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Our account begins in 1931/32 when one of the fathers of Quantum Theory, Erwin
Schrödinger, proposed a Gedankenexperiment so as to comprehend the propagation of a cloud2

of Brownian particles. He proposed [1], [2] the inference problem to identify the most likely
evolution of a large collection of particles as they traverse between two end-points in time; their4

distribution being measured and available at the two end-points. This random evolution, now
known as Schrödinger bridge, entails a flow of one-time distributions that interpolate the known6

initial and final marginals.

In spite of the fact that much of the needed theory had not even been conceived at that8

time, Schrödinger arrived at the correct form of the solution in terms of a pair (ϕ, ϕ̂) of potential
functions. These are equivalent to the Lagrange multipliers associated to the end-point marginals10

constraints. He showed that these must satisfy a pair of partial differential equations, nonlinearly
coupled at the boundary. This so-called Schrödinger system of equations is composed of a Fokker-12

Planck equation and another linear equation which is equivalent to a Hamilton-Jacobi-Bellman
equation. It took several decades before Schrödinger’s inference problem was understood as a14

maximum entropy problem within the context of large deviation theory [3], [4].

The next page was written at the closing of the 20th century, when it became apparent16

that the likelihood function for the uncertain flow of dynamical entities, whether stochastically
excited particles or stochastic systems, is inextricably linked to suitable energy functionals that18

constitute rate functions in large deviation theory [4]. Moreover, Schrödinger’s problem turns
out to be closely related to the stochastic control problem to steer the uncertainty profile of the20

given dynamical evolution between specified marginal distributions (which precisely correspond
to Schrödinger’s end-point measurements) while respecting control specifications, [5], [6], [7],22

[8].

The purpose of the present exposition is to highlight this duality between inference and24

control of stochastic systems while laying out the foundations of Uncertainty Control/Synthesis.

1



The path we take focuses on the linear-systems Gaussian-uncertainty paradigm and brings out the
link between Uncertainty Control and the Monge-Kantorovich Optimal Mass Transport (OMT)2

[9]. The OMT problem, in the case of a quadratic transportation cost, constitutes the zero-noise
limit of Schrödinger’s problem. The latter, in turn, can itself be viewed as an OMT problem4

which is regularized with the addition of an entropic term, thereby turning the index into a sort
of statistical mechanics free energy, [10], [11], [12].6

Schrödinger’s program has enriched the theory of OMT in multitude ways so that it is
now an integral part of this theory. Specifically, besides underscoring the contact between OMT8

and Stochastic Control, and tapping onto rich connections to Probability and Information theory,
Schrödinger’s program has led to an efficient computational framework for OMT, known as10

Iterative Projection Fitting (IPF) or Fortet-Sinkhorn algorithm [13], [14], [10], [15], for solving
the entropy-regularized OMT problems. Then, for its part, OMT has provided the needed12

mathematical and geometric setting for analysis in a suitable metric space of distributions–
the so-called Wasserstein space. Whereas applications and theoretical developments impact the14

theory of partial differential equations, mathematical physics, machine learning, thermodynamics,
and so on [16], [17], [18], [13], our focus herein remains within the field of control, detailing a16

design methodology for Controlling Uncertainty.

The broader thesis of our exposition is that this new subject, Control of Uncertainty,18

provides a flexible setting for controller design that enforces probabilistic constraints on the
system state. The uncertainty is represented by the profile of the probability distribution of20

the system-state along admissible trajectories. The role of control is to precisely regulate this
profile, as for instance, by regulating the spread about a mean value, to meet specifications. The22

conceptual framework applies equally well to systems evolving in continuous time and space
as well as in discrete; and thereby, we will touch upon engineering applications of uncertainty24

regulation and controller synthesis for both.

Inference and Stochastic Control26

Inference a la Schrödinger

The basic elements of Schrödinger’s inference program are:28

i) a stochastically driven dynamical model,
ii) probability distributions of the system state at specified times,30

where ii) represents the outcome of available measurements and the goal is to identify the most
likely uncertainty profile in the evolution of the system-state of i) between measurements.32
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The “uncertainty profile” is here the probability law on admissible state-trajectories for the
given dynamics. In the absence of measurements, e.g., at specified start and end-point times,2

this probability law, that we denote P , is referred to as the prior. For the purposes of this
exposition, we restrict our attention for the most part to the case where the prior is the law of4

the vector Gauss-Markov state process {x(t) | 0 ≤ t ≤ T} of the n-dimensional linear stochastic
differential system6

dx(t) = A(t)x(t)dt+B(t)dw(t) with x(0) = ξ a.s.. (1)

Specifically, {w(t) | 0 ≤ t ≤ T} is a standard, m-dimensional Wiener process, A(·) and B(·) are
continuous matrix functions taking values in Rn×n and Rn×m, respectively, and ξ is a random8

vector with Gaussian probability density ρ0 = N (x̄0,Σ0). Throughout, we assume that (A,B)

is controllable in the sense that the Gramian10

M(t, s) =

∫ t

s

Φ(t, τ)B(τ)B(τ)′Φ(t, τ)′dτ (2)

is positive definite for any s < t; Φ denotes the state-transition matrix associated with A(·).
This condition ensures that the diffusion process (1) has everywhere positive kernel (transition12

density).

Following up on Schrödinger’s line of inquiry, the terminal state-vector at time t = T is14

assumed distributed according to ρT = N (x̄T ,ΣT ) and further, that this terminal distribution
differs from the solution at t = T of the Fokker-Planck equation16

∂tρ(t, x) +∇x · (ρ(t, x)Ax) =
1

2

n∑
i,j=1

∂2((BB′)ijρ(t, x))

∂xi∂xj
,

with initial condition ρ(0, ·) = ρ0. Equivalently, the differential equations for the mean and the
covariance of the Gaussian distributions,

˙̄x(t) = A(t)x̄(t), (3)

Σ̇(t) = A(t)Σ(t) + Σ(t)A(t)′ +B(t)B(t)′, (4)

are inconsistent with the end-point data x̄(t) = x̄t and Σ(t) = Σt, for t ∈ {0, T}. Schrödinger’s
dictum is to reconcile the end-point measurments by18

iii) seeking a new probability law Q∗ 6= P on the space of trajectories that minimizes
the entropy functional D(Q‖P) subject to the specified end-point conditions, i.e.,20

Q∗ := arg min
Q
{D(Q‖P) | Q|t = ρtdx for t ∈ {0, T}} , (5)

where D(Q‖P) := EP {Λ log(Λ)} denotes the relative entropy (Kullback-Leibler divergence) of
the two probability laws, while Λ = dQ

dP denotes the Radon-Nikodym derivative and EP{·} the22

expectation with respect to P .
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The basis of the above formulation lies in the theory of large deviations and, specifically,
in Sanov’s theorem which states that the likelihood of observing in N repeated experiments an2

empirical distribution for xT that is near (i.e., in a neighborhood in the weak topology) of the
terminal ρT , for N →∞, decays exponentially as4

e−N minQ{D(Q‖P)|Q|t=ρtdx for t∈{0,T}}. (6)

The minimal value in the exponent, referred to as the rate function, quantifies the likelihood
of observing unlikely (rare) events (for N large). In this case, the likelihood of observing an6

empirical distribution which is not in agreement with what the central limit theorem would
suggest (namely, the solution dictated by the corresponding Fokker-Planck equation).8

Hence, i-iii) constitute the basic formulation of the Schrödinger’s bridge problem (SBP),
namely, to determine a perturbation Q∗ of the prior law P , that is closest in the sense of relative10

entropy and yet consistent with the end-point measurements. Projection of Q∗ at intermediate
points in time, i.e., the density12

ρ(t, x)dx = Q∗|t

provides a flow of one-time marginal probability distributions connecting ρ0 to ρT , i.e., an
entropic interpolation. Optimality is in the sense of being the most likely flow given the two end-14

point marginal distributions ρ0 and ρT . It is quite startling that this problem was contemplated,
posed, and partially solved before even a proper framework for understanding diffusion processes16

was in place.

Throughout our exposition, for simplicity and without loss of generality [19], we will18

assume that the means x̄t for the end-point variables x(t) (t ∈ {0, T}) are zero. Thereby, we
will be focusing mostly on shaping the size of the uncertainty profile as quantified by the specified20

covariances.

Uncertainty Control via Stochastic control22

The basic elements of the Uncertainty Control program are:

i′) a stochastically driven dynamical model with control input,24

ii′) probability distribution of the system state at specified times,

where these distributions may represent specification profile for guiding stochastically driven26

systems in a constrained environment towards a target. The goal is to identify a suitable control
law that effects a transition that meets specifications.28
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Once again, at present, we restrict our attention to the case of Gauss-Markov models. Thus,
2

dxu(t) = A(t)xu(t)dt+B(t)u(t)dt+B(t)dw(t), xu(0) = ξ a.s. (7)

is a controlled evolution with ξ ∼ ρ0 as before, while ρT now represents a “target” end-point
distribution. Notice that the free evolution with zero control plays here the role of the prior P .4

The cost of control is the third element of the synthesis problem, herein to

iii′) select u that minimizes6

J(u) := E
{∫ T

0

‖u(t)‖2 dt

}
, (8)

over adapted, finite-energy control functions such that (7) has a strong solution and xu(T ) is
distributed according to ρT ; i.e., the optimal control being8

u∗ := argmin {J(u) | u adapted, finite-energy, ensuring that xu(T ) ∼ ρT} . (9)

While a cost is in place, very much as in the linear quadratic regulator theory, uncertainty
control seeks to steer the dynamics through specified uncertainty profile, herein captured by the10

specified end-point marginal distributions.

Duality between inference and control12

It turns out that i-iii) and i′-iii′) are dual in that they represent formalisms based on
seemingly different rationale, and yet having exact correspondence between their respective14

solutions. That is, the inference problem can be turned into a control problem and vice-versa.

Specifically, if P denotes the law of the free evolution (1) (prior), and if Pu denotes the16

law of the controlled evolution (7), these are absolutely continuous to one another since their Ito
differential (7) only differ in their drift term, and by Girsanov’s Theorem [3], [20, page 190],18

taking into account the fact that the control has finite energy,

D(Pu‖P) ≤ E
[∫ T

0

1

2
‖u(t)‖2dt

]
.

Conversely, a direct computation reveals a correspondence between (5) and (9); see [19, Theorem20

11], where Q∗ = Pu∗ is induced by a minimum energy drift term that matches the marginal
distributions to specification. Hence, the exponent in Sanov theorem (6) directly relates to the22

quadratic control effort in (8) and

D(Q∗‖P) =
1

2
J(u∗).

This identity represents a link between quadratic control and variational representations of the24

relative entropy. It has been established in various levels of generality and has been the subject
of extensive literature [3], [6], [21, Appendix B, Lemma B.1], [22], [23].26
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Closed-form solution for Gaussian-Markov cases

In more detail, but still for the case of zero means for both x(0) and x(T ) for simplicity,2

a control law in the familiar state-feedback form

u∗(t, x) = −B(t)′Π(t)x, (10)

can be guessed in the usual way from (9) [19]. Here Π(·) takes values in the symmetric, n× n4

matrices. It steers the controlled process

dx∗(t) = (A(t)−B(t)B(t)′Π(t))x∗(t)dt+B(t)dw(t), with x∗(0) = ξ a.s. ∼ ρ0 (11)

to the terminal state x∗(T ) with density ρT . Accordingly, the flow of the one-time marginal6

probability distribution ρ(t, x) of the state vector x obeys the Fokker-Planck equation

∂ρ(t, x)

∂t
+∇ · ((A(t)x+B(t)u∗(t, x)) ρ(t, x)) =

1

2

n∑
i,j=1

∂2((BB′)ijρ(t, x))

∂xi∂xj
. (12)

This uncertainty profile between end states is quantified (due to the Gaussian assumption) by8

the state covariance Σ(t) := E {x∗(t)x∗(t)′} that satisfies the differential Lyapunov equation

Σ̇(t) = (A(t)−B(t)B(t)′Π(t)) Σ(t) + Σ(t) (A(t)−B(t)B(t)′Π(t))
′
+B(t)B(t)′, (13)

and meets the specified boundary covariance conditions10

Σ(0) = Σ0, Σ(T ) = ΣT . (14)

The optimality in minimizing (8) leads to a Hamilton-Jacobi-Bellman equation for the
optimal cost that reduces to a familiar Riccati equation12

Π̇(t) = −A(t)′Π(t)− Π(t)A(t) + Π(t)B(t)B(t)′Π(t). (15a)

Nevertheless, the lack of a terminal cost in (8) yielding a terminal condition for (15a), exposes the
inadequacy of the classical dynamic programming approach to deal with these control problems14

directly. The information concerning the terminal state covariance has to come into play in a
crucial way. We show that next.16

By introducing H(t) := Σ(t)−1 − Π(t), equation (13) can be replaced by

Ḣ(t) = −A(t)′H(t)− H(t)A(t)− H(t)B(t)B(t)′H(t). (15b)

Together, (15a) and (15b), coupled through the boundary conditions18

Σ−1
0 = Π(0) + H(0), Σ−1

T = Π(T ) + H(T ), (15c)
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consitute the Schrödinger system for our problem which, in principle, allows to compute the
optimal control law. Specifically [19, Proposition 2], there is a unique a pair (Π(t),H(t)) that2

satisfies the coupled system (15). In fact,

Π(0) = Σ
−1/2
0 [

1

2
I + Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0 − (

1

4
I + Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2]Σ

−1/2
0 , (16)

where Φ10 denotes Φ(1, 0) and M10 denotes M(1, 0).4

The choice of control (10) [19, Theorem 11] provides the optimizing control law (9) that
satisfies the uncertainty specifications on the distribution of x(0) and x(T ), while the controlled6

diffusion process (11) induces the sought law of the Schrödinger bridge (5).

Perspective on Uncertainty Control in general8

The paradigm that we just discussed represents an extension of Schrödinger’s dictum to
seek a natural uncertainty profile linking distributional specifications, whether in a control or an10

inference setting, for the linear dynamics (7) and Gaussian distributions.

In the context of the basic program i′-iii′), it is instructive to study carefully the relation12

between the Uncertainty Control program and the associated stochastic optimal control problem
to minimize a control cost. Specifically, for a given system and a fixed Σ0 > 0, it is an instructive14

exercise to work out the correspondence

ΣT 7→ ΠT ,

between a desired terminal state covariance ΣT and a class of symmetric terminal cost matrices16

ΠT for the problem to minimize

E
{∫ T

0

‖u(t)‖2 dt+ x(T )′ΠTx(T )

}
, (17)

over choice of control u on [0, T ] so that the resulting Σ(T ) under Linear Quadratic Gaussian18

(LQG) optimal policy is ΣT . The correspondence turns out to be injective, as there is a unique
choice of ΠT for which the solution to the optimal control problem ensures terminal uncertainty20

as prescribed [19, Proposition 4]. However, while the steps echo classical LQG theory, one
has to enlarge the class of admissible terminal cost matrices to include indefinite ones, for22

otherwise not all terminal covariances are accessible. This is the second point of a departure
from traditional LQG practices, with key objective, a theory aimed to regulate uncertainty rather24

than just minimizing a cost.

The paradigm of Uncertainty Control parallels the framework of classical Linear Quadratic26

Regulator (LQR) and LQG Regulator theories, but extends seemlessly to the control of diffusions
and of stochastic processes on discrete-spaces (flows on networks). Synthesis for the purposes28
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of steering the uncertainty profile to within specifications can be effected in a similar manner.
In continuous time and space, it is natural to seek control laws that minimize a suitable selected2

cost criterion and indeed, as we explained for the linear case, the solution coincides with that
of an inference problem. In the case where space and/or time are discrete, as we shall see later4

on, the relative entropy is a natural surrogate for the control cost. Either way, a coupled system
of equations (Schrödinger system) characterizes optimality of solutions as we discuss in a more6

general setting next.

Consider the uncertainty control problem associated with the stochastic system8

dx(t) = f(t, x(t))dt+ σ(t, x(t))u(t, x(t))dt+ σ(t, x(t))dw(t), (18)

aiming at steering the state distribution from ρ0 to a target ρT . A more general cost

E
{∫ T

0

[
1

2
‖u(t, x(t))‖2 + V (t, x(t))]dt

}
(19)

is used. It turns out that the duality between the this control problem and Schrödinger’s inference10

problem remains true with the prior diffusion being

∂ρ(t, x)

∂t
+∇ · (f(t, x)ρ(t, x)) + V (t, x)ρ(t, x) =

1

2

n∑
i,j=1

∂2(aij(t, x)ρ(t, x))

∂xi∂xj
, (20)

where aij(t, x) =
∑

k σik(t, x)σkj(t, x), [24, Section 8]. It corresponds to the stochastic process12

(18) with zero control and creation/killing as explained next. The presence of V (t, x) implies
that these stochastic particles are subject to being absorbed/removed at some rate as they travel14

when V (t, x) ≥ 0, or if the sign of V is negative, created/emerging out of the medium
they traverse [25, p.272]. It is typical to assume that f and σ are smooth and that the16

operator 1
2

∑n
i,j=1 aij(t, x)∂xi∂xj +

∑n
j=1 fj(t, x)∂xj satisfies Hörmander’s condition [26] (a form

of controllability) and is therefore hypoelliptic; such diffusions arise in Ornstein-Uhlenbeck18

stochastic oscillators, Nyquist-Johnson circuits with noisy resistors, in image reconstruction based
on Petitot’s model of neurogeometry of vision [27], and many other contexts.20

Variational analysis of this general uncertainty control problem leads to a system of partial
differential equations, coupled through their boundary conditions

∂ϕ(t, x)

∂t
+ f(t, x) · ∇ϕ(t, x) +

1

2

n∑
i,j=1

aij
∂2ϕ

∂xi∂xj
= V ϕ, (21a)

∂ϕ̂(t, x)

∂t
+∇ · (f(t, x)ϕ̂(t, x))− 1

2

n∑
i,j=1

∂2 (aijϕ̂)

∂xi∂xj
= −V ϕ̂, (21b)

ϕ(0, x)ϕ̂(0, x) = ρ0(x), ϕ(T, x)ϕ̂(T, x) = ρT (x), (21c)
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with optimal control given by

u∗(t, x) = σ(t, x)′∇ logϕ(t, x). (22)

Equations (21) constitute a generalized Schrödinger system. A direct calculation from (21a)
shows that λ(t, x) := logϕ(t, x) satisfies the Hamilton-Jacobi-Bellman Equation2

∂λ

∂t
+ f · ∇λ+

1

2
∇λ · a∇λ+

1

2

n∑
i,j=1

aij
∂2λ

∂xi∂xj
= V.

It should be noted, also in this more general setting, that it is the lack of a boundary condition
for λ(T, ·), or equivalently ϕ(T, ·), that requires the nonlinear coupling (21c), in conjunction4

with the Fokker-Planck equation (21a).

It is instructive to specialize to the case of linear dynamics (7), a quadratic loss/state-cost6

function

V (t, x) =
1

2
x′S(t)x, (23)

and Gaussian end-point marginal distributions ρ0 = N (0,Σ0), ρT = N (0,ΣT ) as before.
Here S(·) has symmetric but possibly indefinite matrix values. The previous uncertainty control
problem associated with (18) now appears as an LQG problem without terminal cost and with
the extra specification on the terminal state distribution. Once again the Schrödinger system (21)
reduces to two coupled Riccati equations with split boundary conditions

−Π̇(t) = A′Π(t) + Π(t)A− Π(t)BB′Π(t) + S(t) (24a)

−Ḣ(t) = A′H(t) + H(t)A+ H(t)BB′H(t)− S(t) (24b)

Σ−1
0 = Π(0) + H(0), Σ−1

T = Π(T ) + H(T ), (24c)

which can also be solved in closed form [28]. As expected, (24) reduces to (15) when V (·, ·) ≡8

0. A numerical example is provided to illustrate the LQG uncertainty control framework; see
“Sidebar: Steering inertial particles to a terminal distribution”.10

Zero-noise limit and optimal mass transport

For didactic purposes, it is worth expanding on the link between the Schrödinger problem,12

to steer a diffusion between specified marginal distributions, and its “zero-noise” limit the
quadratic Monge-Kantorovich Optimal Mass Transport (OMT) problem, to steer deterministic14

dynamical systems (i.e., without stochastic excitation) between specified marginal distributions
for the state vector. Either problem can be viewed as the control problem to steer a (stochastically16

excited or not) dynamical system from a specified uncertain state to a terminal one, that is also
uncertain but with specified uncertainty profile (distribution, herein, Gaussian). Natural context18
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for such problems is the landing of a probe to the vicinity of a target while specifying tolerance
in probabilistic terms.2

The OMT problem, as formulated by Gaspar Monge, seeks the overall minimal transporta-
tion cost4

inf
T : µ1=T]µ0

∫
Rn

c(x, T (x))µ0(dx), (25)

in transporting mass from point x ∈ Rn to T (x) ∈ Rn so as to match the given marginal
probability measures µ0 and µ1, while incurring cost c(x, T (x)). Typically, c(x, T (x)) is a6

function of the distance between starting and ending points, e.g., ‖T (x)− x‖2.

In our context µ0(dx) = ρ0(x)dx, µ1(dx) = ρ1(x)dx (but these can more generally be8

arbitrary probability measures on manifolds), and y = T (x) a “transportation” map effecting
transfer of “mass” µ0 to µ1, namely,

∫
E
dµ1 =

∫
T −1(E)

dµ0 for any Borel set E; the latter10

condition is typically denoted by µ1 = T]µ0 [9], [29]. The following relaxation of Monge’s
problem was introduced by Kantorovich, hence the Monge-Kantorovich OMT problem,12

inf
π∈P(µ0,µ1)

∫
Rn×Rn

c(x, y)π(dxdy) (26)

where P(µ0, µ1) represents the set of joint probability measures of µ0, µ1 on Rn × Rn.

General cost functions, that derive from an action integral14

c(x, y) = inf
x(·)∈Xxy

∫ 1

0

L(t, x(t), ẋ(t))dt, (27)

for a Lagrangian L(t, x, p) that is strictly convex and superlinear in the velocity variable p, have
been considered [29, Chapter 7], [30, Chapter 1], [31]; here Xxy denotes the family of absolutely16

continuous paths with x(0) = x and x(1) = y for general cost functionals as in (27). Note that
c(x, y) = 1

2
‖x− y‖2 is the special case where L(t, x, p) = 1

2
‖p‖2, while18

L(t, x, p) =
1

2
‖p− v(t, x)‖2 (28)

is motivated by transport with “prior” a given velocity field v(t, x) [32, Section VII].

The perceptive reader can see the natural progression towards20

c(x, y) = inf
u∈U

∫ 1

0

L(t, x(t), u(t))dt, where (29a)

ẋ(t) = A(t)x(t) +B(t)u(t), (29b)

x(0) = x, x(1) = y, (29c)

for a suitable class of controls U . This formulation, in effect, the OMT problem to transport
a Dirac measure at x to one in y, extends the classical OMT problem in a similar manner22
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as optimal control generalizes the classical calculus of variations [33] by allowing dynamic
constraints (albeit herein only for linear dynamics).2

For the special case where L(t, x, u) = ‖u‖2/2, corresponding to penalizing control power,
the OMT problem between two marginal distributions ρ0 and ρ1 becomes [34]4

inf
u∈U

E
{∫ 1

0

1

2
‖u(t, xu(t))‖2dt

}
, (30a)

ẋu(t) = A(t)xu(t) +B(t)u(t, xu(t)), (30b)

xu(0) ∼ ρ0, xu(1) ∼ ρ1, (30c)

where U is the family of admissible Markov feedback control laws; a control law u(t, x) is
admissible if the corresponding controlled system (30b) has a unique solution for almost every6

deterministic initial condition at t = 0. Introducing stochastic excitation to the linear dynamics,
namely, replacing (30b) with8

dxu(t) = A(t)xu(t)dt+B(t)u(t, xu(t))dt+
√
εB(t)dw(t), ε > 0, (30b’)

brings us back to the framework of Schrödinger’s problem, eliciting a stochastic control as well
as an inference interpretation. To see this, simply rewrite B(t)u as

√
εB(t)v for the re-scaled10

control input v = u/
√
ε, so that it conforms with (7). Solutions in closed form can once again

be derived based on the corresponding Schrödinger system in Gaussian setting, see [34], [35].12

Applications and the road ahead

Controlling swarms of agents traversing on a continuous space, or on a network, modeling14

the propagation of epidemics, steering interacting charged particles or particles through a medium
effecting losses, are some of the subjects evoked by the theme of uncertainty control. Whether16

the goal is to regulate or infer, the subject matter is cast as the problem to specify a probability
law for the underlying stochastic systems that is consistent with the specifications and data, and18

it is near a prior law in relative entropy sense or, with respect to a quadratic cost.

Along similar lines, weakly interacting dynamical systems (agents, particles, etc.) mean-20

field game problem, are discussed in both non-cooperative games and cooperative games settings
in [36]. In the non-cooperative games setting, a terminal cost is used to accomplish the control22

task–the map between terminal costs and terminal probability distributions being onto. In the
cooperative games setting, the goal is to find a common optimal control that would drive the24

distribution of the agents to a targeted one.

Different control and noise channels26
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Consider uncertainty control when actuation and stochastic excitation do not line up, and
drive the system dynamics through distinct channels as in the controlled evolution2

dxu(t) = A(t)xu(t)dt+B(t)u(t)dt+B1(t)dw(t)

with B 6= B1 (instead of (7)). Then, minimization of (8) with the usual constraints on initial and
final state covariances lead in a similar manner to a Schrödinger system of equations. However, in4

this instance, the equations are dynamically and nonlinearly coupled. Specifically, in the system
of equations (15), equation (15b) needs to be replaced by6

Ḣ = −A′H− HA− HBB′H + (Π + H) (BB′ −B1B
′
1) (Π + H) . (15b’)

The nonlinear coupling in the last term makes it difficult to solve (e.g., by a shooting method)
and it appears that no closed form solution exists.8

In this setting, a numerical approximation through a convex reformulation [37] is applica-
ble, see “Sidebar: Convex reformulation”. However, it is still of great interest to explore methods10

that produce in a more direct manner solutions of the Schrödinger system.

Covariance control12

An important variant of Uncertainty Control pertains to the case where regulation is to
take place over a sufficiently long, or infinite time interval. In such a case, it is natural to seek14

stationary distributions that can be maintained with a time-invariant control law. This raises the
question of what state covariances are admissible for the controlled stationary Gauss-Markov16

process (7). That is, it is of interest to determine whether, for a suitable control input, the state
process x(t) of (7) converges in distribution, as t → ∞, to a specified “target” stationary state18

distribution ρ = N (0,Σ). This framework can be applied to the active cooling problem for
stochastic oscillators; see “Sidebar: Active cooling” for details.20

A complementing viewpoint for the autonomous stochastic dynamics

dx(t) = Ax(t)dt+Bdv(t), (31a)

seeks a diffusion process v(t), if possible, so as to reconcile the dynamics with given stationary
state statistics

Σ = E {x(t)x(t)′} > 0. (31b)

That is, in this, we are interested in deciding whether a stationary stochastic process v(t) exists
that drives the dynamical system to a stationary state with the specified statistics.22

12



These questions were raised and answered, independently, in two complementing settings,
“covariance control” and “stochastic inverse problems” in [38] and [39], respectively. Specifically,2

it turns out that in either case,

rank

[
AΣ + ΣA′ B

B 0

]
= rank

[
0 B

B 0

]
(32a)

is a necessary and sufficient condition for the corresponding statement to be true [39], [37]. An4

equivalent condition to (32a) is that the equation

AΣ + ΣA′ +BX ′ +XB′ = 0 can be solved for X. (32b)

Indeed, with regard to the controlled evolution, assuming that the input u is in the form of6

stabilizing static state-feedback
u(t) = −Kx(t), (33)

the state vector process will be Gaussian with (stationary) state-covariance Σ = E{x(t)x(t)′}8

that satisfies the algebraic Lyapunov equation

(A−BK)Σ + Σ(A−BK)′ = −BB′, (34)

and hence (32b) for X = 1
2
B′+KΣ. Working in the reverse direction, it can be shown that starting10

from a solution to (32b) a stabilizing feedback can be so constructed. Finally, the correspondence
to (31a) is that dv = u(t)dt+ dw, see [37, Theorem 4].12

Having established feasibility for the problem to maintain the state-covariance at a specified
value Σ, (which is positive definite and satisfies (32a)), a natural choice is to seek a realization14

via control signal (33) that minimizes the expected power E{‖u(t)‖2}, a problem that can also
be cast as a convex optimization [37, Section IV-b].16

Inference and control over networks

The subjects of transportation and control over networks has witnessed a rapidly expanding18

literature in recent years due to its importance on topics ranging from power transmission, traffic,
financial transactions, biological systems, and many others [40], [41], [42]. Moreover, problems20

of transportation over networks bring to the fore structural features of graphs such as connectivity,
node centrality, graph curvature, with applications to timely issues such as the Google PageRank22

problem [43] and interaction between genes in biological networks [44].

Schrödinger’s paradigm to determine a probability law of a stochastic evolution that is in24

agreement with marginal distributions at different points in time, can be extended verbatim to
the setting of discrete spaces. The prior law in this case can be in the form of a random walk,26

taking the place of the Brownian motion in the earlier material. For simplicity we discuss the
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case where evolution takes place in discrete time, over a time-indexing set T = {0, 1, . . . , N}.
The dynamics are modeled as a Markov chain with states the nodes X = {1, . . . , n} of a graph,2

with transition probabilities
mxtxt+1 := Prob(xt → xt+1),

for t ∈ T and xt ∈ X ; thus, the starting point is the discrete-time, Markovian evolution4

µt+1(xt+1) =
∑
xt∈X

µt(xt)mxtxt+1 (35)

where µt(·) is a non-negative distribution on X ; for notational simplicity we assume that the
matrix M = [mij]

n
i,j=1 is independent of t. Further, we assume that all entries of MN are positive,6

in that the graph is fully connected and that the duration over which transport takes place is
sufficient to allow connecting any two nodes with a path of that length. In more general situations,8

M may simply be non-negative, and not a transition probability matrix with rows summing up to
one, allowing for cases where “total transported mass” is not necessarily preserved corresponding10

to “creation” and “killing” that we discussed earlier, cf. (20).

A typical path x = (x0, x1, . . . , xN) ∈ XN+1 is assigned the probability12

M(x0, x1, . . . , xN) = µ0(x0)mx0x1 · · ·mxN−1xN (36)

of being traversed. Very much as before, Schrödinger’s inference seeks soft conditioning
on measured marginal distributions. That is, it seeks a new assignment of probability14

on paths MSB (Schrödinger bridge), that is consistent with specified marginals νt(·) =∑
x` 6=t

MSB(x0, x1, . . . , xN) at times t = 0 and t = N , and is closest to the prior in that16

MSB = argmin{D(P‖M) | P ∈ P(ν0, νN)}.

The solution once again is cast in the form of two equations coupled through their boundary
conditions, i.e., a Schrödinger system:18

ϕ(t, xt) =
∑
xt+1

mxtxt+1ϕ(t+ 1, xt+1), (37a)

ϕ̂(t+ 1, xt+1) =
∑
xt

mxtxt+1ϕ̂(t, xt), (37b)

ϕ(0, x0) · ϕ̂(0, x0) = ν0(x0), ϕ(N, xN) · ϕ̂(N, xN) = νN(xN), (37c)

for all x0, xN ∈ X and t = 0, 1, . . . , N − 1. There exist a unique set of non-negative functions
ϕ(·) and ϕ̂(·) on {0, . . . , N} × X satisfying the above, and the new law is given by20

MSB(x0, . . . , xN) = ν0(x0)πx0x1(0) · · · πxN−1xN (N − 1),

with one-step Markov transition probabilities πxtxt+1(t) := mxtxt+1ϕ(t + 1, xt+1)/ϕ(t, xt). The
revised random walk has one-time densities is given by νt(xt) = ϕ(t, xt) · ϕ̂(t, xt), echoing (21).22
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Thus, the above construction is completely analogous to results for the classical Schrödinger
system of diffusions [45], [46], [47], [3], see [48], [49], [50]. Note that there is no natural notion2

of quadratic cost in flows over a network, and therefore, Schrödinger’s inference problem is a
natural surrogate for the control problem; see “Sidebar: Transportation over a network” for the4

control counterpart.

Concluding remarks6

The premise of uncertainty control is that a suitable control law can be found to steer the
uncertainty profile of a controlled process to meet probabilistic specifications. With specifications8

in the form of marginal distributions, there is an intrinsic relation between control and inference
problems. In retrospect, this link was in fact the key in studying the asymptotic behavior, in the10

zero-noise limit, of solutions to Schrödinger’s functional equations for the inference problems
and their relation to Monge’s problem [51], [32], [52], [14].12

Today, there is a rapidly expanding body of work [19], [37], [28], [53], [54], [55], [56], [57],
[58], [59], [60] that builds on this new layer of mathematics, rooted in Schrödinger’s inference14

problem and the Monge-Kantorovich optimal mass transportation (OMT) [61], [62], [63], [9],
[29], that far extends the scope of the pioneering insights by R.E. Skelton and his co-workers16

in the 1990’s to regulate the steady state uncertainty [64], [38], [65], [66]. Cross fertilization
between Schrödinger’s problem and OMT has led to a fast algorithm (Fortet-IPF-Sinkhorn) for18

the computation of solutions to the latter [10], [12], whereas in the reverse direction, OMT has
provided the mathematical framework for calculus [67], [68], [69], in the space of probability20

distributions–the main object of interest in the context of Uncertainty Control; see “Sidebar:
Spline and path planning” for an interesting example which may be applied to path planning22

with uncertainty.

The current state of field includes aerospace applications to spacecraft guidance for the24

soft/flexible probabilistic constraints that the framework allows [60], [58], control of interacting
coupled systems [36], [70], [21], robust transport on discrete spaces/networks [71], [49], [50],26

and applications in physics [72], [17]. Interest in the nexus between the Schrödinger’s problem,
Monge-Kantorovich transport, and stochastic control is also fuelled by an equally rapidly28

expanding range of applications in image processing, machine learning, and computer graphics
[73], [13], [74], [75], [18].30

Controlling Uncertainty, rooted in Monge-Kantorovich transport and Schrödinger’s in-
ference method of finding the most probable random evolution between given distributions,32

represents a powerful new paradigm to be applied in all areas of science tapping on the dictum
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that people can never believe the improbable. (Oscar Wilde).
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[13] G. Peyré and M. Cuturi, “Computational optimal transport: With applications to data
science,” Foundations and Trends R© in Machine Learning, vol. 11, no. 5-6, pp. 355–607,30

2019.

[14] Y. Chen, T. T. Georgiou, and M. Pavon, “Stochastic control liaisons: Richard Sinkhorn32

meets Gaspard Monge on a Schrödinger bridge,” arXiv preprint arXiv:2005.10963, 2020.

[15] J. Karlsson and A. Ringh, “Generalized Sinkhorn iterations for regularizing inverse34

problems using optimal mass transport,” SIAM Journal on Imaging Sciences, vol. 10, no. 4,

16



pp. 1935–1962, 2017.
[16] L. C. Evans, “Partial differential equations and Monge-Kantorovich mass transfer,” Current2

developments in mathematics, vol. 1997, no. 1, pp. 65–126, 1997.
[17] Y. Chen, T. T. Georgiou, and A. Tannenbaum, “Stochastic control and non-equilibrium4

thermodynamics: fundamental limits,” IEEE Transactions on Automatic Control, 2019.
[18] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in6

Proceedings of the 34th International Conference on Machine Learning-Volume 70, 2017,
pp. 214–223.8

[19] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear stochastic system to
a final probability distribution, Part I,” IEEE Transactions on Automatic Control, vol. 61,10

no. 5, pp. 1158–1169, 2015.
[20] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus. Springer, 1988.12

[21] M. Fischer, “On the form of the large deviation rate function for the empirical measures
of weakly interacting systems,” Bernoulli, vol. 20, no. 4, pp. 1765–1801, 2014.14

[22] J. Lehec, “Representation formula for the entropy and functional inequalities,” in Annales
de l’IHP Probabilités et statistiques, vol. 49, no. 3, 2013, pp. 885–899.16
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[67] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows: in metric spaces and in the space
of probability measures. Springer, 2006.6

[68] Y. Chen, G. Conforti, and T. T. Georgiou, “Measure-valued spline curves: An optimal
transport viewpoint,” SIAM Journal on Mathematical Analysis, vol. 50, no. 6, pp. 5947–8

5968, 2018.
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[76] J.-D. Benamou, T. O. Gallouët, and F.-X. Vialard, “Second-order models for optimal28

transport and cubic splines on the Wasserstein space,” Foundations of Computational
Mathematics, vol. 19, no. 5, pp. 1113–1143, 2019.30

[77] Y. Chen and J. Karlsson, “State tracking of linear ensembles via optimal mass transport,”
IEEE Control Systems Letters, vol. 2, no. 2, pp. 260–265, 2018.32

20



Sidebar: Abstract

Optimal steering of a dynamical system entails controlling with minimum energy the state2

between specified endpoints. It is a problem with profound roots in the classical calculus of
variations. It became a prominent motivation for the development of modern control theory4

starting from the days of the space race. In more recent times, a relaxation of the above has
gained considerable interest. It is the problem of optimally steering the probability distribution6

of the state between two given marginals which we may call controlling uncertainty. Although
this problem has important connections with stochastic optimal control, it requires a different8

treatment because of the terminal constraint on the state distribution. Motivation includes relaxing
the classical steering problem and problems where the state is naturally modeled as random10

vector (e.g. stochastic oscillators). Moreover, this formulation intersects two unlikely classical
topics: The celebrated Monge-Kantorovich optimal mass transport, seeking economically efficient12

resource transportation plans, and the “maximum entropy” inference problem of E. Schrödinger,
aimed to explore the time reversibility of natural laws. From this unlikely melange, a rather14

impactful outcome emerges, a control design methodology to steer dynamical systems between
specified uncertain terminal states. Thus, the new theory allows a soft target specification, in16

lieu of the terminal cost in optimal control formulations. The paper reviews the intertwined
problems of optimal mass transport and Schrödinger bridge, as came to be known, in a way18

that brings out the stochastic control interpretation of both. It then focuses on the special case
of linear dynamics and Gaussian probabilistic uncertainty, which reduces the computational20

aspects to familiar-looking coupled Riccati differential equations. Various extensions that pertain
to uncertain flows of stochastic particles, as well as uncertain paths of random walkers on graphs,22

are treated in the same spirit. Applications of this emerging field include guidance and navigation
in aerospace, active cooling of stochastic oscillators, robust transportation over networks, and24

many others.
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Sidebar: Steering inertial particles to a terminal distribution

Consider a collection of particles (inertial particles, cf. [70]) modeled by Newton’s2

equations and subject to stochastic excitation

dx(t) = v(t)dt

dv(t) = u(t)dt+ dw(t),

where x(t) represents position and v(t) velocity of particles, w(t) a random Brownian excitation,4

and u(t) an external control input (force) at our disposal that can be a function of position and
velocity via adjusting, e.g., electromagnetic forces as when regulating the spread of a charged6

particle beam. The control objective is to steer the distribution of the particles between initial and
terminal Gaussian distributions, over the time interval [0, T ], with zero mean and covariances8

Σ0 = 2I and ΣT = 1/4I , respectively, while minimizing the total quadratic control energy.
Figure S1 displays for T = 1 typical sample paths {(x(t), v(t)) | t ∈ [0, 1]} in phase space, as10

a function of time, that are attained using the optimal feedback strategy derived with S = I ,
the identity matrix. Figure S2 shows the corresponding control action for each trajectory. For12

comparison purposes, Figure S3 displays typical sample paths when optimal control is used
and S = 10I in (23), with control action shown in Figure S4 for a sample of trajectories. As14

expected, the uncertainty profile reflected in the covariance Σ(·) shrinks faster as we increase
the state penalty S since the reference evolution is loosing probability mass at a high rate where16

x′Sx is large. The “inference picture” suggests that the reference evolution looses probability
mass at a higher rate at places where V (x) is large, reflecting the “killing” of particles that stray18

away from the most likely path at a faster rate; with this interpretation the probability densities
at each point in time represent the distribution of surviving particles [70].20
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Figure S1: Inertial particles: state trajectories
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Figure S2: Inertial particles: control inputs

24



Figure S3: Inertial particles: state trajectories
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Figure S4: Inertial particles: control inputs
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Sidebar: Convex reformulation

While Schrödinger systems, that provide conditions of optimality for uncertainty control,2

can often be solved in closed form or dealt with via Fortet-IPF-Sinkhorn’s algorithm, it is still
of great interest to cast the corresponding problems within the frame of convex optimization.4

In general, such a reformulation allows for a wider range of constraints as well as numerically
reliable alternatives.6

Herein we explain how this works for the quadratic state-cost (23) and linear dynamics,
i.e., to obtain a numerical solution in lieu of (24). Introducing the control law u(t) = −K(t)x(t),
dictated by (22), brings the cost functional (19) into the form

1

2

∫ T

0

[trace(K(t)Σ(t)K(t)′) + trace(S(t)Σ(t))] dt. (S1a)

Minimization of (S1a) is subject to the differential Lyapunov equation for the state covariance

Σ̇(t) = (A−BK)Σ(t) + Σ(t)(A−BK)′ +BB′ (S1b)

and the two boundary conditions

Σ(0) = Σ0, Σ(T ) = ΣT . (S1c)

If we replace the gain K(t) by U(t) := −Σ(t)K(t)′ into (S1a), we get8

1

2

∫ T

0

[trace(U(t)′Σ(t)−1U(t)) + trace(S(t)Σ(t))]dt (S1a’)

which is seen to be jointly convex in U(t) and Σ(t). The Lyapunov equation (S1b) becomes

Σ̇(t) = AΣ(t) + Σ(t)A′ +BU(t)′ + U(t)B′ +BB′, (S1b’)

and is linear in both U and Σ. The problem further reduces to the semi-definite program to10

minimize ∫ T

0

[trace(Y (t)) + trace(S(t)Σ(t))]dt (S2a)

subject to (S1b’), (S1c), and12 [
Y (t) U(t)′

U(t) Σ(t)

]
≥ 0. (S2b)

This problem can be readily solved numerically by discretization in time and space, for the
optimal gain K(t) = −U(t)′Σ(t)−1.14
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Sidebar: Active cooling

Consider a controlled mechanical system in a force field coupled to a heat bath at2

temperature Tactual and obeying the Ornstein-Uhlenbeck model

dx(t) = v(t) dt, (S3a)

mdv(t) = −γv(t) dt−∇U(t, x(t))dt+ u(t, x, v)dt+ σdw(t), (S3b)

with initial conditions x(t0) = x0 and v(t0) = v0 a.s.. Here, x(t) and v(t) represent position4

and velocity, respectively. This is the setting of active cooling which calls for steering and
maintaining the system to a steady state featuring an effective temperature Teff < Tactual through6

active feedback control. In fact, Cold damping feedback is standard in Atomic Force Microscopy
(AFM), micro to macro sized resonators, and other applications where actively suppressing8

thermal vibrations improves accuracy.

Figure S5 shows a sample of trajectories in phase space of (S3) for a suitable control, that10

transitions the state uncertainty (marginals of (x, v)) between normal distributions at t = 0 to
t = 1, and then switching to a time-invariant feedback control that maintains the target stationary12

distribution from there on. The semi-transparent tube in the figure represents a three-standard-
deviation envelop for the one-time marginals.14
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Figure S5: Inertial particles: trajectories in phase space
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Sidebar: Transportation over a network

The transport of resources that are distributed according to ν0(x0) at a starting time t = 0,2

and towards a terminal distribution νN(xN) at time t = N , over a transportation network is
in effected by a transportation plan P ∈ P(ν0, νN), namely a probability distribution on the4

feasible paths of the network x = (x0, . . . , xN) ∈ XN+1 having initial and final marginals ν0

and νN , respectively. Thereby, traversing a path x may incur cost U(x) =
∑N−1

t=0 Uxtxt+1 , where6

Uij represents the cost of traversing the edge connecting node i towards node j. A compromise
between cost and dispersiveness (that allows a level of robustness to edge failures), namely,8

U(P ) =
∑

x∈XN+1

U(x)P (x), S(P ) = −
∑

x∈XN+1

P (x) logP (x),

can sought in the transportation plan. This quantifies the spread in utilizing paths alternative to
minumum length paths. It leads back to seeking10

MSB = argmin{D(P‖MU) | P ∈ P(ν0, νN)}

for a prior MU(x0, x1, . . . , xN) = bx0x1 · · · bxN−1xN , that encodes cost, with bij = aije
− 1

T
Uij ,

and a scaling T to weigh in the purported compromise. The parallel with the Helmholtz free12

energy F(P ) = T D(P‖MU) in physics, with T playing the role of absolute temperature, is
unmistakeable. For T ↘ 0, transport tends to concentrate on minimum cost paths, becoming, in14

the limit, the OMT problem.
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Sidebar: Spline and path planning

Specification of state uncertainty may be partially prescribed at a number of intermediate2

points along the operating time interval. Such specifications give rise to a concept which akin to
cubic spines for the space of distributions that represent uncertainty. This has been developed in4

[68], [76], [77]. Such a collection of four successive marginals are shown in Figure S6. Minimum
energy control matching these for a collection of particles obeying first order dynamics ẋ = u,6

results in completion of the “rectangle” of distributions in the x-space as shown in Figure S7, the
segments representing McCann displacement interpolating segments in the so-called Wasserstein8

space of distributions [9], [29]. On the other hand, minimum energy control of between these
x-space marginals, for inertial particles obeying Newton’s equations ẍ = u, gives a (spline-like)10

smooth flow of one-time marginals as in Figure S8.
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Figure S6: Successive marginal specifications
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Figure S7: OMT path between specified marginals
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Figure S8: Spline path between specified marginals
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