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Fig. 15. Scatter plots showing correlations between bispectrum modes
extracted from the di↵erent Planck foreground-cleaned maps, for all
possible pairs of component separation methods. Top: TTT bispectrum
modes. Bottom: EEE bispectrum modes. While temperature shows a
strong correlation, the loss of correlation in polarization between the
di↵erent methods is evident in these plots, as discussed in the text and
quantified in Tables 14 and 15. Results here and in Table 15 have been
obtained using the high resolution modal pipeline (2001 modes), while
results in Table 14 have been obtained with the low resolution modal
pipeline. By construction, the high resolution pipeline is measuring not
the full EEE bispectrum of the map, but the component of EEE that is
orthogonal to TTT. For this reason, r2 measured by the two pipelines
for EEE will not be identical. With this caveat in mind, the agreement
between the two modal approaches is very good.

We also perform model-independent checks by looking at
the correlation coe�cient between di↵erent sets of bispectrum
modes, in a similar way to Sect. 7.1.2, but now changing the
polarization mask. Results are reported in Table 16, and confirm
that the data and simulations behave similarly, and that polariza-
tion modes display a lower correlation level than temperature.

7.3. Tests on simulations
We consider two realistic data simulations, one of which is
Gaussian, while the other includes local NG. We start with a
foreground-free realization, add foregrounds according to the
Planck Sky Model, and finally process through the four com-
ponent separation pipelines. By estimating fNL in the input

Table 15. r2 statistic, Eq. (58), showing the degree of correlation be-
tween measured bispectrum � coe�cients for the component separation
methods shown in Fig. 15 (upper three rows for temperature, lower for
polarization).

SEVEM NILC Commander

SMICA (T) 0.95 0.94 0.63
SEVEM (T) 0.92 0.66
NILC (T) 0.72

SMICA (E) 0.39 0.89 0.55
SEVEM (E) 0.30 0.50
NILC (E) 0.43

Notes. Correlation between SMICA, NILC, and SEVEM is excellent in
temperature; however, it declines markedly for the latter in polarization.
Note that results are from the high resolution Modal 2 pipeline using the
orthogonal EEE component only.

Table 16. Correlation coe�cients between pairs of EEE bispectrum
modes, extracted using two di↵erent masks for each of the four
component-separated maps.

EEE

Method Data Simul.

SMICA . . . . . . . . 0.87 0.87

SEVEM . . . . . . . . 0.87 0.87

NILC . . . . . . . . . 0.87 0.87

Commander . . . . 0.88 0.87

Notes. We compare correlations measured from data with Monte Carlo
averages over 100 Gaussian realizations. The simulations were pro-
cessed through the di↵erent component separation pipelines in the same
way as the data, but do not include any foreground component. Accord-
ing to this test, modal expansions are stable for a change of sky cov-
erage, with measured correlations in full agreement with expectations
from simulations.

foreground-free simulation, for each method, and comparing to
fNL recovered from the cleaned maps (or with the input local fNL,
for the NG case), we can assess both the impact of foregrounds
on our measurement before subtraction and which method gives
the highest accuracy. The necessity to clean is very apparent in
the middle set of columns in Table 17, where no cleaning has
been performed.
SMICA and SEVEM give the best results, both in the G and

NG tests. In the G test, reported in Table 17, SMICA results
show an agreement between the input and the cleaned map at
the level � fNL/2 for all shapes, and for all of TTT, EEE, and
T+E. SEVEM displays a similar level of accuracy, except for f local

NL ,
where the di↵erence is larger, but within one standard deviation.
NILC and Commander clearly perform worse for the local shape,
with NILC showing a 2� fNL di↵erence, and Commander even
larger than that. In the NG test, reported in Table 18, SEVEM gives
the most accurate results, recovering the input with � fNL/2 ac-
curacy or better. Results for SMICA are accurate at the 1� fNL

level for the TTT constraint, and worse (about 2� fNL ) in EEE.
However, the combined T+E measurement is again very good
(� fNL/2). NILC is also performing very well in TTT and T+E,
while the EEE result is more than 2� fNL o↵.
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Table 17. Comparison of component separation methods, using Gaussian FFP8 simulations.

Input map Input map + foregrounds Cleaned map

Local Equilateral Orthogonal Local Equilateral Orthogonal Local Equilateral Orthogonal

SMICA

T . . . . . 5.2 ± 5.8 29 ± 71 �8 ± 34 �107.0 ± 5.8 �23 ± 71 27 ± 34 7.8 ± 5.8 38 ± 71 �20 ± 34
E . . . . . �39 ± 30 �99 ± 133 59 ± 69 �10 ± 30 �154 ± 133 �41 ± 69 �56 ± 30 �120 ± 133 65 ± 34
T+E . . . 5.9 ± 5.1 14 ± 45 �20 ± 22 �118.0 ± 5.1 �32 ± 45 8 ± 22 8.3 ± 5.2 14 ± 45 �22 ± 22

SEVEM

T . . . . . 5.6 ± 5.7 32 ± 69 �8 ± 32 �113.2 ± 5.7 �8 ± 69 34 ± 32 12.7 ± 5.7 35 ± 69 �25 ± 32
E . . . . . �17 ± 41 �149 ± 175 28 ± 95 �14 ± 41 �171 ± 175 �44 ± 95 �22 ± 41 �120 ± 175 41 ± 95
T+E . . . 7.7 ± 5.3 12 ± 49 �37 ± 24 �126.0 ± 5.3 �29 ± 49 �57 ± 25 13.0 ± 5.3 11 ± 49 �41 ± 24

NILC

T . . . . . 5.1 ± 5.7 32 ± 69 �5 ± 31 �102.0 ± 5.7 �14 ± 69 32 ± 31 17.8 ± 5.7 85 ± 69 �16 ± 31
E . . . . . �52 ± 33 �157 ± 156 72 ± 73 �6 ± 33 �155 ± 156 �47 ± 73 �76 ± 33 �179 ± 156 113 ± 73
T+E . . . 5.7 ± 5.0 7 ± 46 �15 ± 21 �117.0 ± 5.9 �27 ± 46 12 ± 21 15.8 ± 5.0 �20 ± 46 �7 ± 21

Commander

T . . . . . 0.5 ± 6.2 �5 ± 73 �14 ± 36 �127.0 ± 6.2 �25 ± 73 �137 ± 36 25.6 ± 6.2 67 ± 73 �17 ± 36
E . . . . . �51 ± 38 �64 ± 160 93 ± 86 �10 ± 38 �153 ± 160 �45 ± 86 �70 ± 38 �78 ± 159 138 ± 86
T+E . . . 1.6 ± 5.4 �2 ± 48 �21 ± 23 �137.0 ± 5.4 �29 ± 48 13 ± 23 20.4 ± 5.4 28 ± 48 �11 ± 23

Notes. We firstly consider Gaussian, foreground-free simulations, with simulated noise for each frequency band, process them through each of
the four foreground cleaning pipelines, and measure fNL for the three standard shapes (columns labelled with “Input map”). We then include
foregrounds and repeat the measurement, before applying the cleaning, and including realistic noise levels for each method (columns labelled with
“Input map + foregrounds”); this step is performed in order to get an idea of the level of contamination introduced by foregrounds, before cleaning.
Finally, we apply the di↵erent component separation methods, and again estimate fNL from the final maps (columns labelled with “Cleaned map”).
The discrepancies between fNL measured on the input map, and fNL extracted from the cleaned map, provide a figure of merit to assess how well
foregrounds are subtracted by di↵erent methods. Results below have been obtained with the KSW estimator and the “cleaned map” results were
also checked with the binned estimator.

The test described here has several limitations, the main and
most obvious one being that it has been performed on just two
maps (due to lack of availability of a large sample of this type
of simulation at this stage). Another clear issue is that some
methods, in particular Commander, seem to perform much bet-
ter on actual data than on these simulations. On the other hand
some important trends, observed in the data in previous tests,
are clearly reproduced here, like the good stability of SMICA and
SEVEM, especially for the combined T+E results and, most no-
tably, the fact that the clear degradation in the accuracy of the
EEE measurement for some methods does not seem to propa-
gate to T+E.

7.4. Dependence on multipole number

In this section we discuss another stability test of our results,
namely the dependence of the results for fNL on the maximum
and minimum multipole number used in the analysis. This test
is most easily performed with the binned bispectrum estimator,
since it gets the dependence of fNL on ` for free with its standard
analysis, simply by leaving out bins in the final sum when com-
puting fNL (the binned equivalent of Eq. (39)).

The dependence on `max of the results for the three standard
primordial shapes (local, equilateral, and orthogonal modes), is
shown in Fig. 16, for T-only, E-only, and full T+E. As mentioned
in Sect. 6, the KSW and binned estimators use `max = 2500 for
temperature, while the modal estimators use `max = 2000. As
can be seen in the figure, both the T-only and T+E results are
basically unchanged between ` = 2000 and ` = 2500 for all three
shapes, showing that this di↵erence has no impact on the results
(as was to be expected from the excellent agreement between
estimators in Table 10). In fact, the values of fNL for T and T+E

Table 18. Same test as in Table 17, but with a NG map as input, with
f local
NL = 8.8.

Cleaned map. Input f local
NL = 8.8

Local Equilateral Orthogonal

SMICA

T . . . . . 3.1 ± 5.8 47 ± 71 �6 ± 34
E . . . . . �53 ± 30 �113 ± 133 94 ± 69
T+E . . . 5.7 ± 5.1 22 ± 45 �19 ± 22

SEVEM

T . . . . . 8.0 ± 5.7 43 ± 69 �11 ± 32
E . . . . . �19 ± 41 �112 ± 175 35 ± 95
T+E . . . 10.2 ± 5.3 19 ± 49 �37 ± 24

NILC

T . . . . . 10.2 ± 5.7 84 ± 69 7 ± 31
E . . . . . �76 ± 33 �179 ± 156 113 ± 73
T+E . . . 10.1 ± 5.0 20 ± 46 4 ± 21

Commander

T . . . . . 22.2 ± 6.2 81 ± 73 �5 ± 36
E . . . . . �68 ± 38 �78 ± 160 132 ± 86
T+E . . . 18.3 ± 5.4 35 ± 48 �9 ± 23

Notes. For this case, we only report the final value after foreground
cleaning for each method. Results below have been obtained with the
KSW estimator and double-checked with the binned estimator. ISW-
lensing contributions are removed.

are reasonably stable (given their error bars) down to much lower
values of `max, of about 1000.

On the polarization side we can draw a similar conclusion.
The binned estimator uses `max = 2000 for polarization, while
the other estimators use `max = 1500, but we see that results
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Fig. 16. Evolution of the fNL parameters (solid blue line with data points) and their uncertainties (dashed lines) for the three primordial bispectrum
templates as a function of the maximum multipole number `max used in the analysis. From left to right the figures show, respectively local,
equilateral, and orthogonal, while the di↵erent rows from top to bottom show results for T-only, E-only, and full T+E. To indicate more clearly
the evolution of the uncertainties, they are also plotted around the final value of fNL (solid green lines without data points, showing the ±1�
range around the dashed green lines). The results are for SMICA, and assume all shapes to be independent, and that the ISW-lensing bias has been
subtracted. They have been determined with the binned bispectrum estimator.

for E remain basically unchanged between ` = 1500 and ` =
2000. Central values and error bars for E for all three shapes
have clearly converged by ` = 1500, and are in fact reasonably
stable down to much lower values of about 700.

As we noted in the 2013 analysis (Planck Collaboration
XXIV 2014), when going to the much lower WMAP resolution
of `max ' 500, we agree with the slightly high value of f local

NL
that the WMAP team reported (Bennett et al. 2013). This value
is also confirmed when including polarization. One can clearly
see the value of the higher resolution of Planck.

The dependence on `min is shown in Fig. 17. Here all esti-
mators used the same values, `Tmin = 2 and `Emin = 40. As ex-
plained in Planck Collaboration VII (2016), not all systematic
and foreground uncertainties in the low-` HFI polarization data
have been fully characterized yet, and hence it was decided to
filter out these data.

For equilateral and orthogonal shapes the values for fNL and
their error bars are quite stable as a function of `min up to about
` = 100 (and ` ' 300 for E-only), which is not surprising, since
these templates have little weight at low `. The local template, on

the other hand, depends very strongly on the lowest multipoles,
which is reflected in the very rapid growth of the error bars when
`min increases. Looking at T-only and T+E we see a very similar
pattern, with f local

NL being reasonably stable, although there are
some jumps. The local result for E-only wanders a bit more out-
side of the ±1� region, in agreement with the other tests in this
section, which also indicate that E-only is not as stable as T-only
and T+E. However, that is still quite acceptable, given the small
weight of E-only in the full T+E result.

One can work out quite generally that when Y is a subset
of a data set X, and PX and PY are the values of a parameter
P determined from these two data sets, then the variance of the
di↵erence PY � PX is equal to |Var(PY )�Var(PX)| Hence we can
determine how likely the jumps in fNL as a function of `min are.
It turns out that the jump in the T-only value of f local

NL between
`min = 40 and `min = 53 is a 2.5� e↵ect (using the values of f local

NL
before subtraction of the ISW-lensing bias, which also depends
on `). Similarly, the jump in the T-only value of f equil

NL between
`min = 154 and `min = 211 is (by chance) also a 2.5� e↵ect.
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Fig. 17. Evolution of the fNL parameters (solid blue line with data points) and their uncertainties (dashed lines) for the three primordial bispectrum
templates as a function of the minimum multipole number `min used in the analysis. From left to right the figures show respectively, local,
equilateral, and orthogonal, while the di↵erent rows from top to bottom show results for T-only, E-only, and full T+E. To indicate more clearly the
evolution of the uncertainties, they are also plotted around the final value of fNL (solid green lines without data points, with ±1� range around the
dashed green line). The results are for SMICA, and assume all shapes to be independent, as well as that the ISW-lensing bias has been subtracted.
They have been determined with the binned bispectrum estimator.

Given the fact that there are 57 bins, having such a jump appears
to be consistent from a statistical point of view.

7.5. A directional analysis with a needlet-based modal
estimator

The validation tests on simulations, described in Sect. 7.3, point
to SMICA and SEVEM as the best foreground cleaning methods
for fNL estimation. Results in Table 10 show that SMICA also has
slightly smaller error bars, thus making it the method of choice
for our final results.

As a further check of residual foreground contamination
in the SMICA map, in this section we investigate the possi-
ble directional dependence of SMICA-derived third-order statis-
tics by means of a needlet-based modal estimator (i.e., an es-
timator based on the decomposition described in Sect. 3.2,
and references therein, where we use cubic combinations of
needlets as our basis modes). In other words, we analyse the be-
haviour of the needlet bispectrum (see Lan & Marinucci 2008;
Rudjord et al. 2010; Donzelli et al. 2012) on separate patches
of the sky, and we study the fluctuations of the corresponding
residuals.

Rather than assuming a specific anisotropic model, we in-
stead calculate the contribution to the local fNL from di↵erent
regions of the sky and look for evidence of anisotropy in the
result15.

Our modal needlet estimator has been validated with respect
to the procedures considered in Sect. 5, showing excellent agree-
ment. Since in this paper we use the needlet estimator only in this
section, and as a diagnostic tool, we will not explicitly report the
outcome of these validation tests here, for the sake of concise-
ness. The advantages of using needlet-based modal estimators
have been advocated in Lan & Marinucci (2008), Rudjord et al.
(2010), Fergusson et al. (2010a, 2012); we refer to these papers
for more discussion and details. In short, however, they can be
summarized as follows:

1. it is possible to achieve a strong data compression, i.e., to
investigate cubic statistics by means of a small number of

15 Even though we focus here on directional contributions to the local
shape (which was typically found as one of the most sensitive to residual
foreground contamination), this type of directional analysis can be done
in a model-independent way, by looking separately at di↵erent needlet
modes; we leave this for future work.
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Fig. 18. Temperature only, local shape, pixel correlation matrix from
Monte Carlo analysis, at Nside = 4. The most correlated pixels are those
closest to the main diagonal; however, these values are always lower
than 34% in the chosen case.

modes (needlet frequencies) for many di↵erent bispectrum
templates;

2. needlet transforms have good correlation properties in pixel
space, which allows study of the pixel contribution to the
fNL signal for the templates under investigation, by treating
di↵erent directions independently.

In our analysis, we first divide the sky into several large “re-
gions”, with boundaries defined by the pixels of a HEALPix grid
(Górski et al. 2005). at lower resolution than the starting map
(which is at Nside = 2048). For the low resolution grid we con-
sider Nside values between 2 and 8. For each pixel in the coarse
grid, we then compute the local fNL using our modal needlet es-
timator, and neglect contributions from external regions.

The correlation matrices between fNL measurements in dif-
ferent regions were computed via Monte Carlo simulations.
Nside = 4 was chosen, as providing the best tradeo↵ between
having a large number of regions for directional analysis (i.e.,
the total number of pixels in the low resolution grid), and a low
correlation between di↵erent regions. This is shown in Fig. 18.
It is readily seen that, at Nside = 4, the correlation is largely con-
centrated in one or two points near the main diagonals (where
it is still low, never exceeding 34%), and falls o↵ rapidly for all
other pixels. Note that the results here refer to temperature only.
The EEE local polarization error bars are large, even for the full
sky analysis, making this directional approach uninformative for
Planck polarization data. We concentrate on the TTT bispectrum
here, complementing other validation tests in this section, which
are mostly focused on polarization.

Having obtained our correlation matrices, and having shown
that di↵erent regions are essentially uncorrelated, we can then
proceed to extract fNL for each region in the actual SMICA map.
As a test of directional-dependent contamination of the fNL mea-
surement, we can also compare our results, region by region,
with the fluctuations expected by looking at the diagonal of our
Monte Carlo correlation matrix.

The results of this analysis are shown in Fig. 19. In the left
panel, we represent the directional local fNL map, extracted with
this method. In the right panel, we report the fNL values, region
by region, and compare them to expectations from simulations.
The red line gives the expected standard deviation, while the blue
one gives estimates on the component-separated maps with the

Monte Carlo error bars. Our estimator is normalized in such a
way that the sum of all these contributions would yield exactly
the fNL estimator for the full map, so these results can be viewed
as a partition of the estimates along the di↵erent directions. It is
readily seen that no significant fluctuation occurs, so that our re-
sults are consistent with the absence of directionally-dependent
features (which could occur due to, for instance, residual fore-
ground contamination). As an additional check, we have also in-
vestigated the possible presence of a dipole in these data, and
found that our results are consistent with Gaussian isotropic
simulations.

7.6. Summary of the main validation results

Throughout Sect. 7 we have shown a battery of tests aimed at
evaluating the robustness of our data set, from the point of view
of bispectrum estimators, focusing especially on the polarizaton
part. We studied the stability of our results (local, equilateral,
and orthogonal fNL measurements, model-independent bispec-
trum reconstruction) under a change of sky coverage, multipole
range, and choice of component separation methods. We also
considered simulated data sets and studied the ability of di↵er-
ent component separation methods to recover the input fNL after
foreground subtraction. Our main conclusions from these tests
can be summarized as follows:

– TTT and T+E results are stable both in the pixel and
harmonic domains, for di↵erent component separation meth-
ods. For SMICA, we also checked that TTT temperature con-
straints on local fNL show no evidence of a directional varia-
tion via a needlet-based analysis.

– SMICA and SEVEM perform better than NILC and Commander
at recovering the original fNL in foreground-cleaned simula-
tions. At the same time, SMICA allows slightly better con-
straints on fNL than SEVEM, due to a lower (by a small
amount) noise level.

– EEE bispectra, and related fNL measurements, have some
problems, and do not pass all the tests. Di↵erent compo-
nent separation methods show a low level of consistency
(especially when comparing pixel-based cleaning methods
to harmonic-based cleaning methods). This disagreement is
only partly alleviated by choosing a larger E-mask, so that
residual foregrounds do not seem to fully explain all issues.
An important caveat, already pointed out previously, is that
the noise model in polarized FFP8 simulations is known to
underestimate the actual noise level in the data, leading to
some degree of underestimation of the error bars in our EEE
results. We stress again, however, that this has little impact
on the final T+E constraints, due to the high noise level and
consequent low statistical weight of EEE bispectra. This was
verified in detail both on data and on simulations.

In light of the above analysis, we conclude that, as far as bispec-
trum estimation is concerned, our best cleaned map is the one
produced by SMICA, in line with our previous 2013 analysis. We
also conclude that our TTT-based fNL constraints, summarized in
Tables 10 and 11, are robust. Joint T+E constraints pass all our
validation tests. On the other hand, in the light of the remaining
issues in the EEE bispectra and in the FFP8 polarized simula-
tions, as we stressed at the end of Sect. 6.1, we suggest that all
measurements that include polarization data in this paper should
be regarded as preliminary.
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Fig. 19. Temperature only, local fNL directional contributions from SMICA. As explained in the text, summing over all the pixel values would give
the full sky fNL needlet estimator result. The left panel displays the directional fNL map. On the right, the blue points represent the fNL contibution
for each direction (i.e., for each pixel in the directional map), with Monte Carlo error bars. The red line is the average from simulations, which is
consistent with zero.

Table 19. Results for local isocurvature NG, determined from the SMICA Planck 2015 map with the binned bispectrum estimator.

fNL

Independent Joint
Shape Cold dark matter Neutrino density Neutrino velocity Cold dark matter Neutrino density Neutrino velocity

T a,aa . . . . . . 1.3 ± 5.4 1.3 ± 5.4 1.3 ± 5.4 21 ± 13 �27 ± 52 �32 ± 48
T a,ai . . . . . . �2 ± 10 �4 ± 15 47 ± 29 �39 ± 26 140 ± 210 370 ± 350
T a,ii . . . . . . . 59 ± 910 �130 ± 280 750 ± 360 17 000 ± 8200 �4500 ± 4500 �1300 ± 3800
T i,aa . . . . . . 6 ± 50 3.0 ± 9.0 1.0 ± 4.7 96 ± 120 40 ± 99 �27 ± 51
T i,ai . . . . . . . 3 ± 66 �5 ± 22 26 ± 21 �2100 ± 1000 220 ± 630 75 ± 170
T i,ii . . . . . . . 76 ± 280 �100 ± 250 440 ± 230 4200 ± 2000 �750 ± 2400 �970 ± 1400

E a,aa . . . . . . 34 ± 34 34 ± 34 34 ± 34 66 ± 50 51 ± 120 �140 ± 150
E a,ai . . . . . . �31 ± 200 70 ± 140 78 ± 93 �380 ± 310 �280 ± 640 1100 ± 620
E a,ii . . . . . . . �4200 ± 4000 �520 ± 2300 190 ± 940 �8800 ± 6100 �6400 ± 6200 �9400 ± 3900
E i,aa . . . . . . �10 ± 87 42 ± 42 23 ± 27 27 ± 180 52 ± 170 54 ± 120
E i,ai . . . . . . . 94 ± 250 83 ± 130 45 ± 62 910 ± 770 670 ± 850 �190 ± 420
E i,ii . . . . . . . 690 ± 2200 390 ± 1400 260 ± 460 �6000 ± 5300 �4100 ± 5300 2200 ± 1600

T+E a,aa . . . . 0.7 ± 4.9 0.7 ± 4.9 0.7 ± 4.9 5 ± 10 �35 ± 27 2 ± 24
T+E a,ai . . . . �2.6 ± 9.7 �5 ± 14 17 ± 22 �12 ± 20 74 ± 94 330 ± 130
T+E a,ii . . . . . 130 ± 450 �130 ± 240 130 ± 230 �1800 ± 1300 �3000 ± 1400 �3200 ± 1200
T+E i,aa . . . . 30 ± 26 5.6 ± 7.7 �0.7 ± 4.1 53 ± 47 51 ± 45 �44 ± 24
T+E i,ai . . . . . 26 ± 38 2 ± 19 6 ± 15 140 ± 170 170 ± 210 20 ± 74
T+E i,ii . . . . . 38 ± 170 �26 ± 180 85 ± 130 �280 ± 390 �390 ± 860 480 ± 430

Notes. In each case the adiabatic mode is considered together with one isocurvature mode (either cold dark matter, neutrino density, or neutrino
velocity isocurvature). As explained in the text this gives six di↵erent fNL parameters, indicated by the di↵erent combinations of the adiabatic (a)
and isocurvature (i) modes. Results with two significant digits are shown for both an independent and a fully joint analysis, for T-only, E-only, and
full T+E. In all cases the ISW-lensing bias has been subtracted.

8. Other non-Gaussianity shapes for fNL

This section discusses new searches for NG beyond standard
single-field inflation. The focus here is on extensions to the
analysis undertaken in Planck Collaboration XXIV (2014) with
new limits on isocurvature models, further oscillatory mod-
els over a broader frequency range, and parity-violating tensor
NG. However, we also briefly revisit all the non-standard mod-
els constrained in Planck Collaboration XXIV (2014), including

e↵ective field theory, non-Bunch Davies, and directionally-
dependent models, in particular noting the impact of the new
(preliminary) polarization data on the previous constraints.

8.1. Isocurvature non-Gaussianity

Here we show the results obtained for a study of the isocurva-
ture NG in the Planck 2015 SMICAmap using the binned bispec-
trum estimator. As explained in Sect. 2.3, we only investigate
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Table 20. Similar to Table 19, except that we now assume that the adiabatic and isocurvature mode are completely uncorrelated.

fNL

Independent Joint
Shape Cold dark matter Neutrino density Neutrino velocity Cold dark matter Neutrino density Neutrino velocity

T a,aa . . . . . . 1.3 ± 5.4 1.3 ± 5.4 1.3 ± 5.4 1.0 ± 5.3 19 ± 12 �0.2 ± 5.4
T i,ii . . . . . . . 76 ± 280 �100 ± 250 440 ± 230 65 ± 280 �840 ± 540 440 ± 230

E a,aa . . . . . . 34 ± 34 34 ± 34 34 ± 34 33 ± 35 42 ± 40 35 ± 40
E i,ii . . . . . . . 690 ± 2200 390 ± 1400 260 ± 460 210 ± 2200 �680 ± 1700 �31 ± 540

T+E a,aa . . . . 0.7 ± 4.9 0.7 ± 4.9 0.7 ± 4.9 0.5 ± 5.0 3.0 ± 7.9 �0.3 ± 4.9
T+E i,ii . . . . . 38 ± 170 �26 ± 180 85 ± 130 35 ± 170 �120 ± 290 87 ± 130

Notes. Hence there are only two fNL parameters in this case, a purely adiabatic one and a purely isocurvature one.

isocurvature NG of the local type, and in addition always con-
sider only one isocurvature mode (either cold dark matter, neu-
trino density, or neutrino velocity isocurvature) in addition to
the adiabatic mode. Note that the baryon isocurvature mode be-
haves identically to the cold dark matter one, only rescaled by
factors of ⌦b/⌦c, so there is no need to consider it separately.
In that case there are six di↵erent fNL parameters: a purely adia-
batic one (a,aa), which corresponds to the result from Sect. 6), a
purely isocurvature one (i,ii); and four mixed ones (see Sect. 2.3
for an explanation of the notation).

The results are given in Table 1916 and show no clear signs
of any isocurvature NG. There are a few values that deviate from
zero by up to about 2.5�, but such a small deviation, in partic-
ular given the large number of results, cannot be considered a
detection. We do see that many constraints are tightened consid-
erably when including polarization, by up to the predicted factor
of about six for the cold dark matter a,ii, i,ai, and i,ii modes in
the joint analysis. As discussed in detail in Sect. 7, results in-
cluding polarization data should be considered preliminary, and
that is even more important here, since these results depend so
strongly on the additional information from polarization.

In the results so far we allowed for a possible correlation
between the isocurvature and adiabatic modes. However, if we
assume that they are completely uncorrelated, with a zero cross
power spectrum, then there are only two fNL parameters, the a,aa
and i,ii ones. In Table 20 we give the results for this uncorrelated
case. The independent results are the same as in the previous
table, while in the joint results one can clearly see the di↵erence
between the neutrino density mode (the bispectrum template of
which has a large overlap with the adiabatic one), and the cold
dark matter and neutrino velocity modes (with templates that are
very di↵erent from the adiabatic one). Again there is no evidence
for any isocurvature NG; the almost 2� result for the neutrino
velocity isocurvature mode in the temperature-only case does not
survive the addition of polarization.

8.2. Feature models

An important and well-motivated class of scale-dependent bis-
pectra is the feature model, characterized by linear oscillations

16 Compared to definitions in the literature based on ⇣ and S (see
e.g., Langlois & van Tent 2012), here we adopt definitions based on
�adi = 3⇣/5 and �iso = S/5, in order to make the link with the standard
adiabatic result more direct. Conversion factors to obtain results based
on ⇣ and S are 6/5, 2/5, 2/15, 18/5, 6/5, and 2/5, for the six modes,
respectively.

described by Eq. (15) and its variants in Eqs. (16) and (18).
In Planck Collaboration XXIV (2014) we performed an initial
search for a variety of feature models using the Modal estima-
tor. This earlier search was limited to ! < 200 by the native
resolution of our implementation of the Modal estimator (us-
ing 600 modes), roughly the same range as the initial WMAP
bispectrum feature model searches at lower precision (with only
50 eigenmodes (Fergusson et al. 2012). Note, in the previous
Planck release we used wavenumber kc in line with the theory lit-
erature, but here we switch to frequency !, in line with more re-
cent observational power spectrum searches; the two are related
by ! = 2⇡/3kc. With the improved estimator resolution (now
using 2001 modes) we are able to achieve convergence over a
broader range up to ! = 350. We perform a frequency scan of
350 sampling points between ! = 10 and ! = 350, i.e., 35 inde-
pendent frequencies and 10 phases. We also extend the number
and variety of feature and resonance models that are investigated,
essentially probing the resolution domain in which we have ob-
tained a reliable Modal bispectrum reconstruction (see Fig. 4).

Constant feature ansatz: for the constant feature shape of
Eq. (15), we can extend the frequency range much further with
another approach. As the bispectrum in Eq. (15) is separable, it
allows the construction of a KSW estimator (Münchmeyer et al.
2014) for direct bispectrum estimation at any given frequency.
The bispectrum can be written as a sum of sine and cosine com-
ponents which can be estimated separately (equivalent to mea-
suring the amplitude and phase above) and this method was used
to constrain frequencies up to ! = 3000. The range where the
two estimators overlap provides validation of the two methods
and excellent agreement was seen (see Fig. 20).

Apart from cross-validation with two estimators, we have
undertaken further tests to determine the robustness of the re-
sults to foreground and noise e↵ects. In Fig. 21 (left panel), we
show the e↵ect on feature model results of the subtraction of
the simple point source bispectrum, as well as the ISW-lensing
bispectrum. This study was a major motivation for adopting the
more conservative “extended” common mask, because the con-
sistency between di↵erent component separation methods im-
proved markedly for low frequencies, with the original common
mask requiring much larger point-source subtractions (e.g., for
NILC subtraction the maximum raw significance has reduced
from � = 4.0 to �clean = 2.2 at ! = 110). After clean-
ing these signals, the SMICA, SEVEM and NILC results are in
good agreement, and also consistent with each other when po-
larization is included (while the Commander results generally
have a larger variance and so are not included in the plotted
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Fig. 20. Constant feature model results for both T-only and T+E data across a wide frequency range. The upper four panels show the feature
signal in the Modal range 0 < ! < 350. The two upper left panels show contours of the raw significance � obtained from the SMICA map as a
function of the frequency !, for T-only and T+E, respectively. The upper right panels show the maximum signal after marginalizing over phase �
for both T-only and T+E for all foreground separation models. The third and fourth panels show the maximum feature signal in both T-only and
T+E across the frequency range 0 < ! < 1000, plotting both Modal results (dashed lines) and KSW results (solid lines for 200 < ! < 1000); these
show good agreement in the overlap. The lower two panels give the maximum KSW results for T-only and T+E in the range 1000 < ! < 3000).
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Fig. 21. Constant feature ansatz validation for the Modal estimator, showing the e↵ect of ISW-lensing and point source subtraction for ` < 300
(left panel) and the impact of a lower ` maximum cuto↵ on the average signal (right panel), i.e., lowering `max = 2000 to 1500 (T) and `max = 1500
to 1000 (E). All Modal 2 results in Sect. 8 have used the extended common mask, except the validation analysis at di↵erent resolutions (right
panel) which for consistency employs the common mask.

averages). Fortunately, the e↵ect of subtracting ISW-lensing and
point source bispectra diminishes rapidly at higher frequencies
! > 200 and should be negligible; subtraction was only under-
taken in the Modal region ` < 350. In Fig. 21 (right panel),
we show the e↵ect on the averaged significance of reducing the
Planck domain from the usual `max = 2000 to `max = 1500
(`max = 1500 to `max = 1000 for E-modes). Despite the non-
trivial change in overall signal-to-noise entailed, there is no
strong evidence for an `-dependent signal, as might be expected
if there was substantial NG feature contamination in the noise-
dominated region. Finally, we note that most peaks at low !
show some correlation between T-only and T+E, although there
are notable exceptions, such as the peak at ! = 180, which is re-
moved after inclusion of polarization (see also the phase plots in
Fig. 20 before marginalization). The temperature feature peaks
observed in Fig. 21 at ! ⇡ 110, 150, and 180 are consistent with
the peaks identified previously in Planck Collaboration XXIV
(2014).

In Fig. 20, the full set of frequency results, 0 < ! < 3000,
for the constant feature model in Eq. (15) is shown for both
the Modal and KSW estimators. There is good agreement for
regions where the estimators overlap and PS and ISW lensing
bispectra subtraction is not necessary (! > 200). Generally,
there is tighter consistency between temperature-only results,
than with polarization where there is additional scatter between
foreground separation methods. Scanning across the full fre-
quency range, there is no strong evidence for any large maximum
that might indicate unequivocal evidence for a feature model sig-
nal. The maximum peak significance obtained with either T-only
or T+E is consistent with expectations for a Gaussian model
over this frequency range. In particular, for the KSW estima-
tor using the SMICA data, the highest significance found in the
range 200 < ! < 3000 is 3.2� in T-only and 2.9� in T+E. To
gauge the likelihood of these results occurring randomly, realis-
tic Gaussian SMICA simulations were analysed with the KSW
estimator and found to typically produce a highest peak with
3.1(±0.3)� over the same frequency range.

Generalized feature models: we have also deployed the
Modal estimator to look at (non-separable) feature models with
equilateral and flattened cross-sections, as motivated by varying
sound speed scenarios and those with highly excited states, re-
spectively. In the left panels in Fig. 22 we show results from
the equilateral feature model of Eq. (16), including the fre-
quency/phase contours before marginalization for the SMICA
T-only map. Multiple peaks are apparent in the temperature sig-
nal across the Modal range up to an average maximum 3.3�
raw significance. However, from the lower panel it is clear that

the polarization signal is not well correlated with the temper-
ature in the equilateral case, generally reducing peak heights
with the maximum now about 2.6� (while eliminating the ! =
180 peak altogether). This temperature peak remains present
with the `max = 1500 cuto↵, where the signal is slightly higher,
but the polarization in this case is less well correlated (using
`Emax = 1000). For Gaussian noise we would not expect polar-
ization to reinforce a high temperature signal on average. It may
also be that the equilateral temperature signal has some resid-
ual di↵use point-source contamination. The equilateral feature
model is the most a↵ected by the removal of point sources, so
the presence of a more complex correlated PS bispectrum (not
removed by the constant PS template subtraction) remains for
future investigation.

Results for the flattened feature model in Eq. (18) are shown
in Fig. 22 (right panels), displaying more coherence between
temperature and polarization. The temperature signal with a
2.6� peak between 50 < ! < 150 is reinforced by polariza-
tion and merges to make a broad 3� peak around ! = 90, to-
gether with another distinct peak at ! ⇡ 140. Such broad fre-
quency peaks are not expected, because neighbouring feature
models should be nearly uncorrelated over a range �!eft ⇡ 13
(as we discuss below). As the phase plots in Fig. (22) indicate,
this breadth in frequency ! may reflect the neighbouring feature
models adjusting phase � to match an underlying NG signal of
a related, but di↵erent, nature. We note also that the frequency
region for ! < 100 is susceptible to some degeneracy with cos-
mological parameters. We shall consider a “look-elsewhere” sta-
tistical analysis of these results below.

Single-field feature solutions: we have also searched for the spe-
cific analytic solutions predicted for single-field inflation models
with step-like potential features, as given in Eqs. (19) and (20),
with results shown in Fig. 23. The highest peaks for the K2-
cosine model occur around 2.5� with temperature-only, then
rises to 2.7� when polarization data are included, again with
peaks at other distinct frequencies apparent. The K-sine model
shows a similar apparent signal level, with a maximum T-only
2.7� peak, dropping to 2.4� with polarization. One further di�-
culty with a positive interpretation of these bispectrum results
in this low frequency range is that stronger S/N counterparts
in the power spectrum are predicted for these simple models
(Adshead et al. 2011), whereas no significant correlated oscil-
lation signals are apparent at the relevant peak frequencies
Planck Collaboration XX (2016).

Feature model peak statistics: in order to determine consis-
tency with Gaussianity for these feature model results, we can
apply a number of statistical tests developed for this specific
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Fig. 22. Generalized feature models analysed at `max = 2000 (E-modes `max = 1500) for the di↵erent Planck foreground separation methods,
SMICA (blue), SEVEM (red), NILC (green), and Commander (yellow), together with the SSN (SMICA - SEVEM - NILC ) average (black). The left three
panels apply to the equilateral feature models, showing, respectively, in the top panel the full feature survey significance at each frequency and
phase (temperature only), the maximum significance at each frequency for temperature only (middle), and with polarization (lower). The right
three panels apply to the flattened feature models, showing the maximum significance at each frequency for temperature only (top right) and with
polarization (middle right), along with significance at each frequency and phase for temperature and polarization (right lower).

Table 21. Peak statistics for the di↵erent feature models showing the Raw peak maximum significance (for the given Modal survey domain), the
corrected significance of this Single maximum peak after accounting for the parameter survey size (the “look-elsewhere” e↵ect) and the Multi-peak
statistic which integrates across the adjusted significance of all peaks to determine consistency with Gaussianity.

SMICA SEVEM NILC Commander

Raw Single Multi Raw Single Multi Raw Single Multi Raw Single Multi

Features constant T-only 2.7 0.5 1.7 2.6 0.4 1.5 2.8 0.7 2.2 2.9 0.8 2.7
Features constant T+E 2.7 0.5 1.9 2.8 0.7 2.5 2.8 0.7 2.4 2.6 0.4 1.5
Features equilateral T-only 3.3 1.5 4.0 3.2 1.3 3.5 3.3 1.6 4.1 2.9 0.9 2.5
Features equilateral T+E 2.6 0.4 1.3 2.6 0.4 1.6 2.8 0.7 1.9 2.7 0.6 1.5
Features flattened T-only 2.5 0.3 1.4 2.6 0.4 1.6 2.7 0.5 2.1 2.8 0.8 2.7
Features flattened T+E 2.9 0.9 2.9 3.0 1.1 3.5 3.1 1.2 3.8 3.1 1.2 3.8
K2 cos features T-only 2.5 0.7 1.9 2.3 0.6 1.6 2.7 1.0 2.5 2.2 0.3 1.1
K2 cos features T+E 2.7 1.0 2.5 2.7 1.1 2.6 2.6 1.0 2.5 2.4 0.6 1.8
K sin feature T-only 2.8 1.2 2.8 2.7 1.1 2.7 3.0 1.5 3.4 2.6 0.9 2.3
K sin features T+E 2.1 0.3 1.0 2.9 1.4 3.1 2.4 0.6 1.7 2.3 0.5 1.6

Notes. SMICA, SEVEM and NILC map analyses exhibit satisfactory bispectrum agreement for all the di↵erent models, whereas the Commander
results produce some anomalously large results, especially for polarization. The significant signal for the equilateral features model in the T-only
multi-peak statistic is reduced when polarization is added. The flattened feature model produces interesting results, which are reinforced with
polarization to the 3�-level, with a high multi-peak significance.

purpose (Fergusson et al. 2015) and, if warranted, also apply
these jointly in combination with power spectrum results, as
for the WMAP polyspectra analysis (Fergusson et al. 2015).
When scanning across the (!, �) parameter-dependent feature
models, we are searching through independent models for which

Gaussian noise, by chance, can lead to a large apparent signal.
We must correct for this multiplicity of tests when determining
the actual significance of results for a given model – this is a
quantitative correction for any model with free parameters, dis-
tinct from the a posteriori choice of models to test. The simplest
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Fig. 23. Single field feature model significance with a K2 cos!K scaling dependence (Eq. (19); left panels, T-only upper and T + E lower) or
with a K sin!K scaling (Eq. (20); right panels). To find the maximum signal, these results have been marginalized over the ↵-dependent envelope
function ranging from ↵! 0 (no envelope) to the maximum cuto↵ allowed by the Modal resolution ↵! = 90.

approach is to determine whether the maximum peak is consis-
tent with Gaussian expectations, which can be determined from
Monte Carlo simulations. However, in Fergusson et al. (2015) it
was recognized that these feature models can be accurately char-
acterized analytically with a �-distribution having two degrees
of freedom17. Taking `max = 2000 and using this analysis,
the frequency step size between models that are uncorrelated
is approximately �!e↵ = 13, so we have an e↵ective number
of independent feature models Ne↵ ⇡ 27 for the Modal fre-
quency range (with Ne↵ ⇡ 230 across the larger constant feature
survey range). Accordingly appropriate look-elsewhere correc-
tions have been applied to find an adjusted significance for the
maximum peak signal found in all the feature model searches
undertaken, which is shown in Table 21. Given that this feature
model survey is over many independent frequency models and
combinations of data, even the highest raw significances above
3� (“Raw” column in Table 21) are reduced to a corrected sig-
nificance below 2� (“Single” column). Hence, there appears to
be no evidence from maximum peak statistics for feature model
deviations from Gaussianity.

Nevertheless, we also examine the possibility that multi-
ple feature models are contributing to a NG signal, given the
17 For the feature model with parameters (!, �), the adjusted signif-
icance S for the raw significance � after accounting for the “look-
elsewhere” e↵ect is given by (Fergusson et al. 2015)

S =
p

2 Erf�1[(F�,2(�))Ne↵ ], (59)

where F�,2 is the cumulative distribution function of the �-distribution
of degree two and Ne↵ is the e↵ective number of independent feature
models. This can also be used to investigate whether feature models are
contributing at several frequencies. This multi-peak statistic integrates
over all peak signals using the corrected significance S , i.e.,

S 2
I =

�!

�!e↵

X

!

2Erf�1[F�,2(�(!))Ne↵ ]2, (60)

where �! is the sampling step-size and �!e↵ is the e↵ective corre-
lation scale between independent models given by �!e↵ = (!max �

!min)/(Ne↵�1). Essentially this sums up all significant peaks that have a
non-zero adjusted significance, after accounting for the look-elsewhere
e↵ect in Eq. (59).

apparent emergence of several preferred frequency peaks. This
integrated multi-peak statistic can also be accurately approx-
imated analytically (Eq. (60)) using a �-distribution; essen-
tially we sum over all independent frequencies using the sin-
gle peak significance adjusted for the “look-elsewhere” e↵ect
(see Eq. (59)). Most of the signal surveys exhibit an unusual
number of broad overlapping peaks within the accessible fre-
quency domain, so the multi-peak statistic does yield a much
higher significance, with many models above 2� after “look-
elsewhere” correction. Notable cases are the temperature-only
signal for the equilateral feature model which yields an average
significance of 3.4� across the foreground-cleaned maps with
concordant bispectrum results (i.e., SMICA, SEVEM and NILC);
however, this interesting multi-peak significance drops to only
1.6� when the polarization data are included (assuming the re-
liability of E results). On the other hand, the flattened feature
model has an average multi-peak significance of 1.7� in tem-
perature only, which rises to 3.4� with polarization included
(higher at 3.7� if Commander data were to be included in the
average). In this case, beyond the number of peaks, it is also
their width that contributes, with the main signal around ! ⇡ 90,
much broader than �! ⇡ 13. Finally, after look-elsewhere ef-
fects are taken into account, the K2-cosine single-field solutions
yield multi-peak statistics that rise with the inclusion of polar-
ization data from 2.0� to 2.5�, while the K-sine falls from 3.0�
(T ) to 1.9� (T+E).

An interesting, but not entirely coherent, picture emerges
from these searches for non-standard models in the new
Planck temperature data, especially when combined with
the additional (preliminary) polarization information. In
Planck Collaboration XXIV (2014), we noted that the feature
model searches provided interesting hints of NG. This more rig-
orous statistical analysis confirms this view, allowing for sev-
eral alternative feature model explanations of the apparently
high NG signal observed in the bispectrum reconstructions (see
Fig. 4). However, there is no strong evidence for a single large
feature model at a particular frequency; rather, the high multi-
peak statistics indicate signal that is spread across several broad
peaks. Given the variability between di↵erent feature models
and polarization component-separation methods, we note the
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Fig. 24. Generalized resonance models analysed at `max = 2000 (E-modes `max = 1500) for the di↵erent Planck foreground separation methods,
SMICA (blue), SEVEM (red), NILC (green), and Commander (yellow), together with the SSN (SMICA – SEVEM – NILC ) average (black). The upper
panels apply to the constant resonance model (Eq. (10)), with T-only (left) and T+E (right), the middle panels give results for the equilateral
resonance model (Eq. (13)), and the lower panels for the flattened resonance model (Eq. (14)). Both the equilateral and flattened resonance models
produce broad peaks, which are reinforced with polarization (middle and bottom right panels).

caveat that the integrated multi-peak statistic could be sensitive
to calibration issues and foreground contamination. For this rea-
son, we do not make strong claims for these non-standard signals
at this stage, but we note that oscillatory models will continue to
be investigated thoroughly over a wider frequency domain and
using the more reliable polarization data available in the final
Planck data release.

8.3. Resonance/axion monodromy models

Generalized resonance models: using the Modal expansion, we
have embarked on a survey of the simplest resonance model
(Eq. (10)), as well as the equilateral and flattened variants pro-
posed in the literature, i.e., described by Eqs. (13) and (14),
respectively. The raw significance for the resonance models for
both temperature-only and temperature plus polarization data are
shown in Fig. 24; these are the maximal results marginalized
over the phase parameter �. Previously, the resonance model
was studied in Planck Collaboration XXIV (2014) using the
Modal expansion over a narrower frequency range yielding no
results above a raw significance of 1�. In this extended anal-
ysis over a wider frequency range, the constant sin(log) model
(Eq. (10)) produces 2.2� peaks for T-only, and 2.6� for T+E.
The equilateral resonance model (Eq. (13)) achieves a maximum
2.8� in T-only at ! ⇡ 35, rising to a more impressive average
3.2� for T+E. For the flattened case (Eq. (14)) we have 2.5� and
3.0�, respectively at ! ⇡ 12. Qualitatively, the results shown in

Fig. 24, exhibiting broad peaks, are similar to those for feature
models.

Resonance model peak statistics: to determine the statistical sig-
nificance of these results given the look-elsewhere e↵ect of scan-
ning across the parameters (!, �), we have used the two peak
statistics defined above in Eqs. (59) and (60) for feature models
(Fergusson et al. 2015). In this case, the maximum peak statistic
for the constant resonance model of 2.6� (T+E) is readjusted to
an unremarkable “look-elsewhere” single peak significance of
0.9�. Likewise the apparently significant results above 3� for
the equilateral and flattened models now fall below 2.0� with
T+E. Using the single peak statistic alone, we would conclude
that there is no strong evidence for any individual resonance
model. Resonance models also generate oscillations in the power
spectrum, and an analysis based on the 2015 temperature and po-
larization likelihood is presented in (Planck Collaboration XX
2016). A combined statistical treatment of resonance model
power spectrum and bispectrum results will be reported in the
future.

The multi-peak statistic in Eq. (60) integrates the resonance
model signal across all frequencies to determine consistency
with Gaussianity. The constant resonance model has a modest
multi-peak signal but, like the feature models, the equilateral and
flattened resonance shapes o↵er stronger hints. The multi-peak
equilateral signal rose from 1.9� (T-only) to 3.1� (T+E) after
adjusting for the “look-elsewhere” e↵ect, while the flattened sig-
nal went from 2.4� (T-only) to 3.2� (T+E). These interesting re-
sults, reflecting those obtained for feature models, suggests the
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Table 22. Peak statistics for the resonance models showing the maximum Raw peak significance, the Single peak significance after accounting for
the parameter survey “look-elsewhere” e↵ect, and the Multi-peak statistic integrating across all peaks (also accounting for the “look-elsewhere”
correction).

SMICA SEVEM NILC Commander

Raw Single Multi Raw Single Multi Raw Single Multi Max. Single Multi

Sin(log) constant T-only 2.4 0.7 1.2 2.2 0.4 0.9 2.0 0.2 0.7 2.5 0.8 1.6
Sin(log) constant T+E 2.4 0.7 1.7 2.7 1.1 2.4 2.6 1.0 2.2 2.7 1.1 2.5
Sin(log) equilateral T-only 3.0 1.6 2.4 2.8 1.2 2.0 2.5 0.9 1.5 2.6 1.0 2.1
Sin(log) equilateral T+E 3.5 2.2 3.5 3.0 1.5 2.8 3.1 1.7 3.2 2.8 1.2 2.0
Sin(log) flattened T-only 2.5 0.7 1.8 2.5 0.8 1.9 2.6 0.9 2.1 3.0 1.6 3.2
Sin(log) flattened T+E 2.9 1.4 2.9 3.0 1.6 3.4 3.1 1.6 3.4 3.6 2.3 4.5

Notes. There is some evidence for a high signal for both the equilateral and flattened resonance models, which increases when the polariza-
tion signal is added. This table does not include the results of the high frequency resonance model estimator, whose significance was assessed
independently.

fit to any underlying NG signal might await alternative, but re-
lated, oscillatory models for a more compelling explanation.

High frequency resonance model estimator: we have further sur-
veyed the simple resonance model (Eq. (10)) with a second
approach. Using a model-specific expansion in terms of linear
oscillation, proposed in Münchmeyer et al. (2015), it is possible
to extend the frequency range of the analysis considerably. In this
approach one exploits the fact that any bispectrum shape which
is a function of k1 + k2 + k3 can be expanded in Fourier modes of
k1+k2+k3, resulting in an e↵ectively one-dimensional expansion,
as opposed to the general Modal expansion. In the present im-
plementation we use 800 sine and cosine modes, which cover
the full frequency space of the power spectrum search, i.e.,
0 < ! < 1100. The significances found with this method are
presented in Fig. 25. As was the case for the feature model, we
find that SMICA, SEVEM and NILC results are in good agreement
in both temperature and polarization, while Commander results
generally have larger variance and so are not included in the plot-
ted averages. We find that the largest peak of the average is 3.6�
in temperature and 3.1� in temperature and polarization com-
bined. The results of the Modal expansion discussed in the pre-
vious paragraph are in good agreement with the high frequency
resonance model estimator in the overlapping frequency range.

Due to the high computational demands of this analysis,
we have only exactly assessed the look-elsewhere e↵ect for
SMICA T data, for which we find an expected maximum peak
of 3.5� ± 0.4� in the case of Gaussian maps, to be compared
to 3.7� in the SMICA T data, demonstrating that the results are
fully consistent with Gaussianity. The expected maximum peak
for Gaussian maps was calculated from the Fisher matrix with
the method described in Meerburg et al. (2016). The average
over component separation methods as well as the T+E data
is even less significant. For the high frequency estimator we
have assessed the significance of multiple peaks in the follow-
ing way. Define the multi-peak amplitude AM as the sum of
squares of the M highest significances �i in the frequency range,
i.e., AM =

⇣PM
i=1 �

2
i

⌘1/2
, where only approximately indepen-

dent peaks with �! > 10 are considered. One can then com-
pare AM to its distribution in the Gaussian case and get an in-
dividual significance �M for each number of peaks M, where
we assume M  10. The multi-peak statistic is then obtained
by maximizing over M, leading to an additional look-elsewhere
e↵ect that we also accounted for. In this way we find that in
the SMICA T data the raw peak maximum 3.7�, is reduced
to 0.5� for the single-peak statistic and to 0.6� in the multi-
peak case. This large reduction in significance is due to the

large number of independent frequencies as well as to the max-
imization over phases. One may argue that the frequency range
! < 1100 is too large, as EFT arguments for resonance non-
Gaussianities (Behbahani et al. 2012) limit the frequency range
to O(102). As an example, we have therefore also calculated the
look-elsewhere-corrected significances when we limit the analy-
sis to ! < 250. In this case we find a single-peak significance of
0.6� and a multi-peak significance of 0.9�. Clearly the results
are fully consistent with Gaussianity.

8.4. Equilateral-type models and the effective field theory
of inflation

There is considerable interest in equilateral-type models because
they are physically well-motivated, through e.g., varying sound
speed scenarios. There are generic predictions available from
the e↵ective field theory of inflation, notably the two specific
e↵ective field theory (EFT1 and EFT2) shapes that give rise
to the equilateral and orthogonal approximations. These mod-
els were previously constrained in Planck Collaboration XXIV
(2014) and the reader is referred to Sect. 2 of that paper for an-
alytic expressions for the specific shapes constrained here. In
Table 23, we list the main equilateral-type models in the liter-
ature, giving constraints for T-only and T+E. All these models
correlate well with the equilateral ansatz (Eq. (12)) and likewise
do not show a significant signal. However, despite this corre-
lation, it is interesting to note the variation between models,
largely due to the di↵erence between these shapes in the flat-
tened limit. The implications of these results are discussed in
Sect. 11.

8.5. Models with excited initial states (non-Bunch-Davies
vacua)

Non-Bunch-Davies (NBD) or excited initial states are models
which produce flattened (or squeezed) bispectrum shapes. The
wide variety of NBD models that have been proposed are briefly
classified and labelled in Sect. 2, following a more extensive
overview in Sect. 2 of Planck Collaboration XXIV (2014) where
more analytic forms and the first constraints were presented. The
latest Planck constraints for these models are listed in Table 24,
obtained using the Modal 2 estimator with polarization, Despite
the apparent “flattened” signal seen in the Planck bispectrum
reconstructions (Fig. 4), this is generally not matched well by
the specific modulation induced by the acoustic peaks for these
scale-invariant NBD models. Tight constraints emerge for most
models. The largest signal obtained is from the NBD sinusoidal
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Fig. 25. Standard resonance model results for both T-only and T+E across a wide frequency range using the high frequency resonance model
estimator. The first and second panels show the signal in both T-only (first panel) and T+E (second panel) across the frequency range 0 < ! < 500.
The lower two panels give the results for T-only (third panel) and T+E (fourth panel) in the range 500 < ! < 1100.

shape which gives a 1.6� T-only raw significance, rising to 2.1�
for T+E; this is hardly an impressive correspondence given the
number of models surveyed and the parameter freedom used
in maximizing the signal. However, an important caveat for
NBD models is that the predicted shapes can be very narrow in
the flattened limit, in which case solutions have been smoothed
to match the current Modal resolution (though this has improved
considerably since the Planck 2013 NG analysis). An improved
match to the warm inflation shape means that the final constraint

shown in Table 24 is more robust, with further implications dis-
cussed in Sect. 11.

8.6. Direction-dependent primordial non-Gaussianity

We impose observational limits on direction-dependent primor-
dial NG parametrized by Eq. (23). Rather than using c1 and
c2 we instead choose to work with the non-linearity parameters
f L=1
NL = �c1/4 and f L= 2

NL = �c2/16 (chosen to match a primordial
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Table 23. Constraints on models with equilateral-type NG covering the shapes predicted by the e↵ective field theory of inflation, together with
constraints on specific non-canonical inflation models, such as DBI inflation.

SMICA SEVEM NILC Commander

Equilateral-type model A ± �A S/N A ± �A S/N A ± �A S/N A ± �A S/N

Constant T-only 12 ± 38 0.3 16 ± 38 0.4 10 ± 37 0.3 1 ± 39 0.0
Constant T+E 18 ± 22 0.8 28 ± 24 1.2 12 ± 23 0.5 26 ± 24 1.1
Equilateral T-only �15 ± 68 �0.2 �9 ± 68 �0.1 �19 ± 67 �0.3 �17 ± 69 �0.3
Equilateral T+E 5 ± 42 0.1 4 ± 45 0.1 �2 ± 42 �0.1 27 ± 45 0.6
EFT shape 1 T-only �3 ± 65 0.0 3 ± 64 0.0 �7 ± 62 �0.1 �9 ± 66 �0.1
EFT shape 1 T+E 12 ± 39 0.3 15 ± 42 0.3 3 ± 39 0.1 32 ± 42 0.8
EFT shape 2 T-only 17 ± 50 0.3 22 ± 50 0.5 15 ± 47 0.3 8 ± 51 0.2
EFT shape 2 T+E 23 ± 29 0.8 31 ± 31 1.0 15 ± 29 0.5 36 ± 31 1.2
DBI inflation T-only 3 ± 62 0.0 9 ± 61 0.1 �1 ± 59 0.0 �4 ± 63 �0.1
DBI inflation T+E 15 ± 37 0.4 20 ± 39 0.5 7 ± 37 0.2 34 ± 40 0.9
Ghost inflation T-only �50 ± 80 �0.6 �45 ± 80 �0.6 �54 ± 79 �0.7 �45 ± 82 �0.6
Ghost inflation T+E �27 ± 50 �0.5 �37 ± 54 �0.7 �31 ± 51 �0.6 1 ± 55 0.0
Inverse decay T-only 17 ± 43 0.4 21 ± 43 0.5 14 ± 41 0.3 4 ± 44 0.1
Inverse decay T+E 23 ± 25 0.9 32 ± 27 1.2 15 ± 26 0.6 32 ± 27 1.2

Notes. See Planck Collaboration XXIV (2014) (Sect. 2) for further explanation of these specific models, with further implications discussed in
Sect. 11.

Table 24. Constraints on models with excited initial states (non-Bunch-Davies models), as well as warm inflation.

SMICA SEVEM NILC Commander

Flattened-type model A ± �A S/N A ± �A S/N A ± �A S/N A ± �A S/N

Flat model T-only 49 ± 65 0.8 57 ± 65 0.9 47 ± 65 0.7 19 ± 65 0.3
Flat model T+E 44 ± 37 1.2 70 ± 37 1.9 33 ± 37 0.9 47 ± 37 1.3
Non-Bunch-Davies T-only 42 ± 82 0.5 53 ± 82 0.6 26 ± 82 0.3 17 ± 82 0.2
Non-Bunch-Davies T+E 61 ± 47 1.3 76 ± 47 1.6 43 ± 47 0.9 58 ± 47 1.2
NBD sine T-only 567 ± 341 1.7 513 ± 341 1.5 588 ± 341 1.7 604 ± 341 1.8
NBD sine T+E �387 ± 206 �1.9 �485 ± 218 �2.2 �425 ± 206 �2.1 �417 ± 210 �2.0
NBD1 cos flattened T-only �10 ± 22 �0.5 �4 ± 22 �0.2 �8 ± 22 �0.4 �9 ± 22 �0.4
NBD1 cos flattened T+E �20 ± 19 �1.1 �10 ± 19 �0.5 �19 ± 19 �1.0 �14 ± 19 �0.8
NBD2 cos squeezed T-only 10 ± 17 0.6 10 ± 17 0.6 8 ± 17 0.5 �2.5 ± 17 �0.1
NBD2 cos squeezed T+E �3 ± 5 �0.5 �0.8 ± 5.5 �0.1 �4 ± 5 �0.8 �3.8 ± 5.5 �0.7
NBD1 sin flattened T-only �25 ± 22 �1.1 �27 ± 22 �1.2 �18 ± 22 �0.8 �33 ± 23 �1.4
NBD1 sin flattened T+E 48 ± 30 1.6 49 ± 33 1.5 35 ± 31 1.1 26 ± 34 0.8
NBD2 sin squeezed T-only �2.0 ± 1.4 �1.4 �1.4 ± 1.4 �1.0 �1.6 ± 1.4 �1.1 �1.3 ± 1.4 �0.9
NBD2 sin squeezed T+E �0.8 ± 0.4 �1.9 �0.5 ± 0.4 �1.2 �0.6 ± 0.4 �1.4 �0.5 ± 0.4 �1.2
NBD3 non-canonical T-only (⇥1000) �5.9 ± 6.7 �0.9 �6.0 ± 6.8 �0.9 �5.4 ± 6.8 �0.8 �5.5 ± 6.7 �0.8
NBD3 non-canonical T+E (⇥1000) �8.7 ± 5.0 �1.7 �6.2 ± 5.2 �1.2 �7.5 ± 5.2 �1.5 �9.4 ± 5.2 �1.8
WarmS inflation T-only �23 ± 36 �0.6 �26 ± 36 �0.7 �32 ± 36 �0.9 �24 ± 36 �0.7
WarmS inflation T+E �14 ± 23 �0.6 �28 ± 23 �1.2 �21 ± 23 �0.9 �17 ± 23 �0.7

Notes. See Sect. 2 for further explanation and the labelling of these classes of NBD models. Note that the NBD, NBD1, and NBD2 models contain
free parameters, so here we quote the maximum significance found over the available parameter range; the maximum for T and T+E can occur at
di↵erent parameter values (on which the error bars are also dependent).

bispectrum that is equal to the equilateral shape in the equilateral
limit) keeping the notation from the 2013 results. We estimated
the f L

NL values from temperature data and high-pass filtered po-
larization data from the four foreground-cleaned CMB maps
SMICA, NILC, SEVEM, and Commander, where we apply the com-
mon mask. The details of the KSW estimator and its derivation is
presented in Appendix A. For temperature data, we use the com-
mon mask as adopted in Planck Collaboration XII (2014), which
has more conservative foreground masking than the newly avail-
able mask. We choose the more conservative foreground mask-
ing, considering the fact that anisotropic NG is more sensitive to
residual foregrounds. We set the maximum multipole to 2000
and 1000 for temperature and polarization data, respectively.
Validating our analysis pipeline with realistic simulations, we
find that the asymmetry of the Planck beam, coupled with the

Planck scanning pattern, inflates the statistical fluctuations of
the f L

NL significantly. Noting the large angular scale of artificial
anisotropy produced by the beam asymmetry, we set the mini-
mum multipole to 101, and find that the statistical fluctuation of
estimation from simulated data is close to the theoretical expec-
tations.

These two shapes are also constrained using the Modal 2
estimator, which is not a↵ected by the beam asymmetry and is
used in the same form as elsewhere in the paper with multipoles
from 2 to 2000 and 30 to 1500 being used for temperature and
polarization, respectively. The present constraints are consis-
tent with those found for T-only in Planck Collaboration XXIV
(2014), but at higher resolution convergence has improved con-
siderably, reflected in the lower variance.

A17, page 47 of 66



A&A 594, A17 (2016)

Table 25. Direction-dependent NG results for both the L = 1 and L = 2 models.

Commander NILC SEVEM SMICA

A ± �A S/N A ± �A S/N A ± �A S/N A ± �A S/N

L = 1
Modal 2 T-only �41 ± 43 �0.9 �58 ± 42 �1.4 �51 ± 43 �1.2 �49 ± 43 �1.1
KSW T-only �8 ± 46 �0.2 �62 ± 46 �1.3 �34 ± 45 �0.8 �26 ± 45 �0.6
Modal 2 T+E �28 ± 29 �1.0 �30 ± 27 �1.1 �49 ± 28 �1.7 �31 ± 26 �1.2
KSW T+E �57 ± 33 �1.7 �62 ± 32 �1.9 �79 ± 32 �2.5 �54 ± 32 �1.7
L = 2
Modal 2 T-only 0.7 ± 2.8 0.2 0.8 ± 2.8 0.4 1.1 ± 2.7 0.3 0.5 ± 2.7 0.2
KSW T�only 1.5 ± 5.1 0.3 �3.9 ± 5.1 �0.8 �0.4 ± 5.1 �0.1 0.1 ± 5.0 0.0
Modal 2 T+E 1.1 ± 2.4 0.5 0.5 ± 2.4 0.2 1.3 ± 2.4 0.6 �0.2 ± 2.3 �0.1
KSW T+E �3.0 ± 4.1 �0.7 �3.6 ± 4.0 �0.9 �3.8 ± 4.0 �1.0 �1.3 ± 3.9 �0.3

Notes. We present results from both the KSW and Modal 2 pipelines. The discrepancy between the central values for the L = 2 models is due to the
di↵ering ` ranges taken for the two estimators, the key di↵erence being the KSW `min = 101. As this model peaks in the squeezed configuration, a
significant portion of the signal is lost, which is reflected in the increased error bars.

We find that the ISW-lensing bispectrum and the unre-
solved point-sources bispectrum bias the estimation of the f L

NL,
in particular in the analysis of temperature data. For our final
values, we subtract both these biases from our estimation.
In Table 25, we report the estimated value of f L

NL from the
foreground-cleaned CMB maps. For L = 1 the e↵ect of the
di↵ering `-ranges between the two estimators is not so signif-
icant and the results are quite consistent. For L = 2, which
has significant signal in the squeezed configuration, the e↵ect
of removing small scales from the KSW estimator is more pro-
nounced, resulting in significantly enlarged error bars. In light
of this, the di↵erences seen between the central values for the
two methods is to be expected and does not indicate any incon-
sistencies between the two approaches. The slight di↵erences
between the results from di↵erent foreground-cleaned temper-
ature maps are within the likely range of statistical fluctuations,
estimated from realistic simulations of CMB and noise propa-
gated through the pipelines of foreground-cleaned map making.
As seen in Table 25, we find that the estimated values of f L

NL
from Planck 2015 temperature plus polarization data are consis-
tent with zero.

8.7. Parity-violating tensor non-Gaussianity

We present observational limits on the parity-violating tensor
nonlinearity parameter f tens

NL from the temperature and E-mode
polarization data. Unlike the usual scalar-mode templates, the
CMB bispectra sourced from the tensor NG (Eq. (27)) are writ-
ten in non-factorizable forms (Shiraishi et al. 2013b); hence, we
use the separable Modal pipeline in our bispectrum estimations.

The parity-violating NG under examination induces non-
vanishing signals not only in parity-even configurations (`1 +
`2 + `3 = even) but also in the parity-odd ones (`1 + `2 +
`3 = odd) in the temperature and E-mode polarization bispec-
tra (Shiraishi et al. 2013b). The optimal estimator, including all
(even + odd) bispectrum signals, is expressed by the linear com-
bination of the parity-even and parity-odd estimators, reading
(Liguori, in prep.)

f̂ all
NL =

Neven f̂ even
NL + Nodd f̂ odd

NL

Neven + Nodd , (61)

where Neven/odd is the normalization factor (related to the Fisher
matrix as Neven/odd = 6Feven/odd) defined for `1 + `2 + `3 =
even/odd. The parity-even estimator f̂ even

NL can be computed
using the original Modal methodology (Fergusson et al. 2010a,
2012; Fergusson 2014; Liguori, in prep.), while in computations
of the parity-odd estimator f̂ odd

NL , we follow the extended spin-
weighted pipeline (Shiraishi et al. 2014, 2015; Liguori, in prep.).

Our f tens
NL estimations (with both temperature and polariza-

tion data) are based on the resolution of `max = 500 and HEALPix
Nside = 512, leading to feasible computational costs. This choice
is not expected to change the results significantly, in compari-
son to the analysis at higher resolution, e.g., `max = 2000 and
Healpix Nside = 2048, since the cosmic variance and instru-
mental noise are already far higher than the signals for ` & 300
(Shiraishi et al. 2013b). Only in the polarization data analysis is
an e↵ective `min also adopted, which is motivated by the high-
pass filtering process for `  40 in component separation.

Within the above ` ranges, the theoretical bispectrum
templates are decomposed with the eigenbasis composed of
O(1�10) polynomials and some special functions reconstruct-
ing the tensor-mode features, e.g., temperature enhancement due
to the ISW e↵ect (` <⇠ 100), and two E-mode peaks created by
reionization (` <⇠ 10) and recombination (` ' 100). The resulting
factorized templates are more than 95% correlated with the orig-
inal ones. The validity of our numerical computations has been
confirmed through the map-by-map comparisons of f̂ even/odd

NL at
very low resolution, showing the consistency between the values
from the Modal methodology and those obtained by the brute-
force O(`5) summations like Eq. (36). We have also checked that
our parity-even estimator successfully leads to the constraints on
f local
NL , f equil

NL , and f ortho
NL at `max = 500, compatible with the results

from the binned estimator.
Our limits estimated from the foreground-cleaned temper-

ature and high-pass filtered polarization data (SMICA, SEVEM,
and NILC) are summarized in Table 26. The data and MC
simulations used here, including all experimental features, i.e.,
beam, anisotropic noise levels and partial sky mask, have been
inpainted using the identical recursive process adopted in the
standard fNL estimations (see Sect. 3.5). The sky fractions of
the temperature and polarization masks adopted here are, re-
spectively, fsky = 0.76 and fsky = 0.74. Although the error bars
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Table 26. Results for the tensor nonlinearity parameter f tens
NL /102, es-

timated from the SMICA, SEVEM, and NILC temperature and high-pass
filtered polarization maps.

Even Odd All

SMICA

T . . . . . . . . . . . . 2 ± 15 120 ± 110 4 ± 15
T+E . . . . . . . . . . 0 ± 13

SEVEM

T . . . . . . . . . . . . 2 ± 15 120 ± 110 5 ± 15
T+E . . . . . . . . . . 4 ± 13

NILC

T . . . . . . . . . . . . 3 ± 15 110 ± 100 5 ± 15
T+E . . . . . . . . . . 1 ± 13

Notes. We separately show the central values and the errors (68% CL)
extracted from `1 + `2 + `3 = even (Even), `1 + `2 + `3 = odd (Odd) and
their whole domain (All). The parity-odd constraints have also been
obtained from the E-mode data, but they are still preliminary and not
currently shown.

Table 27. Correlation coe�cients between pairs of bispectrum modes,
extracted from two of the Planck component separated maps and the
WMAP foreground-cleaned map at `max = 500 resolution.

TTT EEE

Methods Even Odd Even Odd

SMICA–SEVEM . . 1.00 0.99 0.80 0.80

SMICA–NILC . . . 1.00 1.00 0.90 0.87

SEVEM–NILC . . . 0.99 1.00 0.70 0.60

SMICA–WMAP . 0.75 0.67 . . . . . .

Notes. We separately present the results estimated from `1 + `2 + `3 =
even (Even) and `1 + `2 + `3 = odd (Odd) combinations. The loss of the
correlations is confirmed in the EEE case, like Table 14.

and the linear terms have been computed using 160 MC simu-
lations, the resulting error bars are close to the expected values,
( fskyF)�1/2.

We have confirmed the stability of the T-only constraints,
and significant scatter of the E-only constraints both in the
parity-even case and in the parity-odd one, when changing fsky.
Such E-mode instability has given insignificant e↵ects on our
T+E constraints in the parity-even case, as they are determined
almost exclusively by TTT, like the scalar NG analyses. In
contrast, our parity-odd T+E results vary a lot, due to the E-
mode scatter (quantitatively speaking, only a few percent change
of fsky has shifted f tens

NL by more than 1�), because TTE and
TEE contribute significantly to the signal-to-noise ratio in the
parity-odd case (Shiraishi et al. 2013b). Table 27 presents the
correlations of the bispectra reconstructed from the component
separated maps, also indicating the robustness of the T-only con-
straints and the instability of the E-only results. We report only
stable results in Table 26 and conclude that there is no evidence
at >2� of f tens

NL in the parity-even, parity-odd or their whole
domain.

The parity-odd components of the TTT and EEE bispectra
extracted model-independently from the SMICA data are visually

Fig. 26. Parity-odd signals (`1 + `2 + `3 = odd) of the TTT (top) and
EEE (bottom) bispectra (`i  500) recovered from the SMICA maps by
means of the Modal decomposition with 101 simple polynomial-based
eigenmodes, not including any special functions fitting the CMB tensor-
mode features. In the panel for EEE, only the signals larger than ` =
40 are shown. The TTT and EEE bispectra shown here are rescaled
with a constant Sachs-Wolfe weighting and signal-to-noise weighting,
respectively.

represented in Fig. 26. It is apparent from this figure that the
Planck TTT bispectrum has similar features to the WMAP one
(Shiraishi et al. 2015), e.g., distinctive signals distributed around
`1 ⇡ `2 ⇡ `3. As indicated by the roughly 70% correlation
between the SMICA and WMAP bispectra (see Table 27), the
Planck T-only limits in Table 26 are close to the WMAP ones
(68% CL): f tens

NL /102 = 4 ± 16 for parity-even; and f tens
NL /102 =

80 ± 110 for parity-odd (Shiraishi et al. 2015).
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9. Limits on the primordial trispectrum

So far, we have considered a variety of physically motivated
possibilities for the inflationary 3-point function, or bispectrum.
A similar phenomenology exists for the 4-point function,
or trispectrum. Our constraints on the trispectrum will use
CMB temperature only; we do not use polarization in this
section. We start by briefly reviewing the inflationary physics
and classifying the signals we will search for.

First, some notation: a “primed” ⇣-trispectrum
h⇣k1⇣k2⇣k3⇣k4i

0 denotes the connected trispectrum without
its momentum-conserving delta function, i.e.,

h⇣k1⇣k2⇣k3⇣k4i = h⇣k1⇣k2⇣k3⇣k4i
0(2⇡)3�(3)

⇣X
ki
⌘
+ disc., (62)

where “+ disc.” denotes the disconnected contributions to the
4-point function.

One possible signal is the “local” trispectrum glocal
NL , which

arises if the non-Gaussian adiabatic curvature ⇣ is of cubic-type
form (see, e.g., Okamoto & Hu 2002), i.e.,

⇣(x) = ⇣G(x) +
9

25
glocal

NL ⇣G(x)3 (63)

where glocal
NL is a free parameter and ⇣G is a Gaussian field. In this

model, the bispectrum is zero (since there is a ⇣ ! �⇣ symme-
try) and the trispectrum is given by

h⇣k1⇣k2⇣k3⇣k4i
0 =

54
25
glocal

NL

h
P⇣(k1)P⇣(k2)P⇣(k3) + 3 perm.

i
. (64)

Analogously to the case of the local bispectrum, f local
NL , the

observational signal-to-noise for glocal
NL is largest in the

“squeezed” limit, k1 ⌧ min(k2, k3, k4), and there is a con-
sistency relation which shows that in single-field inflation,
the four-point function is always small in the squeezed
limit (e.g., Senatore & Zaldarriaga 2012a). Thus glocal

NL can only
be detectably large in multi-field models. Conversely, there are
multi-field models where glocal

NL is detectable. The main obstacle
here is technical naturalness, i.e., ensuring that radiative correc-
tions do not generate an observationally larger bispectrum. This
can be the case if a large bispectrum is forbidden by a Z2 sym-
metry, or by supersymmetry (Senatore & Zaldarriaga 2012b).

A further category of four-point signals can be obtained
by adding quartic interactions to the inflationary action. Fol-
lowing Smith et al. (2015), we will concentrate on the simplest
possibility, by considering quartic operators consistent with the
symmetries of inflation and having the lowest possible num-
ber of derivatives (Bartolo et al. 2010b; Senatore & Zaldarriaga
2011, 2012b). There are three such operators, of the schematic
form �̇4, �̇2(@i�)2, and (@i�)2(@ j�)2. By a short calculation
using the in-in formalism (Maldacena 2003), the associ-
ated four-point functions are (Smith et al. 2015; see also

Huang & Shiu 2006):

h⇣k1⇣k2⇣k3⇣k4i
0 =

9216
25
g�̇

4

NLA3
⇣

Z 0

�1

d⌧E ⌧
4
E

0
BBBBBB@

4Y

i= 1

eki⌧E

ki

1
CCCCCCA

=
221 184

25
g�̇

4

NL A3
⇣

1
k1k2k3k4K5 ; (65)

h⇣k1⇣k2⇣k3⇣k4i
0 = �

13 824
325

g�̇
2(@�)2

NL A3
⇣

Z 0

�1

d⌧E ⌧
2
E

⇥

"
(1 � k3⌧E)(1 � k4⌧E)

k1k2k3
3k3

4

(k3 · k4)e
P

ki⌧E

+ 5 perm.
#

= �
27 648

325
g�̇

2(@�)2

NL A3
⇣

⇥

"
K2 + 3(k3 + k4)K + 12k3k4

k1k2k3
3k3

4K5
(k3 · k4)

+ 5 perm.
#
; (66)

h⇣k1⇣k2⇣k3⇣k4i
0 =

82 944
2575

g(@�)4

NL A3
⇣

Z 0

�1

d⌧E

⇥

2
6666664

4Y

i= 1

(1 � ki⌧E)eki⌧E

k3
i

3
7777775

⇥
⇥
(k1 · k2)(k3 · k4) + 2 perm.

⇤

=
165 888

2575
g(@�)4

NL A3
⇣

⇥

0
BBBB@

2K4
� 2K2 P

k2
i + K

P
k3

i + 12k1k2k3k4

k3
1k3

2k3
3k3

4K5

1
CCCCA

⇥
⇥
(k1 · k2)(k3 · k4) + 2 perm.

⇤
. (67)

Here K =
P

ki and we have introduced parameters g�̇4

NL, g�̇
2(@�)2

NL ,
and g(@�)4

NL to parametrize the amplitude of each trispectrum.
The normalization of the gNL-parameters is chosen so that

h⇣k1⇣k2⇣k3⇣k4i = (216/25) gNLA3
⇣/k

9 for “tetrahedral” configura-
tions, with |ki| = k and (ki · k j) = �k3/3. This is the analogue
of the commonly-used normalization for the bispectrum, where
fNL parameters are defined so that h⇣k1⇣k2⇣k3i = (18/5) fNLA2

⇣/k
6

for equilateral configurations with |ki| = k.
For simplicity in Eqs. (65)–(67) we have assumed a scale-

invariant initial power spectrum P⇣(k) = A⇣/k3. In order to anal-
yse Planck data, we must slightly generalize this to a power-
law spectrum P⇣(k) / kns�4. Our scheme for doing this follows
Appendix C of Smith et al. (2015).

A Fisher matrix analysis shows that there is one large corre-
lation among the three trispectra in Eqs. (65)–(67), so that to an
excellent approximation we can treat only two of the trispectra as
independent. To quantify this, in Smith et al. (2015) it is shown
that the �̇2(@�)2 shape is 98.6 % correlated to a linear combina-
tion of the shapes �̇4 and (@�)4. Therefore, we will only search
for the parameters g�̇4

NL and g(@�)4

NL .
We note that the analysis that leads to the trispectrum

shapes g�̇4

NL and g(@�)4

NL is very similar to the analysis that leads to
the “standard” bispectrum shapes f equi

NL and f ortho
NL . However, there

are some minor di↵erences as follows. In the bispectrum case,
one considers the cubic operators ⇡̇3 and ⇡̇(@⇡)2, but it is con-
ventional to define observables f equi

NL , f ortho
NL which are related to
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Table 28. Number of factorizable terms Nin needed to represent each
trispectrum by direct sampling of the integral, and number of terms
Nout obtained after running the optimization algorithm from Sect. VII
of Smith et al. (2015).

Trispectrum Nin Nout

glocal
NL . . . . . . . . . . 436 17
�̇4 . . . . . . . . . . . 6955 73
(@�)4 . . . . . . . . . 20 865 192

the operator coe�cients by a linear transformation. This is done
because the two cubic operators are about 90 % correlated, so it
is convenient to orthogonalize. In the trispectrum case the corre-
lation is smaller (around 60 % for Planck), and we have chosen
to omit the orthogonalization step. Another reason to omit the or-
thogonalization step is that the trispectrum shape (@�)4 is a sig-
nature of multi-field inflation. In single field inflation, the (@�)4

trispectrum is not technically natural; radiative corrections gen-
erate cubic operators of the form ⇡̇3 or ⇡̇(@⇡)2, which generate a
bispectrum with larger signal-to-noise.

There are more trispectrum shapes one might consider.
For example, classifying Galilean invariant quartic operators
leads to higher-derivative trispectra, which are not highly cor-
related to the trispectra considered above (Bartolo et al. 2013c;
Arroja et al. 2013). We have only considered “contact” diagrams
arising from one power of a quartic operator, and it would be in-
teresting to study “exchange” diagrams arising from two cubic
operators and exchange of a light particle (e.g., Chen et al. 2009;
Arroja et al. 2009; Chen & Wang 2010; Bartolo et al. 2010a;
Baumann & Green 2012). We leave these as extensions for fu-
ture work.

Summarizing, we will search for the following trispectrum
signals:
⇢
glocal

NL , g
�̇4

NL, g
(@�)4

NL

�
(68)

defined by Eqs. (64), (65), and (67) above.

9.1. Data analysis

Turning now to data analysis, we use the machinery
from Smith et al. (2015). The first step is to represent each
trispectrum as a small sum of factorizable terms as follows. The
angular CMB trispectrum can be written either as an integral
over comoving distance r (in the case of glocal

NL ) or as a dou-
ble integral over (⌧, r) where ⌧ is conformal time during infla-
tion (in the case of the �̇4 or (@�)4 trispectra). We approximate
the integral by a finite sum, which represents the CMB trispec-
trum as a sum of terms that are factorizable in a sense defined
in Smith et al. (2015). A large number of sampling points are
needed to obtain a good approximation to the integral, leading to
a large number of terms in the factorizable representation. How-
ever, there exists an optimization algorithm, which takes as input
a trispectrum that has been represented as a sum of many factor-
izable terms, and outputs a representation with fewer terms. The
reduction can be quite dramatic, as shown in Table 28. The opti-
mization algorithm guarantees that the output trispectrum accu-
rately approximates the input trispectrum, in the sense that the
two are nearly observationally indistinguishable.

Armed with “small” factorizable representations for each
trispectrum, the next step is to run an analysis pipeline that
estimates the amplitude of each trispectrum from Planck data.

We use the “pure MC” pipeline from Smith et al. (2015), which
compares the trispectrum of the data to the mean trispectrum of
an ensemble of simulations. This pipeline requires a filtering op-
eration d ! ã`m which processes the pixel-space CMB data d
and generates a harmonic-space map ã`m. Our filtering operation
is defined by the following steps:

1. Starting from the data d, we compute (with uniform
pixel weighting) a best-fit monopole and dipole outside
the Galactic mask. We use the temperature “common
mask”, the union of the confidence masks for the SMICA,
SEVEM, NILC, and Commander component separation meth-
ods (Planck Collaboration IX 2016).

2. The mask defines a few “islands”, i.e., isolated groups of
pixels that are unmasked, but contained in a larger masked
region. We slightly enlarge the mask so that it removes the
islands.

3. We classify the components of the masked part of the
sky into “small” masked regions with 1000 pixels (at
HEALPix resolution Nside = 2048), and “large” regions with
>1000 pixels. Small regions usually correspond to point
sources, and large regions typically correspond to areas of
di↵use galactic emission. In small regions, we inpaint the
CMB by assigning the unique map that agrees with the data
on boundary pixels, and whose value in each interior pixel is
the average of the neighboring pixels.

4. In large regions, we do not inpaint the CMB, but rather
apodize the boundary of the large region using cosine
apodization with 120 radius.

5. We apply a spherical harmonic transform to the inpainted,
apodized CMB map to obtain a harmonic-space map a`m
with `max = 1600. We then take the final filtered map ã`m
to be

ã`m =
a`m

b`C` + b�1
` N`

(69)

where b` is the beam, C` is the fiducial CMB power
spectrum, and N` is the sky-averaged noise power spec-
trum (without beam deconvolution). To motivate this choice
of `-weighting, we note that for an ideal all-sky experi-
ment with isotropic noise, we have a`m = b`s`m + n`m
where s`m, n`m are signal and noise realizations. In this case,
Eq. (69) weights the signal as s`m/(C` + b�2

` N`), which is
optimal.

In our pipeline, we apply this filter to the component-
separated SMICA maps (Planck Collaboration IX 2016), obtain-
ing a harmonic-space map ã`m. We apply the same filter
to 1000 Monte Carlo simulations to obtain an ensemble of
harmonic-space maps. Our pipeline has the property that it al-
ways estimates the trispectrum of the data in excess of the
trispectrum in the simulations. Since the simulations include
lensing, this means that lensing bias will automatically be sub-
tracted from our gNL estimates.

Now that the filter, data realization, and Monte Carlo simu-
lations have been fully specified, the details of the pipeline are
described in Sect. IX.B of Smith et al. (2015). For each trispec-
trum, the pipeline outputs an estimate of gNL and an estimate of
the statistical error. Our basic results are:

glocal
NL = (�9.0 ± 7.7) ⇥ 104;

g�̇
4

NL = (�0.2 ± 1.7) ⇥ 106; (70)

g(@�)4

NL = (�0.1 ± 3.8) ⇥ 105.
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No deviation from Gaussian statistics is seen. These results
significantly improve the previous best constraints on the
trispectrum from WMAP (Vielva & Sanz 2010; Smidt et al.
2010; Fergusson et al. 2010b; Hikage & Matsubara 2012;
Sekiguchi & Sugiyama 2013; Regan et al. 2013; Smith et al.
2015) and large-scale structure (Desjacques & Seljak 2010;
Giannantonio et al. 2014; Leistedt et al. 2014).

A constraint on glocal
NL from Planck 2013 data was recently re-

ported by Feng et al. (2015), who find glocal
NL = (�13 ± 18) ⇥ 104.

Our central value in Eq. (70) agrees well with this result, but the
statistical error is smaller by a factor of 2.3. This improvement
is partly due to the lower noise levels in Planck 2015 data, and
partly due to the use of a better estimator.

Each line in Eq. (70) is a “single-gNL” constraint; i.e., the
constraint on one gNL parameter with the other gNL-parameters
held fixed. For joint constraints, one needs to know the full co-
variance matrix. The correlation between glocal

NL and the other two
parameters is negligble, and the g�̇4

NL-g(@�)4

NL correlation is:

Corr
✓
g�̇

4

NL, g
(@�)4

NL

◆
= 0.61. (71)

Multi-field models of inflation will generally give a linear com-
bination of �̇4, �̇2(@i�)2, and (@i�)2(@ j�)2 trispectra. In this case
we proceed as follows. First, if the �̇2(@i�)2 coe�cient is non-
zero, we can use the near-degeneracy with a linear combination
of the other two operators to absorb it into the e↵ective values
of g�̇4

NL and g(@�)4

NL . A Fisher matrix analysis shows that the coe�-
cients of this linear combination are

(g�̇
4

NL)e↵ = 0.59 g�̇
2(@�)2

NL

(g(@�)4

NL )e↵ = 0.091 g�̇
2(@�)2

NL . (72)

It is convenient to define the two-component parameter vector:

gi =

0
BBBB@
g�̇

4

NL
g(@�)4

NL

1
CCCCA . (73)

We also compute a two-by-two Fisher matrix Fi j, whose diago-
nal is given by Fii = 1/�2

i , where �i is the single-gNL statistical
error in Eq. (70), and whose o↵-diagonal is F12 = rF1/2

11 F1/2
22 ,

where r is the correlation in Eq. (71). This procedure gives:

Fi j =

 
3.3 9.2
9.2 68.7

!
⇥ 10�13. (74)

For a given parameter vector gi, we can define a trispectrum-�2

by

�2(g) = [Fiiĝi � (Fg)i] F�1
i j [F j jĝ j � (Fg) j] (75)

where ĝi = (�0.21 ⇥ 106,�0.10 ⇥ 105) is the vector of best-fit
single-gNL values from Eq. (70). This definition of �2 follows
from the observation that (Fiiĝi) is an estimator with expectation
value (Fg)i and covariance matrix Cov(Fiiĝi, F j jĝ j) = Fi j.

The inflationary implications of these trispectrum constraints
are discussed in Sect. 11.5 below.

10. Minkowski functionals results

In this section, we present constraints on local NG at
first and second order ( f local

NL and glocal
NL ) obtained with

Minkowski functionals (MFs) on temperature and polarization

E maps. MFs (Mecke et al. 1994; Schmalzing & Buchert 1997;
Schmalzing & Gorski 1998; Winitzki & Kosowsky 1998) are a
measure of fields’ local morphology used to constrain their
stationarity, isotropy and Gaussianity. Mostly probing general
NG in a frequentist fashion in two-dimensions on CMB maps
(Eriksen et al. 2004; Komatsu et al. 2005; Modest et al. 2013;
Natoli et al. 2010; Curto et al. 2008) or three-dimensions on
LSS data (Park et al. 2005; Wiegand et al. 2014), they have
also been used to measure specific NG targets with Bayesian
methods, such as f local

NL (Hikage et al. 2006, 2008; Ducout et al.
2013; Planck Collaboration XXIV 2014), other bispectrum and
trispectrum shapes (Hikage & Matsubara 2012) and topologi-
cal defects (Planck Collaboration XXV 2014). New develop-
ments have been made recently, using needlets (Fantaye et al.
2015), neural networks (Novaes et al. 2015) or allowing scale-
dependent measurements (Munshi et al. 2013).

MF-based limits are well known to be suboptimal for f local
NL

and glocal
NL , but they provide an independent cross-check of bispec-

trum and trispectrum-based estimators. They are complemen-
tary to optimal estimators: they are weighted integrals of the
polyspectra and are sensitive to any source of NG, including
foregrounds and secondaries. While MFs are not always able to
distinguish between these di↵erent sources and systematics, they
allow upper bounds to be put on them.

The most recent constraints (1�) from MFs on f local
NL and

glocal
NL have been obtained with WMAP (Hikage & Matsubara

2012) and Planck (Planck Collaboration XXIV 2014):

f local
NL = 4.2 ± 20.5; glocal

NL = (1.9 ± 6.4) ⇥ 105. (76)

10.1. Method and definition of MFs

For a smoothed two-dimensional field � of zero mean and of
variance �2

0, defined on the sphere, we consider an excursion
set of height ⌫ = �/�0, i.e., the set of points where the field
exceeds the threshold ⌫. We use four functionals denoted by
Vk(⌫)(k = 0, 1, 2, 3). The first three correspond to MFs: V0 is
the fractional Area of the regions above the threshold, V1 is the
Perimeter of these regions and V2 is the Genus, defined as the to-
tal number of connected components of the excursion above the
threshold minus the total number of connected components un-
der the threshold. The fourth, V3, is the Number of clusters (also
referred to as Nclusters). This is the number of connected regions
above the threshold for positive thresholds and below the thresh-
old for negative thresholds. Precise definitions and formulae for
the quantities Vk as well as their expectation values for Gaussian
fields are summarized in Appendix B.

We calculate the four normalized18 functionals vk(⌫) on nth =
26 thresholds ⌫, between ⌫min = �3.5 and ⌫max = +3.5.

For this analysis, we used the same temperature and polariza-
tion E data, simulations and masks described in Sect. 3.4 for con-
sistency with the bispectrum estimators. In addition, the maps
are filtered to optimize constraints on local NG (Ducout et al.
2013), the filters used being similar to Wiener filters for T and
E (WM), and for the first (WD1) and second (WD2) derivatives of
these fields (Fig. 27):

WD1 /

p
`(` + 1) WM ; (77)

WD2 / `(` + 1) WM. (78)

18 Raw Minkowski functionals Vk depend on the Gaussian part of fields
through a normalization factor Ak, a function only of the shape of the
power spectrum. We therefore normalize functionals vk = Vk/Ak to fo-
cus on NG, see Appendix B.
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Fig. 27. Filters used to optimize constraints on local NG, in harmonic
space. The temperature filter WM is a smoothed version of the true
Wiener filter obtained with realistic models, while the E-mode WM filter
is adapted from the temperature one, with a cuto↵ value at ` ' 800. The
formulae for the derivative filters are given in Eq. (78).

For the temperature map, known point sources in the mask are
inpainted.

We define the vector y as any combination y = {vA,Wk } with
k = {0, 3}, A = {T, E}, W = {WM,WD1,WD2}, ŷ being the vector
measured on the data.

From these measurements, we then use a Bayesian method
to jointly estimate f local

NL and glocal
NL ,

P( f local
NL , g

local
NL | ŷ) =

P(ŷ | f local
NL , g

local
NL )P( f local

NL , g
local
NL )

R
P(ŷ | f local

NL , g
local
NL )P( f local

NL , g
local
NL )d f local

NL dglocal
NL

· (79)

We take a uniform prior for f local
NL in the range �400 to 400, and

for glocal
NL in the range �4⇥ 106 to +4⇥ 106, while the evidence is

just considered as a normalization.
Assuming MFs are multi-variate Gaussian-distributed we

obtain the posterior distribution for ( f local
NL , g

local
NL ) with a �2 test

P( f local
NL , g

local
NL | ŷ) / exp

2
66664�
�2(ŷ, f local

NL , g
local
NL )

2

3
77775 , (80)

with

�2(ŷ, f local
NL , g

local
NL ) ⌘

h
ŷ � ȳsim1( f local

NL , g
local
NL )

iT
C�1

sim2

h
ŷ � ȳsim1( f local

NL , g
local
NL )

i
. (81)

For this test, we use two types of simulations to first construct a
model including primordial NG ȳsim1( f local

NL , g
local
NL ) and secondly

a covariance matrix

Csim2 ⌘
D
(ysim2 � ȳsim2) (ysim2 � ȳsim2)T

E
, (82)

with ȳsim ⌘ hysimisim averaged over the simulations. We now
describe the details of these simulations.

– Simulations 1: Non-Gaussian model
For the first type of simulation, we included all possible
sources of NG, assuming that the total and individual lev-
els of NG are small enough that MFs are linear with respect
to those NG levels (Ducout et al. 2013). The three kinds of
NG we included are foreground residuals (Galactic resid-
uals with scalable amplitude ↵, as well as radio sources,

CIB anisotropies, secondaries (SZ, lensing and ISW-lensing,
but not SZ-lensing) and primordial NG ( f local

NL , glocal
NL ):

sim1i = mapi
lensed( f local

NL , g
local
NL )

+mapfg(radio sources,CIB,SZ)

+ ↵ ⇥mapfg(Galactic residuals). (83)
We tried to reproduce all instrumental e↵ects, with real-
istic e↵ective beams (isotropic window functions), noise
from FFP8 simulations (Planck Collaboration XII 2016),
filtered with component separation weights. We checked
the accuracy of these simulations by comparing them
to FFP8 simulations, using no foreground and no pri-
mordial NG. The astrophysical models are provided by
the Planck Sky Model (PSM, Delabrouille et al. 2013),
while the primordial NG simulations are computed as
in Elsner & Wandelt (2009). The lensing uses LensPix19.
The power spectrum used for these NG simulations and
the lensing is the best-fit power spectrum from Planck
2013+ACT/SPT+BAO (Planck Collaboration XXII 2014).
We created n1 = 200 simulations i, using n1 maps for the
primordial NG, while we had only one astrophysical fore-
ground simulation.

– Simulations 2: FFP8 (Planck Collaboration XII 2016) MC
simulations
Since NG is weak, the covariance matrix C is computed with
n2 = 104 simulations, including no primordial NG and no
foregrounds. These simulations reproduce realistic instru-
mental e↵ects (anisotropy of beams in particular), realistic
noise and component separation filtering. The only NG still
present in these simulations are lensing and the ISW-lensing
correlation.

Validation of the estimator

Part of the validation for the MFs estimator is described in
Sect. 5.3 for f local

NL , to compare the results to bispectrum estima-
tors on realistic simulations (FFP8 MC, second item above). In
addition we present in Table 29 the results obtained on the same
realistic simulations for glocal

NL , and on simulations containing pri-
mordial NG (first item above), with f local

NL = 10 and glocal
NL = 105,

with 200 simulations used in each case. These tests have been
performed using the SMICA method with lensing bias removed.

10.2. Results

Results for f local
NL and glocal

NL estimation with MFs on the four com-
ponent separated maps in temperature and polarization are pre-
sented in Table 30. The results for polarization E-only maps are
not quoted, since these results were not su�ciently stable (cf.
Sect. 7.6). No deviation from Gaussianity is detected. T+E anal-
ysis generally finds higher values for f local

NL , but remains consis-
tent with Gaussianity.

The posteriors for f local
NL and glocal

NL from SMICA are shown in
Fig. 28. One interesting point is that the estimates of f local

NL and
glocal

NL are almost uncorrelated (r < 0.1); this can be inferred when
we consider the parity of MF deviations from Gaussianity, which
is di↵erent for the two parameters (Matsubara 2010).

Foreground and secondary biases are removed from these
estimates, since the NG model directly includes them. How-
ever, an estimation of their contribution in the map is reported
in Table 31.
19
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Table 29. Results for local NG parameters at first and second order,
f local
NL and glocal

NL , obtained with Minkowski functionals on SMICA simula-
tions in temperature and polarization.

f local
NL glocal

NL (⇥104)

f local
NL = 0, glocal

NL = 0

T . . . . . . . . . . . . . . . 0 ± 13 �1 ± 19

E . . . . . . . . . . . . . . . 1 ± 42 0 ± 23

T + E . . . . . . . . . . . . . . 1 ± 12 0 ± 13

f local
NL = 10, glocal

NL = 105

T . . . . . . . . . . . . . . . 10 ± 13 9 ± 22

E . . . . . . . . . . . . . . . 12 ± 42 10 ± 23

T + E . . . . . . . . . . . . . . 11 ± 12 10 ± 13

Notes. These results are corrected for the lensing and ISW-lensing bi-
ases unless stated otherwise. Parameters are estimated jointly, and we
report marginalized results, quoting 1� errors. The results are the aver-
age obtained from 200 simulations.

Table 30. Results for local NG parameters at first and second order,
f local
NL and glocal

NL , obtained with Minkowski functionals on all four com-
ponent separated maps in temperature and polarization.

f local
NL glocal

NL (⇥104)

SMICA

T . . . . . . . . 2 ± 13 �17 ± 19

T + E . . . . . . . 3 ± 12 �8 ± 13

SEVEM

T . . . . . . . . 3 ± 13 �23 ± 20

T + E . . . . . . . 7 ± 12 �9 ± 13

NILC

T . . . . . . . . 10 ± 13 �23 ± 20

T + E . . . . . . . 12 ± 12 �15 ± 13

Commander

T . . . . . . . . 8 ± 13 �30 ± 19

T + E . . . . . . . 10 ± 13 �18 ± 13

Notes. These results are corrected for the lensing and ISW-lensing bi-
ases unless stated otherwise. Parameters are estimated jointly, and we
report marginalized results, quoting 1� errors.

Foreground and secondary biases

Foreground residuals are generally negligible, in particular in the
T analysis. This is di↵erent from the Planck 2013 results, where
the residuals were more important; this can be explained by the
beam correction applied to these previous estimates which exag-
gerated signals from small scales.

Lensing has a significant signature in MF estimation of f local
NL ,

but is even stronger in glocal
NL (the four-point correlation signature)

and could be detected (and not treated just as a bias) with this
estimator. The Wiener filters enhance the scales where lensing is
dominant.

       

 

 

 

 
-5

00
00

0
0

50
00

00

-60 -40 -20 0 20 40 60

SMICA T+E

       

 

 

 

 
-5

00
00

0
0

50
00

00

-60 -40 -20 0 20 40 60
f local
NLf local
NL

g N
L

g N
L

Fig. 28. Joint constraint on f local
NL and glocal

NL obtained with MFs. The con-
tour lines represent 1, 2 and 3� limits of a 2D-Gaussian distribution.
Constraints were obtained with SMICA temperature and polarization E
maps.

Table 31. Biases for local NG parameters at first and second order f local
NL ,

glocal
NL obtained with Minkowski Functionals on SMICA in temperature

and polarization.

� f local
NL �glocal

NL (⇥104)

T T + E T T + E

SMICA

SZ . . . . . . . . . . . 0.0 �0.3 2.3 1.1

CIB . . . . . . . . 0.7 0.5 �6.8 3.4

Galaxy . . . . . . �0.1 �0.2 �1.2 3.1

PS . . . . . . . . . 0.1 0.2 2.2 1.2

Lensing . . . . . . . 16.5 10.0 63.1 40.4

Notes. Parameters are estimated jointly, and we report marginalized re-
sults. For the corresponding error (on one map), see Table 30.

11. Implications for early Universe physics

The NG constraints obtained in this paper show consistency
of Planck data with Gaussian primordial fluctuations,
thus confirming the results obtained in the 2013 release
(Planck Collaboration XXIV 2014) and improving them
through the inclusion of CMB polarization data. The standard
single-field slow-roll models of inflation have therefore been
confirmed as a viable scenario for inflation, passing one of their
most stringent tests, based on lack of measurable deviations
from Gaussianity. The constraints obtained on local, equilateral,
and orthogonal NG, after accounting for various contaminants,
strongly limit di↵erent mechanisms proposed as alternatives
to the standard inflationary models to explain the seeds of
cosmological perturbations. Measurements on deviations from
Gaussianity for other primordial bispectral shapes help to
shed light on more subtle e↵ects about the detailed physics of
inflation.

As in Planck Collaboration XXIV (2014), in the follow-
ing we derive limits on parameters of the models from the
NG constraints in the following way (unless explicitly stated
otherwise): we construct a posterior based on the assump-
tion that the sampling distribution is Gaussian (as supported
by Gaussian simulations); the likelihood is approximated by
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the sampling distribution, but centred on the NG estimate (see
Elsner & Wandelt 2009); we employ uniform or Je↵reys’ priors,
over intervals of the parameters values that are physically mean-
ingful, or as otherwise stated; and in the cases when two or more
parameters are involved, we marginalize the posterior to provide
one-dimensional constraints on the parameter considered.

11.1. General single-field models of inflation

DBI models: DBI models of inflation (Silverstein & Tong 2004;
Alishahiha et al. 2004), characterized by a non-standard kinetic
term of the inflaton field, predict a non-linearity parameter
f DBI
NL = �(35/108)(c�2

s �1), where cs is the sound speed of the in-
flaton perturbations (Silverstein & Tong 2004; Alishahiha et al.
2004; Chen et al. 2007b). The corresponding bispectrum shape
is very close to the equilateral shape. Nonetheless we have con-
strained the exact theoretical (non-separable) shape (see Eq. (7)
of Planck Collaboration XXIV 2014). The constraint we obtain
f DBI
NL = 2.6±61.6 from temperature data ( f DBI

NL = 15.6±37.3 from
temperature and polarization) at 68% CL (with ISW-lensing and
point sources subtracted, see Table 23) implies

cDBI
s � 0.069 95% CL (T-only), (84)

and

cDBI
s � 0.087 95% CL (T+E). (85)

In Planck Collaboration XXIV (2014) we constrained the so-
called infrared (IR) DBI models (Chen 2005b,a), which arise
in string frameworks. We focused on a minimal setup, consid-
ering a regime where stringy e↵ects are negligible and predic-
tions for primordial perturbations are built within standard field
theory. In the companion paper Planck Collaboration XX (2016)
we present an analysis of a more general class of IR DBI models
which accounts for stringy signatures (see Bean et al. 2008) by
combining Planck power spectrum and bispectrum constraints.

Implications for e↵ective field theory of inflation: in this sub-
section we use the e↵ective field theory approach to inflation in
order to translate the contraints on f equil

NL and f ortho
NL into limits on

the parameters of the Lagrangian of general single-field models
of inflation (of the type P(X,') models). In particular we derive
the most conservative bound on the sound speed of the inflaton
perturbations for this class of models.

The e↵ective field theory approach (Cheung et al. 2008;
Weinberg 2008) provides an e�cient way to constrain inflation-
ary perturbations for various classes of models that incorporate
deviations from the standard single-field slow-roll scenario. In
this approach the Lagrangian of the system is expanded into
the (lowest dimension) operators obeying the underlying sym-
metries. We consider general single-field models described by
the following action

S =
Z

d4x
p
�g

2
66664�

M2
PlḢ
c2

s

 
⇡̇2
� c2

s
(@i⇡)2

a2

!
(86)

� M2
PlḢ(1 � c�2

s )⇡̇
(@i⇡)2

a2 +

 
M2

PlḢ(1 � c�2
s ) �

4
3

M4
3

!
⇡̇3

#
,

where the curvature perturbation is related to the scalar field ⇡
as ⇣ = �H⇡. The inflaton interaction terms ⇡̇(@i⇡)2 and (⇡̇)3

generate two kind of bispectra with amplitudes, respectively,
f EFT1
NL = �(85/324)(c�2

s � 1) and f EFT2
NL = �(10/243)(c�2

s �

1)
h
c̃3 + (3/2)c2

s

i
, where M3 is the amplitude of the operator

Fig. 29. 68%, 95%, and 99.7% confidence regions in the parameter
space ( f equil

NL , f ortho
NL ), defined by thresholding �2 as described in the text.

⇡̇3 (Senatore et al. 2010; see also Chen et al. 2007b; Chen
2010b). These two bispectra both peak for equilateral triangles
in Fourier space. Nevertheless, they are su�ciently di↵erent,
and the total NG signal turns out to be a linear combination of
the two, leading also to an orthogonal shape. We can put con-
straints on cs and the dimensionless parameter c̃3(c�2

s � 1) =
2M4

3c2
s/(ḢM2

Pl) (Senatore et al. 2010). Notice that DBI inflation-
ary models corresponds to having c̃3 = 3(1 � c2

s )/2, while cs = 1
and M3 = 0 (or c̃3(c�2

s � 1) = 0) represent the non-interacting
(vanishing NG) case.

The mean values of the estimators for f equil
NL and f ortho

NL are
expressed in terms of cs and c̃3 by

f equil
NL =

1 � c2
s

c2
s

h
�0.275 � 0.0780c2

s � (2/3) ⇥ 0.780c̃3
i

f ortho
NL =

1 � c2
s

c2
s

h
0.0159 � 0.0167c2

s � (2/3) ⇥ 0.0167c̃3
i
. (87)

Here the coe�cients come from the Fisher matrix between the
equilateral and orthogonal templates and the theoretical bispec-
tra predicted by the two operators ⇡̇(r⇡)2 and ⇡̇3. We use a
�2 statistic given by �2(c̃3, cs) = uT(c̃3, cs)C�1u(c̃3, cs), where
vi(c̃3, cs) = f i(c̃3, cs) � f i

P (i = {equilateral, orthogonal}), f i
P be-

ing the joint estimates of equilateral and orthogonal fNL (see
Table 11), C the covariance matrix of the joint estimators, and
f i(c̃3, cs) is provided by Eq. (87). As an example in Fig. 29 we
show the 68%, 95%, and 99.7% confidence regions for f equil

NL
and f ortho

NL obtained from the T + E constraints, requiring �2


2.28, 5.99, and 11.62 respectively (corresponding to a �2 vari-
able with two degrees of freedom). In Fig. 30 we show the
corresponding confidence regions in the (c̃3, cs) parameter space.
Marginalizing over c̃3 we find

cs � 0.020 95% CL (T-only), (88)
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Fig. 30. 68%, 95%, and 99.7% confidence regions in the single-field
inflation parameter space (cs, c̃3), obtained from Fig. 29 via the change
of variables in Eq. (87).

and

cs � 0.024 95% CL (T+E). (89)

The constraints improve by a few percent in T-only and by up
to 25% by including polarization, in comparison with those of
Planck Collaboration XXIV (2014).

Galileon models of inflation: Galileon models of in-
flation (Burrage et al. 2011; Kobayashi et al. 2010;
Mizuno & Koyama 2010; Ohashi & Tsujikawa 2012) are
well motivated models based on the so called “Galilean sym-
metry” (Nicolis et al. 2009). They are characterized by stability
properties that are quite well understood (ghost-free, and stable
against quantum corrections) and can arise naturally within
fundamental physics models (de Rham & Gabadadze 2010b,a).
Moreover they are an interesting example of models where
gravity is modified on large scales and we focus on them
also as a typical example of a more general class of modified
gravity theories that are ghost-free (the so called Horndeski
theories, Horndeski 1974; see also Planck Collaboration XIII
2016 where these models are discussed in the context of dark
energy/modified gravity scenarios for the late time evolution of
the universe). The predictions for the primordial perturbations
are very rich. Bispectra can be generated with the same shapes
as the “EFT1” and “EFT2” bispectra (see also discussion
in Creminelli et al. 2011), however the amplitude(s) scale with
the fluctuation sound speed as c�4

s , di↵erently from the general
single-field models of inflation considered in the above subsec-
tion. They can be written as (at the lowest-order in slow-roll
parameters)

f EFT1
NL =

17
972

 
�

5
c4

s
+

30
c2

s
�

40
csc̄s
+ 15

!
(90)

f EFT2
NL =

1
243

 
5
c4

s
+

30/A � 55
c2

s
+

40
csc̄s
� 320

cs

c̄s
�

30
A
+ 275

� 225c2
s + 280

c3
s

c̄s

!
· (91)

Here A, c̄s, and cs are dimensionless parameters of the mod-
els. In particular cs is the sound speed of the Galileon scalar

Fig. 31. 68%, 95%, and 99.7% probability contours in the Galileon
models for cs and c̄s parameters for the c̄s > 0 branch (tensor spectral
index nT < 0).

field, while c̄s is a parameter that appears to break the stan-
dard consistency relation for the tensor-to-scalar perturbation
ratio (r = 16✏c̄s = �8nTc̄s, nT being the tensor spectral in-
dex)20. Accordingly to Eq. (87) a linear combination of these
two bispectra generate equilateral and orthogonal bispectra tem-
plates21. From the Planck constraints on f equil

NL and f ortho
NL (see

Table 11), we derive constraints on these model parameters fol-
lowing the procedure described at the beginning of this section.
We choose log-constant priors in the ranges 10�4

 A  104, and
10�4

 c̄s  102, together with a uniform prior 10�4 < cs < 1.
These priors have been choosen essentially on the basis of per-
turbative regime validity of the theory and to allow for a quite
wide range of parameter values. In Fig. 31, as an example, prob-
ability contours are shown in the parameter space (cs, c̄s) from
the T + E constraints, after marginalizing over the parameter A.
Marginalizing over both A and c̄s we find

cGalileon
s � 0.21 95% CL (T-only), (92)

and

cGalileon
s � 0.23 95% CL (T+E). (93)

Notice that interestingly enough the parameter c̄s can be negative
in principle, corresponding to a blue spectral tilt of inflationary
gravitational waves (without any kind of instability). We there-
fore also explore this branch, with a log-constant prior (for �c̄s),
�102

 c̄s  �10�4, and the same priors for the other parameters
as above. Figure 32 shows the probability contours in the (cs, c̄s)
plane, after marginalizing over the parameter A, for the nT < 0
branch. Marginalizing over both A and c̄s gives

cGalileon
s � 0.19 95% CL (T-only), (94)

20 For the explicit expressions of these parameters in terms of the coe�-
cients of the Galileon Lagrangian see Planck Collaboration XX (2016).
21 We note that we are neglecting O(✏1/c4

s ) corrections (where O(✏1)
means also O(⌘s, s, ...)); see Burrage et al. (2011) and Ribeiro & Seery
(2011). These corrections will have a di↵erent shape associated with
them and they are not necessarily small when compared with some of
the terms displayed, e.g., the terms O(1/c2

s ).
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Fig. 32. 68%, 95%, and 99.7% probability contours in the Galileon
models for cs and c̄s parameters for the c̄s < 0 branch (blue tensor spec-
tral index nT > 0).

and

cGalileon
s � 0.21 95% CL (T+E). (95)

A combined analysis of the Planck bispectrum and power spec-
trum constraints on the Galileon models is presented in the
companion Planck paper on inflation (Planck Collaboration XX
2016).

11.2. Multi-field models

Curvaton models: the simplest adiabatic curvaton models predict
local NG with an amplitude (Bartolo et al. 2004c,b)

f local
NL =

5
4rD
�

5rD

6
�

5
3
, (96)

for a quadratic potential of the curvaton field (Lyth & Wands
2002; Lyth et al. 2003; Lyth & Rodriguez 2005; Malik & Lyth
2006; Sasaki et al. 2006), where rD = [3⇢curvaton/(3⇢curvaton +
4⇢radiation)]D is the “curvaton decay fraction” at the time of the
curvaton decay in the sudden decay approximation. Assuming a
uniform prior, 0 < rD < 1, our constraint f local

NL = 2.5 ± 5.7 at
68% CL (see Table 11) yields

rD � 0.16 95% CL (T-only), (97)

while accounting for temperature and polarization data ( f local
NL =

0.8 ± 5.0 at 68% CL) gives

rD � 0.19 95% CL (T +E), (98)

improving the previous Planck bound which was previously
rD � 0.15 (95% CL; Planck Collaboration XXIV 2014). In
Planck Collaboration XX (2016), assuming there is some relic
isocurvature fluctuations in the curvaton field, a limit on rD is
derived from the bounds on isocurvature fluctuations. In this re-
stricted case, the limit rD > 0.98 (95% CL) is derived, which is
consistent with the constraint given here.

Notice that the above expression of f local
NL Eq. (96) is valid

under the assumption that there is no significant decay of the
inflaton into curvaton particles. In general one should account
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g�̇4
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Fig. 33. 68% and 95% confidence regions in the (g�̇4

NL, g
(@�)4

NL ) plane, with
the Lorentz invariant model in Eq. (107) shown as the dashed line.

for such a possibility. For example, if the classical curvaton field
survives and starts to dominate, then the curvaton particles pro-
duced during reheating (which have the same equation of state
as the classical curvaton field) are expected to survive and dom-
inate over other species at the epoch of their decay. The classi-
cal curvaton field and the curvaton particles decay at the same
time, inevitably producing adiabatic perturbations (for a detailed
discussion see Linde & Mukhanov 2006). A general formula for
f local
NL , accounting for the possibility that the inflaton field decays

into curvaton particles, is provided in Sasaki et al. (2006):

f local
NL = (1 + �2

s )
5

4rD
�

5rD

6
�

5
3
, (99)

where �2
s = ⇢curv. particles/⇢curv.field measures the ratio of the en-

ergy density of curvaton particles to the energy density of the
classical curvaton field (Linde & Mukhanov 2006; Sasaki et al.
2006) and ⇢curvaton in the expression for rD is given by ⇢curvaton =
⇢curv.particles + ⇢curv.field. Using the uniform prior 0 < rD < 1 and
0 < �2

s < 102 our measurements of f local
NL constrain �2

s  8.5 at
95% CL (T) and �2

s  6.9 (T+E).

11.3. Non-standard inflation models

Directional dependence motivated by gauge fields: in Table 25
we constrained directionally-dependent bispectra (Eq. (23)).
This kind of NG is generated by inflationary models character-
ized by the presence of gauge fields. An actual realization of this
type of scenario can be obtained with a coupling between the in-
flaton and the gauge field(s), via the kinetic term of the field(s),
i.e., L = �I2(�)F2/4. In this formula, F2 represents the strength
of the gauge field, while I(�) is a function of the inflaton field
with an appropriate time dependence (see, e.g., Ratra 1992). In
this type of scenario, vector fields can be generated during in-
flation, and this in turn determines the excitation of L = 0 and
2 modes in the bispectrum, with f L

NL = XL(|g⇤|/0.1) (Nk3/60),
where XL= 0 = (80/3) and XL=2 = �(10/6) (Barnaby et al.
2012b; Bartolo et al. 2013a; Shiraishi et al. 2013a). The param-
eter g⇤, appearing in the equations above, represents the ampli-
tude of a quadrupolar anisotropy in the power spectrum (see,
e.g., Ackerman et al. 2007), while N defines the number of
e-folds, before the end of inflation, when the relevant scales exit
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the horizon. It is thus clear that these models predict both a de-
gree of statistical anisotropy in the power spectrum, and a po-
tentially non-negligible bispectrum, as well as a direct relation
between the two.

Starting from our SMICA constraints from T(T+E) in
Table 25, marginalizing over a uniform prior 50  N  70,
and assuming uniform priors on �1  g⇤  1, we obtain the
limits �0.050 < g⇤ < 0.050 (�0.040 < g⇤ < 0.040), and
�0.31 < g⇤ < 0.31 (�0.29 < g⇤ < 0.29), from the L = 0,
L = 2 modes, respectively (95% CL) (considering g⇤ as scale-
independent). We note that these constraints refer to all mod-
els in which curvature perturbations are sourced by an I2(�)F2

term (see references in Shiraishi et al. 2013a). The constraints
we obtain are consistent with the tighter (model-independent)
limits obtained in Planck Collaboration XX (2016) for the case
of a scale-independent g⇤, from an analysis of quadrupolar
anisotropies in the CMB power spectrum.

NG from gauge field production during axion inflation: we have
also constrained the inverse decay NG of Eq. (25) arising typi-
cally in models where the inflaton field is a pseudoscalar axion
that couples to a gauge field. Using the modal estimator we get
the following constraints (removing ISW-lensing bias):

f inv.dec
NL = 17 ± 43 68% CL, (100)

for temperature only; and

f inv.dec
NL = 23 ± 26 68% CL, (101)

from temperature+polarization (see Table 23). The NG ampli-
tude is given by f inv.dec

NL = f3(⇠⇤, 1, 1)P3
⇤e6⇡⇠⇤/P2

⇣ (k⇤), where
P

1/2 = H2/(2⇡|�̇|) is the power spectrum of vacuum-mode cur-
vature perturbations (i.e., the power spectrum predicted with-
out the coupling to gauge fields), P2

⇣ (k⇤) is the dimensionless
scalar power spectrum of curvature perturbations (a star denot-
ing evaluation at the pivot scale). The NG parameter is exponen-
tially sensitive to the strength of the coupling between the ax-
ion and the gauge field. From Eq. (101) we limit the strength
of the coupling to ⇠  2.5 (95% CL). The details together
with constraints on the axion decay constant can be found in
Planck Collaboration XX (2016), where an overview of various
observational limits on axion (monodromy) models of inflation
is presented. This limit is in agreement with the one that can be
derived from tensor non-Gaussianities (see below).

Tensor NG and pseudoscalars: in inflationary scenarios associ-
ated with a pseudoscalar coupling to a U(1) gauge field, the ten-
sor bispectrum generated via the gravitational interaction with
the gauge field is expressed by Eq. (27), and the amplitude
f tens
NL depends on the following: the coupling strength of the

pseudoscalar field to the gauge field (⇠); a slow-roll parameter
for the inflaton (✏); and the power spectrum of vacuum-mode
curvature perturbations (P). The expression is f tens

NL ⇡ 6.4 ⇥
1011
P

3✏3e6⇡⇠/⇠9 (Cook & Sorbo 2013; Shiraishi et al. 2013b).
The constraints on f tens

NL presented in Table 26 can then be
used to constrain the model parameters. Clearly there are
strong degeneracies, but if we marginalize over a uniform prior
1.5 ⇥ 10�9

 P  3 ⇥ 10�9 and set ✏ = 0.01, then assuming a
uniform prior 0.1  ⇠  7, from the SMICA (T-only or T+E)
limit, we obtain ⇠ < 3.3 (95% CL).

Warm inflation: we update the constraints on warm inflation
models in the strongly dissipative regime, when dissipative ef-
fects are relevant. In this regime f warm

NL = �15 ln (1 + rd/14) �
5/2 (Moss & Xiong 2007) with a large dissipation parameter

rd = �/(3H) (where � is a friction term for the inflaton evolu-
tion describing the energy transfer from the inflaton field to ra-
diation).. The limit from the 2013 Planck release is log10 rd 
2.6 (95% CL) (Planck Collaboration XXIV 2014). Assuming a
constant prior 0  log10 rd  4, the new SMICA constraint
f warmS
NL = �23 ± 36 at 68% CL from T ( f warmS

NL = �14 ± 23
from T+E), see Table 24, yields a limit on the dissipation pa-
rameter of log10 rd  3.3 (log10 rd  2.5) at 95% CL, with
the T+E constraints (in brackets), slightly improving the 2013
Planck limits. Values of rd & 2.5 (strongly-dissipative regime)
are still allowed; however, the Planck constraint puts the model
in a regime where there might be an overproduction of graviti-
nos (see Hall & Peiris 2008 and references therein). Unlike the
strong dissipative regime, in the intermediate and weak dissi-
pative regimes (rD  1) the NG level strongly depends on the
microscopic parameters (T/H and rD), giving rise to a new addi-
tional bispectrum shape (for details see Bastero-Gil et al. 2014).

11.4. Alternatives to inflation
Ekpyrotic/cyclic models have been proposed as an alternative
to inflation (for a review, see Lehners 2010). Local NG is gen-
erated from the conversion of “intrinsic” non-Gaussian entropy
perturbation modes into curvature fluctuations. Models based
on a conversion taking place during the ekpyrotic phase (the
so called “ekpyrotic conversion mechanism”) are already ruled
out (Koyama et al. 2007; Planck Collaboration XXIV 2014).
Ekpyrotic models where “kinetic conversion” occurs after the
ekpyrotic phase predict a local bispectrum with f local

NL =

(3/2) 3
p
✏ ± 5, where the sign depends on the details of the

conversion process (Lehners & Steinhardt 2008, 2013; Lehners
2010), where ✏ ' 50 or greater are typical values. If we take
✏ ' 100 and a uniform prior on �5 < 3 < 5 the constraints
on f local

NL from T-only (see Table 11), yield �0.91 < 3 < 0.58
and �0.25 < 3 < 1.2 at 95% CL, for the plus and minus sign
in f local

NL respectively. From the T+E f local
NL constraints (Table 11)

we obtain �0.94 < 3 < 0.38 and �0.27 < 3 < 1.0 at 95% CL,
for the plus and minus sign in f local

NL respectively. If we consider
✏ ' 50 we derive the following limits: �1.3 < 3 < 0.81 and
�0.35 < 3 < 1.8 at 95% CL from T-only; �1.3 < 3 < 0.53 and
�0.38 < 3 < 1.5 at 95% CL from T+E. Another variant of the
ekpyrotic models has been investigated in Qiu et al. (2013), Li
(2013), Fertig et al. (2014), where the intrinsic NG is zero and
NG is generated only by non-linearities in the conversion mech-
anism, reaching a value of f local

NL ' ±5.

11.5. Inflationary interpretation of CMB trispectrum results
We briefly interpret the trispectrum constraints in an inflation-
ary context. First, consider the case of single field inflation.
The action for the Goldstone boson ⇡ is highly constrained by
residual di↵eomorphism invariance (see, e.g., Smith et al. 2015).
To lowest order in the derivative expansion, the most general
action is:

S ⇡ =
Z

d4x
p
�g

⇢
� M2

PlḢ
⇣
@µ⇡

⌘2

+ 2M4
2

"
⇡̇2 + ⇡̇3

� ⇡̇
(@i⇡)2

a2 + (@µ⇡)2(@⌫⇡)2
#

�
M4

3

3!

h
8 ⇡̇3 + 12⇡̇2(@µ⇡)2 + · · ·

i

+
M4

4

4!

h
16 ⇡̇4 + 32⇡̇3(@µ⇡)2 + · · ·

i
+ · · ·

�
, (102)
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where the parameter M4 is related to the trispectrum by

g�̇
4

NL =
25

288
M4

4

H4 A⇣ c3
s . (103)

The g�̇4

NL constraint in Eq. (70) translates to the following param-
eter constraint in single field inflation:

�9.70 ⇥ 1014 <
M4

4

H4c3
s
< 8.59 ⇥ 1014 (95% CL). (104)

This constraint is a factor 1.8 better than WMAP.
Turning now to multifield inflation, we consider an action of

the form

S � =
Z

d4x
p
�g

1
2

(@µ�)2 +
1
⇤4

1
�̇4

+
1
⇤4

2
�̇2(@i�)2 +

1
⇤4

3
(@i�)2(@ j�)2

�
, (105)

where � is a spectator field that acquires quantum fluctuations
with power spectrum P�(k) = H2/(2k3) and converts to adiabatic
curvature via ⇣ = (2A⇣)1/2H�1�. The trispectrum in this model is

g�̇
4

NLA⇣ =
25

768
H4

⇤4
1
,

g�̇
2(@�)2

NL A⇣ = �
325

6912
H4

⇤4
2
, (106)

g(@�)4

NL A⇣ =
2575

20 736
H4

⇤4
3
,

so we can constrain its parameters by thresholding the �2 defined
in Eq. (75). For example, if we consider the Lorentz invariant
model

S =
Z

d4x
p
�g

"
1
2

(@µ�)2 +
1
⇤4 (@µ�)2(@⌫�)2

#
, (107)

so that the parameters ⇤i of the more general action in Eq. (105)
are given by ⇤4

1 = �2⇤4
2 = ⇤

4
3 = ⇤

4, then by thresholding at
��2 = 4 (as appropriate for one degree of freedom), we obtain
the following constraint on the parameter ⇤:

�0.26 <
H4

⇤4 < 0.20 (95% CL). (108)

Constraints in other parameter spaces can also be obtained by
thresholding the �2 defined in Eq. (75). For example we show
68% and 95% confidence regions in the (g�̇4

NL, g
(@�)4

NL )-plane, ob-
tained by thresholding at �2 = 2.28 and �2 = 5.99 as appropriate
for a �2 random variable with two degrees of freedom.

DBI trispectrum: the trispectrum constraint on the shape �̇4 in
Eq. (70) can also be used to obtain a lower bound on the DBI
model sound speed. This is because, in the small sound speed
limit (Chen et al. 2009; Arroja et al. 2009), the dominant con-
tribution to the contact interaction trispectrum (Huang & Shiu
2006) has this shape. The corresponding non-linearity param-
eter is g�̇4

NL = �25/(768 c4
s ). We follow the same procedure as

described at the beginning of this Sect. 11 and, assuming a uni-
form prior in the range 0  cs  1/5, we can derive a constraint
on cs as

cDBI
s � 0.021, 95% CL. (109)

This constraint is consistent with the ones derived from the bis-
pectrum measurements (see Eqs. (84) and (85)) and it is only a
factor of about three worse. Notice, however, that in this case
we are ignoring the scalar exchange contribution, which is of the
same order in cs.
Curvaton trispectrum: for the simplest curvaton scenario,
the trispectrum non-linearity parameter glocal

NL prediction is
(Sasaki et al. 2006)

glocal
NL =

25
54

 
�

9
rD
+

1
2
+ 10rD + 3r2

D

!
. (110)

Following the procedure described at the beginning of Sect. 11,
we use the observational constraint obtained in Sect. 9 (Eq. (70)),
and the same prior (0 < rD < 1) as in 11.2, to obtain a lower
bound on the curvaton decay fraction as

rD � 0.05 95% CL. (111)

This limit is consistent with the previous ones derived using the
bispectrum measurements and it is a factor of about 3 to 4 worse.

12. Conclusions

In this paper we have presented the constraints on pri-
mordial NG using the full Planck mission data. The re-
sults have improved compared to the Planck 2013 release
(Planck Collaboration XXIV 2014) as a consequence of includ-
ing data from the full mission and taking advantage of Planck’s
polarization capability – the first time that maps of the CMB
polarization anisotropies have been used to constrain primor-
dial NG.

Using temperature data alone, the constraints on the local,
equilateral, and orthogonal bispectrum templates are f local

NL =

2.5± 5.7, f equil
NL = �16± 70, and f ortho

NL = �34± 33. Moving from
the nominal Planck 2013 data to the full mission data yielded
modest improvements of up to 15% (for the orthogonal shape).
After the inclusion of full mission polarization data, our final
constraints become f local

NL = 0.8 ± 5.0, f equil
NL = �4 ± 43, and

f ortho
NL = �26 ± 21, which represents a substantial step forward

relative to Planck 2013, with error bars shrinking by 14% (lo-
cal), 43% (equilateral), and 46% (orthogonal). These improved
limits on the standard shapes enhance our understanding of dif-
ferent inflationary models that can potentially lead to subtle ef-
fects beyond the simplest models of inflation.

The reason that the polarization data provide such comple-
mentary constraints on primordial curvature perturbations is due
to the phase shift of the CMB polarization transfer functions
compared to the temperature transfer functions. So, despite the
relatively much lower signal-to-noise in the polarization maps,
their inclusion leads to appreciable improvements on limits on
NG parameters. Nevertheless, the full characterization of the
noise properties in the polarized maps is still ongoing. In spite of
the extensive testing and cross-checks validating the combined
temperature and polarization results, we therefore conservatively
recommend that all results that include polarization information,
not just the polarization-only results, be taken as preliminary at
this stage.

The complementary nature of the polarization information
also represents an important cross-check on the analysis. The
Planck results based on polarization alone are statistically con-
sistent with the results based on temperature alone, with a
precision comparable to that achievable in an optimal analy-
sis of the WMAP 3-yr temperature maps (Spergel et al. 2007;
Creminelli et al. 2007; Yadav & Wandelt 2008).
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Our analysis was subject to an extensive validation exercise.
In addition to extensive simulation tests, including for the first
time a detailed test of the impact of time-domain de-glitching,
our results are supported by tests for robustness under change of
estimator implementations (KSW, binned bispectrum, and two
modal estimators), and variations in sky coverage as well as up-
per and lower multipole cuto↵s. We also tested for possible di-
rectional dependence using a needlet estimator. These tests form
the basis of our selection of SMICA as the main foreground clean-
ing method for our headline results.

The Planck 2015 analysis presented here provides con-
straints on a greatly extended range of template families. These
extensions include a tenfold increase in the range of frequen-
cies covered in feature models, giving rise to linearly oscillat-
ing bispectra, generalized shapes for oscillating models includ-
ing for logarithmic oscillations, tests for deviations from the
Bunch-Davies vacuum, models of equilateral type in the context
of the e↵ective field theory of inflation, and direction-dependent
primordial NG. Beyond purely scalar mode templates we also
tested for parity-violating tensor NG.

Using the full mission data with polarization, we have in-
vestigated the hints of NG reported in the Planck 2013 analy-
sis of oscillatory features. While no individual feature or res-
onance model rises above our detection threshold of 3� (after
inclusion of the look-elsewhere e↵ect), the results of integrated
(multi-peak) statistical tests indicate that continued investigation
of oscillatory and non-scaling models is warranted.

In addition to searches for specific NG templates, we present
model-independent reconstructions of the temperature and po-
larization bispectra using the modal and binned bispectrum ap-
proaches. These full mission reconstructions can achieve twice
the resolution of the Planck 2013 results, demonstrating excel-
lent consistency in temperature, and good agreement with the
WMAP9 reconstruction in regions where this earlier data set is
signal-dominated.

The inclusion of polarization information leads to signifi-
cantly improved constraints on NG in primordial isocurvature
perturbations, providing complementary information to 2-point
function results for models where the NG in isocurvature compo-
nents is more easily detectable than its contribution to the power
spectrum.

A significant addition to this year’s analysis is the inclu-
sion of detailed trispectrum results due to cubic NG. The lo-
cal trispectrum is constrained by Planck temperature data to
be glocal

NL = (�9.0 ± 7.7) ⇥ 104 and the other two shapes were
also found to be consistent with Gaussianity. Both 3-point and
4-point constraints are consistent with the improved (though still
suboptimal) constraints from Minkowski functionals, a very dif-
ferent estimation framework. This concordance adds confidence
in our results.

We have discussed the implications of our results on the
physics of the early Universe, showing that the n-point functions
for n > 2 provide a significant window onto the primordial Uni-
verse beyond the power spectrum, constraining general-single
field, multifield, and non-standard inflation models, as well as
alternatives to inflation. Using bispectrum and trispectrum lim-
its we updated results on the parameter space of the inflationary
models (and alternatives) already tested in 2013, and constrained
the parameter space of other well-motivated inflationary models
(e.g., Galileon-like models of inflation, and models where ax-
ion/pseudoscalar fields are present during inflation).

The global picture that emerges is one of consistency with
the premises of the ⇤CDM cosmology, namely that the struc-
ture we observe today is the consequence of passive evolution

of adiabatic, Gaussian, primordial seed perturbations. Neverthe-
less, NG at some level is expected in all inflationary models, and
hence we should strive to find means to reduce errors on fNL still
further.
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Appendix A: Derivation of an estimator for cL

As parameterized by Eq. (23), we express a primordial bispec-
trum of direction-dependence:

B�(k1, k2, k3) =X

L� 1

cL
h
PL(k̂1 · k̂2)P�(k1)P�(k2) + 2 perm.

i
(A.1)

where PL( k̂1 · k̂2) is a Legendre Polynomial of order L. It can
be shown that such a primordial bispectrum leads to a CMB
bispectrum
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i = (A.2)
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CCCCCA ,

where p denotes either temperature or E-mode polarization,
b(cL),p1 p2 p3
`1`2`3

is the reduced CMB bispectrum, and the term with
large parentheses denotes the Wigner-3j symbol. The reduced
CMB bispectrum b(cL),p1 p2 p3

`1`2`3
is given by (Shiraishi et al. 2013a)
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=
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, (A.3)

where �L,l denotes the Kronecker delta function, {. . .} the Wigner
6j symbol, “perm.” means permutations, w` is a beam window
function, and

↵p
` (r) =

2
⇡

Z
k3 dln k gp

` (k) j`(kr), (A.4)

�p
`,`0 (r) =

2
⇡

Z
dk3 ln k P�(k) gp

` (k) j`0 (kr). (A.5)

Here, gp
` (k) is the radiation transfer function for temperature or

E-mode polarization, and j`(x) is a spherical Bessel function.
The h symbol is

h`1`2`3 =

r
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4⇡

 
`1 `2 `3
0 0 0

!
. (A.6)

By maximizing the likelihood with respect to cL, we obtain the
KSW estimator for cL:
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where MC denotes that the average is over Monte Carlo simu-
lations and NcL is a normalization constant. The normalization
constant NcL is given by
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1
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Using Eq. (A.2), we find that
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with �p
`,`0 (r) being defined in Eq. (A.5). In the derivation above,

we used the identities
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Applying Eqs. (A.9) to (A.7), we find

ĉL =
1
NcL

2⇡
(2L + 1)

LX

M=�L

(�1)M
Z

r2dr
Z

d2 n̂

[A(n̂, r)BLM(n̂, r)BL,�M(n̂, r) � A(n̂, r)hBLM(n̂, r)BL,�M(n̂, r)iMC

� 2BL,�M(n̂, r)hA(n̂, r)BLM(n̂, r)iMC],
where
A(n̂, r) =

X

`m

X

pq

↵p
` (r)(C�1)pq

l aq
`mY`m(n̂),

BLM(n̂, r) =
X

`m

bLM
`m (r) Y`m(n̂).

Since bLM
`0m0 (r) , (�1)m0

h
bLM
`0,�m0 (r)

i⇤
, BLM(n̂, r) is not a real func-

tion, but a complex function. We estimate BLM(n̂, r) e�ciently
by computing the following with HEALPix (Górski et al. 2005):

Re[BLM(n̂, r)] =
X

`m

R
LM
`m (r) Y`m(n̂);

Im[BLM(n̂, r)] =
X

`m

I
LM
`m (r) Y`m(n̂).

Here

R
LM
`m (r) =

bLM
`m (r) + (�1)m[bLM

`�m(r)]⇤

2
,

I
LM
`m (r) =

bLM
`m (r) � (�1)m[bLM

`�m(r)]⇤

2ı
·

A17, page 65 of 66



A&A 594, A17 (2016)

Appendix B: Definition of Minkowski Functionals

and theoretical expectations

For a field f (x) of zero average and variance �2
0 defined on the

two-dimensional sphere S2, an overdense excursion set is de-
fined as

⌃ ⌘ {x 2 S2
| f (x) > ⌫�0}. (B.1)

The boundary of the excursion is

@⌃ ⌘ {x 2 S2
| f (x) = ⌫�0}. (B.2)

Then the three Minkowski functionals on the sphere are

Area : V0(⌫) =
1

4⇡

Z

⌃

d⌦, (B.3)

Perimeter : V1(⌫) =
1

4⇡
1
4

Z

@⌃
dl, (B.4)

Genus : V2(⌫) =
1

4⇡
1

2⇡

Z

@⌃
 dl, (B.5)

where d⌦ and dl are respectively elements of solid angles (sur-
face) and of angle (distance),  is the geodesic curvature. Note
that the Genus can be also expressed as the number of com-
ponents22 in the excursion minus the number of holes in the
excursion.

The fourth functional V3(⌫), is defined, for ⌫ > 0, as the num-
ber of components in the excursion. Symmetrically, for ⌫ < 0, it
is the number of underdense components (or the number of com-
ponents in the excursion {x 2 S2

| f (x) < ⌫�0}).

22 A component is a connected subset of the excursion.

In the Gaussian limit, the functionals can be expressed the
following way (see, e.g., Matsubara 2010; Vanmarcke 1983):

Vk(⌫) = Akvk(⌫), (B.6)

with

vk(⌫) = exp(�⌫2/2)Hk�1(⌫), k  2 (B.7)

v3(⌫) =
e�⌫2

erfc
⇣
⌫/
p

2
⌘ , (B.8)

and

Hn(⌫) = e⌫
2/2

 
�

d
d⌫

!n

e�⌫
2/2. (B.9)

The amplitude Ak depends only on the shape of the power spec-
trum C`:

Ak =
1

(2⇡)(k+1)/2
!2

!2�k!k

 
�1
p

2�0

!k

, k  2 (B.10)

A3 =
2
⇡

 
�1
p

2�0

!2

(B.11)

where !k ⌘ ⇡k/2/�(k/2+1), which gives !0 = 1, !1 = 2, !2 = ⇡
and �0 and �1 are respectively the rms of the field and its first
derivatives.
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