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Abstract. In the last years some industrial robots have been realized
with two robot arms connected to a single rotating platform. Such a
redundant structure allows moving the platform to adjust each robot
base for optimizing each arm movement. In this paper, a planar model
of two 7-axis robots connected to a rotating platform is proposed, and
a novel analytical optimization procedure, retrieved from a geometrical
analysis, is presented.
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1 Introduction

Redundant robots have become more and more popular in the last years thanks
to new commercial solutions, especially in the field of collaborative robotics [1].
These solutions, however, mostly rely on the addition of a supplementary joint
to enhance the performance of traditional robots [2], by increasing their degrees
of freedom.

In the field of industrial robots there is also a small branch in which it can
be found a particular type of robots: dual arm robots. These are generally made
up of two manipulators attached to a common platform [3]. In this way, the
movements of the two robots are decoupled [4] (except for the possible mutual
interference [5,6]), and the work-cell itself improves in both flexibility and capa-
bilities [7,8]. Its flexibility can be further improved by adding a rotating platform,
so that the two robot shoulders move around a common axis. In this way the
two arms are capable of a wider workspace, but this solution has the downside of
influencing the movement of both the arms. A proper trajectory planning of the
rotating platform allows the movement of the two arms to improve the work-
cell throughput. This is important because commercial solutions are already
available.
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Research have already addressed the problem of the optimization of dual arm
robots, but most of them are based on optimization algorithms that may not be
reliable and depend on the starting conditions [9–11].

The aim of this paper is to develop an analytical method to rapidly provide
a solution of the movement of the platform so that the two arms’ elbow joints
perform the same displacement in moving between consecutive positions. This
method can be used to choose specific arm configuration depending on the task,
e.g. in case of vibrations. The proposed method is specific to 7-axis robots with
spherical shoulder and wrist joints, since with such configuration it is possible
to change the redundant angle value without affecting the elbow joint, adapting
the configuration of the distal joints to the movement time of the elbow joint.

The method, although approximated, does not rely on any optimization algo-
rithm that may decrease performances while obtaining only local minima. Due to
its fast calculation, the method can be used to optimize the work-cell throughput
by using specific task sequencing algorithms [12].

2 Analytical Model

Let’s consider the kinematic scheme shown in Fig. 1 in which a manipulator is
made of two arms on the edge of a rotating platform of radius R0. The manipu-
lator is considered to be the planar projection of two 7-axis robots mounted on a
rotating platform working on a plane. An example of such robot is the Yaskawa
SDA series robot, in which two 7-axis robot are attached on a common rotating
base1. Each arm is built in such a way that the first three joints and the last
three joints can be considered as two different spherical joints (commonly named
“shoulder” and “wrist” joints respectively), leaving the fourth joint (“elbow”)
to rotate lonely.

In this scheme Si is the shoulder of the arm i and Pi is the corresponding
target position. The rotation of the platform is identified by the angle ϕ. For
simplicity, the first arm’s shoulder (S1) is located on the radius defined by the
angle ϕ, while the second arm’s shoulder (S2) is located around the same cir-
cumference of S1 (centered in platform center O) at an angular distance of α
from S1.

From this scheme, the shoulder positions S1 and S2 can be easily calculated:

S1 =
{

R0 cos(ϕ)
R0 sin(ϕ)

}
, S2 =

{
R0 cos(ϕ + α)
R0 sin(ϕ + α)

}
(1)

For simplicity the two arms are considered to be equal with link lengths
a1 (first link) and a2 (second link), and the robot arms are considered to be
lying on the xy-plane. In this way, joints 1-2-3 can be reduced to a single joint
on the shoulder, and joints 5-6-7 are reduced on the wrist. This simplification
can be justified by the fact that joints 1-2-3 act as a single spherical joint on

1 https://www.motoman.com/en-us/products/robots/industrial/assembly/sda.

https://www.motoman.com/en-us/products/robots/industrial/assembly/sda
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Fig. 1. Scheme of the dual arm robot with rotating platform.

the shoulder, allowing the arm to increase its height. In this case, on the xy-
plane all the points would be projected, but the shoulder-wrist distance will
only depend on the link lengths a1 and a2. In fact, for the proposed method
only shoulder-wrist distance and platform radius are needed.

Since target positions P1 and P2 are known, the shoulder-wrist distance is:

−→
Ri =

−→
Pi − −→

Si(ϕ)

R2
i = (x2

P,i + y2
P,i) + R2

0 − 2R0

√
x2

P,i + y2
P,i cos(ϕ − ϕP,i)

(2)

where xP,i and yP,i are the coordinates of the target position Pi on the plane
and ϕP,i is the angle about x-axis defined by the vector

−→
Pi.

The objective of the optimization is to find an angle ϕf so that the two arms,
in moving from a position Pi,0 to Pi,f , move equally the fourth joint q4,i. This is
possible since in a 7-axis robot the value of q4 only depends on the shoulder-wrist
distance. In fact, since a 7-axis robot is kinematically redundant, it is possible
to change the redundant angle value to change the values of the other joints
(except for q4) still maintaining functionality (e.g. with the method proposed in
[13]), decoupling the problem [14].

In this scenario, it is important to impose (if possible) that the movement of
the elbow joints (Δq4,i) are equal. The equation holds:

Δq4,i(ϕf ) = arccos

(
a2
1 + a2

2 − R2
1,f

2a1a2

)
− arccos

(
a2
1 + a2

2 − R2
1,0

2a1a2

)
(3)

Equation 3 is highly non linear and it is difficult to solve with analytical tools.
It is possible to approximate this equation by using the appropriate Taylor series,
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that, in the case of the arccosine, is arccos(x) = π
2 − x + o(x3). By stopping at

the first order of the series, Eq. 3 becomes:

Δq4,i(ϕf ) =
R2

1,0 − R2
1,f

2a1a2
(4)

In such a way, since the two arms are equal and the objective of our opti-
mization is to equal the two elbow joint displacements Δq4,1 and Δq4,2:

|R2
1,f − R2

1,0| = |R2
2,f − R2

2,0| (5)

where the absolute values of the movements are taken since the electric motors
equipped on the robots provide equal performance in both directions.

The initial system configuration is considered to be known, so Ri,0 and R2,0

are fully defined (due to the initial platform rotation ϕ0). To calculate ϕf , from
Eq. 2 and Fig. 1 it is possible to retrieve the values of R2

1,f and R2
2,f :

R2
1,f = (x2

P1,f + y2
P1,f ) + R2

0 − 2R0

√
x2

P1,f + y2
P1,f cos(ϕf − ϕP1,f )

= (x2
P1,f + y2

P1,f ) + R2
0 − 2R0

√
x2

P1,f + y2
P1,f cos(ϕ′

f )
(6)

R2
2,f = (x2

P2,f + y2
P2,f ) + R2

0 − 2R0

√
x2

P2,f + y2
P2,f cos(ϕf − ϕP1,f + α − β)

= (x2
P2,f + y2

P2,f ) + R2
0 − 2R0

√
x2

P2,f + y2
P2,f cos(ϕ′

f + γ)
(7)

with γ = α − β and ϕ′
f = ϕf − ϕP1,f .

Equations 6 and 7 can be simplified by grouping the constant terms:

R2
1,f = A1 + B1 cos(ϕ′

f ) (8)

R2
2,f = A2 + B2 cos(ϕ′

f ) + C2 sin(ϕ′
f ) (9)

where:

A1 = x
2
P1,f + y

2
P1,f + R

2
0 B1 = −2R0

√
x2
P1,f + y2

P1,f (10)
A2 = x

2
P2,f + y

2
P2,f + R

2
0 B2 = −2R0

√
x2
P2,f + y2

P2,f cos(γ) C2 = 2R0

√
x2
P2,f + y2

P2,f sin(γ)

(11)

By imposing the equality of Eq. 5 it is possible to calculate the value of ϕf .
The modulus defines two different equations, each one with opposite signs. It
results in:

A + B cos(ϕ′
f ) + C sin(ϕ′

f ) = 0 (12)

A = (A1 ∓ A2) − (R2
1,0 ∓ R2

2,0) , B = B1 ∓ B2 , C = ∓C2 (13)

where the sign depends on which one of the two solutions provided by the mod-
ulus is being calculated.
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It is possible to apply the double-angle formulae to Eq. 12, and by solving the
equation it is possible to obtain the platform angle that equals the movement of
the two arms:

ϕf = 2 · arctan

(
−C ± √−A2 + B2 + C2

A − B

)
+ ϕP1,f (14)

Equation 14 produces 2 solutions, which are doubled thanks to the absolute
value equality expressed in Eq. 5.

It is worth to notice how the proposed method does not consider movement
times nor mechanical limits. In fact, only reachability is considered, which may
remove some solutions: if Eq. 5 provides no solution (i.e. the function never
reaches null value), the optimal ϕ′

f can be obtained by deriving Eq. 5 (with
Eqs. 8 and 9) by ϕ′

f . In this way it is possible to fin the base rotation angle that
minimize the difference of the two elbow displacements. The solutions, in this
case, are:

ϕf = 2 · arctan

(
−B ∓ √

B2 + C2

C

)
+ ϕP1,f (15)

Future work will include movement times and mechanical limits for a more
comprehensive method. Nonetheless, from the proposed method a first good
solution can be found.

3 Simulation Results and Discussion

To test the algorithm, some simulations have been carried out. In this paragraph
an example will be provided. Let’s consider an application as defined via the
parameters of Table 1. The two arms are made of identical links and are placed
around the platform at the same distance R0.

By applying the method described above in moving the first arm from P1,0 to
P1,f and the second arm from P2,0 to P2,f , four possible ϕf values are obtained.
Among these, in our application the closest to ϕ0 is chosen (#3 of Table 2).

Fig. 2. Initial configuration and points to be reached

Table 1. Parameters
used in the simulation

Parameter Value

R0 50 [mm]

α 120 [◦]

a1 , a2 70 [mm]

ϕ0 −30 [◦]

P1,0 [120,0] [mm]

P2,0 [0,120] [mm]

P1,f [80,10] [mm]

P2,f [50,100] [mm]
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Fig. 3. Shape of the Eq. 5. The two lines are normalized to the respective maximum
absolute values. Dashed lines provide the solutions of Eq. 14 (black) and 15 (red) with
the parameters of Table 1. (Color figure online)

Table 2. Values and difference of the displacements of the arms for each solution of
Eq. 14 (#1–#4) and Eq. 15 (#5–#8) with the parameters of Table 1. Some solutions
are not available due to the unreachability of the final point (two red lines to the left
of Fig. 4).

N ϕf − ϕ0 [◦] Δq4,1 [◦] Δq4,2 [◦] |Δq4,1| − |Δq4,2| [◦]

1 −113.63 59.14 −58.17 −0.97

2 −40.43 4.62 5.24 0.62

3 −26.57 −6.87 7.61 0.74

4 39.49 −45.01 −33.88 −11.13

5 −70.10 28.95 −12.75 −16.20

6 109.90 0.65 – –

7 179.53 54.4 – –

8 −0.47 −27.55 −0.40 −27.15

The application of the method is straightforward: no parameter optimization is
required.

In Figs. 2 to 5 the results are shown. Figure 3 shows the two functions pro-
vided by Eq. 5, where the values have been normalized to the respective max-
imum absolute values. The values of ϕf are obtained from the null values of
these two functions. As can be noted, the two functions are not symmetric with
respect to the x-axis. This means that in some cases it could be possible that the
functions do not result in null values, thus not providing any solutions (Eq. 14).
As stated in previous Section, in this scenario the best solution to ϕf to be used
can be obtained by finding the stationary points of the function (Eq. 15). In
this case the two arms will not have the same displacement (leftmost column of
Table 2, #5–#8), but it will be minimized by the approximation of the proposed
method.
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Fig. 4. Displacement of elbow joints for the right (blue) and left (red) arms. The green
line shows the difference |Δq1,4| − |Δq4,2|. Dashed lines provide the solutions of Eq. 5
(black) and 15 (red) with the parameters of Table 1. (Color figure online)
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Fig. 5. Solution #1 (to the left) and #3 (to the right) as of Table 2. Green line shows
the initial position of the first shoulder; dashed lines show the starting configuration.
(Color figure online)

In fact, the proposed method is approximating the displacement of the two
arms. As can be noted from the #4 solution of Table 2 (leftmost black line
of Fig. 4), the solutions provided by Eq. 14 do not reflect on a completely equal
displacement of the two arms. This approximation, however, is very small in most
of the solutions. In fact, as can be noted by Table 2, the error is usually lower
than 1◦, a very small error if it is considered that is provided by an analytical
solution and is then computationally efficient (in our tests the computational
time is around 4 ms for each run). Since Eq. 14 provides some solution, Eq. 15
is not used. In fact, the solution provided by this equation (#5–#8 of Table 2)
are not optimal for our application. Difference between calculated and actual
joint displacements may be due to the expansion of the Taylor series, which is
calculated around x = 0 even if q4 can be very far from 0. However it should be
noted that our objective is to find the difference of the two Taylor series, so the
error should be limited (as shown by the results of Table 2).
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4 Conclusions

In this paper a novel analytical method for the definition of the movement of
the platform of a dual arm robot is presented. This approach aims at finding
the proper rotation of the platform so that the two arms, in moving between
positions, perform the same elbow joint displacement. In this way none of the
elbow joints will result to be the bottleneck of the movement. The other joints
will be optimized exploiting redundant configurations. In fact, the elbow joint
value only depends from the distance between shoulder and wrist, and hence
it is decoupled from the rest of the arm. Future work will consider the overall
movement time in the model.
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