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Abstract: A unified discretization framework, based on the concept of augmented dual grids, is
proposed for devising hybrid formulations which combine the Cell Method and the Boundary
Element Method for static and quasi-static electromagnetic field problems. It is shown that hybrid
approaches, already proposed in literature, can be rigorously formulated within this framework. As
a main outcome, a novel direct hybrid approach amenable to iterative solution is derived. Both direct
and indirect hybrid approaches, applied to an axisymmetric model, are compared with a reference
third-order 2D FEM solution. The effectiveness of the indirect approach, equivalent to the direct
approach, is finally tested on a fully 3D benchmark with more complex topology.

Keywords: hybrid method; coupling; electromagnetic; magnetostatics; magnetodynamics; eddy–
currents; cell method; finite element method; boundary element method

1. Introduction

Hybrid approaches have been devised for analyzing static and quasi-static electromag-
netic problems since the early 1980s to overcome several limitations of both differential and
integral equation methods [1,2]. Differential equation methods such as the Finite Element
Method (FEM) are suited for analyzing field problems encompassing nonlinear, anisotropic,
inhomogeneous materials, even though restricted to bounded domains. Integral equa-
tion methods such as the Boundary Element Method (BEM) are used for modeling field
problems with homogeneous and linear media in unbounded domains. Field problems
encountered in the engineering practice include complex parts and open air domains;
therefore, it is natural to couple FEM and BEM for an effective modeling.

The Cell Method (CM) has been introduced in computational electromagnetics as
a differential equation method alternative to the FEM [3,4]. Compared to the FEM, this
discretization approach for boundary value problems (BVPs) shows some remarkable
peculiarities. According to the FEM procedure, partial differential equations (PDEs), locally
describing the physical behavior of the field problem, are first expressed in variational
form and then approximated by means of polynomial shape functions, defining finite
dimensional subspaces within the solution space. Conversely, the CM provides field
equations directly in algebraic form, suitable for numerical computation, and problem
variables are scalar potentials or integrals (termed degrees of freedom, DOFs) related to
geometric entities such as points, edges, faces, or cells of the computational domain
discretization. A combinatorial discrete model, approximating the continuous physical
model, is thus constructed and formulated in a similar fashion of electric network problems
as illustrated in [4]. In the CM formulations’ topological equations, describing mesh
connectivity, are split from constitutive equations, describing the local behavior of materials,
and are then assembled together for yielding the final linear system. In such a way, the
approximation error is limited to the discretization of constitutive relationships, differently
from the FEM. The so-called energy approach makes it possible to obtain final mass matrices,
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which discretize local constitutive relationships that are both symmetric and positive
definite [5,6]. These algebraic properties lead to well-behaved matrix systems, which can
be treated by efficient iterative solvers typically adopted for solving FEM matrix systems.
Piecewise constant basis functions, defined only for the CM, have been proposed not
only for standard tetrahedral and hexahedral meshes (see, e.g., [5]) but also for general
polyhedral meshes allowing for the discretization of any type of model geometry [7]. These
basis functions are suitable for CM but not for FEM, since they exhibit less regularity than
that required by the FEM. Other valuable advantages of the CM over the FEM are that
Gaussian quadrature is not required and matrix assembly is entirely Jacobian-free, reducing
both code complexity and computational cost.

The use of DOFs as field problem variables and the splitting between topological and
constitutive relationships make the CM well suited for coupling with integral equation
methods. In fact, DOFs naturally enforce field trace continuity across the mesh elements and
topological relationships are exactly represented by the CM. Both of these features are key
in order to ensure an effective hybridization. The first coupling strategy between CM and
integral equation methods was proposed in [8] for analyzing 3D nonlinear magnetostatics.
Two hybrid approaches were presented, i.e., one based on the Green’s function formulation
and the other one based on a direct BEM formulation for modeling the exterior region with
constant magnetic permeability. A hybrid formulation for 3D magnetostatics coupling
the CM and the Fast Multipole Method (FMM) was proposed in [9]. The use of FMM
alleviated computational costs and memory resources compared to previous hybrid CM–
based formulations. The coupling strategy adopted for magnetostatics was then extended
to 3D time-harmonic magnetic problems in [10]. By using a direct BEM formulation, a final
non-symmetric matrix system—to be solved by a GMRES iterative solver—was obtained.
In [11], a novel CM variant was proposed. In this work, the key idea of augmented dual
grids, instead of dual grids as in the classical CM [3], was introduced in order to allow
for a rigorous treatment of interface and boundary conditions. By using novel topological
operators defined in [11], it was possible to obtain a symmetric CM–BEM formulation for
3D magnetostatics, with the great advantage of using a fast MINRES iterative solver for the
final matrix system solution [12]. In a such formulation, a, i.e., line integrals of the magnetic
vector potential A in magnetic regions, and ϕr, i.e., reduced magnetic scalar potentials
on the boundary nodes, are the problem unknowns. The key advantage is to minimize
the number of DOFs for the discretization of both interior and exterior field problems.
This approach was then extended to 3D electrothermal problems with a simply-connected
unbounded domain [13]. In such a case, a TFQMR iterative solver could be used instead
of a less efficient GMRES solver, typically required by the FEM–BEM formulations with
unsymmetrical final system matrices.The a–ϕr method proved to be also effective and
robust for 3D time-harmonic magnetic problems with multiply–connected domains [14].

The main goal of this paper is to show that hybrid approaches coupling the CM and
the BEM can be described under a unified theoretical framework, based on the concept of
augmented dual grids. These approaches can be regarded as a valid alternative to hybrid
methods based on the FEM, which have been thoroughly discussed in the literature. As a
result, a novel direct hybrid approach is derived, which is amenable to iterative solution
such as a previous companion indirect hybrid approach. Numerical tests show that direct
and indirect hybrid methods have similar accuracy.

This paper is organized as follows. The electromagnetic field problem formulation
at low frequency is introduced in Section 2 for the continuous setting. PDEs for interior
field problems with conductive and magnetic media are derived, whereas boundary in-
tegral equations are obtained by using both direct and indirect approaches to model the
unbounded air domain. The CM formulation based on augmented dual grids is briefly
outlined in Section 3, focusing on the construction of discrete topological operators and
constitutive relationships which are key in CM implementations. Direct and indirect BEM
formulations, which have been used in the literature for the hybridization with the CM, are
discussed in Section 4. Such a theoretical framework is used in Section 5 to derive CM–BEM
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hybrid formulations already presented in the literature for analyzing static and quasi-static
electromagnetic field problems over simply connected and multiply-connected domains.
Moreover, a novel hybrid method, based on the direct BEM approach, is obtained as a
main outcome of this research. In Section 6, direct and indirect hybrid approaches, based
on the a–ϕr formulation, are validated on an axisymmetric model with a third-order 2D
FEM solution, taken as a reference. As an example of the application of the 3D CM–BEM
software, a classic validation benchmark (the so-called “Bath Plate” problem) is finally
considered. Conclusions are given in Section 7.

2. Electromagnetic Field Problems

In this work, only static or quasi-static electromagnetic field problems are considered,
which amounts to neglecting the electric displacement current density from Maxwell’s
equations. According to the time-harmonic assumption, any field source is assumed to
operate at fixed angular frequency ω [2]. In such a way, by assuming linear conductive
media (with locally piecewise constant electric conductivity σ) and magnetic media (with
locally piecewise constant magnetic permeability µ), any field quantity in the time domain
can be described in terms of phasors, i.e., complex valued vector fields. For instance, the
electric field E can be derived from its corresponding phasor E, as:

E(x, t) = Re(E(x) exp(ı ω t)), (1)

where ı is the imaginary unit, x is the position, and t is time. The same expression holds for
other relevant field problem quantities, i.e., magnetic field H, magnetic flux density B, and
current density J. In the following, the dependence from x of field variables is neglected
for the sake of conciseness. The eddy-current model, which holds at a low frequency and for
linear media, is governed by [15]:

∇×E + ı ω B = 0, (2)

∇×H = J, (3)

J = σE + J0, (4)

H = νB, (5)

where ν = µ−1 is the magnetic reluctivity. Electromagnetic excitation is represented by
an ideal coil in which a fixed solenoidal source current density J0, such that ∇• J0 = 0, is
imposed. Note that conservation laws for the magnetic flux density (i.e., Gauss law) and
the current density (i.e., charge conservation for magneto-quasistatics) that is

∇• B = 0, (6)

∇• J = 0, (7)

are implicitly fulfilled by (2) and (3), respectively. (2)–(5) have to be supplemented by the
following decay conditions ensuring electric and magnetic energies to be bounded in R3:

E(x) = O(‖x‖−2), H(x) = O(‖x‖−2), constantly for ‖x‖ → ∞. (8)

Note that field equations for magnetostatics are simply obtained as a special case
of (2)–(5), by setting ω = 0 (static problem) and σ = 0 (i.e., only magnetic media). In such a
case, due to the lack of eddy–currents, the Faraday–Neumann Equation (2) can be dropped
(i.e., E does not need to be considered), and J is due only to field sources. For this reason,
only numerical models for solving the eddy-current model will be presented hereinafter.

The computational domain of the eddy-current model is depicted in Figure 1. The
interior region Ω =

⋃n
k=1 Ωk is defined as the union of n open bounded and possibly

multiply-connected subdomains Ωk ⊆ R3, k = 1 . . . n, which include conductive and/or
magnetic linear materials. Let Ω be the set closure of Ω. The domain Ωe = R3 \Ω is
then defined as the exterior region, which is unbounded and possibly multiply-connected,
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and includes field sources in the subdomain Ω0 ⊆ Ωe. The air region can be possibly
split between Ω and Ωe. Note also that Ω0 is strictly embedded in the exterior region,
so that ∂Ω0 ∩ ∂Ωe = ∅. The interface between interior and exterior regions is the surface
Γ = Ω ∩ Ωe, which can be partitioned into several connected components Γk = ∂Ωk,
k = 1, . . . , n. Finally, it has to be noted that the surface Γ is also the boundary of Ω.

Ω

J0
Ωe

Ω0

Γ

Figure 1. Computational domain for the eddy–current problem with open boundary: Ω is the interior
region (possibly multiply-connected), Ωe is the exterior region (which is unbounded), and Ω0 is the
source region (with given current density J0). The interface Γ separates Ω from Ωe.

2.1. Interior Problem

In order to reduce the number of field problem variables, a magnetic vector potential
A, such that E = −ı ωA, can be used [15]. By letting the vector potential in (2), it results in:

B = ∇×A, (9)

which implicitly fulfills (6) in Ω. By eliminating the magnetic field variable from Ampère’s
law (3) and by taking J0 = 0 since no source currents flow in the interior domain, the
magnetic vector potential diffusion equation in Ω is obtained:

∇× ν∇×A + ı ω σ A = 0. (10)

Note that the use of an “electric variable” A makes it possible to also model parts of
Ω that are non-conducting (i.e., Ωnc ⊆ Ω, with σ = 0 locally), which is very common in
practical engineering problems. On the other hand, for numerical computing purposes,
the interior region has to be restricted as much as possible in order to reduce the mesh
region and, in turn, the number of unknowns in the discretized model. (10) can be solved
after imposing Dirichlet boundary conditions γDA on Γ, which are provided by interface
conditions given in Section 2.2 and thus require the combined solution of the exterior field
problem in Section 2.3. The solution of (10) is not unique if there exists any subdomain
Ωnc, since A +∇u still fulfills (10) for any scalar potential u. Once A has been obtained, all
other vector fields defined in Ω can be easily reconstructed.

2.2. Interface Conditions

The tangent component of the magnetic field Ht and the normal component of the
magnetic flux density Bn need to be continuous across the interface Γ, which separates
the interior region from the exterior region. In order to enforce the continuity of field
components, suitable Dirichlet γD and Neumann γN trace operators are defined [15]. For
any smooth vector field U on Γ, there it holds:

γDU = (n×U)× n, (11)

γNU = (∇×U)× n, (12)

where n is the exterior unit normal vector pointing from Ω to Ωe. Denoting with superscript
+ the exterior traces (i.e., approaching Γ from outside along n direction) and with − the
interior ones, the conservation of Bn across Γ can be recast as:
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γ−DA = γ+
DA, (13)

where γ−DA are the Dirichlet conditions for solving the interior problem. By noting that Ωe

does not include magnetic media (i.e., ν0 = µ−1
0 , with µ0 air magnetic permeability), the

conservation of Ht across Γ can be rephrased as:

ν γ−NA = ν0 γ+
NA. (14)

2.3. Exterior Problem

The exterior region does not include any conductor by definition; therefore, eddy–
currents are not present here. For Ωe, the following equations for magnetostatics hold:

∇×H = J0, (15)

B = µ0 H, (16)

complemented by Gauss’s law (6). The key idea of hybrid methods is to formulate the
magnetostatic problem in the exterior region in integral form and to discretize it by means of
the BEM, which does not require to use a volume mesh for discretizing Laplace’s equation
and is suitable for analyzing unbounded field problems.

In hybrid formulations, the source magnetic field, generated by current density distri-
bution J0, is analytically computed by using Biot–Savart’s law:

H0(x) =
∫

Ω0

J0(y)× (x− y)
‖x− y‖3 dy, for any x ∈ R3 \Ω0. (17)

Therefore, the complementary part of the source field, i.e., Hc = H−H0, is curl-free
due to (15). Any curl-free field is a representative of the first de Rham cohomology group
H1

dR(Ωe) = Z1
dR(Ωe)/B1

dR(Ωe) that is the quotient space of curl-free fields Z1
dR(Ωe) and

B1
dR(Ωe) gradient fields [16]. The dimension of H1

dR(Ωe) is proven to be equal to the first
Betti number β1(Ω) of the interior region Ω. In other words, there exists an isomorphism
between the cohomology of Ωe and the homology H1(Ω) of Ω [14]. This basic observation
is key in order to derive the magnetic field decomposition in Ωe.

Since Hc ∈ Z1
dR(Ωe), in the most general case of a multiply-connected domain, i.e.,

β1(Ω) ≥ 1, the complementary field in Ωe can be represented as:

Hc = ∇ϕ +
β1(Ω)

∑
k=1

αk hk, (18)

where ϕ is a scalar potential, αk are complex coefficients, and hk, k = 1, . . . , β1(Ω), is the
so-called cohomology basis, i.e., a vector basis of representatives of H1

dR(Ωe). For simply
connected domains, as Z1

dR(Ωe) = B1
dR(Ωe), it turns out that any complementary field can

be represented as a gradient. A possible choice for the cohomology basis is obtained by
taking magnetic fields generated by filamentary loops γk ⊆ Ω, k = 1, . . . , β1(Ω), i.e., a set
of generators of H1(Ω), termed virtual fields, each one carrying a unit current [16]:

hk(x) =
∫

γk

tk(y)× (x− y)
‖x− y‖3 dγy, for any x ∈ Ωe, (19)

where tk is the unit vector tangent to γk. Due to Poincaré duality, any virtual loop γk, i.e.,
a generator of H1(Ω), is in one-to-one correspondence with a cutting surface Σk, i.e., a
generator of H2(Ω, ∂Ω). Through each cut, an independent virtual current Ik =

∫
Σk

J • nk dΣ,
with nk unit vector normal to Σk, can be defined as proven in [17]. By enforcing Ampère’s
law around the boundary ∂Σk of any cut, and by using (19) as generators, coefficients in
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(18) are proven to have physical meaning. These correspond to genuine eddy–currents
flowing in the conductive region through cuts, as:

Ik =
∫

∂Σk

H • t dγ =
∫

∂Σk

(
H0 +∇ϕ +

β1(Ω)

∑
j=1

αj hj

)
• tk dγ = αk, (20)

where
∫

∂Σk
H0 • t dγ = 0, for the source field, and

∫
∂Σk

hj • t dγ = δkj, with δkj Kronecker
delta, for any virtual field. In particular, the last integral is zero if boundary ∂Σk does not
link γj. By defining the reduced magnetic field as Hr = −∇ϕr, with ϕr reduced magnetic
scalar potential, and by using (18) and (20), the magnetic field in Ωe finally becomes:

H = H0 + Hr +
β1(Ω)

∑
k=1

Ik hk. (21)

For magnetostatic problems, for which Ik = 0, or for quasi-magnetostatics problems
with a simply-connected interior region, such that β1(Ω) = 0, (21) reduces to the more
simple form H = H0 −∇ϕr, and the scalar potential is uniquely defined in Ωe.

From (21), by imposing (6) and by noting that both H0 and any hk are div-free, the
so-called Exterior Neumann Problem (ENP) is obtained, i.e., to find a potential ϕr such that

∇• (−µ0∇ϕr) = 0, in Ωe (22)

−µ0∇ϕr • n = Br,n, on Γ (23)

where Br,n is the normal component of the reduced magnetic flux density (i.e., the Neumann
datum). These equations have to be supplemented by the decay condition obtained from
(8), which states that the solution has to be harmonic at infinite:

ϕr(x) = O(‖x‖−1), constantly for ‖x‖ → ∞. (24)

Potential ϕr is proven to be unique if the compatibility condition on the Neumann da-
tum is fulfilled, i.e.,

∫
Γk

Br,n dΓ = 0 for any connected component Γk, k = 1, . . . , n [18]. This
condition is naturally ensured by (22), which, for any connected component Ωk, provides:∫

Γk

Br,n dΓ =
∫

Ωk

∇• Br dΩ = 0. (25)

It is well known from the BEM literature that ϕr can be sought as a solution of an
integral equation. There are typically two different (and equivalent) approaches for posing
the ENP in integral form [19]: the direct formulation makes use of the second Green’s identity
to obtain an integral equation formulated directly in terms of ϕr, whereas the indirect
formulation makes use of Fredholm’s theory to obtain an integral equation formulated in
terms of an auxiliary variable (termed moment) to finally get ϕr.

2.4. Direct Approach

The fundamental solution for the 3D Laplacian Φ(x, y) = (4π|x− y|)−1 provides the
scalar potential at any point x of the exterior domain Ωe, which is produced by a unit
positive charge located at point y ∈ Ωe. Therefore, for any fixed y, it fulfills ∆xΦ(x, y) =
−δ(x− y), where the Laplacian acts only on the x variable and the Dirac delta δ represents
the point source. In particular, the so-called sifting property holds:∫

Ωe
ϕr(x) δ(x− y) dx = c(y) ϕr(y), (26)
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where c(y) = α(y)/(4π) is a geometric coefficient, in which α(y) is the solid angle sub-
tended within Ωe at point y. For instance, c(y) = 1/2 for a point lying on a smooth part of
the boundary ∂Ωe, i.e., with tangent plane, and c(y) = 1 for a point inside Ωe.

By testing ∆ϕr = 0 with the fundamental solution and by using (26), the Green’s
second identity is obtained for almost any y ∈ Ωe [20,21]:

c(y)ϕr(y) +
∫

∂Ωe
ϕr(x)

∂Φ(x, y)
∂n′x

dσx =
∫

∂Ωe
Φ(x, y)

∂ϕr(x)
∂n′x

dσx. (27)

The exterior normal derivative is the directional derivative carried out with respect to
the x variable along the outward unit normal n′(x) of Ωe and approaching the boundary
∂Ωe from the outside. For any smooth function u, this can be rephrased as [18]:

∂u(x)
∂n′x

= lim
t→0+

n′(x) • ∇u(x + t n′(x)). (28)

In (27), only the “finite” part of boundary integral, i.e., that one over Γ, has to be
considered due to decay condition (24). It has to be noted, however, that the orientation of
Γ, which is the boundary of Ω, is opposite to that one of ∂Ωe, i.e., n′ = −n, so that:

∂ϕr(x)
∂n′x

= −∂ϕr(x)
∂nx

= ν0 Br,n(x), for any x ∈ Γ. (29)

By letting (29) in (27), the direct boundary integral equation is obtained:

c(y)ϕr(y) +
∫

Γ
ϕr(x)

∂Φ(x, y)
∂n′x

dσx = ν0

∫
Γ

Φ(x, y) Br,n(x) dσx, for a.a. y ∈ Ωe. (30)

Note that, when y lies on the surface Γ, integrals in (30) have to be intended in a
principal value sense, i.e., obtained as a limit by taking an infinitesimal neighborhood around
the singularity y.

The boundary integral Equation (30) is equivalent to the ENP and states a direct
relationship between the Dirichlet datum, i.e., the scalar potential on Γ, and the Neumann
datum. Once boundary quantities have been computed, the scalar potential can be re-
constructed in the air region by using (30) with c(y) = 1. It has to be observed, however,
that the computation of the magnetic field by (21) requires the numerical differentiation of
ϕr, which typically involves a multiple field sampling around any fixed y. On the other
hand, an analytical differentiation of (30) leads to hyper-singular integrals, which cannot
be accurately computed for points close to Γ as discussed in [22].

2.5. Indirect Approach

The ENP can be solved also by means of the so-called method of layer potentials used
in potential theory [18]. ϕr in Ωe can be generated by an equivalent single-layer magnetic
charge density distribution q over Γ, across which the field normal component Br,n jumps.
The single-layer integral operator with moment q is defined as [23]:

ϕr(x) = K[q](x) =
∫

Γ
Φ(x, y) q(y) dσy. (31)

If Neumann datum fulfills the compatibility condition (25), the equivalent source q is
proven to be the unique solution of the following Fredholm integral equation [18,24]:

µ0 c(x) + T ∗[q](x) = Br,n(x), for a.a. x ∈ Γ, (32)

The adjoint double-layer integral operator in (32) is defined as:

T ∗[q](x) = −µ0

∫
Γ

q(y)
∂Φ(x, y)

∂nx
dσy, (33)
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where the normal derivative is evaluated along the unit normal vector n defined above.
Differently from (30), the Fredholm equation does not establish a direct correspondence
between the potential and its normal derivative on Γ. ϕr can be reconstructed with (31)
once the equivalent charge distribution has been found from (32), for a given Br,n. By
eliminating the auxiliary variable, one obtains the so-called Steklov–Poincaré operator or
Dirichlet-to-Neumann (DN) map, which maps the Dirichlet to the Neumann datum:

Br,n(x) = S[ϕr](x) = µ0 c(x) + T ∗ ◦ K−1[ϕr](x), for a.a. x ∈ Γ. (34)

It has to be noted that the indirect formulation allows for an easier post-processing
since the magnetic field can be obtained from the equivalent magnetic charge distribution.
For any field point x in Ωe, which is an open set by definition, (31) results in being infinitely
differentiable. Therefore, by taking the gradient of (31), the reduced field becomes:

Hr(x) = −
∫

Γ
∇xΦ(x, y) q(y) dσy, for any x ∈ Ωe. (35)

Finally, the magnetic flux density distribution in the exterior domain can be obtained
by inserting (35) in (21) and by using the magnetic constitutive relationship (16).

3. Cell Method with Augmented Dual Grid

In this work, the interior problem is discretized with the CM, instead of the much
more common FEM. The key steps of such a discretization process are examined in detail,
starting from the CM variant based on augmented dual grids presented in [11]. A similar
construction, for tetrahedral meshes, is also reported in [25] for a pure–CM formulation,
which is suitable for solving eddy–current problems in bounded domains. Note that this is
completely general, and can be extended to polyhedral meshes [26].

Any connected component Ωi ⊆ Ω is discretized by its domain primal grid GΩi , with
NΩi nodes, EΩi edges, FΩi faces, and VΩi cells. The boundary primal grid G∂Ωi

is the restriction
of GΩi to its boundary ∂Ωi, where nodes are traces of bulk primal edges of GΩi , edges are
traces of bulk primal faces, and faces are traces of bulk primal cells. GΩi and G∂Ωi

are then
partitioned into their corresponding barycentric subdivisions, which are obtained by splitting
any cell or boundary cell into a set of tetrahedrons or triangles having as a common apex
the cell center. The domain dual grid G̃Ωi , with ÑΩi nodes, ẼΩi edges, F̃Ωi faces, and ṼΩi

cells, and the boundary dual grid G̃∂Ωi
are built by aggregating barycentric cells of GΩi and

G∂Ωi
, respectively, around primal nodes. This specific geometric construction provides

a one-to-one correspondence between primal and dual grid entities so that ÑΩi = VΩi ,
ẼΩi = FΩi , F̃Ωi = EΩi , and ṼΩi = NΩi . Similar relationships hold for G∂Ωi

. Finally, the
augmented dual grid is defined as the union of dual grids, i.e., G̃Ωi∂Ωi

= G̃Ωi ∪ G̃∂Ωi
. Primal

and dual grids of the interface Γ, represented in Figure 1, are inherited from those on ∂Ω
such that GΓ = G∂Ω and G̃Γ = G̃∂Ω.

To illustrate such a geometric construction, the 2D example provided in [25] is dis-
cussed here in detail. A unit square Ω = [0, 1]2 is meshed into a primal grid GΩ made of
triangles (Figure 2a). The augmented dual grid G̃Ω∂Ω in Figure 2c is obtained by assembling
triangles of the barycentric subdivision G∆

Ω (Figure 2b). Any dual cell (polygon in light red)
is obtained by aggregating barycentric triangles (in light blue) around any primal node
(black dots). In such a way, a one-to-one correspondence between primal nodes and dual
cells is obtained. Dual nodes (red dots) are centers of domain and boundary primal cells.
In the same way, on the domain boundary, G̃∂Ω, made up of 1D dual cells, is constructed
by aggregating 1D barycentric cells. The other way round, a one-to-one correspondence
exists also between dual nodes and primal cells, which can be either primal cells of GΩ or
boundary edges of G∂Ω.
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a) b) c)

Figure 2. Meshes for Ω = [0, 1]2 used for CM discretization: (a) primal grid GΩ; (b) barycentric
subdivision G∆

Ω; (c) augmented dual grid G̃Ω∂Ω. The latter is obtained from G∆
Ω by aggregating

triangles in blue around any primal node in black. A one-to-one correspondence exists between
primal nodes and dual cells (polygon in light red), and between dual nodes (red dots) and primal
cells (triangle in light yellow). Boundary ∂Ω is split on its turn into barycentric cells (blue thick
line),which are aggregated into 1D dual cells (red thick line).

3.1. Discrete Field Variables

According to the original CM discretization scheme proposed by Tonti [4], problem
variables (DOFs) can be either scalar potentials evaluated at nodes or integrals over edges,
faces, or cells of the meshed domain. DOFs are defined upon orientation of the corre-
sponding geometric entity. In fact, similarly to physical quantities of electric circuits, sign
convention is related to the orientation of the geometric entity.

Geometric entities of the primal grid GΩ are inner oriented, which means that nodes
are oriented as sinks, edges are directed from one end to the other, faces are oriented by
crossing their boundary clockwise or counterclockwise, and cells are oriented by assuming
that their faces are all oriented in the same way. Boundary geometric entities are a subset of
those in GΩ. Geometric entities of the augmented dual grid G̃Ω∂Ω are outer oriented, which
simply amounts to inheriting the orientation from GΩ and GΓ. In fact, any dual entity is
one-to-one correspondence with a primal entity, endowed by an inner orientation. For
instance, any dual edge is oriented by a clockwise or counterclockwise rotation around it,
i.e., the inner orientation of its corresponding primal face.

For the eddy–current model in Ω, discrete field variables are: the electromotive
forces (emfs) along primal edges e, i.e., eΩ = (ee)e∈GΩ , where ee =

∫
e E • t dγ and t is the

unit tangent vector related to e; magnetic vector potential line integrals aΩ = (ae)e∈GΩ ,
with ae =

∫
e A • t dγ; magnetic fluxes through primal faces f , i.e., bΩ = (b f ) f∈GΩ

, where
b f =

∫
f B • n dσ and n is the unit normal vector related to f ; magnetomotive forces (mmfs)

along dual edges ẽ, i.e., h̃Ω = (h̃ẽ)ẽ∈G̃ΩΓ
, with h̃ẽ =

∫
ẽ H • t dγ; electric currents through dual

faces f̃ , i.e., j̃Ω = ( j̃ f̃ ) f̃∈G̃ΩΓ
, with j̃ f̃ =

∫
f̃ J • n dσ. Similar arrays of DOFs are defined on

primal and dual grids of Γ, e.g., reduced magnetic potentials on interface dual nodes ϕ̃Γ
and mmfs on interface dual edges h̃Γ.

3.2. Topological Operators

Local reference frames are related together by the connectivity between elements. An
incidence number is +1 if a pair of connected geometric entities carries the same orientation,
−1 otherwise, and 0 if they are disconnected. Incidence matrices with integer coefficients,
which are the discrete counterparts of gradient, divergence, curl differential operators, can
be defined on both primal and augmented dual grids [11].

For any bounded subdomain Ωi, the topological description of the primal grid GΩi
is provided by the EΩi × NΩi edge–node incidence matrix GΩi , the FΩi × EΩi face–edge
incidence matrix CΩi , and the VΩi × FΩi cell–face incidence matrix DΩi . In addition, as it is
well known from combinatorial topology, the following orthogonality properties hold [2]:
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DΩi CΩi = 0, (36)

CΩi GΩi = 0. (37)

These properties are required in order to obtain a cochain complex for GΩi , mimicking
the de Rham cohomology (with grad, div, curl operators) at the continuous level [2].

Similarly, the topological description of G̃Ωi is provided by the FΩi ×VΩi edge–node
incidence matrix G̃Ωi = −DT

Ωi
, the EΩi × FΩi face–edge incidence matrix C̃Ωi = CT

Ωi
, and

the NΩi × EΩi cell–face incidence matrix D̃Ωi = −GT
Ωi

. From (36) and (37), the following
orthogonality properties also hold:

D̃Ωi C̃Ωi = 0, (38)

C̃Ωi G̃Ωi = 0. (39)

The augmented dual grid contains additional geometric entities, compared to G̃Ωi ,
that are dual nodes, edges, and faces on ∂Ωi. This leads to new incidence matrices relating
dual entities of G̃Ωi to those of G̃∂Ωi

, that is: G̃Ωi∩∂Ωi
is the FΩi × F∂Ωi

edge–node incidence
matrix, C̃Ωi∩∂Ωi

is the EΩi ×E∂Ωi
face–edge incidence matrix, and D̃Ωi∩∂Ωi

is the NΩi ×N∂Ωi
cell–face incidence matrix. Any column of these matrices has a unique non-zero coefficient
(±1), which identifies the elements of GΩi that are in G∂Ωi

. Note that the transposed matrix
of each of these incidence matrices is a selection matrix, which extracts DOFs related to the
boundary primal grid from those of GΩ.

The cell–face D̃Ωi∂Ωi
, the face–edge C̃Ωi∂Ωi

, and the edge–node G̃Ωi∂Ωi
incidence

matrices of G̃Ωi∂Ωi
can be derived from the previous incidence matrices as [11]:

D̃Ωi∂Ωi
=
[

D̃Ωi D̃Ωi∩∂Ωi

]
, (40)

C̃Ωi∂Ωi
=

[
C̃Ωi C̃Ωi∩∂Ωi

0 −D̃T
Ωi∩∂Ωi

D̃Ωi C̃Ωi∩∂Ωi

]
, (41)

G̃Ωi∂Ωi
=

[
G̃Ωi G̃Ωi∩∂Ωi

0 −C̃T
Ωi∩∂Ωi

C̃Ωi G̃Ωi∩∂Ωi

]
. (42)

It can be proven that a cochain complex can be constructed also for the augmented
dual grid. By observing that any face of G̃∂Ωi

belongs only to one cell of G̃Ωi , one obtains:

D̃Ωi C̃Ωi∩∂Ωi
= D̃Ωi∩∂Ωi

D̃T
Ωi∩∂Ωi

D̃Ωi C̃Ωi∩∂Ωi
, (43)

which provides:

D̃Ωi∂Ωi
C̃Ωi∂Ωi

=
[

D̃Ωi D̃∂Ωi

][ C̃Ωi C̃Ωi∩∂Ωi

0 −D̃T
Ωi∩∂Ωi

D̃Ωi C̃Ωi∩∂Ωi

]
=
[

D̃Ωi C̃Ωi D̃Ωi C̃Ωi∩∂Ωi
− D̃Ωi∩∂Ωi

D̃T
Ωi∩∂Ωi

D̃Ωi C̃Ωi∩∂Ωi

]
= 0.

(44)

Similarly, noting that any edge of G̃∂Ωi
belong only to one face of G̃Ωi , it ensues:

C̃Ωi G̃Ωi∩∂Ωi
= C̃Ωi∩∂Ωi

C̃T
Ωi∩∂Ωi

C̃Ωi G̃Ωi∩∂Ωi
, (45)

which provides:

C̃Ωi∂Ωi
G̃Ωi∂Ωi

=

[
C̃Ωi C̃Ωi∩∂Ωi

0 −D̃T
Ωi∩∂Ωi

D̃C̃Ωi∩∂Ωi

][
G̃Ωi G̃Ωi∩∂Ωi

0 −C̃T
Ωi∩∂Ωi

C̃G̃Ωi∩∂Ωi

]

=

[
C̃Ωi G̃Ωi C̃Ωi G̃Ωi∩∂Ωi

− C̃Ωi∩∂Ωi
C̃T

Ωi∩∂Ωi
C̃Ωi G̃Ωi∩∂Ωi

0 D̃T
Ωi∩∂Ωi

D̃Ωi C̃Ωi∩∂Ωi
C̃T

Ωi∩∂Ωi
C̃Ωi G̃Ωi∩∂Ωi

]
= 0.

(46)
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Finally, in order to construct hybrid formulations, incidence matrices for the boundary
mesh also need to introduced. For the primal boundary G∂Ωi

, the E∂Ωi
× N∂Ωi

edge–
node incidence matrix G∂Ωi

and the F∂Ωi
× E∂Ωi

face–edge incidence matrix C∂Ωi
. The

corresponding dual operators can be defined from primal ones as follows: the edge–node
incidence matrix is G̃∂Ωi

= CT
∂Ωi

and the face–edge incidence matrix is C̃∂Ωi
= GT

∂Ωi
.

3.3. Discrete Constitutive Relations

A systematic approach for building edge and face vector basis functions for grids
composed of either oblique parallelepipeds or oblique triangular prisms or tetrahedra is
proposed in [5]. The same approach is extended in [7] to general polyhedral grids. The
main results of the so-called energy approach presented in [5] are outlined here.

For the eddy–current model, linear conductive and magnetic media, with piecewise
constant conductivity σ and reluctivity ν, are assumed in Ω. Local constitutive relationships
J = σ E and H = ν B are discretized by expanding E and B in terms of DOFs with piecewise
constant edge we and face w f vector basis functions. It is noted that these basis functions
are suitable for CM but not for FEM, since they exhibit less regularity than that required
by the FEM. The energy approach starts from the assumption that, by using these vector
functions, energy has to be exactly reconstructed inside any cell of GΩ for any locally
constant field.

The electric field can be globally approximated by the following expansion:

E(x) ≈
EΩ

∑
e=1

we(x) ee, for any x ∈ Ω, (47)

where ee is the emf along the eth edge of GΩ, i.e., a DOF of the array eΩ. The support of we
is compact, and it consists of the union of all the non-empty intersections ωe between any
primal cell incident to e and any dual cell centered on any vertex of e. The edge function is
locally constant inside these intersections, and it is defined as:

we(x) =
ej × ek

ee × ej · ek
, for any x ∈ ωe, (48)

where ee, ej, and ek are the edge vectors of primal edges incident to ωe.
Since source current density is null in Ω, local Ohm’s law (4) becomes J = σE. From

this relationship and (47), the overall electric power loss in Ω is obtained as:

PΩ =
1
2

∫
Ω

E∗(x) · σ(x)E(x) dx =
1
2

∫
Ω

EΩ

∑
e=1

we(x) e∗e · σ(x)
EΩ

∑
e′=1

we′(x) ee′ dx

=
1
2

EΩ

∑
e=1

EΩ

∑
e′=1

e∗e

(∫
Ω

we′(x) · σ(x)we(x) dx
)

ee

=
1
2

e∗Ω Mσ,Ω eΩ,

(49)

where ∗ indicates the hermitian operator for complex-valued quantities. The conductance
matrix Mσ,Ω = (mσ,ee′)e,e′∈GΩ

of size EΩ × EΩ is defined as:

mσ,ee′ =
∫

Ω
we(x) · σ(x)we′(x) dx. (50)

As proven in [5], the conductance matrix is symmetric and positive definite. The
so-called consistency property holds for edge vector basis vectors, namely:∫

Ω
we(r) dx = f̃e, (51)
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where f̃e is the face vector of the dual face in one-to-one correspondence with e. This
fundamental property ensures that Mσ,Ω eΩ is an approximation of j̃Ω. In particular, the
electric constitutive relationship:

j̃Ω = Mσ,Ω eΩ, (52)

is exactly fulfilled for any field E that is piecewise constant in primal cells.
Similarly to (47), the magnetic flux density is globally approximated as:

B(x) ≈
FΩ

∑
f=1

w f (x) b f , for any x ∈ Ω, (53)

where b f is the magnetic flux through the f -th face of GΩ, i.e., a DOF of the array bΩ. The
support of w f is compact, and it consists of the union of all the non-empty intersections ω f
between any primal cell incident to f and any dual cell centered on any vertex of f . The
face function is locally constant inside these intersections, and it is defined as:

w f (x) =
fj × fk

f f × fj · fk
, for any x ∈ ω f , (54)

where f f , fj, and fk are the face vectors of primal faces incident to ω f .
From the local magnetic constitutive relationships (5) and (53), the overall magnetic

energy in Ω becomes:

WΩ =
1
2

∫
Ω

B∗(x) · (ν(x)B(x)) dx =
1
2

∫
Ω

FΩ

∑
f=1

w f (x) b∗f · ν(x)
FΩ

∑
f ′=1

w f ′(x) b f ′ dx

=
1
2

FΩ

∑
f=1

FΩ

∑
f ′=1

b∗f ′
(∫

Ω
w f ′(x) · ν(x)w f ′(x) dx

)
b f ′

=
1
2

b∗Ω Mν,Ω bΩ,

(55)

The reluctance matrix Mν,Ω = (mν, f f ′) f , f ′∈GΩ
of size FΩ × FΩ is defined as:

mν, f f ′ =
∫

Ω
w f (x) · ν(x)w f ′(x) dx. (56)

In addition, the reluctance matrix is proven to be symmetric and positive definite.
Moreover, the consistency property holds also for face functions, that is:∫

Ω
w f (x) dx = ẽ f , (57)

where ẽ f is the edge vector of the dual edge in one-to-one correspondence with f . This
property ensures that Mν,Ω bΩ is an approximation of h̃Ω. In particular, the magnetic
constitutive relationship:

h̃Ω = Mν,Ω bΩ, (58)

is exactly fulfilled for any field B that is piecewise constant in primal cells.

4. Boundary Element Method

Boundary integral equations describing the magnetostatic problem in Ωe can be
discretized by using the boundary element method [27]. Both direct and indirect BEM
approaches have been used in the literature for building hybrid approaches with the CM.
In [8,10], a direct BEM formulation, resulting in a final unsymmetric system solved by
GMRES, was proposed. In [12], the indirect BEM approach was adopted in order to obtain
a final symmetric system, to be solved with a more efficient MINRES solver. The same
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strategy was also effective for analyzing more complex time-harmonic magnetic problems
by using a TFQMR solver, showing comparable computational cost [13,14].

4.1. Direct Approach

The integral Equation (30) is discretized according to the collocation method [27]. This
amounts to test (30) with distributions δ f (x) = δ(x − x̃ f ), x ∈ Γ, where δ is the Dirac
delta and x̃ f , f = 1, . . . , FΓ, are the dual nodes of G̃Γ, i.e., the centers of mesh faces over Γ.
Therefore, by using property (26), one obtains FΓ linear equations:

c(x̃ f ) ϕr(x̃ f ) +
∫

Γ
ϕr(x)

∂Φ(x, x̃ f )

∂n′x
dσx − ν0

∫
Γ

Φ(x, x̃ f ) Br,n(x) dσx = 0. (59)

Note that c(x̃ f ) = 1/2 because primal faces are plane and x̃ f is far from element
corners. By assuming constant potentials and constant magnetic fluxes over any primal
face of GΓ, (59) can be recast in a matrix form as [8,20]:

HΓ ϕ̃r,Γ −WΓ br,Γ = 0, (60)

where br,Γ = (br, f ) f∈GΓ is the array of reduced magnetic fluxes on primal faces on Γ, where
br, f is the magnetic flux of Br through the face f , and ϕ̃r = (ϕr(x̃ f )) f∈GΓ is the array of
reduced magnetic potentials ϕr(x̃ f ) evaluated at the face centers on Γ. The double-layer
matrix HΓ = (h f f ′) f , f ′∈GΓ

and the single-layer matrix WΓ = (w f f ′) f , f ′∈GΓ
are both square

matrices of size FΓ × FΓ, and are defined as:

h f f ′ =
1
2

δ f f ′ + n f ′ •
∫

f ′
∇xΦ(x, x̃ f ) dσx, (61)

w f f ′ =
ν0

| f ′|

∫
f ′

Φ(x, x̃ f ′) dσx, (62)

where n f ′ and | f ′| are, respectively, the unit normal of the face f ′ (pointing towards Ω,
according to definition (28)) and the area of f ′.

By expressing magnetic fluxes as a function of scalar potentials, a discrete realization
of the Poincaré–Steklov operator, defined in (34), is obtained:

br,Γ = SΓ ϕ̃r,Γ, (63)

As regards the direct formulation, from (60), this map becomes:

Sd,Γ = W−1
Γ HΓ. (64)

4.2. Indirect Approach

The reduced magnetic flux through any primal face f on Γ can be computed exactly
by integrating the magnetic flux density normal component (32), as:

br, f =
∫

f
Br,n(x) dσx =

∫
f

µ0 c(x) + T ∗[p](x) dσx, (65)

This flux can be approximated by assuming a linear variation of Br,n(x) over f and by
noting that c(x̃ f ) = 1/2 at the element center, as:

br, f ≈ | f | Br,n(x̃ f ) =
µ0 | f |

2
− µ0 f •

FΓ

∑
f ′=1

(∫
f ′
∇xΦ(x̃ f , y) dσy

)
q f ′ , (66)

where f is the face vector of f and q f ′ is the magnetic charge on the primal face f ′.
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By comparing (66) with (61), it can be observed that a different double-layer matrix is
obtained for the indirect approach. Magnetic fluxes (66) can be assembled over the whole
grid GΓ as br,Γ = VΓ qΓ, where the FΓ × FΓ matrix VΓ = (v f f ′) f , f ′∈GΓ

is defined as:

v f f ′ =
µ0 | f |

2
δ f f ′ − µ0 f •

∫
f ′
∇xΦ(x̃ f , y) dσy, (67)

and qΓ = (q f ) f∈GΓ is the array of magnetic charges on interface primal faces. The single-
layer operator (31) is discretized by the collocation method, i.e., evaluating the scalar
potential in dual nodes x̃ f as:

ϕr(x̃ f ) =
∫

Γ
Φ(x̃ f , y) q(y) dσy. (68)

By assuming constant magnetic charge inside any face, (68) can be assembled in matrix
form as ϕ̃r,Γ = KΓ qΓ, where the single-layer matrix KΓ = (k f f ′) f , f ′∈GΓ

is defined as:

k f f ′ =
∫

f ′
Φ(x̃ f , y) dσy. (69)

By eliminating fictitious charges, the discrete Poincaré–Steklov operator for the indirect
formulation becomes:

Si,Γ = VΓ K−1
Γ , (70)

which is alternative to the definition for the direct formulation given by (64).

5. Hydrid Formulations

Hybrid formulations, combining both CM and BEM, present in literature are summa-
rized here. A constant treatment, based on the discretization frameworks developed in
Section 3, for the interior problem, and in Section 4, for the exterior problem, is given.

The hybrid formulation for magnetostatics (see, e.g., [8,12]) is considered to be a par-
ticular case of that one for time-harmonic magnetic problems, with ω = 0 (see e.g., [9,13]).
Variables are arrays of DOFs defined in Section 3.1. In order to obtain a discrete analogue of
the magnetic diffusion Equation (10), the local Faraday–Neumann law (2) can be discretized
over the primal complex GΩ as:

CΩ eΩ + ı ω bΩ = 0, (71)

By introducing the discrete magnetic vector potential aΩ, such that eΩ = −ı ω aΩ, the
discrete counterpart of (9), i.e., the magnetic flux conservation, can be written as:

bΩ = CΩ aΩ, (72)

which, on a contractible domain such as Ω, naturally enforces flux balance on primal cells,
i.e., DΩbΩ = 0, which stems from property (36). On the augmented dual grid G̃ΩΓ, by
using the discrete curl operator (41), the local Ampère’s law (3) can be discretized as:

C̃Ω h̃Ω + C̃ΩΓ h̃Γ = j̃Ω, (73)

where C̃Ω∩Γ is the incidence matrix between dual faces of G̃Ω and dual edges of G̃Γ, defined
in Section 3.2. The mmfs of the array h̃Γ ensure the coupling with the exterior domain.
Note that the boundary component of curl operator in (41) is not considered since j̃Γ = 0,
i.e., no eddy–current flows out from the boundary of the interior domain.

By inserting (72) in the magnetic constitutive relationship (58), the mmfs along dual
edges are obtained as h̃Ω = Mν,Ω CΩ aΩ. By letting these mmfs and the electric constitutive
relationship (52) in (73) with eΩ = −ı ω aΩ, the discrete diffusion equation in Ω reads:
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(
CT

Ω Mν,Ω CΩ + ı ω Mσ,Ω

)
aΩ + C̃Ω∩Γ h̃Γ = 0. (74)

This linear equation system corresponds to (10) in the continuous setting.
The interior and exterior field problems are coupled by enforcing the continuity

of magnetic fluxes through any face of GΓ, which corresponds to (13) in the continuous
setting, and the continuity of mmfs through any edge of G̃Γ, which corresponds to (14) in the
continuous setting. Interface magnetic fluxes bΓ = (b f ) f∈GΓ are obtained as b f =

∫
f B •n dσ,

and interface mmfs h̃Γ = (h̃ẽ)ẽ∈G̃Γ
are obtained as h̃ẽ =

∫
ẽ H • t dγ, where H is defined as in

(21). Discrete interface conditions thus become:

bΓ = b0,Γ + br,Γ +
β1(Ω)

∑
k=1

Ik bk,Γ, (75)

h̃Γ = h̃0,Γ + h̃r,Γ +
β1(Ω)

∑
k=1

Ik h̃k,Γ, (76)

where, for instance, b0,Γ, br,Γ, bk,Γ are the arrays of source, reduced, and virtual magnetic
fluxes. Similar terms are defined for mmfs from the magnetic field components in (21).
Both reduced magnetic fluxes and mmfs can then be expressed in terms of potentials, as:

bΓ = CΓ aΓ, (77)

h̃r,Γ = G̃Γ ϕ̃Γ, (78)

where CΓ and G̃Γ are incidence matrices defined over interface grids (see Section 3.2).
Moreover, interface DOFs can be extracted by using selection matrices derived from dual
matrices as discussed in Section 3.2, that is:

aΓ = C̃T
Ω∩Γ aΩ. (79)

By combining (75) with (77) and (79) and by noting that CΓ = G̃T
Γ , the magnetic flux

conservation across Γ can be rewritten as:

G̃T
Γ C̃T

Ω∩Γ aΩ = CΓa0,Γ + br,Γ +
β1(Ω)

∑
k=1

Ik bk,Γ. (80)

where a0,Γ is the array of the line integrals along the primal edges of GΓ of the source
magnetic vector potential A0, such that H0 = ν0∇×A0. By expressing mmfs as a function
of scalar potentials with (78), the mmf conservation across Γ reads:

h̃Γ = h̃0,Γ + G̃Γ ϕ̃r,Γ +
β1(Ω)

∑
k=1

Ik h̃k,Γ. (81)

5.1. Unsymmetric Formulation

The first hybrid formulation based on the CM, which was developed for magneto-
statics, introduced the concept of topological matrices on the mesh boundaries in order to
couple interior and exterior regions [8]. These topological relationships are rephrased here
by using the theoretical framework presented in Section 3.2.

The primal surface curl matrix Cs of size FΓ × EΩ was defined as the incidence matrix
between primal faces of GΓ and primal edges of GΩ. The dual gradient matrix was defined
as G̃s = CT

s . According to topological relationships in Section 3.2, the curl matrix can be
expressed as Cs = G̃T

Γ C̃T
Ω∩Γ. This formulation was then extended in [10] to the analysis of

time-harmonic magnetic problems with simply-connected domains.
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The same direct BEM approach of the magnetostatic hybrid formulation was used in
order to model the exterior region. By letting (80) in (60), with β1(Ω) = 0, one obtains:

HΓ ϕ̃r,Γ −WΓ G̃T
Γ C̃T

Ω∩Γ aΩ = WΓ CΓa0,Γ. (82)

By letting (81) in the diffusion Equation (74), with β1(Ω) = 0, and by using the BEM
relationship (82), the final matrix system of the unsymmetric hybrid formulation reads:(

CT
Ω Mν,Ω CΩ + ı ω Mσ,Ω C̃Ω∩Γ G̃Γ

WΓ G̃T
Γ C̃T

Ω∩Γ −HΓ

)(
aΩ

ϕ̃r,Γ

)
=

(
−C̃Ω∩Γ h̃0,Γ
−WΓCΓ a0,Γ

)
. (83)

This matrix system is not symmetric because of the presence of a single-layer matrix
in block (2,1). Note also that only blocks (1,1) and (1,2) are sparse, which leads to a
high memory requirement with real-size problems. It is shown in [10] that (83) can be
solved by using a GMRES solver with band preconditioning. When mesh is refined, it is
observed that the Schur complement approach, which consists of eliminating ϕ̃Γ, leads
to a much better convergence behavior than directly solving (83). Once interface scalar
potentials have been obtained from (83), interface magnetic fluxes can be reconstructed
by solving a dense matrix system derived from (60). From interface variables, by using
the second Green’s identity (30) with c(y) = 1, the reduced scalar potential is analytically
computed in the air region. Finally, the computation of the magnetic flux density is carried
out by numerical differentiation of ϕr, as suggested in [20], to avoid the computation of
hypersingular integrals, which is highly inaccurate if field points close to Γ are considered.
It has to be observed that such an unsymmetric formulation is not particularly suited for
iterative solutions, since it requires the use of a GMRES solver. The symmetric formulation,
presented in the next section, introduces a major improvement in this regard.

5.2. Symmetric Formulation

In [12], by using topological relationships over augmented dual grids in Section 3.2,
it was possible to obtain a symmetric hybrid formulation for magnetostatics. The main
advantages compared to the unsymmetric formulation were to solve the final matrix system
by MINRES solver, much more efficiently than GMRES, and to provide a more rapid and
accurate field reconstruction in the air domain, by avoiding the numerical differentiation
of the scalar potential. This symmetric formulation was then extended to the analysis of
time-harmonic magnetic problems in [13].

The time-harmonic magnetic formulation includes magnetetostatics as a particular
case, with ω = 0, and it is briefly summarized here. A simply-connected air domain is
assumed so that β1(Ω) = 1 and, by using the Poincaré–Steklov operator (63), the magnetic
flux conservation across Γ, provided by (80), becomes:

G̃T
Γ C̃T

Ω∩Γ aΩ − SΓ ϕ̃r,Γ = CΓa0,r,Γ, (84)

By assembling (84) with (74), the final symmetric matrix system of size EΩ + FΓ reads:(
CT

Ω Mν,Ω CΩ + ı ω Mσ,Ω C̃Ω∩Γ G̃Γ
G̃T

Γ C̃T
Ω∩Γ −SΓ

)(
aΩ

ϕ̃r,Γ

)
=

(
−C̃Ω∩Γ h̃0,Γ

CΓa0,r,Γ

)
. (85)

For numerical models with a large aspect ratio, it was noted that the dense block (2,2)
leads to a large memory occupation, since the size of vector ϕ̃r,Γ is FΓ, i.e., the number of
primal faces over Γ. In order to reduce the number of DOFs related to the BEM, it was
noted that dual variables can be projected on the primal grids by defining a suitable sparse
and rectangular projection matrix.

For defining the prima-dual projection over GΓ, the same geometric approach used
in [26] for building interface constraints between non-matching polyhedral grids was
adopted. Any potential of ϕ̃r,Γ is related to a dual node x̃ f , in one-to-one correspondence



Mathematics 2021, 9, 1426 17 of 30

to a primal face f . The other way round, any vertex n of f is one-to-one correspondence to
a dual face f̃n. With this geometric construction, the potential at x̃ f is interpolated from
potentials ϕr,n evaluated at the primal nodes N ( f ) incident to f as:

ϕ̃r, f = ∑n∈N ( f ) p f n ϕr,n. (86)

The coefficients of the projection matrix PΓ = (p f n) f ,n∈GΓ of size FΓ × NΓ are defined as:

p f n =
| f ∩ f̃n|
| f | . (87)

Note that, for any surface mesh, NΓ < FΓ, so that the number of DOFs is reduced.
Similarly, any magnetic flux of b̃r,Γ is related to a dual face f̃n, in one-to-one corre-

spondence to a primal node n. The other way round, any dual node of f̃n, is in one-to-one
correspondence to a primal face f , with intersection area | f ∩ f̃n|. Therefore, any dual flux
is interpolated from fluxes b f through primal faces F (n) incident to n as:

b̃n = ∑ f∈F (n) pn f b f , (88)

Note that the same geometric coefficients are used for projecting dual potentials and
magnetic fluxes on GΓ. Previous relationships can be assembled in matrix form as:

ϕ̃r,Γ = PΓ ϕΓ, (89)

b̃Γ = PT
Γ bΓ, (90)

which inserted in (85) leads to the following reduced matrix system of size EΩ + NΓ:(
CT

Ω Mν,Ω CΩ + ı ω Mσ,Ω C̃Ω∩Γ G̃ΓPΓ
PT

ΓG̃T
Γ C̃T

Ω∩Γ −PT
ΓSΓPΓ

)(
aΩ

ϕ̃r,Γ

)
=

(
−C̃Ω∩Γ h̃0,Γ

PT
Γb0,r,Γ

)
. (91)

By numerical experiments, carried out with an MINRES solver for magnetostatics [12]
and with TFQMR solver for magnetodynamics [13], it was observed that it is not necessary
to make SΓ symmetric, as proposed in [28], in order to attain the solver convergence.
Conversely, the symmetric structure of (91) is key for that purpose.

5.3. Multiply-Connected Domains

The symmetric formulation was then extended in [14] to the analysis of time-harmonic
magnetic problems with multiply-connected domains, i.e., β1(Ω) > 0. The additional
constraints needed for virtual currents in (80) and (81) are provided from the principle of
virtual work applied to the exterior domain, that is:∫

Ωe
B′ ·H dΩ +

∫
Γ

A′ ×H • n dΓ =
∫

Ωe
A′ • J0 dΩ, for any A′, B′ ∈ L2(Ωe;R3), (92)

where n is a unit normal on Γ, which is directed outward from Ω. Since (92) holds for any
field H which fulfills (3), by inserting (21) in (92) and by exploiting the arbitrariness of both
Ik and ϕr, the following equations are obtained:∫

Ωe
hk • (B′ −∇×A′) dΩ = 0, k = 1, . . . , β1(Ω), (93)

which hold, in particular, for “physical” fields A and B. Details of the discretization
procedure of (93) are provided in [14]. By using the integration by parts and by expanding
field A on Γ with edge elements we defined in Section 3.3, one obtains the topological
constraints required for virtual currents:
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h̃T
k,Γ aΓ − aT

k,Γ h̃r,Γ −
β1(Ω)

∑
j=1

(
aT

k,Γ h̃j,Γ

)
Ij = h̃T

0,Γ ak,Γ + a0,γk , k = 1, . . . , β1(Ω), (94)

where h̃k,Γ = (h̃k,ẽ)ẽ∈G̃Γ
, h̃r,Γ = (h̃r,ẽ)ẽ∈G̃Γ

, and h̃0,Γ = (h̃0,ẽ)ẽ∈G̃Γ
are the arrays of mmfs

along dual interface edges ẽ for the virtual, reduced, and source magnetic fields, respectively.
aΓ = (ae)e∈GΓ is the restriction of aΩ to GΓ, and am,Γ = (am,e)e∈GΓ is the array of virtual
magnetic vector potentials along primal interface edges e. Finally, coefficients a0,γk , with
k = 1, . . . , β1(Ω), are the line integrals of A0 along virtual loops γk. Line integrals along
primal and dual edges of Γ and along any γk are numerically computed by means of
Gaussian quadrature, with a reduced number of evaluation points.

In the most general case of multiply-connected domain, by letting (63) in (80) and by
using (77), the magnetic flux density conservation across Γ can be rewritten as:

G̃T
Γ C̃T

Ω∩Γ aΩ − SΓ ϕ̃r,Γ −
β1(Ω)

∑
k=1

Ik CΓak,Γ = CΓa0,Γ, (95)

which, combined with the discrete diffusion Equation (74), with the conservation of mmfs
(81), and with topological constraints (94), leads to the final symmetric matrix system. Such
a system has the same structure of (91), even though additional DOFs are considered to
account for a more complex domain topology. By defining topological matrices:

AΓ =
[
a1,Γ, . . . , aβ1(Ω),Γ

]
, (96)

H̃Γ =
[
h̃1,Γ, . . . , h̃β1(Ω),Γ

]
, (97)

and the arrays of virtual currents and source line integrals along virtual loops:

Iγ =
[

I1, . . . , Iβ1(Ω)

]T
, (98)

a0,γ =
[

a0,γ1 , . . . , a0,γβ1(Ω)

]T
, (99)

the final symmetric matrix system can be written more compactly as:CT
Ω Mν,Ω CΩ + ı ω Mσ,Ω C̃Ω∩Γ G̃ΓPΓ C̃Ω∩Γ H̃Γ

PT
ΓG̃T

Γ C̃T
Ω∩Γ −PT

ΓSΓPΓ −PT
ΓCΓAΓ

H̃T
ΓC̃T

Ω∩Γ −AT
ΓCT

ΓPΓ −AT
ΓH̃Γ

 aΩ
ϕ̃r,Γ
Iγ

 =

 −C̃Ω∩Γ h̃0,Γ
PT

ΓCΓa0,Γ

AT
Γh̃0,Γ + a0,γ

. (100)

From this matrix system, both direct and indirect hybrid methods can be derived,
simply by changing the definition of the Poincaré–Steklov operator, i.e., by using (64) or
(70). It has to be noted that the indirect formulation allows for an easier post-processing
since the magnetic flux density can be obtained from the equivalent magnetic charge
distribution on the interface by using (21) and (35), which is smooth for points in the
interior of Ωe. On the contrary, the direct formulation requires numerical differentiation.

6. Numerical Results

Both direct and indirect CM–BEM formulations for multiply connected field problems
were implemented in MATLAB® software environment with a vectorized function in order
to speed up the assembly of CM and BEM matrices. All simulations were run on a laptop
with Intel® Core™i7-6920HQ processor (2.90 GHz clock) and 16 GB RAM. The direct
formulation, based on the definition of Poincaré–Steklov operator (64), is presented here
for the first time and compared to the indirect one, based on the alternative definition (70),
by considering an axisymmetric model with highly-accurate third-order 2D FEM solution.
Finally, the indirect hybrid formulation (which is shown to be equivalent to the direct
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formulation) is tested on a realistic problem with a more complex topology, i.e., the TEAM
Workshop Problem 3 (the Bath Plate) proposed in [29].

6.1. Axisymmetric Inductor

Both direct and indirect hybrid formulations are first validated by considering an
axysimmetric benchmark with a highly-accurate third-order 2D FEM solution for error
computation. Such a benchmark is a variant of that one presented in [14]. The model
geometry is depicted in Figure 3. It consists of a conductive shell Ω (5 mm inner radius,
5 mm thick, 4 cm long, µr = 2 relative magnetic permeability, σ = 25 MS/m electric
conductivity) excited by a coaxial current loop γ0 (1.5 cm radius, 1000 A current RMS value,
100 Hz frequency). For the cylindrical shell, the first Betti number is β1(Ω) = 1; therefore, a
unique cohomology generator is used. Such a generator, i.e., the virtual loop γ1 of 7.5 mm
radius, is centered at the origin of the cylindrical coordinate system in Figure 3.

The 2D FEM model is bounded by a circular region with 60 cm radius, and it was
discretized by 94,120 third-order triangular elements, after refining till convergence. With
the hybrid formulations, only Ω needs to be meshed. The element size was chosen to be
approximately 1/5 of the skin depth, i.e., 7.11 mm at 100 Hz. The domain mesh used for
the CM discretization consists of 42,125 tetrahedrons, 86,568 triangles, and 52,697 edges,
with an average element size is 1.27 mm. The unbounded domain Ωe was treated with
both direct and indirect BEM discretization by using a surface mesh with 4636 triangles.

The overall preprocessing, including the assembly of the Poincaré–Steklov operator
(with 17.17 s CPU time), was carried out in 19.24 s CPU time. For the direct formulation,
the final hybrid system, consisting of 55,016 DoFs and requiring 143.34 MB for the matrix
storage, was solved by TFQMR solver with SSOR preconditioning in 26.45 s CPU time. The
solution attained the fixed tolerance of 10−12 in 457 iterations. Comparable performance
was obtained with the indirect formulation: 18.95 s CPU time for the DN map assembly,
26.25 s CPU time for the final matrix system solution with 449 iterations.

In order to check the local accuracy of both hybrid formulations, the eddy–current
density was computed by both 2D FEM and CM–BEM formulations along the vertical line
A-B in Figure 3, with coordinates r = 7.5 mm, z = [−20, 20] mm and sampled into 401
equally spaced field points. On the 3D model for hybrid formulation, the plane y = 0 was
considered as a r, z symmetry plane. The eddy–current density was obtained from the
approximate electric field, expanded as in (47) with piecewise constant bases, by using the
local Ohm’s law (4). Figures 4 and 5 show respectively the real and the imaginary parts
of the azimuthal component of the eddy–current density Jθ . In such a case, the maximum
discrepancies between the direct CM–BEM and 2D FEM results, taken as a reference, are:
3.11% for the real part, 4.32% for the imaginary part. Similar results were obtained for the
indirect hybrid formulation: 4.47% for the real part, 4.10% for imaginary part.

In order to assess the convergence properties of both hybrid formulations, the eddy–
current distribution in Ω, computed by CM–BEM software, was compared to that one
computed by third-order 2D FEM in terms of L2-norm relative discrepancy, as:

eJ =
‖J− Jref‖L2(Ω)

‖Jref‖L2(Ω)
, (101)

where Jref is the reference FEM solution, computed on a very fine rectangular grid of field
points in Ω. The L2-norm relative error was computed by numerical integration with a
1-point Gaussian quadrature rule. Figure 6 shows the relative discrepancy for both direct
and indirect formulations, evaluated for different mesh sizes. The mesh size h is defined as
the maximum radius of all the spheres circumscribing tetrahedrons of the mesh. It can be
observed that hybrid formulation shows similar accuracy for any mesh refinement and
that the convergence behavior is linear such as first-order 3D FEM.
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Figure 3. Axisymmetric model used for 2D FEM validations (Ω: conductive region; Ωe: exterior
domain; γ0: source coil; γ1: virtual coil; line A-B is used for the current density evaluation in the
shell region; line C-D is used for the magnetic flux density evaluation in the air region).

Figure 4. Real part of the azimuthal current density component along line A-B (black line: direct
formulation, blue line: indirect formulation, red line: 2D FEM, taken as a reference).
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Figure 5. Imaginary part of the azimuthal current density component along line A-B (black line:
direct formulation, blue line: indirect formulation, red line: 2D FEM, taken as a reference).

Figure 6. Discrepancy (L2-norm) in Ω between the eddy–current density computed by 2D FEM (third
order elements, taken as a reference) and 3D CM–BEM (direct/indirect approaches). The red line
expresses theoretical first-order convergence typical of 3D FEM with linear elements.

In order to check the local accuracy of both hybrid formulations in the air region, the
magnetic flux density was computed along the horizontal line C-D in Figure 3, with coordi-
nates r = [0, 14] mm, z = 23 mm and sampled into 401 equally spaced field points such as
line A-B. For the direct formulation, the field distribution is obtained from the numerical
differentiation of ϕr, given by (30), using a three-point stencil along any coordinate axis,
i.e., six sampling points are used for any field point along the line C-D. For the indirect
formulation, the field computation is fully analytical, i.e., it is obtained by combining (21)
and (35), and it requires only one function evaluation per field point.

Figures 7 and 8 show, respectively, the real and the imaginary parts of the radial
component of the magnetic flux density Br. In such a case, the maximum discrepancies
between the direct CM–BEM and 2D FEM results (taken as a reference) are: 0.53% for
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the real part, 1.67% for the imaginary part. Similar values were found for the indirect
formulation: 0.94% for the real part, 1.46% for the imaginary part. Figures 9 and 10 show
the same comparisons for the axial field component Bz. Maximum discrepancies are in
that case: 0.33% for the real part, 1.43% for the imaginary part (direct formulation); 0.89%
for the real part, 2.07% for the imaginary part (indirect formulation). It is interesting to
observe that, for any field component, numerical results show a complementary behavior,
with hybrid formulation values bilaterally bounding FEM reference values.

Figure 7. Real part of the radial magnetic flux density component along line C-D (black line: direct
formulation, blue line: indirect formulation, red line: 2D FEM, taken as a reference).

Figure 8. Imaginary part of the radial magnetic flux density component along line C-D (black line:
direct formulation, blue line: indirect formulation, red line: 2D FEM, taken as a reference).
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Figure 9. Real part of the axial magnetic flux density component along line C-D (black line: direct
formulation, blue line: indirect formulation, red line: 2D FEM, taken as a reference).

Figure 10. Imaginary part of the axial magnetic flux density component along line C-D (black line:
direct formulation, blue line: indirect formulation, red line: 2D FEM, taken as a reference).

6.2. Bath Plate

The Bath Plate problem consists of a conducting plate Ω (32.78 MS/m electrical
conductivity, µr = 1 relative magnetic permeability, 6.35 mm thick, 60 mm wide, 110 mm
long) excited by an AC current–driven cylindrical coil Ω0 (1240 A RMS current, 20 mm
inner radius, 40 mm outer radius, 20 mm thick, located 15 mm above the plate) at two
different frequencies (50 Hz, 200 Hz). The origin of the Cartesian coordinate system
(x, y, z) is centered on the plate surface; the coil vertical axis is the z-axis. Two holes with
square cross-section (40 mm × 30 mm) are centered on x = 0, y = ±20 mm; therefore,
the conducting domain Ω is multiply connected, with β1(Ω) = 2. Figure 11 shows the
CM–BEM model, with virtual loops γ± (rectangular coils, 50 mm × 38 mm, centered at
x = 0, y = ±55 mm, z = −3 mm, in red) and the line A-B used for comparing magnetic
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flux density distributions (x = 0 mm, y = [−55, 55] mm, z = 0.5 mm, in blue). Such a
horizontal line was discretized into 401 equally spaced field points.

Figure 11. Tetrahedral mesh of the “Bath plate” model used for indirect CM–BEM simulations (field
calculation line A-B is depicted in blue; virtual loops are depicted in red).

To examine the accuracy of 3D CM–BEM results (indirect formulation), the real and
imaginary parts of the z-component of the magnetic flux density were computed, for both
frequency values, along the line A-B. For the sake of comparison, numerical results from a
second-order 3D FEM, based on a classical A–A formulation, were used. For 3D CM–BEM,
Ω was discretized into l69,492 tetrahedrons, with mesh size h = 1.45 mm (smaller than
conductor skin depth at 200 Hz, i.e, 6.22 mm), 88,443 edges, and 143,798 faces (among these,
9628 were on the interface Γ = ∂Ω). Ω0 was discretized into 1764 tetrahedrons. Unlike the
hybrid method, 3D FEM required a bounding box (a cube of 1 m side, centered at the origin)
on which magnetic wall BCs were applied. In order to get a reference solution, the 3D FEM
discretization was refined up to convergence (80,862 second-order tetrahedrons were used).
In particular, Ω was discretized into 5249 tetrahedrons, with 2 mm maximum element size.
Note that, with FEM, only a half of the problem was considered due to symmetry. The A–A
formulation needs to introduce a fake conductivity in the air region (0.1 S/m) for the final
matrix system regularization. This correction, which was not required by the CM-BEM,
introduced an approximation in the numerical results. A 3D FEM model (517,341 DOFs,
3.51 GB RAM) was solved by TFQMR solver with geometric multigrid preconditioning in
54 s CPU time (at 50 Hz) and in 48 s (at 200 Hz) to attain a 10−12 tolerance. Preprocessing
of CM–BEM required 190.25 s CPU time, including the computation of source field, the
assembly of both CM and BEM matrices, and RHS vectors. Most of the computing time
was required for computation of the DN map (size 9628, computed in 88.82 s CPU time)
and RHS vectors with Biot–Savart’s integration (computed in 95.75 s). Note that only
14.23 seconds of CPU time were required for matrix inversion when building the DN
map. The iterative solution by TFQMR + SSOR solver of the CM–BEM final system (with
89,997 DOFs, 565.09 MB RAM) required 93.25 s CPU time, with 459 iterations, to attain
10−12 tolerance (50 Hz) and 69.18 s, with 324 iterations (200 Hz). For instance, Figure 12
shows that the solver convergence pattern at 50 Hz, which is smooth and linear. A similar
behavior for TFQMR was found at 200 Hz.
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Figure 12. Convergence pattern of the TFQMR solver with SSOR preconditioning at 50 Hz.

The y-axis and z-axis magnetic flux density components were evaluated along the
horizontal line A-B of Figure 11 by both 3D CM–BEM and 3D FEM on 401 equally spaced
points. Figures 13 and 14 show that field profiles at 50 Hz are in very good agreement.
The maximum discrepancies from 3D FEM, for the real and imaginary parts of By, are,
respectively, 0.98% and 11.52%, whereas, for Bz, they are 0.60% and 8.81%, respectively.
Therefore, even by using a relatively coarse mesh refinement for CM–BEM, a good agree-
ment with second-order FEM is obtained. Similar results were found at 200 Hz: 4.42% and
9.83%, respectively, for real and the imaginary part of By (Figure 15), 3.72% and 9.36%,
respectively, for the real and the imaginary part of Bz (Figure 16).

Figure 13. Real and imaginary parts of the y-axis magnetic flux density component at 50 Hz along
the line A-B (indirect CM–BEM plot is in straight line, FEM plot is in dashed line).
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Figure 14. Real and imaginary parts of the z-axis magnetic flux density component at 50 Hz along
the line A-B (CM–BEM plot is in straight line, FEM plot is in dashed line).

Figure 15. Real and imaginary parts of the y-axis magnetic flux density component at 200 Hz along
the line A-B (CM–BEM plot is in straight line, FEM plot is in dashed line).

The global quantities considered in the benchmark were the magnetic fluxes through
the plate holes (cut surfaces Σ1 and Σ2, on the plane z = 0, in Figure 17) and the eddy–
currents through the plate ribs (cut surfaces Σ3 and Σ4, on the plane x = 0, in Figure 17).
Magnetic fluxes ΦΣ1 =

∫
Σ1

B • ez dΣ, ΦΣ2 =
∫

Σ2
B • ez dΣ, with ez unit vector along the

z-axis, were computed by both 3D CM–BEM and second-order FEM through Σ1 and
Σ2. The same comparisons were carried out for current phasors IΣ3 =

∫
Σ3

J • ex dΣ, IΣ4 =∫
Σ4

J •ex dΣ through Σ3 and Σ4, with ex unit vector along the x-axis. Due to model symmetry,
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relationships ΦΣ1 = ΦΣ2 and IΣ3 = −IΣ4 theoretically hold. Fluxes were computed by
assuming a piecewise constant approximation of both B and J fields for the CM-BEM model,
and a fourth-order quadrature scheme for 3D FEM. Table 1 shows that real and imaginary
parts of magnetic fluxes, computed by 3D CM–BEM, are in good agreement with reference
values obtained with second-order FEM at 50 Hz and 200 Hz. Similar considerations apply
to eddy–current values through surfaces Σ3 and Σ4 reported in Table 2. Note that IΣ3 , IΣ4

can be also obtained from the CM–BEM final matrix system solution. In fact, according to
Ampère’s law applied along boundaries ∂Σ3 and ∂Σ4, these coincide with currents flowing
along virtual loops in Figure 11. With a counterclockwise orientation of γ±, currents of
virtual loops, obtained from the solution of (100), are Iγ+ = −21.797− ı 63.378 and Iγ− =
−21.794− ı63.366, at 50 Hz, and Iγ+ = −133.669− ı 98.802, Iγ− = −133.645− ı 98.778, at
200 Hz. It can be noted that real and imaginary values of Iγ± are in very good agreement
with values in Table 2.

Figure 16. Real and imaginary parts of the z-axis magnetic flux density component at 200 Hz along
the line A-B (CM–BEM plot is in straight line, FEM plot is in dashed line).

Σ1

Σ2

Σ3

Σ4

x

z

y

Figure 17. Cut surfaces used for determining magnetic fluxes indicated in Table 1 (Σ1, Σ2 ) and
eddy–current indicated in Table 2 (Σ3, Σ4).
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Table 1. Real and imaginary parts of magnetic flux (µWb) computed through cut surfaces Σ1, Σ2 by
3D CM–BEM and 3D FEM (2nd order) at 50 Hz and 200 Hz frequency.

Re(ΦΣ1) Im(ΦΣ1) Re(ΦΣ2) Im(ΦΣ2)

50 Hz 3D CM–BEM 7.869 −1.958 7.872 −1.958

FEM (2nd ord.) 7.862 −1.974 7.862 −1.974

200 Hz
3D CM–BEM 4.435 −3.126 4.438 −3.127

FEM (2nd ord.) 4.394 −3.142 4.394 −3.142

Table 2. Real and imaginary parts of eddy–current (A) computed through cut surfaces Σ3, Σ4 by 3D
CM–BEM and 3D FEM (2nd) at 50 Hz and 200 Hz frequency.

Re(IΣ3) Im(IΣ3) Re(IΣ4) Im(IΣ4)

50 Hz 3D CM–BEM 21.811 63.412 −21.819 −63.080

FEM (2nd ord.) 21.766 63.258 −21.765 −63.259

200 Hz
3D CM–BEM 133.941 98.886 −133.687 −97.393

FEM (2nd ord.) 133.550 98.518 −133.540 −98.529

7. Conclusions

Several hybrid approaches based on the CM, which is a valid alternative to the FEM,
have been presented under a unified theoretical framework. It has been shown that, by
introducing an augmented dual grid in the CM discretization process, novel interface
topological operators can be obtained. These operators can be used in order to construct
symmetric (direct and indirect) hybrid formulations, which result in final matrix systems
amenable to iterative solution. Numerical tests show that direct and indirect approaches
have similar accuracy. As an example of application, the indirect formulation has been
tested on a realistic 3D eddy–current problem, showing the same degree of accuracy of
second-order FEM but with much less DOFs used for the discretization.
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