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Complex interactions between tumor and host cells regulate systemic tumor dissemination, a process that begins early at the
primary tumor site and goes on until tumor cells detach themselves from the tumor mass and start migrating into the blood or
lymphatic vessels. Metastatic cells colonize the target organs and are capable of surviving and growing at distant sites. In this
context, osteopontin (OPN) appears to be a key determinant of the crosstalk between cancer cells and the host
microenvironment, which in turn modulates immune evasion. OPN is overexpressed in several human carcinomas and has been
implicated in inflammation, tumor progression, and metastasis. Thus, it represents one of the most attracting targets for cancer
therapy. Within the tumor mass, OPN is secreted in various forms either by the tumor itself or by stroma cells, and it can exert
either pro- or antitumorigenic effects according to the cell type and tumor microenvironment. Thus, targeting OPN for
therapeutic purposes needs to take into account the heterogeneous functions of the multiple OPN forms with regard to cancer
formation and progression. In this review, we will describe the role of systemic, tumor-derived, and stroma-derived OPN,
highlighting its pivotal role at the crossroads of inflammation and tumor progression.

1. Inflammation and Cancer

Inflammation is a physiological response of the body
aimed to remove harmful stimuli, including damaged cells,
irritants, pathogens, and sterile injuries, such as cancer,
and then to begin the healing process. Several proinflam-
matory cytokines released in the first steps of inflamma-
tion can induce the activation of regeneration-promoting
pathways. Among the downstream signals, IL-6 can

activate proregenerative transcription factors, such as YAP,
STAT3, and Notch [1]. During inflammation, fibroblast
recruitment and fibrosis are frequently observed. Fibroblasts
produce collagen and other extracellular matrix components
in the tumor microenvironment thus stimulating cancer cell
proliferation and angiogenesis.

Myeloid cells, including macrophages and neutrophils,
are the first immune cells involved in inflammation and are
abundant in the tumor microenvironment [2, 3]. Tumor-
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associated macrophages (TAMs) play a key role in cancer
development and progression through stimulation of cell
survival and proliferation, angiogenesis, invasiveness and
motility, and suppression of CTL responses [4]. During the
early stages of tumor development, TAMs seem to acquire
a classical activated M1 phenotype secreting proinflamma-
tory mediators, such as IL-1, IL-6, TNFα, IL-23, and iNOS,
which are involved in tumor initiation [5]. During tumor
progression, molecules produced by immune and cancer
cells, such as IL-4, CSF1, and TGF-β, contribute to the switch
of TAMs to the alternative M2 phenotype-producing anti-
inflammatory and proangiogenic molecules, such as IL-10,
arginase 1, TGF-β, and vascular growth factor (VEGF)
supporting the tumor growth [4]. Moreover, in this phase,
fibroblasts can secrete several cytokines, chemokines, and
other molecules, including osteopontin (OPN) [6, 7].

2. Osteopontin (OPN) in Inflammation

Osteopontin (OPN) is an extracellular matrix protein also
referred to as bone sialoprotein 1 (BSP-1), secreted phospho-
protein 1 (SPP1), and early T lymphocyte activation 1 (ETA-
1). This plurality of names reflects the involvement of OPN
in multiple physiological and pathological processes [8, 9].

The main role of OPN during inflammation is to trigger
different leucocytes eliciting a functional response and induc-
ing cytokine secretion, in order to shape the entire immune
response (Figure 1).

2.1. Macrophages. As an integrin-binding protein, OPN pri-
marily not only stimulates migration, accumulation, and
retention of macrophages at sites of injury but can also mod-
ulate their cytokine production by promoting Th1 cell-
mediated immunity and stimulating their differentiation
from monocytes. OPN controls several immune cell func-
tions including monocyte adhesion, migration, differentia-
tion, and phagocytosis [10].

Migration of macrophages is influenced by interaction of
OPN with α4 and α9 integrins, but a role is played also by its
interaction with CD44. Moreover, OPN inhibits macrophage
apoptosis by interacting with α4 integrin and CD44 [11, 12].

OPN stimulates IL-12 and inhibits IL-10 production at
sites of inflammation in macrophages, with a strong proin-
flammatory effect [13]. Wound healing studies in mice
showed that OPN is expressed at high levels in infiltrating
leukocytes during the acute phase of inflammation and regu-
lates leukocyte infiltration and activation as well as tissue
remodeling. Remarkably, OPN downregulation at the site
of wound reduced macrophage infiltration and enhanced
wound healing [14].

Furthermore, OPN induces the expression of matrix
metalloproteinases (MMP), in particular MMP-2 and
MMP-9, which are involved in matrix degradation, cell
migration, and tissue remodeling [15]. OPN activates the
transcription factors AP-1 and NF-κB thus regulating the
production of inflammatory mediators during cell-mediated
immunity. For example, OPN induces PI3-kinase-
dependent Akt phosphorylation and enhances the interac-
tion between phosphorylated Akt and IKKα/β through the

engagement of CD44 and αvβ3 integrin. Moreover, OPN
increases NF-κB activation through phosphorylation and
degradation of IκBα by inducing the IKKα/β activity [16].

2.2. Dendritic Cells (DCs). OPN is involved in conventional
DC migration by interacting with CD44 and αv integrin
[17]. OPN is expressed at a higher level in immature DCs
than in mature DCs; thus, it was suggested that OPN acts
as an autocrine and/or paracrine signal for DC maturation
[18]. Moreover, OPN acts as a prosurvival signal for DCs
since OPN blockade results in their reduced expression of
costimulatory and MHC class II molecules and increased
apoptosis [18]. Following activation by OPN, DCs produce
IL-12, in a CD40 ligand- and IFN-γ-independent manner,
and increase expression of MHC class II molecules, CD80/
CD86, and ICAM-1, which enhances the their Th1-
polarizing ability [19]. Intriguingly, an intracellular form of
OPN (iOPN, see below) inhibits IL-27 expression in conven-
tional DCs and enhances their ability to promote proinflam-
matory T helper type 17 (Th17). In plasmacytoid DC (pDC),
iOPN supports IL-12 secretion and promotes IFNα expres-
sion through interferon regulatory factor (IRF) 7 activation.

2.3. T Cells. OPN is involved in Th cell polarization by
enhancing Th1 and Th17 differentiation and inhibiting Th2
cytokine expression. By interacting with CD44 in Th cells,
OPN induces hypomethylation of IFN-γ and IL-17α genes
enhancing production of IFN-γ and IL-17A. Moreover,
CD44 deficiency promotes hypermethylation of IFN-γ and
IL-17α and hypomethylation of IL-4 gene, leading to Th2 cell
differentiation [20]. Recent data detected a key role of iOPN
in T follicular helper (TFH) differentiation.

2.4. Neutrophils. It has been shown that OPN acts on neutro-
phil recruitment but has no influence on their phagocytic
activity and superoxide, cytokine, and MMP-9 production
[21]. In vitro assays showed that the RGD sequence in
OPN is required for neutrophil migration [22] and
OPN-induced neutrophil migration is dependent on ERK
and P38 MAP kinases activation [23]. By contrast, the
OPN interaction with CD44 seems to play a minor role
in neutrophils [21].

2.5. Natural Killer.OPN plays a key role in increasing NK cell
migration and activation. In a mouse model of ischemia- and
reperfusion-induced kidney injury, OPN has been shown to
be involved in NK cell-mediated tubular epithelial cell apo-
ptosis [24]. IL-15 induces iOPN expression in NK cells
[25], which results in increased mTOR activity leading to
NK cell expansion and differentiation. Moreover, iOPN
seems to play a role in differentiation of long-lived NK cells
with a memory-like phenotype following homeostatic
expansion [26].

3. OPN in Cancer

OPN is involved in multiple physiological and pathological
processes, starting from inflammation. In particular, OPN
plays a key role in cancer progression by enhancing prolifer-
ation, survival, motility, and invasion of tumor cells in breast
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cancer, hepatic carcinoma, prostate cancer, colorectal cancer,
lung cancer, and melanoma [27–33]. Overexpression of OPN
has been detected at the tumor sites and in the blood of
patients, and its levels correlate with tumor stage and aggres-
siveness, suggesting that OPN can be a diagnostic and prog-
nostic biomarker for several cancers [29].

OPN is expressed by many cell types such as bone cells
(e.g., osteoblasts, osteoclasts, and osteocytes), immune cells
(e.g., T cells, B cells, natural killer cells, and macrophages),
neural cells, epithelial cells, fibroblasts, smooth muscle cells,
and endothelial cells [34–36] and in several tumor-derived
cell lines. It is distributed in a variety of tissues and is secreted
in body fluids including blood, urine, bile, and milk.

4. OPN General Features

This plurality of OPN isoforms, due to polymorphisms in its
gene, posttranslational modifications (PTMs), and binding
partners, reflects its broad functions.

4.1. OPN Gene.OPN is a highly acidic protein encoded by the
SPP1 gene, located in chromosome 4 (4q22.1). The gene
comprises 7 exons with the translation start codon in exon
2. A large number of polymorphisms can be found scattered
throughout the gene and a few of them have been associated
with a higher risk of developing autoimmune diseases and
cancer [37, 38]. In autoimmune diseases, risk alleles of
OPN may support production of high levels of OPN and
cooperate with other alterations such as apoptosis defects
[39–48]. The expression of OPN is influenced by genetic
polymorphisms in its promoter [49] and by the presence of
several types of regulatory and transcription factor-binding
sequences. One of the most studied OPN single-nucleotide

polymorphism is rs11730582, whose −443 CC genotype has
been associated with higher expression of OPN and increased
cancer risk in acute myeloid leukemia, glioma, and papillary
thyroid cancer. Interestingly, in other tumors such as hepato-
cellular carcinoma (HCC), breast cancer, nasopharyngeal
carcinoma, and melanoma, the −443 TT genotype, rather
than the C allele, correlates with increased expression of
OPN [50–56]. In this regard, it has been proposed that the
proto-oncogene c-Myb mediates induction of OPN expres-
sion levels from the C allele in some tumors, whereas in other
malignancies, a yet unidentified transcription factor could
activate transcription of OPN from the T allele [56]. Other
individual polymorphisms and haplotypes in the promoter
region were reported to affect gene expression [57], while
variants in the 3′UTR may affect RNA stability and lead to
altered protein levels.

OPN gene expression is modulated by several cytokines
(e.g., IL-1β, IL-6, TNF-α, and IFN-γ), hormones (e.g., vita-
min D, estrogen, angiotensin II, and glucocorticoids),
platelet-derived growth factor, and oxidized low-density
lipoprotein [58].

4.2. sOPN. The protein exists in a myriad of different iso-
forms due to alternative splicing and a number of posttrans-
lational modifications (PTMs), such as serine/threonine
phosphorylation, glycosylation, tyrosine sulfation, and pro-
teolytic cleavage. OPN consists of 314 amino acid residues,
which confer a predicted molecular weight of 35 kDa; how-
ever, because of splicing and PTMs, the actual molecular
weight ranges from 41 to 75 kDa [59]. OPN-a represents
the full-length isoform, but two other splice variants can be
found: OPN-b, which lacks exon 5 and OPN-c, which lacks
exon 4. Exon 5 contains a cluster of phosphorylated serine/
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Figure 1: Effect of OPN on several leukocytes. sOPN triggers myeloid and lymphoid cells eliciting a functional response (boxes) that in turn
induces cytokine secretion which drives the inflammatory/immune response. Asterisks mark the effects mediated by iOPN.
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threonine residues [60] (Table 1). Since exon 4 contains the
target sequence for transglutaminase, OPN-c, unlike the
other isoforms, cannot form polymeric complexes [61].

OPN isoforms have often distinct expression profiles and
different biological effects. For example, an anti-OPN-exon4
antibody, able to recognize both OPN-a and OPN-b iso-
forms, stained exclusively the cytoplasm of breast cancer
cells, while OPN-c was predominantly detected in their
nucleus [62]. Given that nuclear internalization signals are
common to all OPN splice variants, the reason why OPN-c
was selectively expressed in the nucleus still remains to be
determined. Furthermore, OPN-c was detected in breast
carcinoma but not in normal surrounding tissues [63],
whereas OPN-a and OPN-b expression levels were found in
both tissues. Granted that enhanced expression of OPN-c
levels in breast cancer cells correlates with tumor grade and
poor prognosis [64] and OPN-c is highly expressed in pan-
creatic and colon cancers [65], it has been proposed that this
isoform may constitute a potential prognostic factor for these
carcinomas. OPN-c is also an efficient biomarker able to dis-
tinguish prostate cancer from benign prostate hyperplasia,
with a sensitivity of 90% and a specificity of 100% [66]. In
addition, OPN-c can also promote proliferation and migra-
tion of ovarian cancer cells [67]. Other studies have shown
that OPN-a is the predominant form in a number of lung
cancer, liver cancer, papillary thyroid carcinoma, and meso-
thelioma specimens [68–71]. Furthermore, HCC predomi-
nantly expressed OPN-a and OPN-b, and these isoforms,
unlike OPN-c, could induce cell migration [70]. Lastly, in gli-
oma cells, only OPN-a and OPN-c but not OPN-b were able
to promote invasiveness [72]. Thus, the expression patterns
and functions of OPN-splicing isoforms appear to be tumor
specific and in some cases clinically relevant.

4.3. iOPN. Besides its secreted form, OPN can be found in its
intracellular form (iOPN), which is a truncated version of the
full-length protein lacking the signal sequence due to initia-
tion of translation from a downstream noncanonical start
codon [73]. The biological functions of iOPN are mainly
related to the regulation of cytoskeletal rearrangement and
signal transduction pathways [50]. iOPN was found in den-
dritic cells [73–75], macrophages [76], and nerve cells [77].
Indeed, iOPN localizes to the nucleus of 293 cells where it
mediates cell duplication through association with polo-like
kinase 1 [54], whereas in fibroblasts, iOPN plays a role in cell
migration [78]. Moreover, deficient expression of iOPN in
natural killer (NK) cells causes impaired expansion and

increased apoptosis of these cells following stimulation with
IL-15, resulting in defective immune response to viral
infection and tumor cells [79]. In pDC, iOPN mediates
Toll-like receptor 9 (TLR-9) signaling and enhances IFN-α
production through the interaction with myeloid differentia-
tion primary response gene 88 (MyD88) [75]. Under stimu-
lation of cellular debris released by necrotic hepatocytes,
iOPN inhibits the activation of TLR/MyD88 signaling in
macrophages through interaction with MyD88, acting as
a negative regulator of TLR-mediated immune responses
[79]. In follicular T helper (TFH) cells, iOPN is involved
in signaling through ICOS, a costimulatory receptor
involved in T cell function [80–83]. Upon ICOS triggering,
iOPN interacts with the PI3K p85α regulatory subunit,
translocates into the nucleus, and binds Bcl-6 (involved
in TFH differentiation) protecting it from proteasome-
mediated degradation.

4.4. PTMs. The presence of different isoforms and the hetero-
geneity due to the large number of PTMs can partly account
for the multiplicity of functions ascribed to OPN (Figure 2).
Another important aspect is the ability of OPN to interact
with different receptors. Indeed, OPN contains an Arg-Gly-
Asp (RGD) sequence, which binds to integrins such as
αvβ1, αvβ3, αvβ5, α8β1, and α5β1 [84]. The adjacent Ser-
Val-Val-Tyr-Gly-Leu-Arg (SVVYGLR) sequence is a cryptic
motif that is exposed upon cleavage by thrombin and inter-
acts with α4β1, α9β1, and α4β7 integrins [85], which are
present on the surface of immune cells such as T cells,
neutrophils, macrophages, and mast cells. Thrombin cleav-
age produces an N-terminal fragment (OPN-N) that con-
tains the aforementioned integrin-binding domains and a
C-terminal fragment (OPN-C) that presents a binding site
for specific splice variants of CD44. Moreover, the C-
terminal fragment produced in mouse after cleavage by
MMP-3 and -7 can bind to α9β1 integrin through the
LRSKSRSFQVSDEQY cryptic motif [86]; however, this
interaction does not occur with the uncleaved protein. Apart
from thrombin and MMPs, OPN can also be a substrate for
plasmin and cathepsin D and contains binding sites for
calcium and heparin [87]. Interestingly, OPN variants pro-
duced by enzymatic cleavage can retain their activity or
acquire additional functions. In this regard, N-terminal frag-
ments have shown a greater capability to mediate RGD-
dependent cell attachment than the full-length protein, pre-
sumably because of a more exposed integrin-binding
sequence [88]. In the bone marrow, the predominant OPN

Table 1: Summary of several features of the main OPN isoforms.

Isoform Exons aa differences mRNA Putative differences NCBI ref seq

sOPN

OPN-a 2–7 Full length All exons are translated Full-length protein NM_001040058.1

OPN-b 2–7 Δ5 aa 59–72 are
missing

Alternative splicing of
exon 5

Less-phosphorylated domains NM_000582.2

OPN-c 2–7 Δ4 aa 31–57 are
missing

Alternative splicing of
exon 4

Less-phosphorylated domains + lack
transglutamination signal

NM_00140060.1

iOPN —
2–7 Δ signal

peptide
aa 1–16 are
missing

Downstream initiation of
translation

Lack of signal peptide, intracellular
localization

[73]
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form is the N-terminal fragment produced by thrombin
cleavage. This fragment acts as a chemotactic factor for
hematopoietic stem cells through interaction with α9β1 and
α4β1 integrins after transplantation [89]. In T cells, OPN-N
induces IL-17 upregulation, while OPN-C induces IL-10
downregulation, and each fragment has specific effects on cell
adhesion and migration [90]. Cleavage of OPN-c by MMP-9
in HCC produces fragments that enhance cellular invasion
and appear to correlate with the HCC metastatic potential
[91]. Inhibition of thrombin in breast cancer cells that
express OPN decreases tumor growth and metastasis [92].
Lastly, bioactive OPN fragments can also be generated after
processing of sOPN by extracellular proteasomes, resulting
in the production of fragments with new chemotactic activ-
ity, which may be relevant for cancer progression since high
levels of both OPN and extracellular proteasome can be
detected in the tumor mass [93].

5. Systemic OPN Levels in Cancer

OPN is a ubiquitously expressed protein whose secreted form
exerts pleiotropic effects on a number of fundamental biolog-
ical processes, such as proliferation, apoptosis, bone forma-
tion, and angiogenesis [94–96]. Despite its importance in
such processes, several different studies addressing the role
of OPN in tumors have led to conflicting results. In recent
years, in an effort to establish common denominators, several
meta-analyses of multiple studies on high-incidence cancers
worldwide have been carried out. These tumors included
colorectal cancer (CRC), malignant pleural mesothelioma
(MPM), ovarian cancer, non-small-cell lung carcinoma
(NSCLC), breast cancer, gastric cancer, and HCC [97–101].
The following is a comprehensive survey of those studies.

In a selection of 10 clinical cohort studies represented by
a total of 1133 NSCLC patients, Shi et al. showed a shorter
overall survival in OPN-positive patients compared to that
in OPN-negative patients with no significant differences
between the Asian and the Caucasian groups, thus suggesting
a role for OPN as a prognostic factor for NSCLC [102].
Moreover, the analysis by Hu et al. of a cohort of six studies,
with a total of 906 participants, of which 360 were MPM
patients and 546 healthy individuals, showed that the diag-
nostic accuracy of OPN for MPM was comparable to that
of the soluble mesothelin-related peptides (SMRP), the most
promising serum biomarker for MPM [103]. On the other
hand, a meta-analysis of 8 studies published up to February
2014 with clinical cohorts ranging from 100 to 333 breast
cancer patients [104] showed no correlation between OPN
expression and several other diagnostic/prognostic bio-
markers commonly used for breast cancer, such as HER2,
PR, and ER, although a significant association between
OPN overexpression and both lymph node metastasis and
overall survival was reported. A more recent meta-analysis
of 10 studies with a total of 1567 patients, extrapolated from
papers published up to December 2015, evaluated the role of
OPN-splicing variants [105]. In good agreement with Xu
et al. [104], OPN overexpression correlated with poor overall
survival. In particular, the authors found that OPN-c but not
OPN-a was specifically expressed by breast cancer cells and
that the correlation between poor overall survival in breast
cancer and OPN-c overexpression was more statistically sig-
nificant than that obtained with full-length OPN [105]. In a
meta-analysis of 15 studies with a cohort of 1698 CRC
patients, Zhao and coworkers reported a significant correla-
tion between OPN expression and lymph node metastasis
or tumor-distant metastasis. However, the authors did not
find any statistical correlation between OPN expression and

Calcium-binding site

Calcium-binding
site

Transglutamination site

P

NH2

Integrin-binding sites

Binding site

COOH

Phosphorylation sites

MMP3/7MMP3/7

�rombin

ELVTDFP

SLAYGLR S

CD44
�훼9�훽1�훼9�훽1

�훼8�훽1
�훼v�훽1
�훼v�훽3
�훼v�훽5

�훼4�훽1

�훼4�훽1

�훼4�훽7

RGD

Figure 2: Main domains of OPN. The cartoon depicts the functional parts of OPN. OPN binds two different classes of receptors,
integrins (in blue) and CD44 (in pink). It can also interact with calcium (green). The SVVYGLR sequence is usually masked in the full-
length molecule, but it becomes available upon thrombin cleavage of OPN. OPN undergoes several posttranslational modifications
including glycosylation (red and green sugars), phosphorylation (yellow dots), crosslinking mediated by transglutaminase and protease
cleavage (thrombin and MMPs). Each of these modifications can alter OPN functions.

5Mediators of Inflammation



tumor invasiveness. Moreover, at 2, 3, and 5 years after diag-
nosis, the overall survival of patients with high expression of
OPNwas significantly reduced, indicating that OPN is a valid
prognostic marker for CRC [101]. Another study by Wang
and colleagues, who analyzed 15 studies involving a total of
1653 subjects, of which 822 were ovarian cancer patients
and 831 healthy individuals, found positive association
between OPN levels in the serum and ovarian neoplasm, with
differences in ethnicity and higher association in the Asian
versus the Caucasian group. Intriguingly, the authors specu-
lated that high serum levels of OPN could induce tumor sur-
vival and proliferation through inhibition of the proapoptotic
PI3-K/Akt signaling pathway, concluding that higher serum
levels of OPN may correlate with the aggressive progression
of ovarian neoplasm. Thus, according to this study, OPN
levels in the bloodstream can be used both as diagnostic
and prognostic markers for ovarian neoplasms [106].

Even though there are no meta-analysis results published
on melanoma, an aggressive skin cancer whose incidence has
been stably increasing [107–109], several studies have been
published to elucidate the role of OPN in melanoma and
uveal melanoma progression [110–112]. All these studies
have shown that OPN overexpression is strongly associated
with reduced overall survival of melanoma patients. In addi-
tion, Filia and colleagues reported enhanced plasma OPN
levels in stage IV melanoma [112]. Finally, Barak et al.
showed a remarkable increase in OPN expression levels in
uveal melanomas several months before the diagnosis of a
metastatic phenotype [113].

Taken all together, the aforementioned studies clearly
point to a key role of OPN in tumor progression, thereby
paving the way for future clinical applications (Figure 3).
These include (i) the use of OPN as a prognostic biomarker
for different tumors and its use as a predictor of therapeutic
efficacy, (ii) the design of OPN-based targeted therapy spe-
cific for different tumor stages to improve treatment efficacy,
and (iii) the use of OPN to monitor the occurrence of disease
relapse during follow-up, since blood sampling is a fast, min-
imally invasive, and readily repeatable procedure.

Overall, given the potential of OPN use in clinics, the
development of common procedures for sample collection
and OPN measurement could become the standard of care
and prevention of malignant primary tumors.

6. OPN−/− Mice

The pathophysiological role of OPN on tumor enhancement/
progression as well as on immune system has been investi-
gated in different studies using in vivo models. Solid tumors
are composed by genetically mutated cancer cells dispersed
into a stroma formed by a variety of normal cells and extra-
cellular matrix (ECM). Since the stroma actively participates
in tumor progression, including the metastatic process, bidi-
rectional communication between tumor cells and the associ-
ated stroma strongly affects disease initiation, progression,
and patient prognosis [114].

For this reason, in tumor-induced models of cancer (i.e.,
breast, melanoma), in order to dissect the individual role
played by stroma-secreted versus tumor-secreted OPN, the

use of OPN−/− mice is preferred. In this setting, comparison
among OPN+/+ and OPN−/− mice will give insights into the
contribution of stromal OPN (i.e., missing in OPN−/−).
Knocking down OPN into the tumor cells, will highlight
the contribution of tumor OPN.

In general, it has been described that leucocyte recruit-
ment at the site of inflammation, mainly neutrophil infiltra-
tion and macrophage accumulation, is impaired in OPN−/−

mice with concomitant inhibition of proinflammatory cyto-
kine release [10, 115, 116]. OPN regulates immunosuppres-
sion at tumor sites by favoring the presence of
immunosuppressive leukocytes at metastatic sites. Sangaletti
et al. showed that myeloid-derived suppressor cells (MDSCs)
in OPN−/− mice showed lower expression in arginase-1, anti-
phospho-STAT3, and IL-6 and were less immunosuppressive
compared to those in wild-type controls after injection of
4T1 cell line. In addition, less regulatory T cells accumulated
at metastatic site (lung metastasis) in OPN−/− mice and only
MDSCs from wild-type mice were able to promote metastasis
[117]. Similarly, Kale et al. showed the involvement of OPN
in macrophage recruitment into tumor in a mouse model
of melanoma. They observed an accumulation of OPN- and
cyclooxygenase-2- (COX-2-) positive macrophages at the site
of tumor; with increased angiogenesis and melanoma growth
and in OPN−/−, they reported a strong suppression in tumor
growth compared to that of their wild-type counterpart
[118]. In another study, Lee and colleagues investigated the
role of OPN in promoting liver tumor in a mouse model of
diethylnitrosamine- (DEN-) induced hepatic carcinogenesis.
In this work, they described a significant reduction in the
overall incidence of hepatic tumors in OPN−/− mice com-
pared to that in wild-type mice and they observed that
in vitro OPN suppression in human hepatocellular carci-
noma cells promoted cell death by apoptosis [119]. A
similar observation was reported by Hsieh et al. in a
mouse model of squamous papilloma describing that defi-
ciency of OPN resulted in apoptosis and delayed the
development of tumor [120].

Altogether, these studies suggest that OPN plays a central
role in immune modulation and tumor progression by
inducing the expression of mediators and by finely orches-
trating the recruitment of cells in order to create an immuno-
suppressive and protumorigenic microenvironment.

7. OPN within Solid Tumors

Tumor development and progression require a suitable
microenvironment where tumor cells influence normal resi-
dent cells, such as fibroblasts and endothelial cells, while
recruiting accessory cells from the bone marrow to initiate
angiogenesis [121].

The ECM is produced by both tumor and stromal cells
and is composed of structural and functional proteins. The
latter ones are collectively referred to as matricellular pro-
teins, which, under physiologic conditions, modulate several
cellular processes, including cell adhesion and migration,
ECM deposition, cell survival, and proliferation [122]. All
these processes are also required for primary tumor growth
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and metastasis, where matricellular proteins are often aber-
rantly expressed.

The presence of a tumor leads to stromal changes includ-
ing the recruitment of leucocytes, endothelial cells, and mes-
enchymal stem cells (MSCs). It also causes reprogramming of
local fibroblasts to cancer-associated fibroblasts (CAFs).
These cells secrete growth and matrix remodeling factors
and support angiogenesis and lymphangiogenesis to promote
further tumor growth and metastasis. Stroma formation in
neoplastic processes represents both the host’s reaction to
neoplastic cells and the ability of tumor cells themselves to
modify their environment to influence growth and progres-
sion [123, 124]. OPN can be produced by many cell types
present in the tumor microenvironment, including the tumor
itself. Several functions of OPN have yet been elucidated;
however, the role of OPN in tumor growth and progression
as well as its contribution to the tumor microenvironment
is still partially understood (Figure 4).

Systemic tumor dissemination is regulated by complex
interactions between tumor and host cells during the migra-
tion of tumor cells into the blood and/or lymphatic vessels at
the primary tumor site. These cells subsequently spread to
target organs and are capable of surviving and growing at dis-
tant sites. In this context, genetic and epigenetic alterations of
tumor cells appear to be the key determinants of the crosstalk
between cancer cells and the host microenvironment, which
in turn modulates intercellular communication, immune
evasion, and sustained proliferation.

As described above, OPN is a matricellular protein impli-
cated in inflammation, tumor progression, and metastasis
[125] and is found overexpressed in a variety of human car-
cinomas, including breast, lung, colorectal, stomach, and
ovarian, as well as melanoma [125, 126]. Elevated tumor
and plasma levels of OPN have been associated with poor
prognosis and with reduced survival in patients with breast
cancer [64]. OPN is one of the highest expressed genes in a
large percentage of patients with glioblastoma [22], and the
depletion of OPN in glioblastoma-initiating cells leads to

the loss of their tumorigenic potential [127]. Within a tumor
mass, the functional activities of OPN are complex, since
OPN is generally expressed by both tumor and stroma cells
in its secreted form. Moreover, both tumor and normal cells
have receptors able to bind with sOPN. This scenario
becomes quite complex when we consider that, in some
tumor types, OPN is also part of the extracellular matrix.
Thus, sOPN produced by tumor cells can influence cells in
the tumor microenvironment and vice versa. Whether
tumor-derived OPN differs, structurally or functionally, in
its effects from stromal-derived OPN still remains to be clar-
ified. Although there is evidence that different OPN isoforms
and posttranslational modifications (i.e., phosphorylation,
sialation, proteolytic cleavage, transglutaminase crosslinking,
and proteolytic processing) may affect different OPN func-
tions [59, 128–130], there is still very scant literature on
how tumor-derived OPN may differ from stroma-derived
OPN, either structurally or functionally. Interestingly, the
distribution of OPN staining may change according to the
cancer type and tumor stage. Indeed, in many tumors,
OPN+ cancer cells are often found at the periphery of inva-
sive tumors adjacent to stromal cells, suggesting its involve-
ment in paracrine tumor and host cellular interactions
[131, 132]. Nevertheless, it has been shown that, at least in
some instances, tumor-derived OPN is more soluble and
not incorporated into the extracellular matrix [133]. Thus,
it is unclear whether it is tumor- or stromal-derived OPN
(or both) that can be incorporated into the extracellular
matrix and affect tumor growth and progression.

In the following two sections, we will explore the docu-
mented functions of tumor-derived OPN as well as
stromal-derived OPN and OPN function in ECM.

8. Effect of Tumor-Derived OPN on the Tumor
Microenvironment

Several reports have demonstrated that tumor cells can syn-
thesize and secrete OPN, in vivo. OPN expression in tumor
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Figure 3: Schematic representation of the role of OPN in tumor patients. OPN is involved in many different biological functions as well as in
tumor maintenance and progression. Besides its local effect, OPN is also secreted in the blood stream, and its levels are increased in patients
with different tumor types. Since measurement of OPN from plasma or serum is readily accessible and noninvasive, it is likely that OPNmight
become a useful marker for the diagnosis, treatment, and tumor relapse monitoring of a number of carcinomas.
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cells has been detected in several cancers [134, 135], includ-
ing breast, colon, liver, and lung as well as squamous cell car-
cinomas, as they become aggressive [31, 97, 136–139]. For
example, in breast cancer, OPN expression starts increasing
as the cancer cells become more aggressive, and knocking
down expression of endogenous OPN reduced invasive
behavior and suppressed tumor growth in immunocompro-
mised mice [140]. OPN-mediated increase in migration,
motility, and invasion have been related to enhanced expres-
sion of integrins and CD44 cell surface receptors and to the
increase in Met activity [141–143]. Moreover, the first evi-
dence that OPN can cause degradation of a tumor suppressor
protein comes from the observation of an inverse correlation
between OPN and the tumor suppressor Merlin, in breast
cancer [144, 145]. This is the consequence of OPN signaling
on the AKT pathway that targets Merlin for ubiquitin
degradation.

The tumor-promoting functions of tumor-derived OPN
will be reviewed in the following chapters and include (1)
increased survival of tumor cells often associated with
recruitment of leucocytes at the tumor site; (2) angiogenesis
to contrast hypoxia and favor dissemination [139]; (3) repro-
gramming of tissue fibroblast to CAFs to induce epithelial to
mesenchymal transition (EMT), thereby allowing tumor cells
to detach from the primary mass and disseminate to generate
the premetastatic niche [146]; (4) mesenchymal to epithelial
transition (MET), that is considered to be the opposite of
EMT at the distant site [147] (Figure 5).

8.1. Recruitment of Leucocytes at the Tumor Site

8.1.1. Tumor-Associated Macrophages (TAMs).Macrophages
are versatile cells which can be either immunostimulatory or
immunosuppressive, thereby promoting or counteracting

inflammation, respectively [148, 149]. TAMs are the predom-
inant stromal cell type within the tumor mass. High levels of
TAMs often correlate with the advanced tumor stage and
poor disease outcome [150]. Several studies have highlighted
a causal link between TAMs and neoplastic progression,
including tumor initiation, proliferation, immunosuppres-
sion, angiogenesis, and metastasis. In the tumor mass, TAMs
release cytokines and growth factors that target both tumor
and endothelial cells and concomitantly secrete proteases that
promote ECM degradation. This never ending process of
stroma remodeling favors the release of matrix-bound growth
factors and promotes tumor cell motility and invasion [151].
Consistently, TAMs secrete many growth factors essential for
neoangiogenesis and tumor proliferation [152, 153].

In a milestone study by Ashkar et al., OPN was shown to
act against viral and bacterial infection by inducing a M1
response through upregulation of IL-12 and downregulation
of IL-10 [154]. Since OPN exists at least in two forms,
depending on its phosphorylation state [130], phosphory-
lated OPN binds to cell surface receptors (i.e., integrins and
CD44), while nonphosphorylated OPN binds to the
ECM—the authors went on by showing that while OPNphos-
phorylation is required to induce integrin-mediated IL-12
production; it is dispensable for CD44-mediated inhibition
of IL-10 inmacrophages. Interestingly, thismechanism seems
to be altered in OPN-mediated immune response in tumors.

In addition to regulating macrophage activation, tumor-
derived OPN is also able to attract macrophages to a tumor
site by promoting chemotaxis. Using a mouse model of mel-
anoma, Kale et al. demonstrated that TAMs infiltration was
significantly reduced in OPN−/− mice compared to that in
OPN+/+ mice [118], and tumor growth and angiogenesis
were significantly reduced in OPN−/− mice compared to that
in OPN+/+ mice [118]. A more detailed analysis showed that
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Figure 4: OPN functions in the tumor microenvironment. In the tumor microenvironment, OPN has different functions ranging from the
recruitment of leucocytes, endothelial cells, and mesenchymal stem cells (MSCs) from the periphery or bone marrow, to the reprogramming
of local fibroblast to cancer-associated fibroblasts and transformation of M1 antitumorigenic macrophages to tumor-associated macrophages.
These changes in the stroma favor tumor progression through angiogenesis, degradation of the extracellular matrix, epithelial to
mesenchymal transition (EMT), and migration of metastatic cells.
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OPN could induce cyclooxygenase- (COX-) 2 expression in
macrophages, promoting prostaglandin (PG) E2 production
and melanoma cell migration. Furthermore, OPN-mediated
α9β1 integrin activation was required for COX-2 expression
and subsequent p38 and ERK activation, which in turn led to
increased expression of PGE2 and MMP-9. It seems that
OPN inhibits macrophage functions, at least in part, through
downregulation of inducible nitric oxide synthase and there-
fore nitric oxide production, resulting in inhibition of tumor
cell death [155–159]. OPN can also have an antitumor activ-
ity thanks to its ability to activate type I NK T cells [160] and
to inhibit their apoptosis via binding to and activation of the
CD44 receptor [161]. This observation strongly suggests that
OPN can either inhibit or promote leukocyte functions and
that it is the balance between the OPN-elicited macrophage
and type I NK T cell response that determines whether the
overall effect of the inflammatory response will be tumor pro-
moting or tumor inhibiting [162]. This dual role of OPN will
be further discussed later in this review.

8.1.2. Myeloid-Derived Suppressor Cells (MDSCs). Extrame-
dullary myelopoiesis, that is myelopoiesis occurring outside
the bone marrow, including the spleen, is a novel OPN-
driven process recently described [163–165]. Extramedullary
myelopoiesis may induce the accumulation of peripheral
MDSCs, which play an important role in immune escape
through generation of the so-called metastatic niche.
Tumor-derived OPN was found to enhance both

extramedullary myelopoiesis and the subsequent accumula-
tion of MDSCs [96]. Silencing of OPN in tumor cells delayed
both tumor growth and extramedullary myelopoiesis,
whereas treatment with an antibody against OPN inhibited
tumor growth-mediating antitumor immunity. Recently, an
interesting study on a spontaneously metastatic model of
breast cancer has shown distinct and common activities of
OPN when produced either by tumor or host cells. Tumor-
produced sOPN supports cancer cell survival in the blood
stream, whereas both tumor- and host-derived OPNs, partic-
ularly from myeloid cells, render the metastatic site more
immunosuppressive, thanks to the expansion of MDSCs at
both the primary and lung metastatic sites. OPN was pro-
duced mainly as sOPN by cancer cells and as iOPN by mye-
loid cells, which, as described earlier, are both involved in
cancer dissemination and play a pivotal role in inducing
immunosuppression in the metastatic niche [96].

8.1.3. Bone Marrow-Derived Cells. A new role for tumor-
derived OPN has been ascribed to the activation and
mobilization of bone marrow-derived cells to the microen-
vironment of disseminated tumor cells, the so-called “pre-
metastatic niche” [146]. McAllister et al. found that the
secretion of soluble OPN by a tumor supports stimulation
of distant tumor/metastatic cells, otherwise indolent. This
systemic “instigation” is accompanied by incorporation of
bone marrow cells into the stroma of the distant, once
indolent tumors, conditioning that environment and
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Figure 5: Tumor-promoting functions of OPN. OPN (blue sphere) induces increased proliferation and survival of tumor cells; it is also
associated with the recruitment of myeloid-derived suppressor cells (MDSC), from bone marrow stem cells. MDSC create an
immunosuppressive niche both in the primary tumor and in the metastatic tissue, thereby creating a favorable place for tumor growth.
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the primary mass and disseminate to the premetastatic niche. Here, OPN promotes mesenchymal to epithelial transition (MET) favoring
the metastatic processes.

9Mediators of Inflammation



promoting tumor growth. This effect may represent a dis-
tinct pathophysiological role for circulating OPN in the
blood of cancer patients [146]. Secretion of OPN by insti-
gating tumors is necessary for bone marrow-derived cell
activation and the subsequent outgrowth of the distant,
otherwise indolent tumors. Overall, these results reveal
that outgrowth of indolent tumors can be governed on a
systemic level by endocrine factors released by certain
instigating tumors and therefore hold important experi-
mental and therapeutic implications.

8.2. Enhanced Invasion and Angiogenesis. Tumor-derived
OPN may also play a role in angiogenesis. The proof of con-
cept has been demonstrated brilliantly by many investigators.
Proliferation, migration, and tissue infiltration of pericytes,
vascular smooth muscle, and endothelial cells from preexist-
ing blood vessels are needed for tumor angiogenesis, and
OPN may participate in all of these processes. [166–169].
The role of OPN in tumor angiogenesis is associated with
VEGF as both are frequently and simultaneously upregulated
during angiogenesis [170–173]. In the preclinical model,
OPN stimulates angiogenesis by inducing VEGF expression
in endothelial cells [174]. OPN itself can be upregulated by
fibroblast growth factor- (FGF-) 2 in endothelial cells
in vitro and in vivo, leading to the recruitment of proangio-
genic monocytes to the tumor microenvironment [175].
Interestingly, our group has recently shown that thrombin-
cleaved OPN generates two fragments, namely, OPN-N and
OPN-C, which display a stronger angiogenic potential
in vitro, compared to full-length OPN [176]. These results
are in line with the reports from Senger et al. [177] showing
that VEGF induces OPN and αvβ3 expression in endothelial
cells and stimulates cleavage of OPN by thrombin and that
the resulting OPN fragments are strongly chemotactic for
endothelial cells and promote angiogenesis [178]. However,
these authors used a mixture of the two OPN fragments
obtained by thrombin-mediated cleavage of OPN-FL
in vitro. Therefore, they could not distinguish the specific
contributions of OPN-N versus OPN-C. Moreover, other
studies have shown that, in vascular endothelial cells,
OPN enhances VEGF-α expression, which, in turn, medi-
ates a positive feedback on OPN expression; blocking this
feedback signal by anti-VEGF-α antibodies partially inhib-
ited OPN-induced HUVECs motility, proliferation, and
tube formation [174].

8.3. Epithelial to Mesenchymal Transition. Fibroblasts are the
predominant cell type in stromal connective tissue contribut-
ing to deposition and maintenance of collagen, basement
membrane, and paracrine growth factors. As mentioned
earlier, CAFs originate from different sources including local
fibroblasts and MSCs recruited from the bone marrow and
thus become specialized stromal cells with myofibroblast
features able to promote tumor growth and dissemination
by stimulating angiogenesis, cancer cell proliferation, and
production of tumor-promoting cytokines [179, 180]. Addi-
tionally, CAFs can become a critical component of the cancer
stem cell (CSC) niche, thereby favoring cancer metastasis,
drug resistance, and disease relapse after chemotherapy

regimens. Recently, it has been shown that breast cancer-
derived sOPN can educate mammary fibroblasts to become
proinflammatory CAFs, thereby favoring malignant progres-
sion [181]. Indeed, neutralizing antibodies against OPN
blocked fibroblast reprogramming elicited by these malig-
nant cells. Strikingly, OPN silencing in tumor cells not only
attenuated stromal activation but also inhibited tumor
growth, indicating once more that OPN plays a key role in
reprogramming normal fibroblasts into tumor-promoting
CAFs. Alternatively, CAFs can also be formed in response
to OPN-induced MSC-to-CAF transformation [180]. One
of the most important effects exerted by OPN following
CAF activation is the modulation of tumor-specific EMT
through the secretion of TGF-β and IL-6. In this regard,
the transcription factor myeloid-zinc finger 1 (MZF1), acti-
vated through protein kinase A signaling, appears to be a crit-
ical mediator of this process [182]. Besides MSCs, tumor-
derived OPN can also convert normal mammary fibroblasts
into CAFs using in vitro and in vivo models of breast cancer
[179]. Intriguingly, OPN bound to cell-surface integrin
receptors activated MZF1, which in turn mediated TGF-β1
production by MSCs. Remarkably, aptamer-mediated inhibi-
tion of OPN binding to integrin receptors abolished this
MZF1- and TGF-β-mediated MSC-to-CAF transformation.
Since the adoption of the CAF phenotype is associated with
increased local tumor growth and metastases, it is likely that
therapeutic tools able to disrupt this pathway might be an
alternative treatment option to current breast cancer therapy.

8.4. Mesenchymal to Epithelial Transition. MET is a revers-
ible biological process that involves the transition from
motile, multipolar mesenchymal cells to planar arrays of
polarized cells called epithelia. MET is the reverse process
of EMT. METs occur in normal development, cancer metas-
tasis, and induced pluripotent stem cell reprogramming. In
particular, MET is believed to participate in the establish-
ment and stabilization of distant metastases by allowing
cancerous cells to regain epithelial properties and integrate
into distant organs [182]. For this reason, in recent years,
MET has been regarded as one of many potential therapeutic
targets in the prevention of metastases.

iOPN, the intracellular form of OPN mentioned earlier
in this review, was initially described in rat calvarial cells
by Zohar et al. [183], respectively; OPN intracellular immu-
nostaining shows four distinct patterns: perimembranous
staining, nuclear retention, cytoplasm distribution, and peri-
nuclear staining, which represents sOPN. Mounting evi-
dence has revealed crucial roles of iOPN in a number of
processes contributing to cancer progression and dissemina-
tion, such as migration, cell cycle, and motility [76, 78, 184].
Recently, a role for iOPN in cancer metastasis has been pro-
posed by Jia et al. [147]. Early in the metastatic cascade, can-
cer cells from the primary tumor undergo EMT, which
endows noninvasive tumor cells with the ability to invade
and disseminate [182, 185]. In recent years, MET has been
shown to contribute to colonization at a secondary site.
Recent findings support the hypothesis of sOPN and iOPN
having distinct roles in phenotypic plasticity during different
stages of tumor metastasis. In fact, sOPN promotes EMT to
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initiate early metastatic dissemination, whereas iOPN
induces MET to facilitate metastatic colonization at later
stages of metastatic colonization.

9. Effect of Stroma-Derived sOPN on the Tumor

In cancer, the coordinated intercellular interactions that are
present in normal tissues are disrupted as the tumor acquires
the ability to chronically circumvent physiologic signals from
the microenvironment, which in turn evolves to accommo-
date the growing tumor [114, 186, 187]. As illustrated in
the previous section, cancer is a heterogeneous disease
involving genetic mutations in tumor cells. Nevertheless, it
appears more and more evident that tumors are also diverse
according to the nature of their ECM composition and stro-
mal cell proportions or activation states [121, 188]. In
response to evolving conditions and oncogenic signals from
tumors, the stroma continually changes over the course of
the entire cancer evolution. This has led to consider the influ-
ence of the microenvironment on metastasis as a dynamic
process and prompted many investigators to determine
how tumor cells drive the construction of their own niche.
This aspect is particularly important in view of the fact that
in-depth knowledge of mechanism of tumor stroma-
induced neoplastic progression may provide additional
therapeutic options to treat malignant carcinomas. In this
regard, it has been shown, for example, that stroma cells
not only can exert a protumorigenic effect in some solid
tumors but can also be reprogrammed by pharmacological
agents to exhibit antitumor activities [189].

9.1. Tumor-Associated Macrophages. As mentioned earlier,
OPN-mediated regulation of macrophage functions has
profound consequences in terms of tumor development.
Nevertheless, also TAMs secrete OPN that can mediate
protumorigenic effects. In this regard, a potential role of
TAM-derived OPN in regulating CSC functions has been
proposed [190]. CSCs are rare immortalized cells within
the tumor characterized by self renewal, which can give
rise to many cell types that can either constitute parts of
the tumor or form new tumors. Since CSCs are ubiqui-
tously expressed in a wide range of human cancers, they
represent attractive targets for chemotherapy. A few
reports have shown that TAMs interact with CD44+ colo-
rectal CSCs by secreting OPN, thus promoting CSC
tumorigenicity. Interestingly, OPN secretion by TAMs is
stimulated by CD44+ colorectal cancer cells, and the
induction of OPN is closely associated with CD44 expres-
sion. Although the exact mechanism whereby CD44+ can-
cer cells stimulate OPN secretion is not clear, this study
suggests that, despite strongly relying on their niche, CSCs
can reprogram stromal cells (e.g., TAMs) so that the latter
can gain a growth advantage.

9.2. Senescent Fibroblasts. Cancer incidence increases with
aging and is associated with tissue accumulation of senescent
cells [191]. A vast body of literature points to the fact that
senescent fibroblasts contribute to tumor development in
aging tissues [192–196]. OPN is indeed necessary for the

promotion of preneoplastic cell growth by senescent fibro-
blasts [197]. Furthermore, senescent fibroblasts stimulated
the growth of preneoplastic keratinocytes both in vitro and
in vivo using mouse model of skin tumor. Silencing of OPN
did not prevent stress-induced senescence in fibroblasts but
rather blocked their ability to induce cell growth in associated
keratinocytes [198]. An important effect of OPN on senes-
cent fibroblasts relies on its crosstalk with Tiam1. Tiam1 is
a Rac exchanger, ubiquitously expressed and involved in a
number of signaling pathways [199–202]. In cancer cells,
Tiam1 expression plays a key role in favoring tumor growth
[203–205], and its expression in the stroma controls tumor
invasion. OPN is a major mediator of the effects of Tiam1
expression in fibroblasts undergoing stress-induced senes-
cence [191]. Stress-induced senescence in fibroblasts induces
decreased fibroblast Tiam1 and increased OPN expression
and secretion. Altering Tiam1 expression in CAFs induces
changes in invasion, migration, epithelial-mesenchymal
transition, and cancer stem cell characteristics in associ-
ated breast cancer cells. Interestingly, these changes persist
even after cancer cells have dissociated from the fibro-
blasts. Altogether, these findings suggest that promalignant
signals from the tumor stroma, with long-lasting effects on
associated cancer cells, may sustain the metastatic poten-
tial of developing cancers. Thus, inhibition of these micro-
environment signals may represent a new therapeutic
strategy against cancer metastasis. These novel therapeutic
tools will most likely be based on specific targeting of
stromal cells, which display less genetic plasticity than
their malignant counterpart.

9.3. Natural Killer Cells. NK cells are innate lymphoid cells,
which play an important role in mediating the anticancer
immune response. These cells can survey and control tumor
initiation due to their ability to recognize and kill malignant
cells and to regulate the adaptive immune response via cyto-
kines and chemokines release. However, several studies have
shown that tumor-infiltrating NK cells associated with
advanced disease can have profound functional defects and
display tumorigenic activity. The role of iOPN was recently
investigated also in NK cells by Leavenworth et al. [26],
who demonstrated that NK cells require iOPN to prevent
apoptosis and subsequently reach their full maturation and
lytic activity. They used a mouse model where melanoma
cells were coinjected with either NK cells unable to produce
OPN (OPN-KO) or NK cells able to express only iOPN
(iOPN-KI) into lymphopenic Rag−/−γC−/−mice. Mice recon-
stituted with iOPN-KI NK had an increased number of NK
cells and a reduced metastatic dissemination. Thus, iOPN
plays an important role in the formation of long-lived NK
cells with a memory-like phenotype. Nonetheless, it remains
to be determined whether iOPN is involved in the generation
of antigen-driven memory NK cells and if it can exert a
similar effect on memory T cells [26].

OPN is generally thought to display both protumorigenic
and prometastatic functions. Nevertheless, a few reports have
demonstrated that OPN also inhibits tumor progression. In
particular, OPN-deficient mice accelerated tumor growth in
a squamous cell carcinoma model [159, 206], and OPN-
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deficient macrophages showed impaired antitumor cytotox-
icity [206]. Consistently, a recent report has shown that
stroma-derived OPN enhances infiltration of NK cells into
the transgenic adenocarcinoma of mouse prostate (TRAMP)
tumors [207]. The requirement of OPN in NK cell migration
towards tumor cells was confirmed by an ex vivo cell migra-
tion assay. The observation that the antitumorigenic function
of OPN was evident only in Rag2−/−mice indicates that cells
coordinating the adaptive immune response are not essential
for OPN-mediated inhibition of TRAMP tumor develop-
ment. Surprisingly, B16 melanoma tumor development
was not affected by OPN, and B16 tumors did not show
OPN-mediated cell recruitment. These results suggest that
the antitumorigenic functions of OPN are tumor-type
specific [207].

10. Osteopontin in Hematopoietic and
Lymphoid Tumors

OPN role in several forms of non-Hodgkin lymphomas
(NHL) and in acute leukemias has also been investigated,
especially in recent years. OPN gene is upregulated in pri-
mary central nervous system lymphomas (PCNSL) as com-
pared to that in diffuse large B cell lymphoma (DLBCL)
[208], and its levels in cerebrospinal fluid (CSF) appear to
be an independent predictor of shorter progression-free
and overall survival [209]. Serum levels of OPN also predict
response to therapy and survival in DLBCL [210, 211] and
serum and CSF levels were correlated to tumor bulk and
response to therapy in children with acute lymphoblastic leu-
kemia (ALL) [211]. Expression of OPN is increased in both
bone marrow blasts and serum of patients with acute myeloid
leukemia (AML), and high-OPNmRNA expression indepen-
dently predicts overall survival (p = 0 025), especially in low-
intermediate risk forms [212]. Taken together, these ele-
ments suggest that OPN represents a potential biomarker
for several lymphoproliferative forms [213].

From a pathogenic point of view, OPN is involved in
invasion and dissemination of CNS lymphomas through
activation of NF-κB, an effect mediated by both iOPN (tran-
scriptional downregulation of NF-κB inhibitors) and sOPN
(receptor-mediated activation of NF-κB). NF-κB can then
induce MMP-8 and other MMPs, a pivotal mechanism of
neoplastic tissue invasion and metastasis in human cancers
[214]. Consistently, OPN was independently associated with
increased MMP levels and higher circulating levels of OPN,
MMP-2, and MMP-9 and were detected in patients with
several forms of NHL as compared with those in healthy
donors [215]. Overall, available data suggest that OPN may
be involved in selective CNS tropism of lymphoma cells lead-
ing to PCNSL [216]. OPN has also been involved in resis-
tance to chemotherapy in ALL, by anchoring leukemic
blasts to endosteal niche within the bone marrow, supporting
cell cycle exit and tumor dormancy; inhibition of OPN
increases Ki-67 proliferative index, enhancing response to
Ara-C chemotherapy [217]. Of note, OPN genetic polymor-
phisms appear to modulate sensitivity to Ara-C in a Chinese
population with AML [50]. Acquired expression of OPN
promotes enrichment and survival of leukemic stem cells

(LSC) through the AKT/mTOR/PTEN/β-catenin/NF-κB sig-
naling pathways in AML [212]. Conversely, silencing OPN
with specific sRNA appears to decrease colony numbers of
LSC [218].

Overall, the multifaceted involvement of OPN in etio-
pathogenetic mechanisms of different forms of lymphomas
and acute and chronic leukemias could lend support to a
variety of potential therapeutic approaches.

11. Therapeutic Strategies Targeting OPN in
Cancer

The pleiotropic effects of OPN in promoting tumor growth
and metastasis and the close relationship between patient
death and OPN expression render this protein an interesting
target for cancer therapy [219]. Furthermore, as the review
described before, an important issue concerning OPN is that
it is secreted not only by tumor cells but also by several cells
of the stroma, that are genetically stable compared to tumor
cells and are thus supposed to be protected by classical
mechanisms of pharmacologic resistance. In this regard, dif-
ferent OPN-targeting strategies have been proven effective in
preclinical models, including OPN gene silencing, OPN
receptor blockage, or inhibition of OPN posttranslational
modifications such as thrombin cleavage and transglutami-
nation [28, 220].

11.1. Inhibition of OPN by RNA Interference. Early experi-
ments showed that it was possible to inhibit growth of
osteosarcoma and oral cancer cells by blocking OPN mRNA
translation [221, 222]. However, since the advent of RNA
interference (RNAi), a number of studies have reported a
much more efficient inhibition of OPN compared to tradi-
tional methods.

Indeed, RNAi is a biological process whereby RNA
molecules inhibit gene expression or translation by
neutralizing targeted mRNA molecules [223]. Essentially,
three types of small RNA molecules, namely, microRNA
(miRNA), small interfering RNA (siRNA), and short hair-
pin RNA (shRNA), are able to direct sequence-specific
gene inhibition in mammalian cells [224]. As mentioned
above, the encouraging preclinical data obtained using this
innovative approach have prompted several investigators
to conduct a number of ongoing clinical data, with the
hope to provide proof-of-concept evidence that siRNA-,
shRNA-, and miRNA-mediated inhibition of OPN exerts
an antitumorigenic effect [225]. This is particularly true
for breast cancer, as silencing of OPN not only inhibited
cancer progression through downregulation of uPA,
MMP-2, and MMP-9 expression levels [226] but also
rendered these cells more sensitive to radiation-induced
apoptosis and senescence [227] and enhanced their sensi-
tivity to chemotherapeutic agents [228]. Although these
results suggest that silencing of OPN might represent a
promising strategy for the development of effective anti-
cancer agents, one cannot help thinking that OPN-
directed RNAi would inevitably target both the secreted
and intracellular forms of OPN. Thus, given the opposite
role of these two proteins in cancer progression, as
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described earlier in this review, it is likely that selective inhi-
bition of one form versus the other might prove more effec-
tive in reducing the tumor burden. In this regard, the use of
blocking antibodies against sOPN or its receptor selectively
inhibited sOPN functions while preserving those of iOPN.

11.2. Inhibition of OPN by Blocking Antibodies. As described
above, OPN binds to two sets of receptors, namely, integrins
and CD44, which then propagate downstream signaling.
Thus, an additional way to inhibit OPN can be readily
achieved by using blocking antibodies specific for of one or
both receptors. Indeed, a number of antibodies targeting
these receptors have been shown to significantly suppress
the interaction between tumor and stroma, thereby reducing
OPN-induced tumor progression. For example, blocking
OPN binding to αvβ3 inhibited OPN-induced tumor growth
and angiogenesis [139], decreased the expression of ILK,
uPA, and MMP-2 [229], and prevented OPN-mediated AP-
1 activation in breast cancer cells [230]. Accordingly, an
anti-OPN antibody and its humanized version effectively
inhibited tumor growth and angiogenesis in a breast cancer
model [174]. Recently, a new integrin-binding site has been
identified in the C-terminal fragment of MMP-3/7-cleaved
mouse OPN, binding to the α9β1 integrin. Importantly, this
novel motif is involved in the development of anti-type II
collagen antibody-induced arthritis (CAIA), and blocking
OPN interaction with α9β1 prevents CAIA [86]. Further-
more, given that α9β1 integrin contributes to tumor growth,
lymphatic metastasis, recruitment of CAFs, and induction of
OPN secretion by CAFs, inhibition of the α9β1 integrin-
OPN axis protected mice also from breast cancer [231].

With respect to CD44, it is well known that such
receptor varies in size due to glycosylation and alterna-
tively spliced exon products (i.e., CD44v) [232] and that
these CD44 variants are often overexpressed in cancer cells
and metastasis [233]. For example, CD44v6-7 is able to
bind OPN [234] and it is overexpressed in tumor-
infiltrating leucocytes in colorectal cancer [235] and in
malignant melanoma [236]. CD44 blockade leads to two
major effects in the preclinical model: higher number of
macrophages and strong increase of OPN production
inside the tumor. Aptamers are short oligonucleotides or
peptides able to specifically bind to small molecules or
protein ligands by forming a three-dimensional structure
complementary to the target molecules [237]. Aptamers
are functionally comparable to traditional antibodies but
offer several advantages such as their relatively small
physical size, flexible structure, quick chemical production,
high stability, and resistance to immunogenicity. Further-
more, they are effective at very low concentrations, thus
offering an important advantage over antibody-mediated
therapy. Thus, OPN has also been targeted in cancer by
the means of aptamers. OPN-directed RNA aptamer
(OPNR3) binds specifically to OPN and decreases in vitro
cellular adhesion, migration, and invasion in breast cancer
cells [238]. Upon extensive pharmacokinetic characterization
of OPN-R3 aptamer, Talbot et al. demonstrated the efficiency
of modified OPN-R3 aptamer in suppression of breast tumor
growth [239].

11.3. Inhibition of OPN by Targeting Its Posttranslational
Modifications. Among the different PTMs of OPN, two,
namely, thrombin cleavage and transglutamination, appear
to be an attractive target for cancer therapy. In this regard,
Schulze et al. have shown that the thrombin inhibitor arga-
troban inhibits both tumor growth and lymphatic metastasis
occurrence of breast cancer cells by blocking the formation of
OPN thrombin-cleaved fragments [240]. A second therapy
that may alter carcinogenesis secondary to OPN consists of
transglutaminase inhibitors [241]. Tissue transglutaminase
catalyses bond formation between glutamine and lysine of
two side chains, thus inducing the cross-linking of proteins.
This process is essential for the stabilization of the ECM
and can be deregulated during cancer metastasis. OPN is a
target of transglutaminase and its polymerisation induces
some gain of functions [242]. Several transglutaminase inhib-
itors exist that have been proven effective in cancer [243].

11.4. Anti-OPN Autoantibodies (autoAbs). Antibodies anti-
OPN are spontaneously produced in several conditions in
the presence of high circulating OPN levels as in the case of
MS [244], RA [245], and more recently HCC [246]. In the
latter case, the titer of anti-OPN autoantibodies in HCC
was significantly higher than in healthy human serum. The
authors went on showing that this increase in OPN autoanti-
body production correlated with poor prognosis and could
therefore be considered a new bona fide serological bio-
marker for HCC. Since our group has shown that OPN pro-
tein vaccination of mice predisposed to multiple sclerosis was
effective in inducing a neutralizing antibody response that
reduced OPN levels while protecting these mice from disease
occurrence, it is possible that a similar vaccine-based strategy
may prove effective for cancer therapy as well.

11.5. Small Molecule Protein-Protein Interaction (PPI)
Inhibitors. PPIs influence biological functions by modulating
protein activities, such as enzymatic activity, subcellular
localization, and/or binding properties. Interfering in PPIs
is considered to be a promising strategy towards next-
generation therapeutics, including those for cancer [247].
Inhibition of PPIs by mean of small molecules is now recog-
nized as an emerging and challenging area in drug design.

Recently, Park et al. identified a novel small molecule
inhibitor, IPS-02001, targeting the integrin αvβ3-OPN PPI,
by using in silico docking method-integrated ProteoChip
technology. They tested its biological function in vitro and
demonstrated that it was efficient in inhibiting OC matura-
tion and resorptive function by blocking integrin signaling,
which disrupts actin cytoskeletal organization. In vivo, IPS-
02001 blocked RANKL-induced bone destruction and
suppressed ovariectomy-induced bone loss. This pioneering
work showed that IPS-02001 is a potent inhibitor of
integrin-mediated OPN signaling and suggests that it may
be used also in cancer [248].

12. Conclusions

OPN is overexpressed in a variety of human carcinomas and
has been implicated in inflammation, tumor progression, and
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metastasis. Within the tumor microenvironment, OPN can
be produced by many cell types including the tumor itself
and stromal cells. Most therapeutic strategies against cancer
have focused on direct targeting of various tumor cell fea-
tures. However, stromal cells and their ECM are genetically
stable compared to tumor cells and are therefore supposed
to be less susceptible to classical mechanisms of pharmaco-
logic resistance. For all these reasons, OPN is regarded by
many as one of the most attracting targets for cancer therapy.
Nevertheless, targeting OPN for therapeutic purposes will
have to take into account the heterogeneous functions of
the multiple OPN forms with regard to cancer formation
and progression. These functions can be either protu-
morigenic or antitumorigenic according to cell type and
tumor microenvironment. Moreover, literature showed
several conundrums suggesting that knowledge on OPN
is only at the tip of the iceberg and that new functions
and possibly binding partners may exist, further compli-
cating the scenario.

Although OPN represents an extraordinary interesting
potential target for cancer therapy, we still need to be cau-
tious for a number of reasons. First, the several forms of
OPN may have distinct effects in different tissues and
tumors. Therefore, new insights are needed to depict these
differences and to setup approaches targeting distinct OPN
forms and activities and distinct cells and tissues. Second, it
must be noted that some reports suggest that OPN may exert
antitumorigenic activity in some instances. Finally, therapies
targeting OPN might share the limitations of other immuno-
therapies which, despite positive preclinical achievement, fail
to reach satisfying therapeutic effects because of development
of tumor resistance, redundant effects displayed by similar
molecules, and adverse side effects due to the multiple pleio-
tropic activities of OPN.
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