algebraically
closed if and only if K embeds in K̂ (which in turn follows from the fact
that the completion of an algebraically closed field is algebraically closed
[22, §15.3, Theorem 1]). Loosely speaking, this condition holds if and only
if K is dense in its algebraic closure K.

Suppose that K̂ is not algebraically closed. Then by above there exists
α ∈ K such that K(α) cannot be embedded into K̂, that is, α is not the
limit of any Cauchy sequence in K. Let U be an extension of V to K
and let F ⊂ K be a pseudo-convergent Cauchy sequence with limit α. Let
W = UF ∩K(X): we claim that W 6= VE for any pseudo-monotone sequence
E. Indeed, if W = VE for some pseudo-monotone sequence E ⊂ K, by
Proposition 4.7 UE is the only common extension of U and VE to K(X),
so that UE = UF . By Proposition 5.1, we must have LuE = LuF = {α}
and Bru(E) = Bru(F ) = (0) and thus LE = LuE ∩ K = ∅; hence, E ⊂ K
should be a pseudo-convergent Cauchy sequence with limit α (Lemma 2.5).
However, this is impossible by the choice of α, and so W 6= VE for any
pseudo-monotone sequence E.

Suppose now that K̂ is algebraically closed, and let W be a common
extension of V̂ and W to K̂(X).

If V̂ ⊂ W is immediate, then also V ⊂ W is immediate (since V ⊂ V̂
is); by Kaplansky’s Theorem [10, Theorem 2], there is a pseudo-convergent
sequence E ⊂ K such that W = VE .
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Suppose V̂ ⊂ W is not immediate. By Proposition 4.2(a), L(W) ⊆ K̂ is
nonempty, say equal to α + J for some α ∈ K̂ and some J that is either a
fractional ideal of V̂ or the whole K̂.

If J = (0) let E ⊂ K be a pseudo-convergent Cauchy sequence having
limit α: then, L(V̂E) = L1(V̂E) = {α} = L1(W) = L(W), and by Proposi-
tion 4.5 it follows that W = V̂E . Hence, W = W ∩K = V̂E ∩K = VE . In
particular, if α ∈ K then L(W ) = {α}, while if α ∈ K̂ \K then L(W ) = ∅;
furthermore, by Proposition 3.7 if V ⊂ W is not immediate, then E must
be a sequence of algebraic type.

Suppose now that J 6= (0). Then, the open set α + J must contain an
element β of K, and in particular α + J = β + J . Using Lemma 2.6, we
construct a pseudo-monotone sequence F ⊂ K̂ with breadth ideal J and
with β as pseudo-limit, with the following properties:

� if L1(W) 6= ∅ and J is a strictly divisorial fractional ideal, we take F
to be a pseudo-convergent sequence;

� if L1(W) 6= ∅ and J is a nondivisorial fractional ideal, we take F to be

a pseudo-divergent sequence (note that, in this case, J = cM̂ is not
principal);

� if L1(W) = K̂, we take F to be a pseudo-divergent sequence whose
gauge is coinitial in Γv;

� if L2(W) 6= ∅, we take F to be a pseudo-stationary sequence.

Note that the first case falls in (b2), the second and the third ones in (b3)
and the fourth one in (b4).

In all cases, W = V̂F by Proposition 4.5 (in the first three cases using
L1 and in the last one using L2). Since V ⊂ V̂ is immediate, we can apply
Lemma 6.1 to find a pseudo-monotone sequence E ⊂ K that is equivalent
to F ; hence, VE = V̂F ∩K =W ∩K = W . The theorem is now proved.

Remark 6.3. By Proposition 3.7 and the main Theorem 6.2, if K̂ is alge-
braically closed, then every extension of V to K(X) which is not immediate
is a monomial valuation. This result was already known to hold but only
with the stronger assumption that K is algebraically closed, see [2, pp. 286-
289].

We remark that a more direct approach to the proof of Theorem 6.2 can
be given by considering the set w(X,K) = {w(X − a) | a ∈ K}, which is a
subset of Γw. If w(X,K) has no maximum, then, exactly as in the original
proof of Ostrowski, we can extract from w(X,K) a cofinal sequence which
determines a pseudo-convergent sequence E in K of transcendental type
such that W = VE . If instead w(X,K) has a maximum ∆w = w(X − a0),
then, following again Ostrowski’s proof, one can show that W is a monomial
valuation of the form Va0,∆w : according to whether ∆w is in Γv or not (and,
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in the latter case, depending on the properties of the cut induced by ∆w on
Γv), we can find a pseudo-monotone sequence E ⊂ K with a0 as pseudo-
limit and such that W = VE . This approach can be connected to the one
given above by noting that Γv \ w(X,K) = v(J) (where J is the ideal
defined in the proof of Theorem 6.2), and that if ∆w exists then we have
{a ∈ K | w(X − a) = ∆w} = L(W ).

When w(X,K) has a maximum and V has rank 1, Ostrowski proved in
his Fundamentalsatz [16, p. 379] that the rank one valuation associated to
W can be realized through a pseudo-convergent sequence F = {sν}ν∈Λ ⊂ K
by means of the map defined as wF (φ) = limν→∞ v(φ(sν)), for each φ ∈
K(X) (where the limit is taken in R). If W = VE , where E ⊂ L is a
pseudo-stationary sequence, as in Theorem 6.2(b4), then E and F have the
same set of pseudo-limits, and in particular they have the same breadth.
Furthermore, by Proposition 7.1 below, in this case we have VF ⊂W = VE .
See also [19] for other results regarding the valuation wF introduced by
Ostrowski.

An immediate corollary of Theorem 6.2 is that, for any field K, if U is an
extension of V to K, then every extension W of V to K(X) can be written
as the contraction of UE to K(X), namely U ∩ K(X), where E ⊂ K is a
pseudo-monotone sequence with respect to U ; furthermore, in view of the
examples above, we cannot always choose E to be contained in K.

Remark 6.4. The hypothesis that K̂ is algebraically closed is weaker than
the hypothesis that K is algebraically closed; we give a few examples.

1. Let K = Q∩R, where Q is the algebraic closure of Q, and let V be an
extension to K of Z(5Z). Then, i belongs to the completion K̂, since

the polynomial X2 + 1 has a root in Z/5Z; therefore, K(i) = Q can
be embedded into K̂, so K̂ is algebraically closed while K is not.

2. If K is separably closed, then K̂ is algebraically closed (it is enough
to adapt the proof of [20, Chapter 2, (N)] to the general case).

3. Suppose that V has rank 1 and that the residue field k has character-
istic 0. Then, K̂ is algebraically closed if and only if k is algebraically
closed and the value group Γv is divisible. Indeed, these two conditions
are necessary, since completion preserves value group and residue field.
Conversely, suppose that the two conditions hold. When V has rank
1 then K̂ is henselian, i.e. v̂ has a unique extension to the algebraic
closure of K̂. Since k has characteristic 0, all finite extensions of K are
defectless [7, Corollary 20.23], and thus the fundamental inequality is

an equality and thus the degree [K̂ : K̂] = 1, i.e., K̂ is algebraically
closed.
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7 Geometrical interpretation

Throughout this section, we suppose that the maximal ideal M of V is
not finitely generated, and that its residue field k is infinite. We also fix
α ∈ K. For any δ ∈ Γv, we denote B(α, δ) = {x ∈ K | v(α − x) ≥ δ} and
B̊(α, δ) = {x ∈ K | v(α− x) > δ} the closed and open ball (respectively) of
center α and radius δ.

By Lemma 2.6, we can find both a pseudo-convergent sequence E and
a pseudo-stationary sequence F such that LE = LF = α + cV = B(α, δ),
where δ = v(c), for some c ∈ K; furthermore, again by Lemma 2.6, for
every z ∈ α + cV we can find a pseudo-divergent sequence Dz such that
LDz = z + cM = B̊(z, δ). Note that by Lemma 2.5 Dz ⊂ B̊(z, δ). In
geometrical terms, E and F are associated to the closed ball B(α, δ), while
each Dz is associated to the open ball B̊(z, δ), which is contained in B(α, δ)
and has the same radius. In the next proposition we show the containments
among the valuation domains associated to these sequences.

Proposition 7.1. Preserve the notation above, and let z, w ∈ B(α, δ).
Then, VF properly contains both VE and VDz , VE 6= VDz , and VDz = VDw if
and only if z − w ∈ cM .

Proof. Let U be an extension of V to K and let z ∈ B(α, δ): then

LuDz = z + cMU ( LuE = LuF = α+ cU

Let φ ∈ K(X) and, for any sequence G, let λG be the dominating degree of
φ with respect to G.

Since LuE = LuF , we have λE = λF ; if E = {sν}ν∈Λ and {δν}ν∈Λ is the
gauge of E, by Proposition 3.2 for large ν we have v(φ(sν)) = λEδν + γ,

where γ = u
(
φ
φS

(α)
)

. If φ ∈ VE , then v(φ(sν)) ≥ 0 for all ν sufficiently

large; since δν ↗ δ, it follows that λEδ + γ ≥ 0. However, if F = {tν}ν∈Λ,
then applying again Proposition 3.2 we have v(φ(tν)) = λF δ+ γ = λEδ+ γ,
where γ is the same as the previous case; it follows that v(φ(tν)) ≥ 0 for
large ν, i.e., φ ∈ VF .

Fix now z ∈ B(α, δ) and let Dz = {rν}ν∈Λ. Let {δ′ν}ν∈Λ be the gauge of
Dz; by mimicking the proof of Proposition 3.2, we have

φ(X) = d
∏

α∈LuDz∩S
(X − α)εα

∏
β∈(LuF \L

u
Dz

)∩S

(X − β)εβ
∏

γ /∈LuF∩S

(X − γ)εγ ,

for some d ∈ K, where S is the multiset of critical points of φ. Hence, for
large ν, v(φ(rν)) = λDzδ

′
ν + (λF − λDz)δ + γ. As in the previous case, if

φ ∈ VDz then v(φ(rν)) ≥ 0 for large ν, and so 0 ≤ λF δ + γ = v(φ(tν)), i.e.,
φ ∈ VF .

Thus VE and the VDz are contained in VF ; the containment is strict
by Proposition 3.7, since VF is residually transcendental over V while the

28



others are not. The last two claims follow from Lemma 2.5 and Proposition
5.1 by comparing the set of the pseudo-limits of the sequences involved.

Consider now the quotient map π : VF −→ VF /MF . By Proposition
3.7(c), VF /MF ' k(t), where t is the image of X−α

c . Let W be either VE
or VDz for some z ∈ B(α, δ): then, MF ⊂ W , and thus we can consider the
quotient π(W ) = W/MF , obtaining the following commutative diagram:

V �
� //

π
����

W �
� //

π
����

VF

π
����

V/M = k �
� //W/MF

� � // k(t).

(2)

In particular, W/MF is a (proper) valuation domain of k(t) containing k:
hence, by [6, Chapter 1, §3], W/MF must be equal either to k[t](f(t)), for
some irreducible polynomial f ∈ k[t], or to k[1/t](1/t). In particular, π
induces a one-to-one correspondence between the valuation domains of k(t)
containing k and the valuation domains of K(X) contained in VF . The
strictly pseudo-monotone sequences we considered above are exactly the
linear case, as we show next.

Proposition 7.2. Preserve the notation above. Then:

(a) π(VE) = k[1/t](1/t);

(b) π(VDz) = k[t](t−θ(z)), where θ(z) = π
(
z−α
c

)
;

(c) π−1(k[t](t−x)) = VDα+yc, where y is an element of V satisfying π(y) =
x.

Proof. Let φ(X) = X−α
c : then, as in the previous discussion, t = π(φ). The

ring k[1/t](1/t) is the only valuation domain of k(t) containing k such that
1/t belongs to the maximal ideal: hence, in order to show that π(VE) =
k[1/t](1/t) we only need to show that 1/φ ∈ ME . This follows immediately
from the fact that v(φ(sν)) = δν − δ < 0, where E = {sν}ν∈Λ and {δν}ν∈Λ

is the gauge of E.
Analogously, in order to show that π(VDz) = k[t](t−θ(z)), we need to show

that t− θ(z) is in the maximal ideal of π(VDz) or, equivalently, that

φ(X)− z − α
c

=
X − z
c
∈MDz .

This is an immediate consequence of the definition of z and c, and the claim
is proved.

The last point follows by the fact that θ(α+ yc) = π
(α+yc−α

c

)
= π(y) =

x.
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If k is algebraically closed (in particular, if K is algebraically closed),
then all irreducible polynomials of k[t] are linear; thus, Proposition 7.2 de-
scribes all the subextensions of VF . When k is not algebraically closed, on
the other hand, it follows that some of the valuation rings of k(t) containing
k cannot be obtained by pseudo-divergent sequences contained in K in the
same way as in Proposition 7.2; however, we can construct them by using
pseudo-divergent sequences in K with respect to a fixed extension of V .

Given an extension u of v to K we denote by D(U) the decomposition
group of U in Gal(K/K), that is, D(U) = {σ ∈ Gal(K/K) | σ(U) = U}.

Proposition 7.3. Let W be an extension of V to K(X) which is properly
contained in VF , and suppose that π(W ) = k[t](f(t)) for some nonlinear

irreducible f ∈ k[t]. Let u be an extension of v to K.

(a) There exists z ∈ LuF such that W = UDz ∩ K(X), where Dz ⊂
B̊u(z, δ) ⊂ K is pseudo-divergent.

Let π : UF → k(t) be the canonical residue map.

(b) θ(z) = π
(
z−α
c

)
is a zero of f(t).

(c) Let z, w ∈ LuF . Then the following are equivalent:

(i) UDz ∩K(X) = UDw ∩K(X);

(ii) θ(z) and θ(w) are conjugate over k;

(iii) ρ(z)− w ∈ cMU for some ρ ∈ D(U).

In particular, the number of extensions of W to K(X) is equal to the
number of distinct roots of f in k.

Proof. Let W be an extension of W to K(X) and let U =W ∩K; then, U
is an extension of V . The diagram (2) lifts to

U �
� //

π ����

W �
� //

π
����

UF

π ����
U/MU = k �

� //W/MU
� � // k(t).

(3)

By Proposition 7.2, W is equal to UDz , for some z ∈ LuF = α+ cU , and thus
W = UDz ∩K(X), as desired.

(b) If UDz is an extension of W to K(X), then π(UDz) = k[t](t−θ(z)) is

an extension of π(W ) = k[t](f(t)) to k(t). It is straightforward to see that

this implies that t− θ(z) is a factor of f(t) in k[t], i.e., that θ(z) is a zero of
f(t).

(c) The equivalence of (i) and (ii) follows from the previous point.
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(ii) ⇐⇒ (iii) There is a surjective map from the decomposition group
D(U) of U to the Galois group Gal(k/k), where ρ ∈ D(U) goes to the
map ρ sending x ∈ k to π(ρ(y)), where y satisfies π(y) = x [4, Chapt. V,
§2.2, Proposition 6(ii)]. Hence, if θ(z) and θ(w) are conjugates there is a
ρ ∈ Gal(k/k) such that ρ(θ(z)) = θ(w), and we have

ρ

(
π

(
z − α
c

))
= π

(
w − α
c

)
⇐⇒ π

(
ρ

(
z − α
c

))
= π

(
w − α
c

)
⇐⇒ ρ

(
z − α
c

)
− w − α

c
∈MU .

Since α, c ∈ K, the last condition holds if and only if ρ(z) − w ∈ cMU .
Conversely, if ρ(z)−w ∈ cMU , then we can follow the same reasoning in the
opposite order, and so θ(z) and θ(w) are conjugate over k.

We conclude by reproving Ostrowski’s Fundamentalsatz. Recall that, if
V has rank 1, we can always consider v as a (not necessarily surjective) map
from K \ {0} to R.

Theorem 7.4. Suppose that v is a valuation of rank 1 and K is algebraically
closed. Let w be an extension of v to K(X) of rank 1. Then the following
hold:

(a) there is a pseudo-convergent sequence E = {sν}ν∈Λ ⊂ K such that

w(φ) = lim
ν→∞

v(φ(sν))

for every nonzero φ ∈ K(X);

(b) if V ⊂ W is not immediate, there is also a pseudo-divergent sequence
F = {tν}ν∈Λ such that

w(φ) = lim
ν→∞

v(φ(tν))

for every nonzero φ ∈ K(X).

Proof. If V ⊂ W is immediate, then by [10, Theorems 1 and 3] W = VE
for some pseudo-convergent sequence E of transcendental type and w(φ) =
vE(φ) = v(φ(sν)) for ν ≥ N(φ).

Suppose now that V ⊂ W is not immediate. By Theorem 6.2, there is
a pseudo-monotone sequence G ⊂ K such that W = VG with LG 6= ∅. We
distinguish two cases.

Suppose first that G is pseudo-stationary. Then, Br(G) = cV , and

vG(φ) = λφδ + γ, where λφ = degdomG(φ), δ = v(c) and γ = v
(
φ
φS

(β)
)

for some pseudo-limit β of G in K. Let E = {sν}ν∈Λ ⊂ K be a pseudo-
convergent sequence such that LE = β + cV = LG (Lemma 2.6); then,
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degdomE(φ) = degdomG(φ) and the gauge {δν}ν∈Λ of E tends to δ, the
gauge of G. By Proposition 3.2,

lim
ν→∞

v(φ(sν)) = lim
ν→∞

(λφδν+γ) = λφ

(
lim
ν→∞

δν

)
+γ = λφδ+γ = vG(φ) = w(φ),

and the claim is proved. In the same way, we can find a pseudo-divergent
sequence F = {tν}ν∈Λ ⊂ K such that LF = β + cM ; as in the proof of
Proposition 7.1, setting {δ′ν}ν∈Λ to be the gauge of F , we have (for large ν)

v(φ(tν)) = λ′δ′ν + (λφ − λ′)δ + γ,

where λ′ = degdomF (φ). Hence, v(φ(tν))→ λφδ + γ = w(φ), as claimed.
Suppose now that G is strictly pseudo-monotone, and let β ∈ LG. If

Br(G) is equal to cV or to cM for some c ∈ K, then we can find a pseudo-
stationary sequenceG′ with breadth ideal cV and having β as a pseudo-limit;
by the discussion at the beginning of the section and by Proposition 7.1, VG′

would properly contain VG, against the fact that VG has rank one. Therefore,
Br(G) is both strictly divisorial and nonprincipal; by Lemma 2.6 we can find
a pseudo-convergent sequence E and a pseudo-divergent sequence F in K
such that LE = LF = LG = β + Br(G) (note that one between E and F
could be taken equal to G). In particular, Br(E) = Br(F ) = Br(G) and so
δE = δF = δ.

Since W = VE has rank 1, by [19, Theorem 4.9(c)] the valuation relative
to VE is exactly the one mapping φ ∈ K(X) to

λδ + γ = lim
ν→∞

(λδν + γ)

where λ = degdomE(φ) = degdomF (φ) and γ = v
(
φ
φS

(β)
)

. Since δ is also

the limit of δ′ν , the claim is proved.
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and Prüfer domains of integer-valued polynomials. J. Commut. Algebra,
8(3):411–429, 2016.

[14] Saunders MacLane. A construction for absolute values in polynomial
rings. Trans. Amer. Math. Soc., 40(3):363–395, 1936.

[15] Donald L. McQuillan. On a theorem of R. Gilmer. J. Number Theory,
39(3):245–250, 1991.

[16] Alexander Ostrowski. Untersuchungen zur arthmetischen Theorie der
Körper. Math. Z., 39(1):269–404, 1935.
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