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Abstract: Insurance agents often provide crop hail damage estimates based on their personal ex-
perience and field samples, which are not always representative of the investigated field’s spatial
variability. For these reasons, farmers and the insurance market ask for a reliable, objective, and
less labor-intensive method to determine crop hail losses. Integrating remote sensing and crop
modeling provides a unique opportunity for the crop insurance market for a reliable, objective,
and less labor-intensive method to estimate hail damage. To this end, a study was conducted on
eight distinct maize fields for a total of 90 hectares. Five fields were damaged by the hailstorm that
occurred on 13 July 2019 and three were not damaged. Soil and plant samples were collected to
characterize the experimental areas. The Surface Energy Balance Algorithm for Land (SEBAL) was
deployed to determine the total aboveground biomass and obtainable yield at harvest, using Landsat
7 and 8 satellite images. Modeled hail damages (HDDSSAT1, coupling SEBAL estimates of obtainable
yield and DSSAT-based potential yield; HDDSSAT2, coupling yield map at harvest and the Decision
Support System for Agrotechnology Transfer (DSSAT)-based potential yield) were calculated and
compared to the estimates of the insurance company (HDinsurance). SEBAL-based biomass and
yield estimates agreed with in-season measurements (−4% and +0.5%, respectively). While some
under and overestimations were observed, HDinsurance and HDDSSAT1 averaged similar values
(−4.9% and +3.4%) compared to the reference approach (HDDSSAT2).

Keywords: remote sensing; hail damage; crop models; maize; crop insurance

1. Introduction

Hailstorms are unpredictable events that can seriously damage crops, as shown
by much research in Europe [1–3], United States [4–6] and Australia [7]. Because of its
climatology, Italy’s northern part is well known as one of the most hail-exposed areas in
Europe [8,9]. The potential hail index (PHI) proposed by [10,11] identifies the highest value
in the Po Valley (northern Italy) with a total duration of 35 to 50 days. On the contrary,
according to the National Climatic Data Center (NCDC) [1], hailstorms occur in all Italian
regions with high hail frequency in southwest Italy.

From an extensive analysis made on the National Solidarity Fund data for the North-
East Italy, [2] observed 226 hail events over the period 1990–2004 with a total of 650 million
euros of damage to crops.

As the risk of severe weather events rises, farmers are more willing to purchase crop
insurance to prevent related economic losses. The global agricultural insurance market
is expected to grow over the period 2017–2022 at a compound annual growth rate of
2.8%. For maize, crop hail damage is assessed by insurance company agents according
to parameters, such as plant density reduction, growth stage when the event occurred,
degree of defoliation and direct damage to maize ears [12–14]. These parameters are
manually determined on specific sampling points identified within the damaged area
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or field. Manual surveys are labor-intensive, time-consuming, and subjective, thus not
representing the entire damaged area. For these reasons, as insurance companies have
been facing increasing claims, reliable techniques to estimate crop losses are requested.

Remote sensing has been widely used to estimate maize defoliation due to hail [15,16].
In particular, maize defoliation related to hail events can be calculated (i) using imagery
(e.g., Landsat, Sentinel 2) collected right after the event or (ii) comparing imagery acquired
before and after the event. Remote sensing provides a cheaper and less time-consuming,
and laborious alternative to in situ measurements. [17] used remotely sensed data (red,
green, blue, and near-infrared) to estimate hail damage and its severity on maize and
soybean. Moreover, [18] used normalized difference vegetation index (NDVI) to evalu-
ate hail damage level and post-hailstorm damaged acreage with an overall accuracy of
86%. [19] used a similar approach on potato. Green NDVI, NDVI and soil-adjusted NDVI
well predicted hail damage at early stages. An exhaustive literature review of the poten-
tial and actual support of remote sensing to the insurance industry [20] pointed out that
numerous remote sensing-based techniques are available, but their adoption is weak. [20]
argued that the adoption of index-based insurance approaches has great promise regarding
economic profitability, with the possibility to develop new markets and re-design the way
the business is done.

The current study aims to develop a new method that integrates remote sensing
data and crop modeling to advance hail damage estimate on maize. It provides a unique
opportunity for the Italian and European insurance market to move toward a reliable,
objective, and less labor-intensive methods.

2. Materials and Methods
2.1. Study Fields, Weather Data, and Soil Characterization

The experiment was conducted in 2019 in eight distinct fields for approximately 90 ha
located across the low plain of Veneto, Northeast Italy (Figure 1, Table 1). The climate is
sub-humid, with an annual rainfall of 746 mm. In the median year, rainfall is highest in
autumn and lowest in winter. Temperatures increase from January (minimum average:
−1.3 ◦C) to July (maximum average: 31.4 ◦C). The reference evapotranspiration (ETo)
between planting and harvest is 875 mm, with an average peak equal to 6.4 mm day−1

in July. ETo exceeds rainfall from May to October. According to the Soil Survey Staff
(1998), soil in the experimental areas are mainly Fluvaquentic Endoaquepts, fine, mixed,
calcareous, mesic and Aquic Haplustepts fine-silty, mixed mesic.

The 2019 season was characterized by a wet April, May and July, while June reported
low rainfall (Figure 2). Precipitation totaled 435 mm between planting and harvest. Mini-
mum and maximum temperatures ranged on average from 2.5 ◦C and 18.1 ◦C in March to
14.7 ◦C and 31.4 ◦C in July. Reference ETo totaled 875 mm.

Maize (Zea mays L.) seeds of different varieties from two distinct maturity groups (FAO
300 and FAO 500) were planted between 27 March and 29 March 2019, at 0.75 m inter-row
spacing and seeding rate of 7.5 seeds m−2 (Table 1). Five out of eight fields were damaged
by hailstorms that occurred on 13 July 2019 (damaged; D), while the other three were
not damaged (ND). Since different farmers managed the areas with different agronomic
protocols, all the information on planting, fertilization, irrigation and harvest are reported
in Table 1. All the fields were harvested between 18 August and 17 September 2019.

2.2. Soil Parameters, Plant Samples and Yield Maps

Disturbed soil samples were collected at five locations per field from two different
layers (0–0.5 m and 0.5–0.8 m) for a total of 80 samples. Soil texture was determined using
a Malvern Mastersizer 2000 (Malvern Instruments Ltd., Great Malvern, UK) laser particle
size analyzer. Before analysis, samples were air-dried, sieved at 2 mm and shaken for 12 h
at 200 rpm in a 2% sodium hexametaphosphate solution. Soil pH [21], organic carbon (SOC;
samples sieved at 0.5 mm; [21]) total Kjeldahl nitrogen (TKN, [21]) were determined on
soil samples bulked at 0–0.5 m and 0.5–0.8 m, for a total of 16 values.
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from the Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto (ARPAV; 
http://www.arpa.veneto.it/, accessed on 1 July 2021) weather station in Rovigo. 
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Figure 1. Aerial image of the study fields (Esri, 2019) with numbers indicating the different experimental areas discussed
in Table 1.

Table 1. Planting, Fertilization, Irrigation and Harvest dates for all the study fields. Damaged fields are labeled as D,
whereas not damaged fields are marked as ND. * Irrigation events are expressed as total irrigation events and water volumes
(in m3/ha).

Field ID FAO Class Planting Date Fertilization Irrigation * Harvest

Field 1; D 500 03/29/19 270 N; 100 P2O5 3; 450 09/04/19
Field 2; D 500 03/28/19 170 N; 125 P2O5 N/A 08/28/19
Field 3; D 500 03/27/19 300 N; 184 P2O5 2; 500 09/02/19
Field 4; D 300 03/28/19 230 N; 185 P2O5 N/A 08/18/19
Field 5; D 300 03/28/19 230 N; 185 P2O5 N/A 08/18/19

Field 6; ND 500 03/27/19 295 N; 105 P2O5 1; 500 09/19/19
Field 7; ND 500 03/28/19 230 N; 80 P2O5; 80 K2O 2; 450 09/14/19
Field 8; ND 300 03/28/19 265 N; 30 P2O5 2; 500 08/20/19

Soil texture ranged from silty clay (Field 1) to silty-clay-loam (Field 3, 5, 6 and 7) and
silty loam (Field 2, 4, 8) (Supplementary Material). Soil reaction was sub-alkaline, with a
pH that slightly increased by depth. SOC and TKN ranged from 0.59–1.80% and 0.07 to
0.20%, respectively, with an average C/N of 8. Relative high SOC was observed at the top
layer of the finer soils.

Before harvest, biomass samples were collected on the exact five locations per field.
Two 1 m2 plots were destructively harvested, dried at 65 ◦C for 24 h in a forced-air oven to
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determine the total aboveground dry weight (kg DM ha−1), grain dry weight (kg DM ha−1)
and harvest index (HI). Harvest index was calculated as (Equation (1)):

HI = grain dry weight/(grain dry weight + total above − ground dry weight) (1)

Yield maps were collected using a Claas Lexion 760TT (CLAAS, Harsewinkel, Germany)
at Field 4, 5, a John Deere S770 (John Deere, Moline, IL) at field 6 and a Case IH AF-9230
(CNH Industrial, London, UK) at field 1, 2, and 3. All the combines were equipped with a
yield monitor and a differential global positioning system (DGPS). They had a 7.5 m header
and collected yield data every 5 s on the Claas Lexion combine and every second on the
John Deere and Case IH combines. Yield maps were not generated for field 7 and 8, and
measured yield was estimated dividing the total grain weight by the field size (in hectares).
Raw yield data were imported using SMS™ Advanced (AgLeader Technology, Ames, ID,
USA), cleaned to exclude field-edge effect and combine maneuvers [22] and expressed
as grain dry matter per hectare (t DM ha−1). Yield data were resampled at 30 × 30 m by
ordinary kriging analysis (ArcMap 10.1, ESRI, Redlands, CA, USA) to match the spatial
resolution of the Surface Energy Balance Algorithm for Land (SEBAL) maps.
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Figure 2. Daily maximum (black line), minimum (red line) air temperature, reference DSSAT
evapotranspiration (gray line), and rainfall (blue vertical bars) during the 2019 growing season
from the Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto (ARPAV;
http://www.arpa.veneto.it/, accessed on 1 July 2021) weather station in Rovigo.

2.3. Field Survey for Hail Damage with the Insurance Company Method

Along with the biomass samples, field surveys were performed on the exact five
sampling locations per field by the insurance company’s agents to determine hail-related
crop losses and estimate crop hail damage (HDinsurance). HDinsurance was calculated as
the lowest value between the insured production and the potential production minus the
estimated obtainable yield. The insured production is defined as the amount of yield (in
kg DM ha−1) that the farmer has insured for the specific field. In contrast, the potential
production is the estimated obtainable yield for a specific growing season without crop
hail losses. The potential production was first estimated according to the methodological
approach provided by [23] and later validated by the insurance agents personal experience,
considering the seasonal weather trends and yield levels reached by similar maize cultivars
in contiguous, non-damaged areas. It is an expert-dependent, subject to bias, and not
spatial variability-sensitive approach, but this is the most commonly used method by
insurance agents during field surveys.

http://www.arpa.veneto.it/
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The estimated obtainable yield is defined as the production verified for a specific
growing season after the hailstorm event. The obtainable yield was estimated through
manual samplings, collecting all the plants on a total of 10 m2 areas on the five sampling
locations considering the total number of plants per m−2, total number of kernels per ear,
and the average kernel weight.

Commonly, the insured production is equal to or lower than the potential production,
so HDinsurance is calculated as follows (Equation (2)):

HDinsurance (kg ha−1) = Potential Production − Obtainable Production (2)

In some cases, there could be some additional crop losses not related to the hail events
(i.e., drought stress, pest damage, etc.). For this reason, HDinsurance is adjusted, removing
these effects. The HDinsurance is then converted into a percentage dividing the damage
in kg ha−1 by the lowest value between potential production and insured production as
discussed above.

Five different HDinsurance values were determined for the five different locations in
each field and later averaged to determine the average crop hail damage for the entire field.

2.4. Seasonal ET, Actual Biomass and Yield Estimates Using the Surface Energy Balance
Algorithm for Land (SEBAL)

The Surface Energy Balance Algorithm for Land (SEBAL) determines the actual evapo-
transpiration (ETr) of each pixel by solving the energy balance equation (Equation (3); [24]):

λE = Rn − G0 − H (3)

where Rn is the net radiation, λE is the latent heat flux, G0 is the soil heat flux, and H is the
sensible heat flux. ETr temporal integration was based on the calculation of j-th day fraction
ETrFj = ETSebal,j/ET0,j (where j refers to the satellite image acquisition date and ET0,j to the
potential evapotranspiration for day j). ETrFj, as an estimate of crop stress coefficient, was
linearly interpolated for the period between two consecutive satellite images to compute
the seasonal ET (termed ETs) using the following equation:

ETs = ∑
j

tj+1

∑
i=tj

ETrFiXEToi

 (4)

where tj and tj+1 delimit a short period around the acquisition date j, ETrFi is the linearly
interpolated evapotranspiration fraction at day i. Landsat 7 and 8 images from 30 March,
15 April, 30 April, 1 May, 16 May, 24 May, 1 June, 9 June, 18 June, 25 June, 3 July, 20 July,
4 August, and 20 August 2019 were downloaded and processed to calculate the energy
balance components. All the selected images had favorable clear-sky weather conditions.
Visible, NIRs and SWIRs bands (bands 1–5 and 7 for Landsat 7; 2–7 for Landsat 8) with a
spatial resolution of 30 × 30 m were used for albedo (α), and NDVI calculations. Thermal
band (band 6 for Landsat 7, and band 10 for Landsat 8) downscaled at 30 × 30 m were
used to estimate surface temperature (Ts), and H. Atmospheric correction was performed
to convert the top-of-atmosphere (TOA) radiance into surface reflectance using the second
simulation of the satellite signal in the solar spectrum algorithm (6S) [25].

Maize total biomass accumulation (in kg DM ha−1 day−1) was calculated for all the
satellite images using the fraction of absorbed photosynthetically active radiation (fPAR),
the ETfr, and light use efficiency factor (e′) set at 4 g/MJ [24]. fPAR was estimated from
NDVI values, as shown in Equation (5) [26]:

f PAR = −0.161 + 1.257× NDVI (5)



Remote Sens. 2021, 13, 2655 6 of 13

Total biomass (BIO) was converted into total aboveground biomass, excluding root
biomass, as total biomass × 0.77. The formula assumes that root biomass represents
approximately 23% of the total biomass at harvest (Equation (6); [25]).

total aboveground biomass
(

kg DM ha−1
)
= e′ × ET f r× f PAR× 0.84× 0.77 (6)

Maize yield was obtained by multiplying the total aboveground biomass for each
pixel by the average HI calculated for each field from biomass samples, as discussed in 2.2
(Equation (1)). The field-to-field variability in HI was considered instead of using a flat HI
value which often leads to over or underestimating the actual crop yield [26,27]. Moreover,
model sensitivity to HI parameter was tested feeding the model with literature HI values
(0.4, 0.45 and 0.5).

SEBAL-derived average yield values were then calculated for each field, except for
field 8, and compared to the real yield averages determined with the yield maps at harvest.
Relative percentage error was calculated for each pixel, comparing SEBAL and real yield
averages (Equation (7)).

RELATIVE ERROR =

∣∣∣∣ (REAL YIELD− SEBAL YIELD)

REAL YIELD

∣∣∣∣× 100 (7)

2.5. The Decision Support System for Agrotechnology Transfer (DSSAT) Crop Model

The Decision Support System for Agrotechnology Transfer (DSSAT), CERES-Maize [28]
crop model was used to simulate the potential yield (undamaged) of maize cultivars [29,30].
DSSAT simulates crop growth and development as a function of weather data, soil parame-
ters, crop management, and genotype parameters. Soil parameters and crop management
data, including planting date, density and depth, row spacing, fertilization and irrigation
events, are reported in Table 1 and Supplementary Material.

Genotype parameters include thermal time from seedling emergence to the end
of the juvenile phase (P1), the extent to which development is delayed for each hour
increase in photoperiod above the longest photoperiod at which development proceeds at a
maximum rate (P2), thermal time from silking to physiological maturity (P5), the maximum
number of kernels per plant (G2), kernel filling rate during the linear grain filling stage
and under optimum conditions (G3), the interval in thermal time between successive leaf
tip appearances (PHINT).

Minimum weather data required to run DSSAT, solar radiation (MJ m−2), minimum
and maximum air temperature (◦C) and daily precipitation (mm) during the 2019 growing
season were provided by the Agenzia Regionale per la Prevenzione e Protezione Ambi-
entale del Veneto (ARPAV) weather station (http://www.arpa.veneto.it/ (accessed on
1 November 2020)) located in Rovigo, Italy (45◦02′00.3′ ′N, 11◦49′33.5′ ′E).

2.5.1. Cultivar Calibration and Potential Yield Estimates Using DSSAT

The calibration procedure of the CERES-Maize was carried out running DSSAT in its
sensitivity analysis tool. Starting for the default maize cultivar included in the DSSAT. CUL
file, the two maize cultivars (FAO 300 and 500) were calibrated using yield data recorded
during the 2019 season at harvest, soil data and weather data only for not damaged fields.

For the FAO 300 cultivar, the calibration was performed using yield data from one
field, and the FAO 500 cultivar was calibrated using yield data recorded in two fields. The
cultivars were manually calibrated, adjusting the aforementioned genotypic parameters
(P1, P2, P5, G2 and G3). Simulated results were then compared to the observed yield.
The genetic parameters were estimated through a trial-and-error, iterative approach to
minimize the error between simulated and observed yield.

http://www.arpa.veneto.it/
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2.5.2. Estimates of Hail Damage with DSSAT and SEBAL-Based Methods

The DSSAT-calibrated FAO 300 and 500 cultivars were first used to estimate the
five damaged fields’ potential yield, and later combined with the obtainable production
using SEBAL (HDDSSAT1) or real yields (HDDSSAT2) Figure 3. The HDDSSAT1 method was
extended to estimate the potential production using HI values from the literature (0.40,
0.45, 0.50), hereafter labeled as HDDSSAT1_0.4, HDDSSAT1_0.45, and HDDSSAT1_0.5.
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Moreover, the HDDSSAT1 calculation approach was extended to the literature HI
values. These methods are labeled as HDDSSAT1_0.4, HDDSSAT1_0.45, and HDDSSAT1_0.5. All
the methodologies were compared to the HDinsurance to estimate differences between the
methods. Hail damage was calculated from the DSSAT-estimated potential yields as
in Figure 3.

3. Results
3.1. SEBAL-Based vs. Measured Biomass and Yield Estimates

Measured biomass showed high spatial variability, both within damaged and not
damaged fields, varying from 14.8 to 21.0 t DM ha−1 and a coefficient of variation (CV,
expressed as%) ranging from a minimum of 1.3% (Field 4) to a maximum of 23.2% (field 5).
Except for field 4, all the other fields had CV higher than 12%. The harvest index (HI),
exhibited remarkable in- variability in field 2 (mean and CV of 0.53 and 19.0%), field 3
(mean and CV of 0.62 and 17.6% ) and field 5 (mean and CV of 0.40 and 27.8%). On the
contrary, the variability was lower in field 1 (mean and CV of 0.54 and 8.2%) and field 4
(mean and CV of 0.48 and 3.7%) and not damaged fields 6 (mean and CV of 0.51 and 5.4%)
and field 7 (mean and CV of 0.62 and 7.4%). Measured yield at harvest mirrored the total
biomass results, ranging on average from 6.0 t DM ha−1 (field 1) to 11.9 t DM ha−1 (field 7).

Seasonal ET (ETS) maps of the damaged fields calculated by SEBAL highlighted large
in-field and field-to-field variability (Figure 4). Seasonal ET ranged from 282 mm (field 4)
to 471 mm (field 5), with lower variability in field 1 (CV = 6.9%), field 2 (CV = 3.8%), and
field 4 (CV = 8.2%) and higher in field 3 (CV = 14.0%) and 5 (CV = 12.0%).
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The fraction ETrFj ranged from a minimum average of 0.64 in field 4 to a maximum
of 1.15 in field 5. Moderate variability was observed for all the investigated fields, with a
coefficient of variation ranging between 3.6% (field 2) and 10.1% (field 3).

SEBAL-based algorithm well predicted the biomass at the two undamaged fields (field 6
and 7. SEBAL biomass was not calculated for field 8), with an average error of −4.0%,
but underestimated (on average, −19.3%) biomass in most of the damaged fields with
differences up to 35.0% as the maximum observed at Field 4. Considering all the damaged
and undamaged fields, SEBAL underestimated the actual biomass by 15.1% (Figure 5).
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SEBAL-based yields, calculated using literature HI (0.4, 0.45 and 0.5) values, are shown
in Table 2. The relative errors calculated using the actual HI for damaged, not damaged,
and all (damaged+not damaged) were, by far, the lowest. In fact, SEBAL-derived yield
calculated using the actual HIs performed better than all the literature value-fed approaches
with an average relative error of 10.8% for not damaged fields, 16.2% for damaged fields,
and 14.7% combining damaged and not damaged fields.

Table 2. Comparison between measured yield and SEBAL-estimated yield using the actual (SEBAL HIreal) and literature
harvest index (SEBAL HI0.4, SEBAL HI0.45, SEBAL HI0.5). Values in parenthesis represent the relative error from the
measured yield at harvest. NC identifies not calculated SEBAL values.

Field ID Measured Yld
[t DM ha−1]

SEBAL HIreal
[t DM ha−1]

SEBAL HI0.4
[t DM ha−1]

SEBAL HI0.45
[t DM ha−1]

SEBAL HI0.5
[t DM ha−1]

Field 1, D 6.01 7.81 (30.0) 5.79 (3.7) 6.51 (8.3) 7.23 (20.3)
Field 2, D 6.33 6.25 (1.3) 4.72 (25.5) 5.31 (16.2) 5.90 (6.9)
Field 3, D 9.17 9.31 (1.5) 6.01 (34.5) 6.76 (26.3) 7.51 (18.1)
Field 4, D 8.36 4.63 (44.6) 3.86 (53.9) 4.34 (48.1) 4.82 (42.3)
Field 5, D 6.28 6.51 (3.7) 6.51 (3.7) 7.32 (16.6) 8.14 (29.6)

Field 6, ND 9.16 10.80 (17.9) 8.47 (7.5) 9.53 (4.0) 10.59 (15.6)
Field 7, ND 11.90 11.46 (3.7) 7.44 (37.5) 8.37 (29.7) 9.30 (21.8)
Field 8, ND 10.70 NC NC NC NC

Relative yield errors generated by SEBAL and yield map comparison presented high
spatial variability (Figure 6, Supplementary Materials). The average relative error ranged
from a minimum of 13.4% for field 2 to a maximum of 81.6% for field 4. High spatial
variability was observed in fields 1, 4, and 5, with a standard deviation of 42.7%, 33.0%,
and 54.0%. Field 2, 3, and 5 presented lower spatial variability with a standard deviation
between 11.5% and 19.8%. Relative yield maps were not generated for field 7 and 8, since
these fields were harvested without a yield-mapping system.
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3.2. DSSAT Calibration and Potential Yield Estimates

The calibrated DSSAT well represented the measured yield for the not damaged
fields. Measured and simulated yield averaged 9.1 t and 8.5 DM ha−1 for field 6, 11.9 and
12.3 t DM ha−1 for field 7, and 10.7 and 11.3 t DM ha−1 for field 8.

After calibration, DSSAT was used to simulate the potential yield for the damaged
fields and compared with the potential yields estimated by the insurance agents (Figure 7).
On average, DSSAT potential yields resulted slightly higher (+5.2%) than the insurance
company’s values. However, significant differences were observed for field 3 and field 5,
being DSSAT predicting +32.4% in the former and −19.6% in the latter compared to
insurance estimates).

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 13 
 

 

3.2. DSSAT Calibration and Potential Yield Estimates 
The calibrated DSSAT well represented the measured yield for the not damaged 

fields. Measured and simulated yield averaged 9.1 t and 8.5 DM ha−1 for field 6, 11.9 and 
12.3 t DM ha−1 for field 7, and 10.7 and 11.3 t DM ha−1 for field 8. 

After calibration, DSSAT was used to simulate the potential yield for the damaged 
fields and compared with the potential yields estimated by the insurance agents (Figure 
7). On average, DSSAT potential yields resulted slightly higher (+5.2%) than the insurance 
company’s values. However, significant differences were observed for field 3 and field 5, 
being DSSAT predicting +32.4% in the former and −19.6% in the latter compared to insur-
ance estimates). 

 
Figure 7. DSSAT-estimated potential yield (x axis) and potential yield estimates from the insur-
ance agents (y axis) for the five damaged fields. Values are expressed as kg DM ha−1. The 1:1 line is 
reported in red. 

3.3. Comparison of the Hail Damage Approaches. 
The HDinsurance, HDDSSAT1, and HDDSSAT2 methods presented similar values for fields 2, 

3 and 5, while remarkable differences were observed for Field 1 and 4 (Table 2). In field 1, 
the use of the DSSAT crop simulation model and the insurance method led to similar po-
tential yield estimates (9.74 vs. 9.52 t DM ha−1). However, the measured yield was sensibly 
lower than the SEBAL and insurance agents’ estimates of obtainable yield. For this reason, 
the resulting HDDSSAT2, using real yields, was higher (38.3%) than the other two approaches 
(HDinsurance = 22.8%; HDDSSAT1 = 19.8%). Even in field 4, the SEBAL-estimated obtainable 
yield was notably lower than the measured yield and insurance company’s estimates (4.6 
vs. 8.4 and 7.7 t DM ha−1). The resulting HDDSSAT1 was more than four times higher than 
the HDinsurance and HDDSSAT2 (51.1% vs. 13.0% and 11.7%, respectively). On average, hail 
damage totaled 19.3%, 26.1%, and 22.5% for the HDinsurance, HDDSSAT1, and HDDSSAT2, respec-
tively (Table 3). 

Table 3. Percentage hail damage estimates calculated for the different methodologies. 

Field 
HD 

Insurance 

HD 
DSSAT1 

HD 
DSSAT2 

HD 
DSSAT1_0.4 

HD 
DSSAT1_0.45 

HD 
DSSAT1_0.5 

[%] [%] [%] [%] [%] [%] 
FIELD 1 22.8 19.8 38.3 40.6 33.2 25.7 
FIELD 2 20.2 15.3 14.2 36.1 28.1 20.1 
FIELD 3 30.8 34.6 35.6 57.8 52.5 47.3 
FIELD 4 13.0 51.1 11.7 59.2 54.2 49.1 

Figure 7. DSSAT-estimated potential yield (x axis) and potential yield estimates from the insurance
agents (y axis) for the five damaged fields. Values are expressed as kg DM ha−1. The 1:1 line is
reported in red.

3.3. Comparison of the Hail Damage Approaches

The HDinsurance, HDDSSAT1, and HDDSSAT2 methods presented similar values for fields
2, 3 and 5, while remarkable differences were observed for Field 1 and 4 (Table 2). In field
1, the use of the DSSAT crop simulation model and the insurance method led to similar
potential yield estimates (9.74 vs. 9.52 t DM ha−1). However, the measured yield was
sensibly lower than the SEBAL and insurance agents’ estimates of obtainable yield. For this
reason, the resulting HDDSSAT2, using real yields, was higher (38.3%) than the other two
approaches (HDinsurance = 22.8%; HDDSSAT1 = 19.8%). Even in field 4, the SEBAL-estimated
obtainable yield was notably lower than the measured yield and insurance company’s
estimates (4.6 vs. 8.4 and 7.7 t DM ha−1). The resulting HDDSSAT1 was more than four
times higher than the HDinsurance and HDDSSAT2 (51.1% vs. 13.0% and 11.7%, respectively).
On average, hail damage totaled 19.3%, 26.1%, and 22.5% for the HDinsurance, HDDSSAT1,
and HDDSSAT2, respectively (Table 3).

Table 3. Percentage hail damage estimates calculated for the different methodologies.

Field
HDInsurance HDDSSAT1 HDDSSAT2 HDDSSAT1_0.4 HDDSSAT1_0.45 HDDSSAT1_0.5

[%] [%] [%] [%] [%] [%]

FIELD 1 22.8 19.8 38.3 40.6 33.2 25.7
FIELD 2 20.2 15.3 14.2 36.1 28.1 20.1
FIELD 3 30.8 34.6 35.6 57.8 52.5 47.3
FIELD 4 13.0 51.1 11.7 59.2 54.2 49.1
FIELD 5 9.9 9.5 12.7 9.5 0.0 0.0

AVERAGE 19.3 26.1 22.5 40.7 33.6 28.4
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4. Discussion

In the current study, we supported the hypothesis that the integration of remote
sensing and crop modeling would allow the definition of a novel, robust and objective
approach to quantify hail damage on maize. While methods based on NDVI differences
of pre and post-hailstorm events are highly influenced by spatial resolution, available
images, and sensing period [7,18], the presented methodology, despite the limited number
of investigated fields, provides objective hail damage estimates, integrating crop simulation
models and the Surface Energy Balance Algorithm for Land.

SEBAL biomass estimates well agreed to in-field sampled biomass for the not damaged
fields (−4%), whereas more significant differences were observed for the damaged fields
with an average underestimation of 15%. This underestimation could be related to the
different support size used in the two approaches, 30 m × 30 m for SEBAL and 2 m2 for
the hand-harvested samples, whose differences were exacerbated in heterogeneous canopy
conditions such as those of damaged fields.

Similarly, the use of heterogeneous estimated HIs across fields has led to a better
performance in SEBAL-derived yields than all the literature value-fed approaches. The
excellent performance of the SEBAL-based model agrees with previous research findings
on maize crop in the same area [26,27]. Nevertheless, some error peaks close to 40%
observed in a few areas were most likely related to under or overestimating the actual
harvest index. In this case, these differences could not be related to the different support
size of the methods since SEBAL-based and measured yield maps were compared at the
same spatial resolution of 30 × 30 m. Using the average of the five measured HI values per
field could be misleading. HI was shown to have a large spatial variability even within
small areas [31]. The large spatial variability in errors between SEBAL and real yield
values (Figure 6) highlights the strong in-field variability in hail damage responses. These
differences could be presumably linked to in-field differences in harvest index.

These findings reinforce the need for a tool that estimates, on a spatial scale, harvest
index as a function of crop stresses. It could represent a viable alternative to provide more ac-
curate SEBAL-based yield estimates, especially for those under non-optimal conditions [32].

The good cultivar calibration obtained with the crop simulation model represents
a promising result, given the minimum number of undamaged fields involved in the
calibration procedure (one for the FAO 300 and two for the FAO 500 cultivar). Performing
the cultivar calibration on a larger dataset, including more combinations of climate and
soils, would undoubtedly provide greater robustness to the model.

DSSAT potential yield estimates of damaged fields resulted slightly higher (on average
+5.2%) than the insurance company’s values. These under and overestimations could be
related to the insurance company’s sampling methodology, based on scouting of small
survey areas coupled with the insurance agent experience. While agents provide potential
yield estimates based on their experience and samples that are not always representative of
the examined area and weather conditions, using an objective tool as a crop simulation
model would improve the field survey procedure [7].

The comparison between the different hail damage approaches provided some inter-
esting points. The insurance company’s hail damage method (HDinsurance) averaged 3.2%
less than the reference method (HDDSSAT2), and the novel approach (HDDSSAT1) slightly
overestimated (+3.6%) the reference hail damage. However, the three methods had sim-
ilar estimates for most investigated fields, and most of the differences were observed in
fields 1 and 4. These differences were related to SEBAL-based estimates of obtainable
yield for the aforementioned fields (Figure 4), suggesting the need to improve the biomass
accumulation algorithm.

5. Conclusions

In the present study, the SEBAL-based estimates of biomass and crop yield over
90 hectares were integrated with crop models to define a novel, objective and less labor-
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intensive hail damage assessment approach. Results were compared to hail damage
estimates from the insurance company and to our reference method.

Hail damage estimates from the proposed method largely agreed to the estimates
from the reference method and the insurance company. Some differences were observed
between the methods, probably related to inaccurate SEBAL estimates of obtainable yield.
Additionally, the poor performance of hail damage methodologies fed with literature HI
values suggested the importance of quantifying the spatial variability in the harvest index
for accurate yield estimates. The results suggest the integration of remote sensing platforms
(for determining the obtainable yield) and crop models (for potential yield estimates in hail
damaged fields) could be successfully employed for the definition of a novel and reliable
method able to quantify crop hail damage. However, more robust estimates of the potential
yield are required by calibrating models on a larger dataset, including different soil and
weather conditions. Using a model able to determine the spatial variability in harvest index
as a function of crop stress is necessary to improve SEBAL yield estimates’ accuracy and
the resulting calculated percentage of hail damage.

The adoption of remote-sensing-based crop insurance methods has great promises for
the insurance market. More robust and less time-consuming methodologies will enable
insurance companies to extend their markets and change how this business is done.

A major limitation of this work is the limited number of investigated fields. Further
studies will be necessary to validate the proposed methodology over different experimental
areas and a broader range of hail damage intensity.

Supplementary Materials: Table S1. Soil texture (USDA), TKN, SOC and pH values for all study
fields. Figure S1. SEBAL seasonal ET maps generated for Field 2 (a), Field 3 (b) and Field 4 (c).
Figure S2. Relative error maps generated for Field 3 (a), Field 4 (b), Field 5 (c), and Field 6 (d) between
measured and SEBAL-estimated yields. The following are available online at https://www.mdpi.
com/article/10.3390/rs13142655/s1.
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