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1 Introduction

The benefits of including real estate in mixed-asset portfolios are now well-recognized (Hoesli et al.,

2004; MacKinnon and Al Zaman, 2009; Bouri et al., 2018). However, investing in real estate can be

problematic due to the high unit value and illiquidity of properties. Thus, it is not surprising that the

importance of the securitized real estate market, i.e., Real Estate Investment Trusts (REITs) has grown

substantially during the past decades. As indicated by the Nareit (the worldwide representative voice

for REITs),1 REITs of all types collectively own more than $3 trillion in gross assets across the U.S.,

with stock-exchange listed REITs owning approximately $2 trillion in assets. Moreover, U.S. listed REITs

have an equity market capitalization of more than $1 trillion, and more than 80 million Americans invest

in REIT stocks (through their 401(k) and other investment funds). Indeed, the characteristics of REITs

have overcome many of the drawbacks associated with direct real estate. Hence, an understanding of the

nature of real estate stocks is crucial for investors.

In this regard, an important stream of research has examined the relationships of REITs with stocks,

bonds and its underlying asset i.e., real estate (see for example, Li et al., (2015), Tsai (2015), Chiang et

al., (2017), Damianov and Elsayed (2018)). More recently, the extreme events that unfolded in financial

markets during the global financial and the European sovereign debt crises have strengthened the desire of

researchers to better understand contagion, whereby, loosely speaking, contagion can be defined as a rapid

shock spillover that increases cross-market linkages.2 While there exists a vast literature on contagion

involving bonds, stocks, currencies, and more recently hedge funds (see for example, Pericoli and Sbracia

(2003), Dungey et al. (2005), Pesaran and Pick (2007), and Forbes (2012)), the literature disentangling

contagion issues concerning real estate markets is limited. In this regard, few studies that test for financial

contagion in REITs and are worth mentioning, involves the works of Kallberg et al., (2002), Gerlach et

al., (2006), Fry et al., (2010), Hoesli and Reka (2013, 2015). In general, these studies confirm the existence

of contagion involving real estate markets during the Asian crisis of 1997 and the global financial crisis

of 2007-2008.

We aim to extend this limited literature associated with real estate markets, by studying contagion

between REITs and the equity market (S&P500) in the U.S. based on an extended sample period of

daily data covering 2003 till 2017, which in turn allows us to study the impact of not only the global

financial crisis, but also the European sovereign debt turmoil. But more importantly, we aim to contribute

to this literature by applying quantile-on-quantile (QQ) based nonparametric regressions to study the

impact of the REITs market on U.S. equities. The QQ approach allows us to trace the effect of the entire

1 See: https://www.reit.com/nareit.
2 The existing literature has recognized at least three possible ‘theories

’
Äô of contagion, i.e., through financial linkages

(which in turn has three channels, i.e., information correlation, liquidity correlation, and portfolio rebalancing), trade links,
and herding behaviour (Hoesli and Reka, 2015).

https://www.reit.com/nareit
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unconditional distribution of REITs on the conditional distribution of the U.S. equity market. In the

process, we are able to analyze how changes in the REITs returns from its initial state of bear (lower

quantiles), normal (median), or bull (upper quantiles) regimes affect the entire conditional distribution

S&P500 returns, i.e., capturing various corresponding states of the equity market. Remark 1: As Ca-

porin et al. (2018) show quantile regression in the context of contagion analysis is robust

to several misspecification errors, including endogeneity. This is possible in our framework,

considering that REITs are a narrow sector of the aggregate economy and the S&P500

represents about 75% of total market cap.

Understandably compared to copula models used to analyze extreme tail dependence, and standard

quantile regressions to study the conditional distribution of the equity markets as in as in Hoesli and Reka

(2013), our QQ approach is more informative, as it studies contagion over all possible states associated

with REITs and equity markets. In other words, our paper presents a more complete picture on stability

of parameters associating real estate and equity markets of the U.S., and hence investigates the presence

of (possible) shift-contagion during the crises periods. In this regard, we evaluate the parameter stability

by also controlling for the existence of structural breaks. Shift-contagion is actually a special case of

structural break, since in its presence, the coefficients linking variables tend to increase (or decrease)

after the break date. If structural instability is ignored, we could mix data from different regimes, and

thus quantiles are not those of a specific density but are recovered from a mixture of different densities

(Qu, 2008; Caporin et al., 2018). Given this, we conduct our analysis based on sub-samples of January,

2003 to July, 2007; August, 2007 to December, 2009; January, 2010 to December, 2012, and; January,

2013 to December, 2017. These break-ups also allow us to study the periods of pre, during, and post the

financial and sovereign debt crises.

Note that, contagion is defined as the presence of a significant increase of cross-market linkage af-

ter a shock, i.e, departure from fundamentals (Forbes and Rigobon, 2002). In light of this, to analyze

contagion, one should ideally assess the connections between markets after having controlled for eco-

nomic fundamentals. But with contagion associated with high-frequency data, such type of data is not

available for macroeconomic variables. To control for issues such as omitted variables (latent factors)

and endogeneity, we supplement our QQ approach with a Bayesian heteroskedastic version, where the

conditional variance of the residuals follows a Generalized Autoregressive Conditional Heteroskedasticity

(GARCH(1,1)) specification, since biases due to omitted variables and endogeneity are strictly related to

heterskedasticity effects (Chen et al., 2009; Caporin, et al., 2018).

To the best of our knowledge, this is the first paper to study contagion across REITs and equity

markets of the U.S. surrounding the extreme events of the global financial and European sovereign debt

crises, based on a QQ approach controlling for various types of biases due to omitted variables, endogeneity
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and structural breaks. Note that, our model can be considered as an extension of the quantile-GARCH

approach of Caporin et al., (2018) to a corresponding QQ-version of the same. The remainder of the

paper is organized as follows: Section2 discusses the econometric model and estimation methodologies,

with Section 3 presenting the data and empirical results. Robustness analyses is performed in Section 4,

and Section 5 concludes the paper.

2 Model and Estimation Methodology

As we mentioned in the introduction, our purpose is to evaluate the impact of REITs returns on the

equity market to uncover possible contagion occurrences. Within the econometrics literature focusing on

contagion tests, we decided to follow the recent view put forward by Caporin et al. (2018), that analyze

the shift-contagion by adopting quantile regression.

The baseline model might might take the form of a single index model

RSP,t = α+ βRREITs,t + εt (1)

where RSP,t is the return of the S&P 500 index at time t and RREITs,t is the return of the S&P

REITs index at time t. The occurrence of contagion might be addressed by evaluating the statistical

significance of the β parameter across the quantiles of the variable of interest, the S&P 500 return.

However, this approach neglects the possible role of the location of the REITs index returns across their

density support. In fact, the possible impact on the equity market of REITs movements might depend

on both the equity market states, but also on the real estate market phases. Consequently, we generalize

the approach of Caporin et al. (2018) and move toward a more flexible quantile regression approach,

namely a non-parametric quantile regression (Koenker, 2005), also called quantile-on-quantile (Sim and

Zhou, 2015). Within a non-parametric quantile regression, the estimation of the parameters of model (1)

corresponds to the optimization of the following criterion function over a sample of size T :

min
α,β

T∑
t=1

ρτ (εt)K

(
RREITs,t − θ

h

)
(2)

where εt = RSP,t − α − βRREITs,t, ρτ (u) = u (τ − I (u < 0)) is the usual check function adopted in

quantile regression, τ is the quantile of interest for the dependent variable, K (.) is a kernel function,

θ is a the unconditional quantile of the REITs return, and h is a bandwidth. The difference between

quantile-on-quantile and non-parametric quantile regression is that in the latter the value of θ is given

by a collection of pre-defined knots on the support of the conditioning variable, while in the former the

values of θ are estimated and correspond to unconditional quantiles. In our case, as we follow a quantile-
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on-quantile approach, we will set a collection of θ values associated with unconditional quantiles of the

REITs returns.

Parameter estimation from the previous equation lead to the evaluation of the non-linear relation

between the variables when focusing on the neighbourhood of the τ quantile for the S&P 500 and the θ

quantile for the REITs. Therefore, by evaluating the variation of β over θ and τ we are able to monitor

the existence (by significance) and strength (by size) of the relationship between the variables of interest.

Following from Caporin et al. (2018), the adoption of quantile regression provides a flexible approach

for analysing how the explanatory variable influence the location, scale, and shape of the entire response

distribution. In our analyses we make a further step as we allow that the influence of the conditioning

variable changes across the distribution of the conditioning variable. However, we stress that, when the

distribution of the variables of interest show evidences of different volatility properties over time, the

estimation of the links across variables (over the joint support) might be biased or at least inefficient,

leading to incorrect evaluations. This is particularly relevant at extreme quantiles, where the dynamic

changes might be highly influenced by volatility dynamics. Hence, we take into account the possible

presence of heteroskedasticity in the variables of interest, we follow Hiemstra and Jones (1994), Koenker

and Zhao (1996), and Chen et al. (2009), and we allow for heteroskedasticity directly in the quantile

regression.

Specifically, we follow Chen et al. (2009), and introduce in the criterion function adopted for quantile-

on-quantile the heteroskedasticity characterizing the dependent variable and we resort to Bayesian es-

timation approaches. However, to simplify the computational burden, we slightly modify the criterion

function and let the Kernel interact directly with the observed quantities:

minα,β

T∑
t=1

(
ρτ (RSP,tK(RREITs,t, θ, h)− ᾱ− βRREITs,tK(RREITs,t, θ, h))

σt(τ)
+ log(σt(τ))

)
, (3)

where K(RREITs,t, θ, h) is the same Kernel function adopted above,3 and σt(τ) is the square root

of residual variance computed using quantile τ estimates of the parameters α and β together with the

parameters δ = {θ0, θ1, θ2} appearing in the variance equation

σ2
t (τ) = θ0 + θ1,e

2
t−1 + θ2σ

2
t−1. (4)

The extra logarithmic term in the criterion function ensures that the parameters do not converge to

infinity. See Xiao and Koenker (2009) for an alternative criterion function. We stress that the volatil-

3 We repeat the basic idea: The check function is r(ut, τ) with ut = yit−βi0−βi1Xit. The non-parametric QR minimizes∑
t r(ut, τ)K(Xt, γ), therefore r(ut, τ)K(Xt, γ) = ut × I(ut < 0)K(Xt, γ). This is equal to r(u′t(γ), τ) with u′t(γ) =

utK(Xt, γ). Then, we have u′t(γ) = yitK(Xt, γ) − b0(τ) − b1(τ)XtK(Xt, γ).
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ity parameters and the causal effect parameters are estimated simultaneously, resulting in a vector of

parameters that, similarly to the baseline case, depend on both the quantile of the dependent variable,

τ , and the quantile of the explanatory variable, θ. We choose a Bayesian approach to estimate the pa-

rameters because we believe this method has several advantages including: (i) accounting for parameter

uncertainty through the simultaneous inference of all model parameters; (ii) exact inferences for finite

samples; (iii) efficient and flexible handling of complex model situations and non-standard parameters;

and (iv) efficient and valid inference under parameter constraints.

Bayesian inference requires the specification of prior distributions. We chose weak uninformative priors

to allow the data to dominate inference. As it is the standard approach, we assume a normal prior for

Θτ ∼ N(Θ0,τ , Σ). Θ0,τ is set equal to the frequentist estimates of model (1); and Σ is chosen to be a

matrix with sufficiently “large” but finite numbers on the diagonal. The volatility parameters ατ follow

a jointly uniform prior, p(ατ ) ∝ I(S), constrained by the set S that is chosen to ensure covariance

stationarity and variance positivity, as in the frequentist case. These are sufficient conditions to ensure

that the conditional variance is strictly positive. See Nelson and Cao (1992) for a discussion of sufficient

and necessary conditions on GARCH coefficients. Such restrictions reduce the role of the extra logarithmic

term in equation (3).

The model is estimated using the Metropolis-within-Gibbs MCMC algorithms. Similarly to Chen et

al. (2009), we combine Gibbs sampling steps with a random walk Metropolis-Hastings (MH) algorithm to

draw the GARCH parameters (see Vrontos et al. (2000) and So et al. (2005)). To speed the convergence

and allow an optimal mixing, we employ an adaptive MH-MCMC algorithm that combines a random

walk Metropolis (RW-M) and an independent kernel (IK)MH algorithm; see Caporin et al. (2018) for

estimation details.

3 Data and Results

3.1 Data

As indicated above, our estimations involves two variables measuring the behavior of the overall equity

market and the REITs sector. In this regard, we use the S&P500 equity and S&P REITs indices data,

which in turn are obtained from Datastream of Thomson Reuters, and converted to log-returns. Remark

2: Our analyses cover the entire period of 2nd of January, 2003 to 29th of December, 2017

for a total of 3776 observations (see plot in Figure A1 in the Appendix of the paper). The

sample size is chosen to include the US financial crisis and the following recovery period.

We decided not to start before 2003 to avoid the internet bubble where the role of REITs

was limited.
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As our purpose is to show that relationship (spillover) from the REITs sector to the equity market

is time-varying, we partition the entire period into four sub-samples: the calm period arriving up to the

onset of the financial crisis covering 2nd of January, 2003 to 31st of July, 2007 (1152 observations); the

crisis period of 1st of August, 2008 to 31st of December, 2009 (611 observations); 4th of January, 2010

to 31st of December, 2012 (754 observations), which includes the post subprime crisis period up to the

European sovereign crisis, and; finally, 2nd of January, 2013 to 29th of December, 2017 (1259 observations)

to capture the period post the global financial and the European Sovereign debt crises. Table A1 in the

Appendix of the paper provides the summary statistics of each of these sub-samples. What stands out is

the non-normality in the distribution of the log-returns of both the variables due to negative skewness and

excess kurtosis. In addition, within each of the sub-samples, the S&P REITs returns is consistently more

volatile, and produces higher positive returns on average in the first and third sub-samples. In the second

sub-sample, the mean return in the REITs sector as well as the overall equity market is understandably

negative, with the former being higher in absolute terms - an indication of the origination of the crisis

from the real estate sector. In the final sub-sample, the stock market yielded higher mean positive return

than the S&P REITs, suggesting relatively stronger growth in the equity market in recent times.

3.2 Empirical Results

We proceed with the estimation of our main models and of the robustness checks on the various sub-

samples. We report here the results focusing only on the parameter β of equation (1). Given that the

parameter depends on two quantiles, the estimation output takes the form of a surface plot where we

include only statistically significant coefficients. Figure 1 reports the estimated coefficient surfaces in the

four subsamples with our main model, while Table 1 includes a subset of the estimated coefficients for

the four samples of our analysis, with Table 2 reporting the differential effects evaluated with respect to

the first sub-sample, i.e., the pre-crises calm period.

Figure 1 shows that the overall pattern is similar across periods, in particular when comparing the

first and the fourth sub-samples, which is understandable given that these two periods correspond to

the non-crises episodes of financial markets. But differences are observed by comparing the second and

fourth sub-samples. Considering the sign of coefficients, we note that the impact of REITs return on the

S&P500 return is positive across all quantiles of the two variables, but with differences in the size of

the impact. In particular, the relation between quantiles is higher when both variables are in their tails.

This suggests that, when the stock market is experiencing a negative, and probably turbulent phase,

the impact of negative REITs return is higher compared to the impact of positive REITs return, thus

contributing to the equity market instability. An opposite, and positive, behaviour is observed on the
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upper tails. The size of the impact decreases when the two variables are located in opposite tails, and

this is particularly evident in the second and fourth sub-samples. When considering the differentials, we

note that, during the subprime crisis, the REITs impact suffer a general decrease apart when looking

at extreme quantiles of both densities where we note a relevant increase of the beta coefficients. This

might signal that, during the crisis, characterized mostly by daily volatile movements in the financial

markets, the market experienced stronger spillover from the REITs sector onto the equity under both

exceptionally bear- and bull-states. With financial markets, particularly equities (overall or sector-based)

being vulnerable, this is understandable as tail-risk spillovers are likely to be stronger, since investor could

be carrying out faster re-allocation in the portfolios between riskier assets and those that are considered

safe-havens, especially during extreme movements.

On the contrary, when moving to the post-crisis period, the overall impact of REITs is observed to have

increased compared to the first sample, with differentials being almost all positive. This is understandable

in the sense that the real estate sector leading up to the crisis was doing so well that investors were

reluctant to move funds out of the REITs investments into the overall equity market. But in the wake

of the two back-to-back crises associated with the real estate sector and sovereign bond markets, market

agents were probably more confident about the performance of the regular equity market, and hence,

spillovers from the REITs sector is found to be stronger in the last sub-sample than the first one. This

line of reasoning seems to hold water, as the average returns across the first and last sub-samples show

higher returns for the REITs in the former and lower in the latter relative to the S&P500 return. Finally,

the fourth period signals that, in most cases, the coefficients move back to pre-crisis levels, with the

exceptions being the lower quantiles of the S&P500 return and the upper quantiles of REITs return. This

again makes sense in general, as we are comparing here two calm periods, with one preceding the crisis

and the other one following it. The stronger spillover during the last sub-sample from the REITs sector

to the stock market only when the performer is performing better relative to the latter is Remark 3:

in our view another indication of investors reallocating their portfolios in favor of the equity markets

possibly in fear of heating up of the REITs sector.

To verify the previous observations, we move to the analysis of coefficient surfaces, coefficient values

and differentials when accounting for the heteroskedasticity that is present in financial returns (see Figure

2, and Tables 3 and 4), and in the process account for the possible omitted variables bias. Accounting

for heretoskedasticity with Bayesian inference mainly increases tail effects, in particular when stock and

REITs returns are in different phases see Table 3. Interestingly, the effect is quite mitigated across samples

(in line with the findings of Forbes and Rigobon (2002)) and differences across the four samples in Table

4 are very small. The model captures the high volatility in the data in the second and in the third sub-

samples as large shocks, but keeps similar transmission mechanisms between the two variables. Our toned
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Fig. 1: β parameter surface over quantiles of the REITs and S&P returns. The figure reports only statistically significant
coefficients estimated from the four sub-samples.
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0.05 0.521 0.469 0.426 0.391 0.343 0.765 0.578 0.392 0.260 0.157
0.25 0.514 0.473 0.442 0.434 0.419 0.583 0.502 0.410 0.357 0.264
0.50 0.514 0.473 0.449 0.455 0.471 0.492 0.433 0.393 0.368 0.346
0.75 0.513 0.470 0.453 0.480 0.507 0.392 0.354 0.409 0.447 0.470
0.95 0.500 0.461 0.462 0.516 0.541 0.197 0.251 0.366 0.347 0.750

2010-2012 2013-2017
0.05 0.767 0.756 0.706 0.616 0.370 0.799 0.505 0.364 0.284 0.282
0.25 0.713 0.661 0.572 0.475 0.505 0.773 0.468 0.404 0.367 0.405
0.50 0.638 0.595 0.577 0.598 0.581 0.702 0.422 0.438 0.429 0.459
0.75 0.552 0.539 0.580 0.668 0.721 0.598 0.418 0.487 0.508 0.532
0.95 0.364 0.557 0.608 0.660 0.829 0.511 0.422 0.538 0.630 0.711

Table 1: Estimated coefficients for selected quantiles (S&P500 return quantiles over columns, REITs return quantiles over
rows) and the four samples. Coefficients are all statistically significant at the 1% level apart the two coefficients in italics in
the sample 2007-2009.
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Quantiles of the S&P500 return
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0.05 0.244 0.109 -0.034 -0.131 -0.187
0.25 0.069 0.028 -0.032 -0.077 -0.155
0.50 -0.022 -0.040 -0.056 -0.087 -0.126
0.75 -0.122 -0.115 -0.044 -0.033 -0.038
0.95 -0.304 -0.211 -0.095 -0.169 0.209

2010-2012 2013-2017
0.05 0.246 0.287 0.279 0.225 0.027 0.278 0.036 -0.062 -0.107 -0.061
0.25 0.199 0.188 0.129 0.041 0.086 0.259 -0.005 -0.038 -0.067 -0.014
0.50 0.124 0.122 0.128 0.143 0.109 0.188 -0.051 -0.011 -0.025 -0.012
0.75 0.038 0.069 0.127 0.188 0.214 0.085 -0.052 0.034 0.028 0.024
0.95 -0.137 0.095 0.146 0.145 0.287 0.010 -0.039 0.076 0.115 0.170

Table 2: Estimated differentials in the REITs return impact on S&P500 return for selected quantiles (S&P500 return
quantiles over columns, REITs quantiles over rows) with respect to the impact observed in the first sample.

Quantiles of the S&P500 return
0.05 0.25 0.50 0.75 0.95 0.05 0.25 0.50 0.75 0.95

Q
u

a
n
ti

le
s

of
th

e
R

E
IT

s
re

tu
rn 2003-2007 2007-2009

0.05 0.793 0.543 0.428 0.315 0.311 0.767 0.764 0.645 0.505 0.324
0.25 0.540 0.515 0.387 0.314 0.298 0.589 0.912 0.591 0.478 0.493
0.50 0.507 0.607 0.473 0.387 0.336 0.592 0.683 0.586 0.636 0.440
0.75 0.451 0.297 0.437 0.549 0.969 0.737 0.629 0.616 0.677 0.613
0.95 0.083 0.187 0.302 0.320 0.113 0.504 0.673 0.635 0.680 0.734

2010-2012 2013-2017
0.05 0.813 0.467 0.369 0.301 0.324 0.579 0.466 0.444 0.405 0.397
0.25 0.842 0.454 0.398 0.348 0.453 0.602 0.658 0.393 0.564 0.467
0.50 0.647 0.489 0.417 0.430 0.312 0.645 0.402 0.448 0.439 0.429
0.75 0.492 0.455 0.458 0.555 0.453 0.680 0.562 0.430 0.507 0.458
0.95 0.517 0.453 0.536 0.662 0.794 0.686 0.445 0.443 0.481 0.629

Table 3: Estimated coefficients for selected quantiles (S&P500 return quantiles over columns, REITs return quantiles over
rows) and the four samples with quantile regression with heteroskedasticity. The value 0 is not included in the 1% credible
interval for all coefficients.

down impact compared to the homoskedastic model is possibly an indication of the impact of the omitted

variable in the benchmark model, which we are now accounting for in the heteroskedastic Bayesian QQ

framework of ours. This result in particular, highlights the importance of accounting for GARCH-effects

to obtain reliable results.4

4 Alternative to the Bayesian QQ model, we had also estimated the benchmark model with GARCH(1,1)-filtered stock
and REITs returns. In general, and somewhat opposite to the Bayesian model, the coefficients were found to increase under
the GARCH(1,1)-filtered model, relative to the benchmark one. We however, believe that the results from the Bayesian
QQ approach to account for heteroskedasticity directly in the error structure, is more robust relative to the GARCH(1,1)-
filtered approach. This is because, the former accounts for not only linear and the heteroskedastic effects simultaneously,
but also possible differences across quantiles in the heteroskedastic behavior. Complete details of the results based on
GARCH(1,1)-filtered data is available upon request from the authors.
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Fig. 2: β parameter surface over quantiles of the REITs and S&P500 returns. The figure reports only statistically significant
coefficients estimated from the four sub-samples based on the Bayesian heteroskedastic model.
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0.25 0.049 0.397 0.204 0.164 0.195
0.50 0.084 0.077 0.113 0.249 0.104
0.75 0.286 0.333 0.178 0.128 -0.355
0.95 0.421 0.486 0.333 0.360 0.621

2010-2012 2013-2017
0.05 0.020 -0.076 -0.059 -0.014 0.013 -0.214 -0.077 0.016 0.090 0.087
0.25 0.302 -0.061 0.011 0.034 0.154 0.062 0.143 0.006 0.251 0.168
0.50 0.140 -0.118 -0.056 0.042 -0.024 0.138 -0.205 -0.025 0.052 0.092
0.75 0.041 0.158 0.021 0.006 -0.516 0.229 0.265 -0.007 -0.042 -0.511
0.95 0.435 0.267 0.234 0.342 0.681 0.604 0.258 0.141 0.162 0.516

Table 4: Estimated differentials in the REITs return impact on S&P500 return for selected quantiles (S&P quantiles
over columns, REITs quantiles over rows) with quantile regression with heteroskedasticity and with respect to the impact
observed in the first sample.
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4 Robustness analysis

In order to verify the impact of the model specification on the surface of the β parameters (its value

depend on both τ and θ) we consider as robustness checks, several alternative specifications. We consider

several possible cases applied both on the Bayesian QQ model accounting for heteroskedasticity, as we

consider this particular model to be more general and robust. We describe here the various models starting

with the baseline specification that, for comparison purposes, we report in the first line below:

M0→ RSP,t = α+ βRREIT,t + εt (5)

M1→ RSP,t = α+ βRREIT,t + δR2
REIT,t + εt (6)

M2→ RSP,t = α+ βRREIT,t + γ1RSP,t−1 + γ2RREIT,t−1 + εt (7)

M3→ RSP,t = α+ βRREIT,t + γ1RSP,t−1 + γ2RREIT,t−1 + δ1R
2
REIT,t (8)

+δ2R
2
REIT,t−1 + εt (9)

M4→ RSP,t = α+ βRREIT,t + δR2
REIT,t + φR2

SP,t−1 + εt (10)

M5→ RSP,t = α+ βRREIT,t + γ1RSP,t−1 + γ2RREIT,t−1 + δ1R
2
REIT,t (11)

+δ2R
2
REIT,t−1 + φR2

SP,t−1 + εt. (12)

The first generalization (M1) controls for the non-linearity, at each single quantile, in the impact of

the REITs return on the S&P500 return. Different from M1, M2 takes into account lagged effects of both

the dependent and explanatory variables. Specification M3 combines the elements put forward in M1 and

M2. In case M4, we extend the baseline model by including a component that proxy heteroskedasticity

effects of the dependent variable at quantiles.5 Finally, M5 combines all the possible effects, i.e., taking

M3 and M4 together. Note that, in the latter cases we control for additional heteroskedastic effects not

captured by standard GARCH models.

Tables A2 to A6 in the The Appendix of the paper contain the estimated β coefficients over selected

quantiles of the S&P500 and the REITs returns for models M1 to M5 estimated using the Bayesian

approach. Overall, by changing the model specifications, the impact on the size and surface (i.e., pattern

of behavior) of the coefficients are limited. In particular, they appear to be concentrated in the upper

quantiles of both variables and only for the last two sub-samples. We thus, find robust confirmation of

the results obtained in the previous section.

5 If we do have heteroskedasticity in the S&P 500 return, with the conditional variance depending on its past values, the
quantile of the S&P500 return depend on lagged conditional variances. We proxy the latter by lagged squared returns.
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5 Concluding Remarks

In this paper, we study contagion between REITs and the equity market in the U.S. based on an (ex-

tended) sample period of daily data covering 2003 till 2017, which in turn allows us to study the impact

of not only the global financial crisis, but also the European sovereign debt turmoil. We apply quantile-

on-quantile (QQ) based nonparametric regressions to study the impact of the REITs market on U.S.

equities. Realizing that, if structural breaks are ignored, we could mix data from different regimes, we

conduct our analysis based on sub-samples of January, 2003 to July, 2007; August, 2007 to December,

2009; January, 2010 to December, 2012, and; January, 2013 to December, 2017. These break-ups also

allow us to study the periods of pre-, during-, and post-financial and sovereign debt crises.

We find that the spillovers from the REITs on to the equity market has varied over time across the

four sub-samples, though similarity is observed to certain extent under the calmer periods captured by

the first and last sub-samples. This is not surprising given that these two sub-periods correspond to the

pre-financial and post European sovereign debt crises. Interestingly, barring the extreme ends of the two

markets, the contagion from REITs upon the stock market went down during the global financial crisis

relative to the pre-crisis period. The spillover however, seemed to have picked-up during the European

sovereign debt crisis. Importanly though, allowing for heteroskedasticity using a Bayesian approach,

reduced the overall size of the impact of REITs return on the S&P500 return, except at the tails of the

distributions. But, in general, our results were found to be robust to various model specifications.

In sum our results have two major implications: First, from an econometric point of view, we highlight

that the role of heteroskedasticity, aiming to control for the omitted variable bias in high-frequency con-

tagion analysis between securitized real estate and equity markets, should not be ignored. If neglected,

we are likely to get overestimates of the contagion effect leading to inaccurate inference. Second, from

the perspective of an investor, our contagion results imply that, irrespective of the general macroecomic

scenario, i.e., whether the U.S. economy is in recession or not, diversification benefits are not possible,

especially under extreme bearish and bullish-situations of both real estate and equity markets. Given this,

a policy-maker worried about contagion of especially the negative shocks, which in turn can deepen eco-

nomic crises given the leading role of asset prices, should aim to revive the economy based on expansionary

policies.
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Appendix

 

Fig. A1: Data Plot of S&P REITs and S&P500 Returns



1
6Table A1: Summary statistics

02/01/2003 to 31/07/2007 01/08/2008 to 31/12/2009 04/01/2010 to 31/12/2012 02/01/2013 to 29/12/2017
Statistic S&P REITs S&P 500 S&P REITs S&P 500 S&P REITs S&P 500 S&P REITs S&P 500

Mean 0.0006 0.0004 -0.0007 -0.0004 0.0005 0.0003 0.0002 0.0005
Median 0.0011 0.0008 -0.0011 0.0008 0.0012 0.0006 0.0008 0.0005

Maximum 0.035 0.0348 0.1712 0.1096 0.095 0.0463 0.0337 0.0383
Std. Dev. 0.0101 0.0078 0.0419 0.0206 0.0158 0.0117 0.0092 0.0075
Skewness -0.5794 -0.0703 -0.0495 -0.133 -0.0878 -0.4274 -0.5174 -0.4097
Kurtosis 4.8339 4.7339 6.2861 7.8105 7.7694 6.6809 4.9926 5.8921

Jarque-Bera 225.9005 145.2575 275.1658 590.9345 715.6069 448.6242 264.4549 474.000
Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 1152 611 754 1259
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Quantiles of the S&P500 return
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rn 2003-2007 2007-2009
0.05 0.793 0.599 0.360 0.271 0.192 0.750 0.775 0.796 0.664 0.364
0.25 0.580 0.625 0.413 0.300 0.287 0.624 0.663 0.579 0.446 0.339
0.50 0.487 0.458 0.457 0.334 0.203 0.708 0.690 0.588 0.518 0.415
0.75 0.257 0.413 0.436 0.659 0.705 0.510 0.659 0.660 0.733 0.632
0.95 -0.086 0.050 0.341 0.368 0.107 0.755 0.658 0.701 0.652 0.749

2010-2012 2013-2017
0.05 1.069 0.513 0.338 0.210 0.298 0.486 0.468 0.323 0.225 0.245
0.25 0.904 0.488 0.365 0.336 0.130 0.431 0.653 0.378 0.354 0.364
0.50 0.479 0.444 0.477 0.425 0.298 0.635 0.499 0.477 0.495 0.512
0.75 0.492 0.443 0.594 0.601 0.785 0.403 0.394 0.460 0.585 1.055
0.95 0.138 0.608 0.737 0.877 1.393 0.353 0.281 0.499 0.720 1.068

Table A2: Estimated coefficients for selected quantiles (S&P500 return quantiles over columns, REITs return quantiles
over rows) and the four samples with quantile regression with heteroskedasticity using model M1. A number in italics
indicates that the value 0 is included in the 1% credible interval.

Quantiles of the S&P500 return
0.05 0.25 0.50 0.75 0.95 0.05 0.25 0.50 0.75 0.95
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rn 2003-2007 2007-2009

0.05 0.735 0.608 0.462 0.371 0.435 0.750 0.715 0.634 0.596 0.352
0.25 0.454 0.475 0.428 0.429 0.338 0.649 0.832 0.577 0.545 0.615
0.50 0.422 0.421 0.390 0.346 0.252 0.695 0.714 0.559 0.502 0.463
0.75 0.406 0.360 0.417 0.397 0.522 0.686 0.493 0.595 0.678 0.870
0.95 0.199 0.301 0.306 0.268 -0.056 0.590 0.699 0.625 0.733 0.708

2010-2012 2013-2017
0.05 0.768 0.508 0.348 0.300 0.331 0.518 0.480 0.443 0.365 0.442
0.25 0.687 0.480 0.407 0.429 0.332 0.505 0.507 0.428 0.408 0.467
0.50 0.672 0.532 0.437 0.488 0.431 0.401 0.516 0.412 0.363 0.408
0.75 0.547 0.387 0.474 0.512 0.478 0.614 0.395 0.611 0.418 0.518
0.95 0.394 0.465 0.551 0.610 0.792 0.537 0.437 0.440 0.501 0.834

Table A3: Estimated coefficients for selected quantiles (S&P500 return quantiles over columns, REITs return quantiles
over rows) and the four samples with quantile regression with heteroskedasticity using model M2.
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Quantiles of the S&P500 return
0.05 0.25 0.50 0.75 0.95 0.05 0.25 0.50 0.75 0.95
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rn 2003-2007 2007-2009
0.05 0.603 0.480 0.394 0.294 0.386 0.679 0.793 0.742 0.636 0.637
0.25 0.594 0.480 0.450 0.355 0.249 1.224 0.628 0.552 0.495 0.425
0.50 0.556 0.400 0.387 0.375 0.222 0.767 0.636 0.701 0.711 0.447
0.75 0.343 0.375 0.430 0.476 0.620 0.608 0.611 0.667 0.718 0.780
0.95 0.471 0.354 0.369 0.241 0.068 0.650 0.816 0.698 0.740 0.604

2010-2012 2013-2017
0.05 0.969 0.492 0.343 0.263 0.301 0.493 0.454 0.349 0.199 0.190
0.25 0.803 0.516 0.366 0.368 0.172 0.560 0.513 0.414 0.349 0.448
0.50 0.714 0.630 0.417 0.417 0.437 0.467 0.403 0.436 0.393 0.505
0.75 0.437 0.352 0.520 0.622 0.688 0.537 0.429 0.462 0.541 0.720
0.95 0.196 0.694 0.689 0.819 0.921 0.237 0.353 0.418 0.693 1.117

Table A4: Estimated coefficients for selected quantiles (S&P500 return quantiles over columns, REITs return quantiles
over rows) and the four samples with quantile regression with heteroskedasticity using model M3.

Quantiles of the S&P500 return
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0.05 0.635 0.633 0.388 0.308 0.139 0.707 0.746 0.755 0.643 0.310
0.25 0.562 0.587 0.499 0.352 0.370 0.847 0.657 0.562 0.453 0.420
0.50 0.461 0.435 0.390 0.452 0.343 0.656 0.678 0.799 0.631 0.414
0.75 0.334 0.317 0.524 0.732 1.088 0.420 0.524 0.763 0.645 0.696
0.95 -0.110 0.013 0.197 0.087 0.551 0.663 0.748 0.681 0.650 0.791

2010-2012 2013-2017
0.05 0.945 0.463 0.324 0.219 0.258 0.557 0.449 0.320 0.204 0.313
0.25 0.866 0.551 0.331 0.332 0.216 0.787 0.458 0.429 0.553 0.471
0.50 0.507 0.434 0.437 0.419 0.431 0.621 0.471 0.488 0.410 0.546
0.75 0.403 0.411 0.564 0.617 0.772 0.454 0.392 0.582 0.564 0.870
0.95 0.212 0.609 0.713 0.797 1.211 0.344 0.286 0.492 0.681 1.064

Table A5: Estimated coefficients for selected quantiles (S&P500 return quantiles over columns, REITs return quantiles
over rows) and the four samples with quantile regression with heteroskedasticity using model M4. A number in italics
indicates that the value 0 is included in the 1% credible interval.

Quantiles of the S&P500 return
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0.05 0.640 0.487 0.471 0.284 0.385 0.638 0.710 0.735 0.606 0.226
0.25 0.545 0.517 0.428 0.486 0.363 1.068 0.662 0.575 0.422 0.355
0.50 0.501 0.421 0.406 0.384 0.225 0.451 0.705 0.560 0.622 0.494
0.75 0.419 0.340 0.561 0.477 0.401 0.448 0.559 0.596 0.785 0.708
0.95 0.510 0.433 0.349 0.133 0.161 0.782 0.811 0.732 0.714 0.591

2010-2012 2013-2017
0.05 0.948 0.520 0.350 0.282 0.245 0.618 0.448 0.380 0.224 0.218
0.25 0.857 0.461 0.349 0.301 0.187 0.655 0.454 0.428 0.341 0.536
0.50 0.427 0.389 0.385 0.396 0.307 0.667 0.440 0.443 0.425 0.542
0.75 0.470 0.414 0.499 0.568 0.769 0.534 0.441 0.426 0.559 0.708
0.95 0.206 0.606 0.729 0.745 1.065 0.287 0.313 0.397 0.681 1.036

Table A6: Estimated coefficients for selected quantiles (S&P500 return quantiles over columns, REITs return quantiles
over rows) and the four samples with quantile regression with heteroskedasticity using model M5.
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