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Molecular oxygen (O2), in spite being a potentially strong

oxidant, typically displays very poor reactivity with organic

molecules. This is largely due to quantum chemical reasons as

O2 in its ground state is a diradical (3O2) whilst common organic

substrates are in a singlet state. For this reason catalysis

involving O2 as a reactant is typically mediated by enzymes

containing redox metal and/or organic co-factors. Cofactor-

independent oxygenases (and oxidases) are therefore

intriguing enzymes from a fundamental viewpoint. This review

looks at recent advances that have been made in

understanding of this class of intriguing biocatalysts

highlighting the power of an inter-disciplinary approach

involving structural biology, spectroscopy and theoretical

methods.
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Introduction
The incorporation of one or both atoms of molecular
oxygen (O2) into organic substrates is catalyzed by mono-
oxygenases and dioxygenases, respectively. These
enzymes, collectively known as oxygenases [1], play a
key role in the metabolism of aromatic amino acids [2],
fatty acids [3,4], sugars [5], and vitamins [6], as well as in
the biosynthesis of collagen [7]. Oxygenation reactions
are also used for the degradation of various endogenous

and exogenous organic compounds [8], whilst some bac-
teria employ oxygenases to facilitate the breakdown of
molecules that are environmental pollutants [9]. Further-
more, oxygenases can catalyze enantiospecific reactions
making them attractive for the production of chiral che-
micals, although their industrial application is not without
practical problems [10].

From a mechanistic perspective, the task of oxygenases
is a difficult one because molecular oxygen in its normal
‘resting’ state (the form present in the air) is a diradical
with a triplet ground-state electronic structure (3O2) that
is not reactive toward the vast majority of singlet-state
organic substrates. To deal with this limitation of quan-
tum chemical nature, oxygenases typically rely on tran-
sition metals or redox organic cofactors for catalysis
[11,12!!,13]. A remarkable group of oxygenases, howev-
er, can catalyze O2-incorporation  reactions in a cofactor-
independent manner [14]. Cofactor-free oxygenases
(and oxidases) are therefore intriguing from the view-
point of fundamental enzymology. In this review
we will briefly summarize recent advances in our mech-
anistic understanding of this fascinating group of
enzymes.

Cofactor-free oxygenases
Structural information is available for various cofactor-
independent oxygenases including bacterial carbon mon-
oxide-forming 2,4-dioxygenases that degrade quinolones
[15!!], the vancomycin biosynthetic DpgC dioxygenase
[16,17], Streptomyces coelicolor ActVA-Orf6 monooxygen-
ase involved in polyketide-tailoring [18], bioluminescent
coelenterazine luciferases [19–21], and RhCC from Rho-
dococcus jostii RHA1 whose exact biological role is still
unknown [22]. Their three-dimensional structures show
that cofactor-independent oxygenation is enabled by a
variety of folds and quaternary arrangements (Figure 1).
Whilst bacterial carbon monoxide-forming 2,4-dioxy-
genases (Figure 1a) and Renilla coelenterazine luciferase
(Figure 1j) are monomeric enzymes belonging to the a/b-
hydrolase fold superfamily, DpgC, ActVA-Orf6 and
RhCC are assembled into oligomers. Interestingly, Oplo-
phorus luciferase (Figure 1k) that catalyzes the same
reaction as Renilla monooxygenase, relies on a completely
different architecture that is similar to those of fatty acid-
binding proteins (FABs). The oligomeric ActVA-Orf6
(Figure 1g), that oxidizes 6-deoxydihydrokalafungin to
dihydrokalafungin in the biosynthesis of the polyketide
antibiotic actinorhodin, is a homodimer in which each
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protomer displays a ferredoxin-like fold whilst DpgC is a
hexamer (Figure 1b) formed by individual chains whose C-
terminal region that contains the active site shows homolo-
gy to the crotonase family of enoyl-CoA isomerase/dehy-
dratases. DpgC is unique as there are no other examples of
redox chemistry from this enzyme class. The recently
identified RhCC monooxygenase (Figure 1n), is a trimer
that belongs to the tautomerase superfamily characterized

by a structural b–a–b fold. Like DpgC, RhCC is the first
oxygenase identified within this superfamily.

Bacterial cofactor-free dioxygenases involved
in the breakdown of N-heteroaromatic
quinoline derivatives
Our current mechanistic understanding of cofactor-
independent oxygenation is largely based on studies
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Cofactor-independent oxygenases. Cartoon representations of cofactor-independent oxygenases (a, d, g, j, k, n) with schematics of the chemical
reaction they catalyze (b, e, h, l, o), and proposed peroxide intermediates (c, f, i, m, p). Structural models are drawn to scale with their PDB code
and oligomeric state indicated. Individual chains in the cartoon models are represented in shades of grey, except for (a) that is shown in green.
The blue circles in the reaction schemes highlight the protons that are abstracted from the different substrates leading to their activation for
reactivity with molecular oxygen (O2). Oxygen atoms derived from O2 are shown in red.
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Carbon monoxide (CO)-forming cofactor-independent 2,4-dioxygenases. (a) Sequence alignment of various bacterial proteins exhibiting high
similarity to A. nitroguajacolicus Rü61a 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD). Residues are highlighted in different shades of
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performed on the bacterial carbon monoxide-forming 1-
H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD)
from Arthrobacter nitroguajacolicus Rü61a. HOD and its
homologous 1-H-3-hydroxy-4-oxoquinoline 2,4-dioxy-
genase (QDO) from Pseudomonas putida 33/1 were the
among first cofactor-free dioxygenases reported in the
literature [23]. They are approximately 31-kDa mono-
meric enzymes that catalyze the O2-dependent cleavage
of the N-heteroaromatic ring of quinoline derivatives
with concomitant formation of carbon monoxide
(Figure 1b). This reaction is chemically  identical to that
catalyzed by the metal-dependent quercetin dioxygen-
ase [24–26]. However, neither HOD nor QDO are
related in sequence to the latter enzyme. HOD and
QDO share "37% sequence identity and constitute a
separate family of cofactor-free dioxygenases of the a/b-
hydrolase fold superfamily [27]. A BLAST search
reveals a number of bacterial proteins with high se-
quence similarity to HOD/QDO that are likely to be
involved in similar breakdown reactions (Figure 2a).
Although most of these proteins have not been investi-
gated functionally, a recent report indicates that AqdC1
and AqdC2 from Rhodococcus erythropolis BG43 are com-
petent for the degradation of the Pseudomonas aeruginosa
quorum sensing signal molecule 2-heptyl-3-hydroxy-
4(1H)-quinolone (PQS, Pseudomonas quinolone signal)
[28]. Purified recombinant AqdC1 catalyses the O2-
dependent cleavage of PQS to form N-octanoylanthra-
nilic acid and CO with an apparent Km and kcat values of
27 mM and 21 s#1, respectively, thus supporting a 2,4-
dioxygenolytic cleavage like that catalyzed by HOD/
QDO [28]. Overall, CO-forming bacterial dioxygenases
appear to be able to operate on 3-hydroxy-4(1H)-qui-
nolones bearing alkyl chains of different length at sub-
strate position 2 (-R in Figure 1b) albeit with different
effectiveness.

The structures of both HOD and QDO have been deter-
mined by X-ray crystallography [15!!] (Figure 2b). As
expected on the basis of comparative sequence analysis
[29] these dioxygenases belong to the a/b-hydrolase fold
superfamily. This is a group of enzymes that rely on a
nucleophile-histidine-acidic residue triad to hydrolyze
typically C–O, C–N, C–C bonds although a large array
of reaction types can be catalyzed by members of this
versatile family [30!]. Currently, CO-forming bacterial

dioxygenases and the bioluminescent coelenterazine
Renilla luciferase monooxygenase are the only oxygenases
known to employ the a/b-hydrolase scaffold and its
catalytic machinery for O2-dependent catalysis. HOD
and QDO, like most enzymes of the a/b-hydrolase fold
family, display a two-domain structure constituted by a
‘core’ domain and a ‘cap’ domain (Figure 2b). The core
domain folds in the canonical a/b hydrolase architecture
consisting of a mostly parallel, eight-stranded b sheet
surrounded on both sides by a helices (only the second b
strand is antiparallel) with the central b sheet featuring a
left-handed superhelical 908 twist. The cap domain,
formed by four a helices is positioned between b6 and
aD. Both domains contribute to delineate the active site
cavity. However, only the core domain hosts the nucleo-
phile-histidine-acidic residue catalytic triad, which in the
case of HOD is formed by Ser101-His251-Asp126
(Figure 2a,b). A Ser-His-Asp composition is the most
common form of the triad [27]. Occasionally, the Ser
nucleophile is replaced by a Asp or Cys residue, as in
the case of Renilla luciferase where the triad is Asp-His-
Asp [19].

Substrate activation
A common step in cofactor-independent oxygenation is
the initial deprotonation of the bound organic substrate
[14,31]. The H+ ion abstracted in various cofactor-
independent-catalyzed reactions is highlighted in
Figure 1 (blue circle). The structure of HOD in com-
plex with its natural substrate QND (–R = –CH3 in
Figure 1b) obtained under anaerobic conditions reveals
that the organic molecule binds in the active site
between the core and the cap domains (Figure 2c) with
the substrate’s O3 atom at H-bond distance to the Ne2
atom of the triad’s H251 (2.6 Å) [15!!]. This interaction
affords the deprotonation of the substrate’s hydroxyl
group by the His-Asp subset of the triad, essential for
substrate activation. Site-directed mutagenesis experi-
ments have shown that replacement of H251 by an
alanine (H251A) reduces kcat for QND dioxygenation
by several orders of magnitude essentially abolishing
catalytic activity [15!!,32,33]. Also, replacement of the
acidic residue of the triad (D126A) yielded a strongly
impaired variant. Consistent with this, density func-
tional theory (DFT) calculations show that the 3OH
proton is transferred to His251 in the wild-type system,
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(Figure 2 Legend Continued) yellow according to their sequence identity. Secondary structure elements for HOD are also shown for reference
with members the catalytic triad marked by an asterisk. Whilst HOD, QDO, AqdC1, AqdC2 are validated CO-forming cofactor-independent 2,4-
dioxygenases degrading 3-hydroxy quinoline-derivatives, the other proteins in the alignment likely share the same catalytic activity on the basis of
sequence conservation. (b) Cartoon representation of the HOD–QND substrate complex with the a/b-hydrolase fold core domain and cap domain
shown in dark green and light, respectively. Secondary structure elements are labeled. N and C indicate the N and C termini, respectively. The
blue transparent surface highlights the active site cavity where QND is bound. Catalytic triad residues are shown in black as ball-and-stick
representation and hydrogen bonds they make are represented by yellow dotted lines. (c) Close-up view of the active site in the crystal structure
of the anaerobic HOD–QND (enzyme–substrate) complex. 2mFo # DFc electron density at the 1.30s level is shown in black for the bound
substrate. QND occupies the top portion of the active site cavity (blue) whilst the bottom part is believed to host O2 during catalysis. Residues
lining the active site are in stick representation. (d) In-crystallo UV–visible spectra of the anaerobic HOD–QND complex (black) and of the aerobic
HODH251A–QND complex (dashed line), recorded at pH 7 and 100 K. The HODH251A variant is unable to deprotonate the substrates’s 3OH group
thus preventing substrate activation for O2 attack.
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but it remains on the substrate in the HODH251A and
HODD126A systems [33]. The nucleophile S101 appears
to be dispensable for catalysis as S101A replacement
only impacted negatively on QND binding as judged
by an increase in the Km constant. The idea of a
nucleophile-independent mechanism is further sup-
ported by the lack of sequence conservation for this
residue whilst the histidine-acidic dyad is strictly in-
variant (Figure 2a). Kinetic analysis under anoxic tran-
sient-state conditions indicates that substrate
deprotonation is not rate-limiting as suggested by the
15-fold lower kcat (20 8C) compared with kH (5 8C) at
low pH [33]. Overall, the His-Asp dyad is essential for
substrate deprotonation and its consequent activation
toward O2.

How does the activated substrate react with
O2?
Mechanistic concepts borrowed from the field of flavin-
dependent oxygenation [34,35] led to the plausible
hypothesis that the activated (carb)anion possesses a
sufficiently low thermodynamic potential that allows
the transfer of an electron to O2 to generate a substrate
radical and superoxide anion [32]. This charge-transfer
mechanism is shown for HOD catalysis on the left-hand
side of Figure 3a. Following formation of the (S!–O2

!#)
pair (3RCT in Figure 3a) radical-radical recombination
would lead to a C2-(hydro)peroxide (1I1). To address
experimentally the nature of the compounds involved
in the reaction with O2 a recent elegant study used the
cyclic hydroxylamine spin probe 1-hydroxy-3-methox-
ycarbonyl-2,2,5,5-tetramethyl-pyrrolidine (CMH) in
the HOD-catalyzed reaction [36!!]. Using a HOD vari-
ant in which the W160 residue that forms part of the
active site cavity (Figure 2c) is substituted by an ala-
nine (HODW160A) the authors were able to detect
significant amounts of CM-nitroxide radical by electron
paramagnetic resonance spectroscopy. This variant also
released the proposed peroxide intermediate
(Figure 1c), which was reduced to the corresponding
alcohol and characterized by NMR spectroscopy. These
data were interpreted as evidence for two key inter-
mediates in the catalytic mechanism: a substrate radical
and a substrate (hydro)peroxide. However, no signifi-
cant amounts of CM-nitroxide radical were detected
when wild-type HOD was used in the reaction. A
possible reason for this is that the wild-type protein
is able to efficiently shield its active site, whereas the
mutant protein may have a more open or more flexible
active-site pocket thus allowing access to the CMH
probe [36!!].

A more recent study put forward an alternative hypothe-
sis for the generation of the peroxide intermediate. On
the basis of a combined kinetic, spectroscopic and DFT
computational work that takes advantage of available
structural information Hernandez-Ortega et al. [37!!]
proposed a novel reaction mechanism that does not
involve a formal single electron transfer to dioxygen.
The calculations indicate that the 3RCT complex is
unable to form spontaneously by electron transfer,
and, consequently it is expected that any reactivity of
O2 will come from dioxygen and not from the stabiliza-
tion of a radical pair. This is proposed to occur with C2
atom of the activated substrate (1S#) reacting directly
with 3O2 to form a C–OO bond as a triplet-state inter-
mediate peroxide (3I1) (direct attack mechanism in
Figure 3a). The latter compound then undergoes an
inter-system crossing leading to (1I1). The reaction en-
ergy profile for the direct attack mechanism and subse-
quent catalytic steps is shown in Figure 3b. Following the
formation of (1I1), attack of the peroxide on the carbonyl
function affords the formation of the endoperoxide (1I2),
which then decomposes with the formation of signifi-
cantly stabilized carbon monoxide and anthranilate de-
rivative products (1P). Overall, the formation of (3I1)
encounters the highest barrier along the reaction trajec-
tory (DGz = 17.4 kcal mol#1 in a solvent model), and
hence is proposed to be the rate limiting step for
HOD catalysis. This in agreement with transient-state
kinetic studies that show that oxygen-dependent steps
are rate-limiting for overall catalysis. Additionally, kinet-
ic and computational analyses show that the W160A
substitution decreases the activity dramatically (kcat/
Km is 12,500 $ 600 s#1 mM#1 and 2.4 $ 0.3 s#1 mM#1

for wt HOD and HODW160A, respectively) with energy
profiles for the corresponding DFT model showing in-
creased barriers for 3TS1 and 1TS3 [37!!]. Thus, the
W160A replacement could therefore have an effect on
the O2 activation mechanism.

Peroxide intermediate
The formation of peroxide intermediates is central to the
mechanism proposed for essentially all cofactor-indepen-
dent oxygenases (Figure 1). Yet, their structural elucida-
tion has proven difficult. Urate oxidase (UOX) is a
tetrameric cofactor-independent oxidase [14,38] that ca-
talyses the breakdown of urate to 5-hydroxyisourate
(5-HIU) with the latter compound further degraded
to allantoin (Figure 4a). On the basis of UV–visible
spectroscopic evidence, early mechanistic studies sug-
gested that a peroxide adduct (5-PIU) is generated ini-
tially by the dioxygenation of the urate dianion (UD)

114 Catalysis and regulation

(Figure 3 Legend) Mechanistic proposals for the CO-forming cofactor-independent 2,4-dioxygenase, HOD. (a) Alternative mechanisms for the
reaction between the deprotonated QND substrate and O2. Whilst the charge-transfer mechanism assumes the formation of a substrate–

superoxide anion radical pair that leads to the peroxide intermediate, the direct attack mechanism propose the formation of a peroxide diradical
that collapses into a lower-energy singlet-state. (b) Reaction energy profile of key intermediates and transition states for the reaction catalyzed by
HOD following the direct attack mechanism. Solvent corrected Gibbs free energies are given in parenthesis.
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Figure 4
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Visualization of the peroxide intermediate formed in the oxygenation step catalyzed by the cofactor-independent oxidase UOX. (a) Reaction
catalyzed by UOX. The peroxide intermediate has been trapped using the natural substrate UA and also using its 9-methyl derivative (MUA).
(b) Anaerobic UOX:MUA complex. MUA (like UA) binds at the interface between two subunits (shown in yellow and pink) of the UOX tetramer. Red
spheres represent water molecules. H-bonds are shown as broken yellow lines. (c) Upon exposure to O2, the UOX–MUA complex reacts to
generate a C5-(hydro)peroxide (5-PMUA). (d) The peroxide is specifically radiolyzed at low X-ray dose under cryoconditions generating O2.
(e) In-crystallo Raman spectroscopy supported by QM/MM calculations show that the band at 605 cm#1 is a 5-PMUA ‘signature’. (f) Online
in-crystallo Raman spectroscopy reveals the specific dose-dependent decrease of the 605 cm#1 5-PMUA ‘signature’ band’.
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[39]. In subsequent steps H2O2 release and H2O attack at
position 5 would form 5-HIU. How UOX exactly con-
tributes to the generation of UD is currently not clear. A
mechanism of general base catalysis enabled by a Thr-
Lys dyad has been proposed [40] and a neutron diffrac-
tion study on the aerobic chloride-inhibited UOX–sub-
strate complex suggested that UD might be generated
from the deprotonation of the iminol tautomer of UA
[41].

Recently, X-ray crystallography combined with online in-
crystallo Raman spectroscopy has provided direct evi-
dence for a C5(S)-(hydro)peroxide in the initial cofac-
tor-independent dioxygenation stage of the UOX-
catalyzed reaction [42!!]. Using 9-methyl uric acid
(MUA) as substrate, electron density maps at (near)-
atomic resolution unambiguously reveal that exposure
of the anaerobic UOX–MUA complex (Figure 4b) to
O2 results in MUA conversion into its C5(S)-peroxo
derivative (5-PMUA) with clear pyramidalization at C5
(Figure 4c). Non-resonant Raman spectra recorded from
crystals of anaerobic UOX–MUA and UOX–5PMUA
complexes show that the spectral region centered at
600 cm#1 reports on changes resulting form the oxygen-
ation reaction (Figure 4e). Upon MUA peroxidation a
distinct band develops at 605 cm#1 (blue trace) whilst the
shoulder at 597 cm#1 in the UOX:MUA complex (green)
disappears. Quantum mechanics/molecular mechanics
(QM/MM) calculations predict a band at 600 cm#1 (ex-
perimental 605 cm#1) for the 5PMUA (hydro)peroxide
resulting form a set of modes involving C5–Op1 bond
stretching and C5–Op1–Op2 bending coupled to ring
distortions.

Remarkably, the C5–Op1 bond is susceptible to selec-
tive radiolysis at very low X-ray doses (Figure 4d,f).
Rupture of the C5–Op1 bond is accompanied by the
loss of pyramidalization  at C5 leading to a planar
organic structure while a diatomic molecule 1.2-Å long,
consistent with O2, is liberated and trapped above it
(Figure 4d). Dioxygen produced in situ adopts a well-
defined position with its molecular axis 3.15 Å above
the flat organic molecule and both O1 and O2 atoms
interacting with N254(Nd2) at distances of 3.19 Å and
3.09 Å, respectively, whilst the T57(Og1) atom is clos-
est to O2 at 2.65 Å. This is consistent with results
obtained using room-temperature O2 pressurization
(40 bars) in the presence of the AZA inhibitor [43].
Online Raman analysis shows that peroxide rupture
causes the 605 cm#1 ‘signature’ band to selectively
decrease in a dose-dependent manner (Figure 4f) con-
sistent with QM/MM calculations that assign this band
to the stretching of the C5–Op1 bond.

Conclusions
Interdisciplinary approaches are central to modern enzy-
mology. Structural biology techniques in combination

with steady-state and transient-state kinetics, theoretical
quantum chemistry calculations, and advanced solution
and in-crystallo spectroscopic measurements have provid-
ed important insight into how cofactor-independent oxy-
genases work. Although not discussed here, the use of
molecular dynamics simulations is also uncovering spe-
cific pathways and access points for O2 in this class of
oxygenases that are common to different types of proteins
[44!] and often dynamic in nature.

The extensive work carried out on the bacterial cofac-
tor-free 2,4-dioxygeases HOD and studies on various
other cofactor-independent oxygenases convincingly
suggest that the generation of a substrate (carb)anion
is a prerequisite for O2 reactivity. Thus, these enzymes
apparently utilize the intrinsic reactivity of carbanions
toward electrophiles as a general catalytic concept [14].
Although the exact mechanism with which O2 reacts
with the activated substrate requires further study, the
work of Hernandez-Ortega et al. [37!!] provides a novel
perspective on this reaction by proposing a direct attack
to generate a triplet-state peroxide that immediately
collapses into a triplet-state. It will be interesting in the
future to see whether this novel concept can be gener-
alized to other similar catalytic systems. Finally, using a
combination of (online and offline) Raman-assisted X-
ray crystallography and theoretical calculations Bui
et al. [42!!] provided unambiguous evidence for a
C5-peroxide intermediate in the initial dioxygenation
step in UOX cofactor-independent catalysis. Addition-
ally, selective radiolysis afforded  exquisite insight into
the elusive dioxygen positioning in the ternary E–S–O2

complex. This experimental information  will guide
further calculations aimed at addressing O2 reactivity
in this system. The recent advances on cofactor-inde-
pendent oxygenases discussed here well exemplify the
necessity of synergizing experimental and computa-
tional approaches in mechanistic enzymology.
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