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Abstract. Anchored wire meshes are applied worldwide as protective structures against
rockfall. The mechanical performance of a wire mesh is evaluated through laboratory tests, but
these are generally not representative of the field conditions. This paper presents a simple tool
to predict the force-displacement response of an anchored mesh panel to an out-of-plane load,
extending the experimental standard punch test characteristic values (ISO 17745, ISO 17746,
UNI 11437) to field conditions. Discrete element simulations are used to provide analytical
relations that account for the effect of the different problem’s variables on the ultimate resistance
and maximum deflection of a mesh panel. The numerical results are subsequently used to define
a master curve permitting the force-displacement response of a generic anchored mesh panel to
be forecasted. Finally, the master curve is validated against ex-post simulations, and practical
implications are discussed.

1. Introduction
The use of secured drapery systems has experienced a large growth in the last decades. Despite
having been applied worldwide, strong unknowns about their field mechanical behavior still
exist. To date, the mechanical behavior of a wire mesh is characterized by using laboratory
procedures that are poorly representative of the in-field conditions, and therefore their results
cannot be directly used in the design phase [1]. This highlights the need of a procedure that
can provide a more realistic characterization of the field response of anchored wire meshes. The
realization of large-scale field tests, even if they may be very informative, is difficult because
of both technical and financial limitations. In this perspective, the recourse to a numerical
approach represents a valid alternative. In the recent past, the discrete element method (DEM)
has been efficiently used to model wire meshes from laboratory conditions [2, 3, 4, 5, 6] to large
scale applications [7, 8, 9, 10, 11, 12, 1, 13].

In this work, discrete element simulations are used to analyze the force-displacement response
of a mesh panel subject to a punching load. Firstly, the role of the specimen dimension and
of the punching element size on the result of the laboratory punch test procedure is quantified
(Sec. 3). Secondly, based on the results of a large set of simulations, a simple approach that
allows the mechanical response of a generic anchored mesh panel to be forecasted is proposed.
This will permit one to predict the entire force-displacement response of a mesh panel starting
from the results of the standard laboratory punch test.
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Figure 1. NWB description of the double-
twisted wire mesh.
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Figure 2. Tensile stress–strain
relations of the single (SW) and
double-twisted (DT) wires.

The standard hexagonal double-twisted wire mesh of nominal diameter 2.7mm is adopted as
reference. The geometrical parameters that define the periodic cell of the mesh are reported in
Fig 1. The numerical simulations presented in this paper are performed with the open-source
code YADE [14].

2. Methodology
In this work, a node-wire based approach (NWB) is adopted for the numerical description of the
wire mesh. This choice is made in order to reduce the computational cost with respect to a more
refined cylinder-wire based description of the mesh; in the problem here considered (i.e. punch
test), this simplification does not introduce significant differences in the mechanical response
of the mesh [15, 16]. The mesh is therefore described as a set of spherical particles that are
connected by long-range tensile interactions as shown in Fig 1. These interactions are defined
by a piece-wise linear force-displacement function, which is computed from input stress-strain
tensile relations [3]. The stress-strain curves used in the numerical model are reported in Fig.
2. The validation of the mesh model was presented in [1]. The mesh-punch contact parameters
adopted in the simulations are: contact normal stiffness kn = 6.5× 105 N/m, tangential contact
stiffness kt = 0.4kn and a contact friction coefficient µc = 0. Details of the numerical model can
be found in [1]. Finally, the time step is set equal to dt= 3× 10−5s.

3. Laboratory punch test
The standard punch test configuration (ISO 17745, ISO 17746, UNI 11437) is worldwide adopted
by manufacturers in order to provide characteristic values (i.e. maximum punching force
and panel’s deflection at failure) to quantify the mesh mechanical performance. Nevertheless,
other configurations adopting different dimensions of the punching element and/or of the mesh
specimen, are used in practice; therefore, comparison of the data reported in the technical
literature may be difficult. In the perspective of providing simple analytical relations permitting
one to extend the experimental results to a “common” configuration, a parametric analysis is
performed. The panel’s side length Ll = 3.0m and the punch dimension Dl = 1.0m required
by the ISO standards, as well as the thus obtained characteristic values (F ∗

l = 73.3kN and
δ∗l = 0.60m), are adopted as reference to normalize the numerical results.

The effect of the punching element dimension is investigated performing a set of simulations
in which the punching element dimension D is varied ranging from 0.1m to 2.5m, with an
incremental step of 0.1m (the limit value D = 0.1m is related to the mesh opening size).
Furthermore, the effect of the mesh specimen dimension is investigated performing a set of
simulations in which the panel dimension L is varied in the range 2.0m-4.5m (only square panel
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Figure 3. Force-displacement curves for
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laboratory test configuration (Ll = 3.0m,
Dl = 1.0m).
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were considered), with an incremental step of 0.25m.
The effect of a variation of D on the mechanical response of the mesh is reported in Fig. 3,

while the trends of the force at failure Fmax and the related deflection δmax with D are reported
in Fig. 4a and Fig. 4b respectively. The force value at failure shows a monotonic increment
with the punching element size, while the deflection value at failure firstly increases with D,
then it stabilizes to a constant value. This is related to the finite size of the mesh specimen, and
should be related to a threshold value of the ratio D/L as discussed in [1]. A threshold value
D/L = 0.4 was observed independently of the considered value of the panel dimension L; the
results referring to the cases L 6= 3m are here omitted for the sake of brevity.

The influence of a variation of L on the force-displacement response of the mesh is shown in
Fig. 3. Larger mesh panels have to undergo a greater deflection before actively contrasting the
punch displacement. Furthermore, they also show a lower out-of-plane stiffness; for instance,
by referring to the stiffness parameter k75 as defined in [1]: k75 = 247kN/m for L = 2m,
k75 = 193kN/m for L = 3m, k75 = 170kN/m for L = 4m. The influence of a variation of the
sample dimension on the characteristic values Fmax and δmax is shown in Fig. 4a and Fig. 4b
respectively. It is evident that a variation of L has a significant effect on the panel deflection,
while its influence on the maximum force is almost negligible. The effect of L on Fmax and
δmax can be estimated through Eqs. 1-2, which are obtained from a linear least squares fit of
the numerical data. Similar relations were obtained in [1] in order to quantify the effect of the
punching element dimension.

Fmax =

(
0.89 + 0.11

L

Ll

)
F ∗
l (1)

δmax =

(
0.15 + 0.85

L

Ll

)
δ∗l (2)

Comparing the effect of the geometrical parameters D and L on the mesh panel mechanical
response, it is interesting to note how the maximum punching force is mostly controlled by the
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Figure 5. Top view of the numerical model
of the anchored punch test. Bold points
indicate the fixed nodal particles.
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Figure 6. Comparison of the mechanical
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dimension of the punching element; instead, the deflection at failure, is controlled by both the
dimensions D and L at first, then only by the panel dimension when the ratio D/L is greater
than a threshold value (i.e. D/L > 0.4).

4. Towards field conditions: anchored mesh panel punch test
The standard punch test configuration is not representative of the field conditions, especially
concerning the boundary conditions imposed to the mesh panel; indeed, the laboratory specimen
is fixed along its outer boundary, while in field applications the mesh is only locally fixed to
the slope face by anchor plates. This may induce an overestimation of the field puncturing
resistance [1], therefore the mechanical response obtained through the laboratory test cannot be
directly used to characterize the field behavior of the mesh. In a recent work, Pol et al. [1] have
defined a periodic configuration, in a discrete element framework, permitting to characterize
the mechanical response of an anchored mesh panel. This configuration provides a lower bound
estimation of the punching resistance of an anchored mesh panel [1]. In this work, the same
configuration is adopted; a sketch of the geometry of the numerical model is presented in Fig.
5 for the sake of clarity. A square mesh panel of side length L is adopted and a dome-shaped
punching element of diameter D is used. Periodic boundary conditions are imposed along the
panel’s edges, while the anchor plates are simulated by fixing all the degrees of freedom of the
nodal particles that are ideally intercepted by them (bold points in Fig. 5). In order to respect
the periodicity of the problem, half of the anchor plate side length (i.e. d/2) is considered in
the model. The numerical parameters are the ones reported in Sec. 2.

In Fig. 6 the mechanical response obtained in the standard punch test configuration
is compared with the one obtained considering the periodic configuration above described,
characterized by D = 1.0m, L = 3.0m and d = 0.32m. It is evident that adopting a more
realistic schematization of the field boundary conditions leads to a reduction of the punching
force that mesh panel can support, as well as to a lower out-of-plane stiffness with respect to
the one observed in the standard laboratory procedure. As stated in [1] the ratios between
the values of force and deflection at failure observed in the standard and in the anchored
(F ∗

a = 29.1kN, δ∗a = 0.65m) configurations may be used to a first estimation of the variation of
the mesh characteristics values moving from laboratory to field conditions: αF = F ∗

a /F
∗
l = 0.40,

αδ = δ∗a/δ
∗
l = 1.08. It should be noted that the values of these coefficients may vary if a different

test geometry and/or a different mesh are adopted.
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4.1. Master curve
In the perspective of defining a master curve that permits reconstruction of the entire force-
displacement response of an anchored mesh panel to an out-of-plane loading conditions a large
number (>300) of numerical simulations was performed. In each simulation a different set of the
geometrical variables of the problem (i.e. d, L, D) is used, the specific values being randomly
chosen in a reasonable wide range: 0.16m ≤ d ≤ 0.48m, 1.25m ≤ L ≤ 4.5m, 0.1m ≤ D ≤ 2.5m.
Subsequently, the F -δ curves are normalized with respect to the related Fmax and δmax values,
showing that they collapse inside a narrow envelope (filled area in Fig. 7), and thus that the
definition of a master curve is possible. From each normalized curve (F̃ -δ̃ curve) a “new” curve
composed by a set of equispaced points along the normalized displacement axis is derived through
interpolation of the original data. Finally, a master curve is derived by fitting the “new” data
set using a non-linear least square regression model (model function f (x) = ax3 + bx2 + cx).
The thus obtained fitting curve (i.e master curve) is given by:

F̃
(
δ̃
)

= 1.312δ̃3 − 0.385δ̃2 + 0.073δ̃ (3)

In Fig. 7 the master curve is compared with the envelope of the normalized force-displacement
curves obtained from the numerical simulations. The master curve is well representative of the
trend of the force-displacement response.

4.2. Forecasting methodology
In order to forecast the mechanical response of a given anchored mesh panel the master curve
defined in Sec. 4.1 has to be coupled with a methodology that permits estimation of the force
and deflection values at failure characteristic of the considered mesh system. In this perspective,
the analytical relations defined in [1] are adopted (see Appendix). They permits extension of
the characteristic values deriving from the standard punch test (i.e. F ∗

l , δ∗l ) to a generic mesh

system (i.e. Fa, δa). The thus obtained forecasting method (referred as F̂ (δ) in the following)
can be summarized with the following three steps procedure:

• the reference values F ∗
a and δ∗a are computed from the values F ∗

l and δ∗l obtained from the
standard laboratory characterization (e.g. ISO punch test) of the considered mesh type
through the application of the coefficient αF and αδ;

• the characteristic values Fa and δa of the mesh system considered in the analysis are
computed through the application of Eqs. A.1-A.2. The effect of the relative position
between the punching element and the anchors can instead be estimated by using the
contour plots reported in Appendix (see Fig. A1);

• the entire force-displacement behavior of the mesh system is forecasted by rescaling the
master curve with the characteristic values Fa and δa computed in the previous step.

A conceptual scheme of this procedure is shown in Fig. 8 for the sake of clarity. The validation
of the F̂ (δ) method above described is provided by comparing the predicted F -δ curves with the
one obtained from ex-post simulations. The mechanical response of five test cases are compared
in Fig. 7b-f; the problem’s variables are randomly chosen (sampled from a uniform distribution)
in the same range used for the definition of the master curve; these are specified at the top of the
related figure and in Tab. 1. The mechanical response obtained through the F̂ (δ) methodology
and the one deriving from the ex-post simulations are in good agreement for all of the considered
cases. A very precise prediction of the entire force-displacement behavior is provided by the
application of the forecasting procedure when a centered punching element is considered (see
Fig. 7b-d). Instead, when introducing also an eccentricity of the punching element position, with
respect to the center of the mesh panel (ex and ey in Fig. 8), the predicted F -δ curve slightly
deviates from the simulated one (see Fig. 7e-f); however, the differences between the two curves
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Figure 7. (a) Envelope of the normalized F -δ curves. (b)-(f) Comparison of the panel

mechanical response obtained from ex-post simulations and from the forecasting method F̂ (δ).

Test Problem’s variables DEM results Eqs. A.1-A.2

# d [m] L [m] D [m] ex [m] ey [m] Fmax [kN] δmax [m] Fa [kN] δa [m]
1 0.25 2.5 0.60 0.00 0.00 22.6 0.56 22.8 (+1%) 0.55 (-2%)
2 0.32 2.5 0.20 0.00 0.00 13.4 0.49 13.0 (-3%) 0.49 (<1%)
3 0.40 3.0 1.25 0.00 0.00 30.9 0.62 31.0 (<1%) 0.62 (<1%)
4 0.40 4.0 1.20 2.00 0.20 34.9 0.67 37.1 (+6%) 0.68 (+1%)
5 0.25 3.5 0.80 0.55 1.15 14.9 0.65 15.3 (+3%) 0.64 (-2%)

Table 1. Comparison of the values of Fmax and δmax obtained from ex-post simulations and
through the Eqs. A.1-A.2 (values in brackets estimate the error in the predicted values).
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Figure 8. Conceptual scheme of the workflow of forecasting method F̂ (δ).

remain small. In light of the obtained results, the proposed method appears as a promising tool
for forecasting the force-displacement behavior of an anchored mesh panel, starting from the
only knowledge of the characteristic values of a standard laboratory punch test. A further result
is related to the confirmation of the validity of the relations given in [1]. Even if, the latter
were defined from a parametric analysis in which each parameter was assumed as independent,
their sequential application permits precise prediction of the values at failure of a mesh system
characterized by a generic combination of the geometrical parameters d, L, D, ex and ey. Minor
differences are in fact observed between the predicted Fa and δa values and the values at failure
obtained from the numerical simulations as reported in Tab. 1.

5. Conclusion
In this work, discrete element simulations have been used to define a simple tool for forecasting
the mechanical response of anchored mesh panels subjected to a punching load. Initially, the
effect of the specimen dimension in standard laboratory punch test conditions was analyzed.
Analytical relations, complementary to ones proposed in a previous work [1], were derived. These
relations permit extension of the results obtained in different configuration to a “common” one.

The data obtained from a large set of numerical simulations were used in order to derive a
master curve that allows the trend of the force-displacement response of an anchored mesh panel
to be reconstructed. A simple tool permitting the prediction of the mechanical response (i.e.
F -δ curve) of a generic anchored mesh panel was defined by associating to the master curve the
analytical relations defined in [1]. However, a further validation against experimental data on
anchored panels is required to prove the robustness of the method. The approach is implemented
in an online tool (http://geotechlab.dicea.unipd.it/codes/design-tool-for-drapery-mesh).

In the perspective to move towards a displacement-based design methodology, the proposed
approach represents a fundamental tool permitting prediction of the entire force-displacement
behavior of an anchored mesh panel, starting from the laboratory characteristic values (i.e.
punch test results). Alternatively, it can be associated to the standard design methodologies
(based on limit equilibrium method) in order to estimate the expected maximum deformations
of the mesh system in serviceability conditions (i.e. hybrid approach).

A test configuration (Sec. 4) representative of a multi-block loading condition was considered
since it provides a lower bound value of the mesh resistance; therefore, this represents a
conservative choice in a design perspective. Further investigations are ongoing to extend the
proposed approach to the case of a localized block acting on a large mesh system. The results
presented in this work refer to the adopted mesh type; nevertheless, the proposed approach can
be extended to other mesh types and test configurations in a very straightforward manner.

http://geotechlab.dicea.unipd.it/codes/design-tool-for-drapery-mesh
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Appendix
The analytical relations permitting estimation of the effect of the problem’s geometrical variables
on the characteristic values Fa and δa defined in [1] are here condensed in Eqs. A.1-A.2. The
reference values are: F ∗

a = 29.1kN, δ∗a = 0.65m, D∗ = 1.0m, d∗ = 0.32m, L∗ = 3.0m. The effect
of the punching element eccentricity (i.e. ex, ey) is estimated through the contour plots reported
in Fig. A1. The latter are derived normalizing the data reported in [1] on the panel dimension.{
Fa =

[
2.47 D

D∗

(
0.48 d

d∗ + 0.45
) (

0.16 L
L∗ + 0.84

)]
F ∗
a if D . d, d ≥ 0.16m

Fa =
[(

0.06 D
D∗ + 0.94

) (
0.48 d

d∗ + 0.45
) (

0.16 L
L∗ + 0.84

)]
F ∗
a if D & d, d ≥ 0.16m

(A.1)

{
δa =

[
0.98 L

L∗

(
0.72 D

D∗ + 0.78
) (

0.02 d
d∗ + 0.98

)]
δ∗a if D . d, d ≥ 0.16m

δa =
{

0.98 L
L∗

[
0.03

(
D
D∗

)2 − 0.16 D
D∗ + 1.13

] (
0.02 d

d∗ + 0.98
)}
δ∗a if D & d, d ≥ 0.16m

(A.2)
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