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Abstract

Insect outbreaks usually involve important ecological and economic consequences for agri-

culture and forestry. The short-winged bush-cricket Barbitistes vicetinus Galvagni & Fon-

tana, 1993 is a recently described species that was considered rare until ten years ago,

when unexpected population outbreaks causing severe defoliations across forests and

crops were observed in north-eastern Italy. A genetic approach was used to analyse the ori-

gin of outbreak populations. The analysis of two mitochondrial regions (Cytochrome Oxi-

dase I and II and 12S rRNA-Control Region) of 130 samples from the two disjunct ranges

(Euganean and Berici Hills) showed high values of haplotype diversity and revealed a high

geographical structure among populations of the two ranges. The high genetic variability

observed supports the native origin of this species. In addition, results suggest that unex-

pected outbreaks are not a consequence of a single or few pestiferous haplotypes but rather

the source of outbreaks are local populations which have experienced an increase in each

area. The recent outbreaks have probably appeared independently of the genetic haplo-

types whereas environmental conditions could have affected the outbreak populations.

These findings contribute to a growing understanding of the status and evolutionary history

of the pest that would be useful for developing and implementing biological control strategies

for example by maximizing efforts to locate native natural enemies.

Introduction

Herbivorous insect outbreaks usually involve important ecological and economic conse-

quences for agriculture and forestry. In most cases, it concerns the accidental introduction of

an exotic species into a new geographical area due to international trade and human move-

ment [1–3]. In this scenario, the species is not under biological control by natural enemies,

leading to a quick spread of the population. Instead, the insect outbreak of an indigenous
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species is less common but more enigmatic, due to some alterations of the biotic and abiotic

components [4].

Until a decade ago, among bush-crickets belonging to the genus Barbitistes, (Orthoptera,

Tettigoniidae), occasional outbreaks were reported only for B. constrictus Brunner von Wat-

tenwyl, 1878 in conifer forests of central and eastern Europe, for B. ocskayi (Charpentier,

1850) in broadleaf forests of north-eastern Italy [5–7] and for B. serricauda (Fabricius, 1798) in

vineyards of north Italy. In spring 2008, the first outbreak of the species B. vicetinus Galvagni

& Fontana, 1993 was recorded in a restricted area of north-eastern Italy (Euganean Hills) [7].

Since then, within two disjunct distribution ranges, the Euganean Hills first and the Berici

Hills later, the outbreak areas have progressively enlarged causing heavy damage to forests and

neighboring crops (mainly grapes and olives). Severe defoliations have been recorded in the

most serious infestations, rising to nearly 90% of canopy loss [8, 9]. Moreover, the outbreaks

are also a source of annoyance to people living close to the attacked areas due to the tendency

of bush-crickets to invade streets and gardens [7, 10] (S1 Fig).

Interestingly, the bush-cricket was first described just in 1993 as a rare endemic species of

north-eastern Italy, being found only in small confined hilly areas [11]. From then on, all the

records of B. vicetinus have been reported only in this area. Only since 2005 this species started

to be more common in some localities and easy to be found also without bioacoustics technics.

The recent discovery of the species (Galvagni & Fontana, 1993) and increase in these north-

eastern areas affected by outbreaks during the past two decades has sparked a debate about the

possible exotic origin of B. vicetinus. Recently, as a consequence of the outbreaks, some authors

have thoroughly studied important aspects of the biology and ecology of B. vicetinus [7, 9, 12,

13] but no data regarding population genetics is so far available. Genetic studies based on the

use of high-resolution DNA markers allow to examine the structure of insect populations,

identify haplotypes, reconstruct current or past patterns of gene flow and provide information

on the origin and expansion routes of the insect [14]. This information could be useful for

improving the knowledge concerning the eruptive species, such as colonizing capacity, adapt-

ability, behaviour and demographic history of a population. [15–17]. Several population genet-

ics studies have been conducted with the aim of highlighting and discovering the sources and

colonization routes of outbreak populations of alien pests [e.g. 18–23]. However, studies on

the genetic structure of native pests have generally received less attention [4, 24].

Among the genetic tools to be exploited, maternally-inherited mtDNA is widely used since

it is relatively conserved compared to some nuclear genes, and is thus suitable when searching

for historical processes [25]. In this study, we used a combination of two mitochondrial mark-

ers, namely Cytochrome Oxidase I and II (COI-tRNALeu-COII) and 12S rRNA-Control

Region (12S-CR) to study the genetic structure and demographic history of B. vicetinus popu-

lations from the two disjunct ranges where it currently outbreaks (Euganean Hills and Berici

Hills, northern Italy). The COI and COII are considered slowly evolving genes of the mito-

chondrial protein-coding genes [26]. The non-coding control region is in contrast, the

most variable segment in the maternally inherited mtDNA [27, 28] and its use in genetic

analysis can alleviate biases of coding regions [29]. Both markers have been widely used to con-

duct population genetic surveys in Orthopteran species including the Tettigoniidae family

[30–35].

By studying the genetic structure of the bush-cricket this study aims to answer three main

questions:

i. is there any evidence for an alien origin of the bush-cricket?

ii. are B. vicetinus populations genetically distinct?

PLOS ONE Genetic population structure of the outbreak species Barbitistes vicetinus

PLOS ONE | https://doi.org/10.1371/journal.pone.0250507 May 6, 2021 2 / 14

Funding: This research was supported by the

project DOR1881327/18 - University of Padua to

Luca Mazzon. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript. There

was no additional external funding received for this

study.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0250507


iii. are either of the recent outbreaks caused by a single outbreak population followed by a

spread pattern or have they derived from multiple local populations?

This information can help understand the factors related to the outbreak events of B. viceti-
nus and could provide insight to assist management of this outbreak pests.

Materials and methods

Study area

The study area was located in north-eastern Italy (Veneto Region) and included the two dis-

junct ranges where outbreaks have occurred (Euganean Hills and the Berici Hills) and a third

range where no outbreaks have been reported to date and the species is rare (Lessini Moun-

tains). The three ranges are separated from each other by cultivated and inhabited alluvial

plains devoid of woody vegetation (Fig 1B).

The Euganean Hills cover an elliptical area of approximately 180 km2 and comprise approx-

imately 100 hills of volcanic origin emerging from the alluvial sedimentary plain, with the

highest elevation of approximately 600 m above sea level. They are characterised by numerous

narrow and deep valleys, steep hills with different sun exposures and many microclimatic con-

ditions that influence the vegetation. The annual mean temperature is approximately 12˚C

and precipitation ranges from 700 to 900 mm [36] even if they are extremely variable due to

the inner geomorphological variability.

The Berici Hills are an isolated plateau situated on the southern Vicenza plain, they cover

almost 160 km2 with a maximum elevation of approximately 450 m above sea level [37]. The

climate of the area is characterised by an annual rainfall of 958 mm, and average daily tempera-

ture of -1˚C in January and 23˚C in July [38].

The Lessini Mountains are a triangular-shaped tableland, which occupies some 800 km2, at

the transition between the Fore-Alps and the River Po Plain [39]. The mountain group reaches

over 2000 m above sea level and is characterised by multiple valleys and long ridges that

descend towards the plain.

Insect sampling

Adults of B. vicetinus were collected, using a sweep net, throughout the spring of three succes-

sive years (2015, 2016, and 2017). Specimens from the north, centre and south part of both

outbreak areas (the Euganean and Berici Hills) as well as from two sites on the Lessini Moun-

tains were collected from bush and tree canopies on marginal side of the forests (Table 1). To

avoid sampling relatives, bush-cricket specimens were collected by sweeping an area at least

100 m2 at each sampling site. After capturing, samples were immediately kept in 95% ethanol

and taken to the laboratory where they were morphologically identified and stored in individ-

ual vials at −20˚C until DNA extraction.

DNA extraction, PCR amplification and sequencing

The genomic DNA was extracted from tissue samples taken from the hind femora of each speci-

men separately, according to a previously described salting-out protocol [40]. Two mitochon-

drial DNA regions were chosen for amplification: a fragment including the 3’ region of

Cytochrome Oxidase I, tRNA-Leu and the 5’ region of Cytochrome Oxidase II (COI-tRNALeu-

COII) and a fragment of the 12S rRNA and the Control Region (12S-CR). Two specific primers

were designed for amplifying the COI-tRNALeu-COII fragment: Vicetinus_P7F (5’-ACCTGT
TCTTGCAGGAGC-3’) and Vicetinus_P4R (5’-TCCACAGATTTCTGAACATTG-3’).

The universal primers SR-J14610 (5’-ATAATAGGGTATCTAATCCTAGT-3’) and T1-N18
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(5’-CTCTATCAARRTAAYCCTTT-3’) [41] were used to amplify the 12S-CR fragment.

Amplifications were performed in 20 μl reactions (1x PCR Go Taq Flexi buffer—Promega, 2.5

mM MgCl2, 0.1 mM dNTPs, 0.5 μM for each primer, 0.5 U of Taq polymerase—Promega, 2 μl

Fig 1. Parsimony network and geographic distribution of B. vicetinus haplotypes. A) Haplotypes network based on

the combined dataset (COI-tRNALeu-COII and 12S-CR). Each haplotype is represented by a circle, and the area of the

circle is proportional to its frequency. Lines within haplotypes circles indicate the proportions shared between

collection areas. The colours represent differences in geographic distribution, and small black dots symbolize missing

intermediate or unsampled haplotypes. Codes indicate the haplotype ID, reported in Table 1. B) Map showing the

proportional geographic distribution of bush-cricket haplotypes across sampled populations. Map republished from

[62] under a CC BY license, with permission from [Regione del Veneto–L.R. n. 28/76 –Formazione della Carta Tecnica

Regionale], original copyright [2020].

https://doi.org/10.1371/journal.pone.0250507.g001

PLOS ONE Genetic population structure of the outbreak species Barbitistes vicetinus

PLOS ONE | https://doi.org/10.1371/journal.pone.0250507 May 6, 2021 4 / 14

https://doi.org/10.1371/journal.pone.0250507.g001
https://doi.org/10.1371/journal.pone.0250507


DNA template). Thermal cycling conditions for the fragment including the COI-tRNALeu-

COII were 5 min at 96˚C followed by 35 cycles at 96˚C for 1 min, 56˚C for 1 min, 72˚C for 1:30

min, and a final extension of 72˚C for 5 min. For the 12S-CR amplification, the thermal profile

followed the conditions described by Eweleit et al. [33] consisting of 2 min at 92˚C followed by

35 cycles with a denaturation step of 92˚C for 2 min, an annealing step of 52˚C for 30 sec, and

extension step of 60˚C for 3 min, with a final extension of 72˚C for 7 min.

PCR products were checked through electrophoresis on 1.0% agarose gels stained with

SYBR1 (Invitrogen), purified using Exonuclease and Antarctic Phosphatase (GE Healthcare)

and sequenced at the BMR Genomics Service (Padua, Italy). Primers used for amplification

were also used for sequencing.

Data analysis

DNA sequence chromatograms were quality checked, manually corrected when necessary,

and aligned using MEGA X [42]. Low-quality regions found at the beginning and end of each

sequence were trimmed, while low-quality sequences were not included in the analysis.

Haplotype and nucleotide diversity, as well as the pairwise genetic distances between popu-

lations, were calculated with Arlequin 3.5 [43] using a Kimura 2-parameters model. The pres-

ence of population differentiation was also tested by conducting exact tests of population

differentiation with 100,000 steps in Markov chain, with 10,000 dememorization steps. To

compare the partition of genetic variability among sampled populations, an analysis of molec-

ular variance (AMOVA) [44] was performed using Arlequin.

Table 1. Collection sites of B. vicetinus populations analysed and descriptive statistics of each population.

Site

ID Latitude Longitude N. samples Haplotypes N. haplotypes H π (%)

Euganean Hills North 1 45˚20’46.4"N 11˚44’4.2"E 1 A6(1) 7 0.64 +/- 0.12 0.04

2 45˚22’30.6"N 11˚40’38.7"E 10 A6(7), F6(2), A9(1)

3 45˚21’54.3"N 11˚38’52.7"E 8 A1(1), A6(4), A8(2), H6(1)

4 45˚20’59.9"N 11˚41’52.8"E 1 G6(1)

Center 5 45˚19’14.8"N 11˚45’57.8"E 1 A6(1) 7 0.72 +/- 0.09 0.09

6 45˚17’38.1"N 11˚37’22.5"E 2 A6(2)

7 45˚18’14.6"N 11˚40’26.8"E 1 D7(1)

8 45˚18’9.07"N 11˚40’51.7"E 9 A6(1), A11(1), A12 (2), B6(1), E4(1), E6(3)

9 45˚18’12.4"N 11˚43’46.6"E 3 E6(1), A6(2)

10 45˚17’45.6"N 11˚39’35.3"E 3 A6(3)

11 45˚18’9.7’’N 11˚46’48.5’’E 1 A6(1)

South 12 45˚14’53.8"N 11˚44’39.5"E 12 A6(8), A10 (2), C6(2) 4 0.50 +/- 0.13 0.05

13 45˚14’41.1’’N 11˚40’6.2’’E 2 A6(1), A13(1)

14 45˚14’55.1"N 11˚44’39.3"E 3 A6(3)

Berici Hills North 15 45˚28’20.7’’N 11˚35’27.5’’E 16 I1(10), I2(1), I3(1), I15(2), J6(1), L9(1) 9 0.80 +/- 0.06 0.10

16 45˚26’41.2"N 11˚34’42.1"E 1 J6(1)

17 45˚27’59.7"N 11˚32’52.9"E 8 I2(2), J1(1), J5(1), J6(3), K2(1)

Center 18 45˚25’31.5"N 11˚33’02.8"E 1 I5(1) 8 0.90 +/- 0.04 0.13

19 45˚24’00.3"N 11˚31’39.7"E 15 A1(1), I1(3), I5(1), I6(3), J1(3), J5(1), J8(2), J16(1)

South 20 45˚25’14.1"N 11˚26’59.0"E 17 I5(17) 3 0.28 +/- 0.12 0.02

21 45˚24’54.8’’N 11˚28’59.9’’E 3 I1(2), I14(1)

Lessini Mountains 22 45˚29’12.3"N 11˚02’14.6"E 7 N17(4), O1(3) 3 0.71+/- 0.07 0.24

23 45˚36’14"N 11˚25’18"E 5 I1(5)

https://doi.org/10.1371/journal.pone.0250507.t001
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A haplotype parsimony network with a probability cut-off of 95%, was reconstructed using

the TCS 1.21 software [45] and PopART 1.7 [46] and used for depicting the geographical rela-

tionships among haplotypes. Ambiguous connections (loops) were resolved using approaches

from coalescent theory based on three criteria: frequency, network location and geography

[47, 48].

The study of the past demographic history of the species was inferred using Arlequin 3.5

through the Tajima’s D and Fu’s Fs tests [49, 50] and the mismatch distributions of the pair-

wise genetic differences [51]. Populations at demographic equilibrium or decreasing in size

should provide significant positive D and Fs values with a multimodal distribution of pairwise

differences, whereas populations that have undergone a sudden demographic expansion usu-

ally show significant negative D and Fs values with a unimodal distribution [51, 52]. The sud-

den expansion model was tested through analysis of the sum of square deviations (SSD) and

raggedness index (r) representing the modality of distribution, obtaining the corresponding P

values with a parametric bootstrap approach (10,000 replicates).

For those populations that did not deviate from sudden expansion (p > 0.05) the time since

expansion was calculated considering the relationship τ = 2�u�t (where τ = age of expansion

measured in units of mutational time, u = mutation rate per sequence and per generation, and

t = number of generations since the expansion; [53]). The expansion time was then obtained

by dividing the estimate of τ by the product of the sequence length in base pairs and the muta-

tion rate per nucleotide (twice the per-lineage substitution rate; u = 2 μk) in percentage per

year. Two substitution rates were used: the classical rate of 2.3% divergence per Myr [54] fre-

quently used in Orthoptera [55–59] and the global mtDNA rate of 2.6% divergence per Myr

proposed by Papadopoulou et al. [60].

Results

Sampling

A total of 152 individuals were collected from the three natural ranges of B. vicetinus (Euga-

nean Hills, Berici Hills and Lessini Mountains). Unfortunately, only 12 specimens were col-

lected from the Lessini Mountains due to the rarity of the species in this range (Tab. 1).

Data analysis

The two fragments of the mitochondrial genes, COI-tRNALeu-COII and 12S-CR were suc-

cessfully amplified and sequenced in 130 samples, with an average of 19.6 specimens for each

of the three areas within the two main ranges (north, centre, and south of both the Euganean

and Berici Hills). After quality assessment and trimming the sequences, high-quality sequences

799 bp long for the COI-tRNALeu-COII and 898 bp long for the 12S-CR fragment were

obtained. Sequences of the COI-tRNALeu-COII fragment were translated with Transeq

(EMBOSS: http://www.ebi.ac.uk/Tools/emboss/transeq/index.html) to exclude the presence of

any nuclear mitochondrial pseudogenes. This bioinformatics tool translates nucleic acid

sequences to their corresponding peptide sequences and identifies stop codons. Since these

pseudogenes (NUMTs) are characterized by the accumulation of in-frame stop codons and

indels [61] the absence of stop codons in the protein sequence can allow to exclude presence of

NUMTs.

A total of 13 variable sites, including 8 parsimony informative sites and 5 singleton sites,

were identified by the alignment of COI-tRNALeu-COII sequences while the 12S-CR align-

ment showed 6 parsimony informative sites and 7 singleton sites (13 variable sites in total).

Sequences of each haplotype of COI-tRNALeu-COII and 12S-CR obtained in this study are

available through GenBank accession numbers MW405351- MW405381.
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Partition homogeneity test confirmed that COI-tRNALeu-COII and 12S-CR fragments

bear a homogeneous signal (P = 0.28), allowing data to be pooled for further analyses. A final

dataset including 130 concatenated sequences of 1697 bp was obtained. Further analyses were

conducted considering the combined dataset.

Genetic variability and population structure

The diversity indexes for the concatenated dataset ranged between 0.28 and 0.90 for the haplo-

type diversity (H) and between 0.02 and 0.24 for the nucleotide diversity (π). Among popula-

tions from both the main outbreak areas, those from the north and the centre part of the Berici

Hills showed the highest H and π values (H = 0.92, π = 0.13 and H = 0.80, π = 0.10 respectively)

while populations from the south part of the Berici Hills showed the lowest variability. The dis-

tribution of haplotypes among all populations analysed and other summary statistics are

shown in Table 1.

The presence of population differentiation was confirmed by the tests of population differ-

entiation (P>0.001). When B. vicetinus genotypes were grouped based on the six main collec-

tion sites (north, centre, and south of both Euganean and Berici Hills), the locus-by-locus

AMOVA revealed a significant geographic structure between populations of the two main dis-

junct ranges (P = 0.0014) (Euganean vs Berici Hills). To avoid bias as a result of the small sam-

pling size of Lessini Mountains, populations from this area were not included in this analysis.

The analysis showed that 40% of the variation was explained by differences among groups

(Euganean and Berici Hills), whereas about 48% of genetic variation was explained within pop-

ulations (Table 2).

TCS Network

TCS Network of the combined dataset revealed the presence of 32 haplotypes of which 15 were

exclusive to samples from the Euganean Hills, 13 were exclusive to the Berici Hills and 2

regarded samples only from the Lessini Mountains (Fig 1). Only 2 haplotypes were shared by

samples from different ranges: A1 included samples from the Euganean and Berici Hills, and

J1 samples from both the Berici Hills and Lessini Mountains. The network evinced a geograph-

ical separation among haplotypes, with samples from the Euganean Hills showing a star-like

pattern and samples from the Berici Hills connected among them (Fig 1A).

Going deeper into the network’s characteristics, the most common haplotype, A6, included

34 samples coming from all three parts of the Euganean Hills (north, centre and south). Ten

rare haplotypes including samples exclusively from the Euganean Hills were connected, sepa-

rated by only one mutational step, to A6 in a star-shape. Five of them (A9, A11, B6, G6, and

H6) were represented by only one sequence, six (C6, A10, F6, A8) by two sequences, and one

(E6) by 4 sequences. In addition, haplotype A1, which included samples from both the Euga-

nean and Berici Hills, was also connected to A6 separated from it by only one mutational step.

The second most common haplotype, I1, was composed of 20 sequences:15 belonged to

samples from the three geographical populations of Berici Hills (north, centre and south)

Table 2. Analysis of molecular variance AMOVA for the combined data set (COI-tRNALeu-COII and 12S-CR).

Structure Source of variation Variance % Fixation indices P-value
Grouping by geographical range (Euganean and Berici Hills) Among groups 40.32 FCT = 0.403 0.0014

Among populations within groups 11.75 FSC = 0.197 <0.001

Within populations 47.92 FST = 0.520 <0.001

Amova was calculated among populations of Barbitistes vicetinus divided according to the outbreak areas.

https://doi.org/10.1371/journal.pone.0250507.t002
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while 5 were represented by samples from site 23 (Lessini Mountains). This haplotype (I1) was

separated from the most dominant haplotype (A6) by two mutational steps. A star-like pattern

could also be observed in this part of the network, with haplotype I1 surrounded by nine hap-

lotypes, eight of which (I2, I3, I5, I6, I14, I15, K2 and L9) exclusively represented by samples

from the Berici Hills. Among them, haplotype I5 was shared by 19 samples from the southern

and central populations of the Berici Hills while haplotypes I2, I3, I15, K2 and L9 were rare (3

sequences each at most) and included only samples for the north part of the Berici Hills. Two

haplotypes, O1 and N17, were exclusive to samples from site 22 (Lessini Mountains) the fur-

thest site from the outbreak areas (Fig 1).

The parsimony networks of the single markers (COI-tRNALeu-COII and 12S-CR) showed

a similar pattern, with most haplotypes including exclusively samples from only one disjunct

distribution range (Euganean Hills or Berici Hills or Lessini Mountains) (S2 and S3 Figs).

Past demographic events

Tajima’s D and Fu’s Fs tests were applied in populations from the Euganean and Berici Hills in

order to check for past demographic events. The null hypothesis of neutrality was rejected in

populations from the Euganean Hills (D = -2.05; P = 0.02 and Fs = -12.51; P< 0.001), suggest-

ing a past population expansion after a period of low effective sample size (Table 3). Berici

populations showed only significant negative Fu’s Fs value (Fs = -6.62; P = 0.004), suggesting

that B. vicetinus populations of this hilly area did not conform to the theory of neutral evolu-

tion (Table 3).

The mismatch distribution plots of both ranges were smooth and unimodal, revealing that

these populations were undergoing population expansion (S4 Fig). They were characterised by

the following observed means: 1.25 and 1.91 for the Euganean and Berici Hills, respectively.

Moreover, for both the Berici and Euganean populations, the computed SSD and raggedness

index values did not reject a sudden expansion model (S4 Fig), and in particular raggedness

values were low (Table 3).

Estimation of the expansion time showed that populations from the Euganean Hills lineage

started to expand about 10,700 years ago (with a 2.6% substitution rate) and 12,400 years ago

(with a 2.3% substitution rate) (Table 3). Populations from the Berici Hills probably expanded

from about 24,000 to 27,600 years ago with 2.6% and 2.3% substitution rates, respectively

(Table 3).

Discussion

This study presents the first population genetic analysis of the species B. vicetinus in its out-

break areas and reveals the presence of a high geographical structuring among populations of

the two outbreak ranges analysed (Euganean and Berici Hills).

Table 3. Statistic summary of the past demographic events analysis of Barbitistes vicetinus populations.

Area Tajima’s D Fu’s Fs SSD r τ (confidence interval 95%) Expansion time (ka) 2,3% subst.rate Expansion time (ka) 2,6% subst.rate

Euganean Hills -2 .05� -12 .51� 0 .009 0.069 0.96 (0.34–1.67) 12.4 (4.4–21.6) 10.7 (3.8–18.7)

Berici Hills -0 .23 -6 .62� 0 .002 0.030 2.14 (0.54–3.62) 27.6 (7–46.7) 24 (6.1–40.3)

Tajima’s (D) and Fu’s neutrality test (Fs) mismatch distribution analysis under a sudden expansion model and time since expansion calculated for mitochondrial

populations of the Euganean and Berici Hills considering the combined data base. SSD: sums of squared deviations; r: raggedness index, τ: age of expansion measured in

units of mutational time. Expansion time shows as 1,000 years ago (ka).

� Significant at p < 0.05.

https://doi.org/10.1371/journal.pone.0250507.t003
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Populations from both ranges showed high values of haplotype diversity, a typical charac-

teristic of ancestral populations [63–65], supporting that B. vicetinus is a native species. Con-

versely, populations of invasive alien species are traditionally thought to have reduced genetic

variation relative to their source populations because of genetic founder effects linked to small

population size during the introduction and establishment phases of an invasion [66]. Further-

more, the genetic variability found clustered according to geographical ranges is in contrast

with the possibility that B. vicetinus may be an invasive species accidentally introduced.

Even though outbreaks have been reported on both the Euganean and Berici Hills, different

haplotypes have been found in these two distribution ranges. Ninety-four percent of haplo-

types were exclusive to a single distribution range (i.e. either Euganean or Berici Hills) and

only one haplotype, scarcely represented, was found in samples from both hilly areas. These

results suggest that outbreaks are not a consequence of a single or few pestiferous haplotypes

but rather that the source of outbreaks is due to local populations which experienced a demo-

graphic increase in each area. Thus, it seems that outbreaks have appeared independently from

the genetic origin, as also found in some studies which indicate that outbreak events are often

more affected by environmental conditions than by genetic characteristics of the local popula-

tion [4, 67–69].

The geographical separation between populations of the Euganean and Berici Hills,

observed in the network and confirmed by population differentiation test and AMOVA, indi-

cates a limited gene flow among populations. In phytophagous insects, dispersal capacity, geo-

graphical or reproductive barriers, host plant, and habitat fragmentation are reported as the

main drivers of genetic structure [20, 70, 71]. The limited dispersal ability of this flightless spe-

cies could have favoured the lack of gene flow among its distribution ranges. B. vicetinus has

been reported to show a low dispersal ability [9], as well as other ground-dispersing species

that move only relatively short distances, such as 100–200m during their whole life (e.g. Pholi-
doptera griseoaptera, [72]). In addition, the mostly lowland areas between the Euganean and

Berici Hills, with the presence of agricultural fields and the absence of woody vegetation,

might be hostile areas for bush-cricket survival and could have acted as a geographical barrier

limiting the effective dispersal of the species. Furthermore, spatial configuration of habitats is

another factor influencing genetic structure, that affects mainly species with limited dispersal

ability [73]. In B. vicetinus outbreak areas, it has been observed that habitat loss and the pres-

ence of patchy areas of the non-host alien tree Robinia pseudoacacia play an important role in

reducing population density and dispersion [9]. These factors, coupled to the low mobility of

the pest, could have a synergic action that might explain the high level of differentiation

observed among populations across its distribution ranges.

High haplotypic diversity, low levels of sequence divergence (nucleotide diversity) and a

star-like phylogeny were observed in populations of B. vicetinus from the Euganean Hills and

to a lesser extent from the Berici Hills (Fig 1; Table 1). This pattern is consistent with what is

expected for populations that have experienced past demographic expansions [52, 74]. These

results were highlighted by the neutrality tests and the unimodal mismatch distribution in

both hilly areas supporting that, besides the current and ongoing outbreaks, populations from

the Euganean and Berici Hills underwent an expansion after a period of low effective sample

size (S4 Fig). The bush-cricket population of the Euganean Hills experienced a postglacial

expansion starting approximately 10,700–12,400 years ago after the Last Glacial Maximum

(LGM; 21,000 years ago) whereas the expansion process in populations on the Berici Hills

could have occurred at the end of the LGM. During this glacial period, climate effects were

minimal in the Euganean Hills, with thermophilic vegetation serving as a refuge for several

species [75, 76]. Accordingly, B. vicetinus populations could have survived during the climatic

oscillations, and exploited these hilly areas with potentially suitable environmental conditions
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throughout the late Pleistocene. Once climatic conditions were favourable, at the end of the

last ice age, populations might have experienced an expansion, shaping the present genetic

structure of the species. The slow movement of the species and lack of host plants in the low-

lands during these periods probably prevented dispersal of the species between the two hilly

areas, favouring differentiation of the mitochondrial haplotypes. Thus, both historical (e.g.,

expansion after LGM) and recent changes (e.g. habitat loss) have contributed to determining

the genetic structure and diversity of the bush-cricket in its outbreak range, resulting in geneti-

cally structured populations.

Further studies increasing the sampling size, mostly in areas where the species is rare (e.g.

Lessini Mountains), combined with analysis of other markers could help obtain a better pic-

ture of B. vicetinus population structure.

The current findings contribute to a growing knowledge of the status and evolutionary his-

tory of the pest. Here, by removing doubt about the origin of the B. vicetinus, we have achieved

an important step in understanding this native species. Shedding light on the origin of a spe-

cies is also important for its biological control. Given that natural enemies and their host tend

to coevolve, biological control programmes often rely on the use of parasitoids present in the

native areas. Failure to identify the correct origin of a pest may lead to the use of unsuitable

species as biocontrol agents with negative effects on control programmes [20, 77]. Maximizing

efforts to locate native natural enemies (native parasitoids), as the egg parasitoid reported in

Ortis et al. [13] will be useful for control programmes. Finally, although B. vicetinus is cur-

rently in outbreak status, control programme strategies should consider the intrinsic vulnera-

bility of an endemic species. Its low dispersal ability and small and fragmented distribution

range could lead this native species to quickly shift from outbreaking to endangered.
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