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SUMMARY

The structural-aerodynamic modelling and dynamic stabilization of a three-dimensional suspension bridge model
is considered. Our emphasis is on investigating the effectiveness of leading and trailing edge flaps in suppressing
aeroelastic instabilities. The East Great Belt Bridge is chosen as a design example, and its aeroelastic limits are
computed using both thin aerofoil theory and flutter derivatives. The problem is cast in an efficient reduced size
finite element formulation with aerodynamic forces expressed in the Laplace domain by use of a high-fidelity ra-
tional function approximation. Circulatory aerodynamic forces are modelled using a feedback loop for every ele-
ment, and the problem is expressed in a form suitable for implementation of modern control techniques. The
structure’s full multimodal response is considered, and numerical predictions show very good agreement against
experimental data from the literature. In order to account for modelling errors and uncertainties while designing
the controller, elements from robust control theory are invoked. The stability and robustness of the bridge when
fitted with flaps controlled by optimal and suboptimal H∞ controllers are discussed for varying lengths of control
surfaces along the suspended span as the optimum configuration for aerodynamic performance is investigated.
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1. INTRODUCTION

It is well understood that aeroelastic instabilities like flutter and torsional divergence pose limits to the
length increase of cable-supported bridges, with the now iconic Tacoma Narrows bridge disaster serving
as a reminder of the importance of efficient aerodynamic design. Increasing span lengths pose a challenge
to aeroelastic stability, and experience gained from record span projects such as the Akashi Kaikyo Bridge
[1] and Great Belt East Bridge showed that classic aerodynamic design either in the form of deep truss
girders (Akashi Bridge) or the more modern flat box girder solution (Humber, Bosporus, Great Belt)
reaches its limit for spans approaching 2000m [2]. To overcome these limitations, appropriate counter-
measures should be adopted [3], which traditionally have focused on the deck’s aerodynamic improve-
ment or alternatively on the implementation of active and passive control methodologies.

Control applications to civil engineering structures have been gaining in popularity, thanks to novel
advances in the field [4], with a particular emphasis to bridge structures [5]. Control of flutter instability
by active control surfaces was first proposed by Ostenfeld and Larsen in [6]. The premise is that rotational
movement of control surfaces adjacent to the deck generates aerodynamic forces that aim at stabilizing
deck movement. Further analysis was later undertaken by Wilde and Fujino [7,8], where flaps were
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implemented on a deck segment. A rational function approximation (RFA) was used to model the
unsteadiness of the flow in the time-domain, and a variable gain output feedback controller was
implemented. Omenzetter et al. [9,10] extended the flap configuration, taking into account the three-
dimensionality of the bridge, and a pure-gain passive mechanism was proposed. Passive pure-gain control-
lers are in principle easy to implement, but these systems forego the advantages that might accrue from phase
compensation. Fixed-phase controllers, such as those derived in [11], are difficult to construct physically.
Realizable systems that introduce frequency-dependent phase may operate satisfactorily, but this has not
thus far been established using a full bridge model. More recently, Li [12] performed an active control
procedure using a pair of rotatable winglets at a distance from the deck. The feasibility of a passive control
mechanism against flutter instability during erection of a suspension bridge has been investigated in [13],
whereas some efforts have been made to combine the advantages of control surfaces with a tuned mass
damper [14,15], although a detailed analysis has not been reported yet. Up to date, there has been no practical
application of implementing actively or passively controlled flaps to a bridge because their reliability and
effectiveness have not been clearly demonstrated.

In terms of the aerodynamic control of bridge structures, three-dimensional aeroelastic modelling by
expressing unsteady aerodynamic forces in the frequency domain has been reported in [16–18]. The
procedure involves algorithms such as the k-method and the p-k method inherited from the aeronautics
industry, which are based on an iterative procedure for both the wind velocity and the frequency of the
oscillating forces. A state–space approach that fits the unsteady part of the aerodynamic forces by use
of rational function approximations [19] makes however the iterative process redundant. An implemen-
tation of this procedure to a full bridge structure has been presented by Omenzetter et al. [9] and Chen
et al. [20] for thin aerofoil and flutter derivatives, respectively.

This work extends previous analytic investigations [21,22] of a deck-flap system into a three-
dimensional bridge model having flaps of finite length along the main span. The emphasis in this pa-
per is placed on active control schemes, which enables the determination of the minimum surfaces
needed for aeroelastic control. In our work, we build a high-fidelity rational approximation of the
classical Theodorsen circulation function, which is used for every element of the bridge
structure. The structural part of this work is based on Abdel Ghaffar’s finite element (FE) formulation
[23–25], which is appropriately modified to account for a streamlined box girder (while the original
formulation dealt with a truss girder). Forces on cables are computed by solving the nonlinear cable
equation [26]. We validate the model by simulating the modal characteristics of the Great Belt Bridge
and comparing them with previous studies. We later formulate the aeroelastic FE model by
employing thin aerofoil theory [27] as well as expressing the aerodynamic loading through experi-
mentally derived flutter derivatives [28]. For the first case, a high-fidelity quartic rational approxima-
tion of Theodorsen’s circulation function is considered, and for the second case, Roger’s [29]
approximation is used. Results show that the thin aerofoil assumption is very effective in predicting
flutter instability limits for a flat box girder like the one herein considered. The aforementioned anal-
yses also expose a non-oscillatory instability referred to as torsional divergence. The torsional diver-
gence mode is an aerodynamic mode that goes unstable when there is a loss of torsional rigidity
because of cancellation of the (positive) torsional stiffness of the structure by the negative pitch-
related aerodynamic moment [30].

This paper places emphasis on formulating the full multimodal aeroelastic response by means of a
reduced size model. A very good agreement in terms of modal responses is obtained with only 350
structural degrees of freedom. By using feedback for the unsteady circulatory component of the
aerodynamics, we reduce the number of aerodynamic states to half. For the case of the Great Belt
(GB) cross section, thin aerofoil theory and flutter derivatives give very close predictions to flutter
onset, thus corroborating the justification of the wing–aileron–tab transformation for modelling the flap
aerodynamic contribution. Previous work including bridge stabilization with controllable surfaces
either uses passive systems, which have the advantage of not requiring power source but use a simplis-
tic control approach neglecting phase compensation and robustness properties, or make use of active
control techniques, optimal control and pole placement algorithm, which again neglect robustness
issues. This work aims to optimize the closed-loop system’s robustness to uncertainties, which can
be interpreted as uncertainty in modal characteristics or aerodynamic parameters. Our goal is to estab-
lish an active control strategy that results in a minimum area of control surfaces along the span while
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2016; 23: 1417–1441
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attaining good robustness characteristics (Figure 1). In conclusion, it is shown that for wind speeds
above the divergence speed, there is a clear loss in uncertainty tolerance, and in conclusion, we dem-
onstrate the effectiveness of the designed controllers by simulating the response in the time domain.
The analysis presented in this paper is of an analytical nature and concentrates on the control design
process on a full FE bridge model. Experimental work is carried through in conjunction to this work
[31] to validate the numerical assumptions.
2. STRUCTURAL MODEL

This section provides a procedure overview for constructing a full bridge model according to Abdel
Ghaffar’s structural framework [23–25] and compares the results with previous analyses of the Great
Belt Bridge. The FE framework adopted provides a significant reduction of the computational burden
because it accounts for the effect of the main cables and hangers for every deck element indirectly. The
motion of long-span bridges in the vertical, lateral and torsional direction can with a high degree of
accuracy be considered independent from one another, so each case was treated separately and no cou-
pling between them was assumed. In the pure vertical modes, all points of a given cross section move
the same amount and remain in phase. In the torsional case, the bridge section rotates about its centre
point, and for the lateral motion, each cross section swings in a pendular fashion in its own vertical
plane, and therefore, there is an incidental upward movement of the cables and of the suspended
structure.
2.1. Modelling methodology

Figure 2a presents the degrees of freedom, vertical translation and rotation, corresponding to the ver-
tical vibration case. Because the displacements of each stiffening structure node must equal the dis-
placements of the corresponding cable node, it is appropriate to define only the nodes on the centre
line of the deck element. Similar element configurations are defined for the lateral and torsional vi-
bration cases. The general procedure for deriving the stiffness and mass matrices for a typical deck
element consists firstly in expressing the potential and kinetic energy of the suspended structure
and the cables separately for each vibration case. In order to formulate the FE approach, the
Hermitian cubic polynomials are chosen to build the shape functions of the element, expressing
the vertical v, lateral l and torsional t displacements at every internal point as a function of the nodal
displacements q1..12:

v xð Þ
l xð Þ
t xð Þ

8><>:
9>=>; ¼

H1 H2 0 0 0 0 H3 H4 0 0 0 0

0 0 H1 H2 0 0 0 0 H3 H4 0 0

0 0 0 0 0 H5 0 0 0 0 0 H6

264
375 q1

⋮
q12

8><>:
9>=>; (1)

where
Figure 1. Cross section of a streamlined long-span suspension bridge with flutter suppression controllable flaps.
The wind speed is denoted as U, while the leading-edge and trailing-edge flap angle are denoted as βl and βt,

respectively.
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Figure 2. (a) Nodal degrees of freedom of the FE element for the vertical vibration case and (b) all degrees of free-
dom of the FE element (orange q1, q2, q7, q8 correspond to the vertical, green q3, q4, q5, q9, q10, q11 to the lateral

and blue q6, q12 to the torsional degrees of freedom).
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with 0< x<L the position along the element spanwise length.
The combination of all three vibration components (vertical v, lateral l and torsional t) culminates in

an element having six degrees of freedom per node as illustrated in Figure 2b.
Implementing Equation (1) in the potential and kinetic energy expressions yields the elemental mass

matrices and elemental stiffness matrices expressing the elastic stiffness of the girder and the gravity
stiffness of the cables, as well as a distributed matrix expressing the elastic stiffness of the cables.
The gravity stiffness matrix is related to the energy stored in the cable because of the constant horizon-
tal force. The elastic stiffness on the other hand stems from the additional cable tension caused by
vibrations.

2.2. Description of the Great Belt Bridge

One key structural characteristic of the East Great Belt Bridge (1998, DK) is the continuous girder deck
over the full span of 2694m [32]. Suspension bridges of this type are usually hinged at the pylons in
order to accommodate an expansion joint there. The Great Belt similarly to the Humber, Severn and
Bosporus Bridge has a streamlined box girder deck section, which is expected to display to an aerofoil
heave-pitch flutter mode. The bridge has a cable sag ratio 1:9, chosen to reduce sliding forces in the
anchorages. It is also interesting to note that for the two approach bridges, 32 tuned mass dampers were
installed for suppressing vortex shedding, each having a mass of 8 t (approximately 0.5% of the modal
mass). The structural parameters implemented in the FE model are presented in Table I.

2.3. Modal analysis results for the Great Belt Bridge

Figures 3 and 4 compare the natural frequencies and shapes of the vertical, lateral and torsional modes
obtained by implementing the FE model developed with the modes shapes and natural frequencies
reported in Larsen [32]. Further modal analyses of the Great Belt are given in [33], which are the product
of more detailed FE modelling using commercial packages. The proposed mathematical formulation,
however, results in a model of considerably lower size while staying within the uncertainty scatter of more
complex models. An equal displacement on the main cables is expected because the model assumes
inextensibility of the hangers. It might be worth noting that the antisymmetric deflections of the cable
and the stiffening structures cause no additional cable tension Hw because the downward movement on
onec side of the centreline of the centre span tends to increase the cable length, while at the same time,
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2016; 23: 1417–1441
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Table I. Structural properties of the finite element model of the Great Belt Bridge.

Element Property Value

Girder Young modulus of elasticity E = 210 × 109N/m2

Shear modulus of elasticity G = 80.8 × 109N/m2

Element length L= 40 m
Half-chord width of the deck b= 15.5 m
girder mass mg= 15 260 kg/m
Moment of inertia about horizontal axis Iy = 4 m4

Moment of inertia about vertical axis Iz = 100 m4

Torsional moment of inertia Ia = 7.6 m4

Mass moment of inertia (including cables) Im = 2.47 × 106 kgm2/m
Cables Young modulus of elasticity Ec = 210 × 109 N/m2

Cross-sectional area Ac = 0.44 m2

Half-chord distance between cables bc= 13.5
Diameter dc= 0.75 m
Mass of the main cables (both cables) mc = 2 × 3745 kg/m
Horizontal cable tension (both cables) Hw= 2 × 1.92 × 108N
Main cable sag f = 180 m
Length of shortest hanger cable he,min = 10 m
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the upward movement on the other side of the centre span tends to reduce the cable length, and the effects
balance each other. In consequence of the lack of additional cable tension, there is no interaction between
the main and side spans for the antisymmetric modes due to the cables, and any movement of the side
spans is due to the continuous girder assumption. In general, the structural model captures the necessary
vertical and torsional modal characteristics of the structure, which are fundamental for the flutter instabil-
ity analysis.
Figure 3. Comparison of experimentally identified vertical and lateral modes with FE results.
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DOI: 10.1002/stc



Figure 4. Comparison of experimentally identified torsional modes with FE results.
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3. AEROELASTIC MODELS

In this section, we develop the FE aeroelastic model using the classical thin aerofoil theory as well as
the flutter derivatives approach.

3.1. Sectional model with thin aerofoil theory

The lift Lse and moment Mse expressions presented for a thin aerofoil are taken from Theodorsen’s
original paper [27]:

Lse ¼ �πρb2 U _αþ €h
� �� 2πρUbC kð Þ Uαþ _hþ _αb

2

� �
(3)

Mse ¼ �πρb2
bU _α
2

þ b2€α
8

� �
þ πρUb2C kð Þ Uαþ _hþ b _α

2

� �
(4)

where ρ is the mass of air per unit volume, b is the half chord of the wing, U is the wind velocity and C
(k) represents the Theodorsen circulation function:

C kð Þ ¼ J 1 kð Þ � iY 1 kð Þ
J 1 kð Þ þ Y 0 kð Þð Þ � i Y 1 kð Þ � J 0 kð ÞÞð (5)

in which J0(k),J1(k),Y0(k),Y1(k) are Bessel functions of the first and second kind, respectively, k=ωb/U is
the reduced frequency and i ¼ ffiffiffiffiffiffiffi�1

p
. The equations of motion of the sectional model (2-DOF aerofoil with

heave and pitch) combined with the aerodynamic forces given in Equations (3) and (4) can be expressed in
the following state–space form:
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2016; 23: 1417–1441
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0 M �Mnc

I 0

� �
_q
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q

qv

� �
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where ΞC represents the circulatory terms and

M ¼ m 0

0 Im

� �
C ¼ 2ωhmζh 0

0 2ωaImζa

� �
K ¼ ω2

hm 0

0 ω2
aIm

" #
(7)

Mnc ¼
�πρb2 0

0 �πρb4

8

24 35 Cnc ¼
0 �πρb2U

0 �πρb3U
2

24 35 (8)

with ωh,ωa the natural frequencies for the vertical/heave and torsional/pitch modes of the structure, ζh, ζa
the corresponding critical damping ratios, q the position vector defined as q={h,α}T and qv the velocity

vector defined as qv ¼ _h; _α
	 
T

. When introducing the state vector x={q,qv}T, Equation (6) can be
expressed in the form:

Ec _x ¼ Acxþ ΞC (9)

where

Ec ¼
0 M �Mnc

I 0

� �
Ac ¼

�K �C þ Cnc

0 I

� �
(10)

MatricesMnc,Cnc represent the non-circulatory part of the aerodynamic forces and are usually referred to
as aerodynamic (or added) mass and damping matrices.

The circulatory term ΞC depends on the irrational function C(k) and therefore cannot be expressed in
a state space form. As a consequence, the traditional approach to aeroelastic stability analysis is based
on finding iteratively windspeed(s) for which sinusoidal solutions to Equation (9) (or alternatively
Equation (6)) exist. Standard algorithms, including the k-method and the p-k method [30], require
the repeated evaluation of the circulation function C(k) in Equation (5), which is a combination of
Bessel functions. This approach has several disadvantages. First, one must seek out the resonant
frequencies one at a time (one of which might be zero). Second, one must distinguish between single
and coupled-mode cases – this becomes particularly inconvenient when high-order modal combina-
tions are possible. Third, during a design exercise, one cannot form a clear picture as to how design
changes are influencing the aeroelastic stability of the structure as a whole, which may possibly include
multiple flutter modes as well as multiple divergence modes [21]. It is thus convenient to approximate
the circulation function with a low-order rational function. Approximations of this type allow one to
write the problem in a state space form and to replace the aforementioned methods with classic-
theoretic analytic devices such as root-locus diagrams. By invoking a least squares approximation,
an accurate quartic approximation of C(k) was found:

C kð Þ ¼ 0:995 þ 57:018 ikð Þ þ 23:788 ikð Þ2 þ 1895:463 ikð Þ3 þ 1523:247 ikð Þ4
1 þ 62:304 ikð Þ þ 807:784 ikð Þ2 þ 3060:678 ikð Þ3 þ 3033:763 ikð Þ4 (11)

The Nyquist diagram of the Theodorsen circulation function, the often used Jones approximation
[19] and the herein used quartic approximation are shown in Figure 5(a). Clearly, the quartic approx-
imation is accurate, with the lower-order Jones function somewhat less so. Finally, employing the
concepts of analytic continuation, ik in Equation (11) can be replaced with ŝ= sb/U, that is, the expres-
sion derived for oscillatory motion can be extended to use with arbitrary motion.

The circulatory term ΞC of the aerodynamic forces can be expressed mathematically by the
feedback-loop system in Figure 5(b), in which the approximation of the circulation function C(s)
can be viewed as a transfer function that receives the structural response y ¼ Uαþ _hþ _αb=U as input
and generates the output ỹ, which is finally translated into lift and moment by the factors � 2πρUb and
πρUb2. An equivalent state space realization Ã, B̃, C̃, D̃of C(s) is derived using standard techniques. Note
that the number of (aerodynamic) states of such state space is four, because C(s) is fourth order.
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2016; 23: 1417–1441
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Figure 5. (a) The Theodorsen function C(k) and its rational approximations: the exact function is the (blue) dot-
dash curve, the quartic approximation the (red) dashed curve and the Jones approximation the (black) dotted

curve. (b) Block diagram of the open loop aerodynamic system of a 2 DOF sectional model.
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The open-loop system dynamics for the sectional model including the circulatory terms are derived
by augmenting the state space in Equation (9) to include the aerodynamic states related to the circula-
tory function:

E
_
x^ ¼ A x^ (12)

where

E ¼ Ec 0

0 I

� �
A ¼ Ac þ B D̃Cy B C̃

B̃Cy Ã

" #
B ¼

�2πρUb

πρUb2

0

0

26664
37775 Cy ¼ 0 U 1 b=2½ �

(13)

with the matrices B and Cy explicitly derived from Equations (3) and (4) and x̂consisting of the four ‘struc-
tural’ states (heave, pitch and related velocities) plus the four ‘aerodynamic’. The eigenvalues of Equation
(12) as a function of the wind speed U will determine the stability of the open-loop system. More specif-
ically, the wind speed at which an eigenvalue has positive real part signifies the onset of an instability.

3.2. Finite element model with thin aerofoil theory

In order to include the aeroelastic forcing in a general FE formulation procedure, distributed lifting
loading and distributed moments are considered for every element. The procedure followed here
assumes lumping of the distributed forces on the nodes. The aerodynamic mass and damping matrices
are now of dimension 12×12, with the non-zero entries corresponding to the heave and pitch-related
degrees of freedom and can be superimposed at the corresponding degrees of freedom in the same way
as the structural matrices:

Ma ¼ ∑
N

i¼1
Mnc;i Ca ¼ ∑

N

i¼1
Cnc;i (14)

The equations of motion in a FE format now take the following form, similar to the case with 2-
DOF sectional model in Equation (6):

0 M �Ma

I 0

� � _Q
_Qv

" #
¼ �K �C þ Ca

0 I

� �
Q

Qv

� �
þ ΞC (15)

where Q is a vector containing the degrees of freedom of the bridge structure, Qv the related velocities

and the state vector is defined as x̂¼ Q;Qvf gT . We then construct a feedback system with as many
feedback loops as the number of elements used, (Figure 10).

In a similar manner as in the sectional model of Equation (12), the FE system dynamics are
expressed in the form:
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2016; 23: 1417–1441
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Eg
_
x^ ¼ Ag x

^ (16)

where

Eg ¼
Ec 0

0 I

� �
Ag ¼

Ac þ BgeDgCg BgeCgeBgCg eAg

" #
(17)

in which Ãg ¼ diag Ã
� �

; B̃g ¼ diag B̃
� �

; C̃g ¼ diag C̃
� �

; D̃g ¼ diag D̃
� �

and x̂ consists of the structural
states, their velocities and the aerodynamic states related to the circulatory functions (namely, there
are four aerodynamic states for each of the FE of the model, because there is a circulatory function
for each element).

3.3. Great Belt Bridge with thin aerofoil theory

The Great Belt Bridge was again used in order to implement the aeroelastic FE procedure. The struc-
tural damping matrix is assessed by assuming a Rayleigh proportional damping model C= aMM+ aKK.
The parameters aM, aK are chosen so as to result in a 1% critical damping ratio for the first vertical and
torsional mode. Figure 6 presents the open-loop root locus diagram of the Great Belt Bridge, in which
the wind velocity U is the varied parameter. From the diagram, one can observe two instability modes,
which cross into the real positive plane of the calculated eigenvalues. One presents itself as a complex
pair of eigenvalues and corresponds to an oscillatory divergent motion (flutter), whereas the other has
real eigenvalues and consequently presents a monotonically increasing instability due to steady-state
aerodynamic moment. As shown in Figure 6, the Great Belt Bridge model reaches flutter instability
at 82m/s and torsional divergence at 90m/s.

Flutter speed estimates for the Great Belt Bridge have been reported elsewhere [33], but these
predictions have a large scatter, ranging from 62 to 97m/s. Table II gives a summary of these results
as well as the values predicted by the proposed analytical framework. Flutter speeds based on an equiv-
alent 2-DOF, heave-pitch model, both using thin aerofoil theory and flutter derivatives, are included.
The predicted flutter speed using the 2-DOF model is the same as Larsen analytic flutter prediction
using flutter derivatives (measured on a sectional model) [32], which was based on a two-mode routine
with allowance for the mode shapes of the basic symmetric bending and torsion mode. The higher
critical wind speeds obtained with the full structural modes can be attributed to multimodal behaviour,
with higher vertical modes participating in the first flutter mode as will be discussed in Section 5.

3.4. Finite element model with flutter derivatives

Theodorsen’s approach of using velocity potentials due to the air flow around the deck and adoption of
the Kutta condition [35] may result in significant errors if the deck girder is considered to fall into the
bluff body category; for this reason, the use of the so-called flutter derivatives was introduced by
Scanlan [36]. There are several different formulations using different combinations of k,K, b,B. In this
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Table II. Estimation of flutter velocities of the Great Belt Bridge from literature.

Reference Flutter velocity

Jurado et al. [33]: numerical, flutter derivatives, two modes 90m/s
Jurado et al. [33]: numerical, flutter derivatives, 18 modes 62m/s
Cobo [34]: numerical, flutter derivatives, two modes 83m/s
Cobo [34]: numerical, flutter derivatives, six modes 97m/s
Larsen [32]: wind tunnel section model 70–74m/s
Larsen [32]: wind tunnel taut strip model 72m/s
Larsen [32]: wind tunnel full bridge model 70–75m/s
Larsen [32]: numerical, flutter derivatives from section model 75m/s
Larsen [32]: numerical, flutter derivatives from taut strip model 79m/s
This work: numerical, flutter derivatives, all modes 81m/s
This work: numerical, thin aerofoil, all modes 82m/s
This work: numerical, flutter derivatives, two modes 75m/s
This work: numerical, thin aerofoil, two modes 75m/s
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work, we adopt the following notation:

Lse ¼ 1
2
ρU2B KH�

1

_h
U

 !
þ KH�

2B
_α
U

� �
þ K2H�

3αþ K2H�
4

h
B

� �" #
(18)

Mse ¼ 1
2
ρU2B2 KA�

1

_h
U

 !
þ KA�

2B
_α
U

� �
þ K2A�

3αþ K2A�
4

h
B

� �" #
(19)

where H�
1;A

�
1 are the dimensionless flutter derivatives, which are a function of the reduced frequency

K=ωB/U, ω is the circular frequency and B=2b is the deck width. In this formulation, the drag degree
of freedom is omitted because our aim is to compare this procedure with the thin aerofoil theory.
However, the drag effect has been shown to be important for certain cases like for the truss-decked
Akashi-Kaikyo Bridge, the world’s longest suspension bridge [37]. The theoretical values of the flutter
derivatives of a thin aerofoil can be computed in terms of the Theodorsen circulation function giving
the following expressions [38]:

H�
1 ¼ �2πF kð Þ=K A�

1 ¼ πF kð Þ=2K

H�
2 ¼ � π

2K
1þ 4G kð Þ

K
þ F kð Þ

� �
A�
2 ¼ � π

2K2

K
4
� G kð Þ � KF kð Þ

4

� �
H�

3 ¼ � π
K2 2F kð Þ � 1

2
GK

� �
A�
3 ¼

π
2K2

K2

32
þ F kð Þ � KG kð Þ

4

� �
H�

4 ¼
π
2

1þ 4G
K

� �
A�
4 ¼ �πG kð Þ=2K

(20)

where K=2k=2ωb/U and F(k),G(k) are the real and imaginary parts of the Theodorsen function C(k)
=F(k) + iG(k). Equations (18) and (19) can be rewritten in a matrix form:

Lse

Mse

( )
¼ 1

2
ρU2B

KH�
1

U
KH�

2
B
U

BKA�
1

U
BKA�

2
B
U

2664
3775 _h

_α

( )

þ1
2
ρU2B

K2H�
4

B
K2H�

3

K2A�
4 K2A�

3B

264
375 h

α

( ) (21)

Equation (21) can now be expressed in the frequency domain ( _h ¼ iωh; _α ¼ iωα), and the RFA
Q iKð Þ of the resulting matrix can be introduced:
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Lse

Mse

( )
¼ 1

2
ρU2

K2H�
4 þ iK2H�

1 B K2H�
3 þ iK2H�

2

� �
B K2A�

4 þ iK2A�
1

� �
B2 K2A�

3 þ iK2A�
2

� �
" #

h

α

( )

¼ U2�Q iKð Þ�
h

α

( ) (22)

in this work, the so-called Roger’s approximation [29] is employed:

^Q iKð Þ ¼ P0 þ P1�iK þ P2� iKð Þ2 þ ∑
N

j¼3

Pj�iK
iK þ γj�2

(23)

where thematricesP0,P1,P2,Pj and the coefficients γj� 2 are frequency-independent and are found by fitting
against the wind tunnel experimental data of the deck section model. Note that P0,P1,P2 are the non-
circulatory stiffness, damping and inertia (added-mass), while Pj, γj� 2 are related to the circulatory forces.

In the present work, we use four poles, that is, N�2=4. Similarly to the case of thin aerofoil theory,
iK in Equation (23) can be replaced with ŝ= sB/U. The equations of motion for the sectional model can
now be rewritten in the Laplace domain as

Ms2 þ Csþ Kð Þq sð Þ ¼ U2 ^
Q ^s
� �

q sð Þ

¼ U2 P0 þ P1s
B
U

þ P2s2
B
U

� �2

þ ∑
N

j¼ 3

Pj�sBU
s
B
U

þ γj�2

0B@
1CAq sð Þ

(24)

Equation (24) is converted back to the state space form by taking the inverse Laplace transform. In par-
ticular, note that the inverse Laplace transform of the circulatory terms (normalized by U2Pj) reads:

X aj sð Þ ¼ s B
U

s B
U þ γj�2

q sð Þ →
 �1

_X aj tð Þ ¼ _q tð Þ � U
B
γj�2X aj tð Þ (25)

where Xaj(t) is the aerodynamic state associated with the circulatory term, which adds the structural states
q. Therefore, the system equations in the time domain are

_q

_q
_X a3

_X a4

_X a5

_X a6

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
¼

0 I 0 0 0 0

�M
�1
K �M

�1
C U2M

�1
P3 U2M

�1
P4 U2M

�1
P5 U2M

�1
P6

0 I � U
B

� �
γ1I 0 0 0

0 I 0 � U
B

� �
γ2I 0 0

0 I 0 0 � U
B

� �
γ3I 0

0 I 0 0 0 � U
B

� �
γ4I

2666666666666666664

3777777777777777775

q

_q

X a3

X a4

X a5

X a6

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
(26)

where M ¼ M � U2P2
B
U

� �2
, C ¼ C � U2P1

B
U

� �
, K ¼ K � U2P0.

Similar to the case of the thin aerofoil theory, the flutter derivatives approach can be extended to an
FE form, where again, the lift and moment equations, Equations (18) and (19), are lumped at the end
nodes of every element. For the FE model, the elemental matrices P0e,P1e,P2e related to the non-
circulatory components have dimensions 12 × 12 and can be superimposed similarly to the structural
matrices:
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P0G ¼
XN
i¼1

P0e;i P1G ¼
XN
i¼1

P1e;i P2G ¼
XN
i¼1

P2e;i (27)

where the summation is again intended in the FE sense. Because the aerodynamic states X
aj, j=3..6 are

related to the pitch and heave of every node, the matrices Pje, j=3..6 have size 12 × 4:

Pj ¼
P11
j P12

j

P21
j P22

j

0@ 1A → Pje ¼ L
2

P11
j|{z}

heave

P12
j 0 0

P21
j

⋮

P22
j|{z}

pitch

⋮

0
⋮

0
⋮

0 0 P11
j|{z}

heave

P12
j

0
⋮

0
⋮

P21
j

⋮

P22
j|{z}

pitch

⋮

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA

(28)

It is worth noting at this stage that this formulation introduces eight extra aerodynamic states per node
(four related to the pitch and four related to the heave, because the flutter derivatives were approximated
using four poles) as opposed to the case of thin aerofoil, which introduces just four (related to the four
poles used to approximate the Theodorsen function).
3.5. Application and comparison of flutter derivatives to the Great Belt Bridge

We implement the procedure described in Section 3.3 for the experimental data obtained at the water
channel of the University of Hamburg, reported in Starossek et al. [39] and later in [35]. Figure 7 presents
the approximation for the four terms of the matrix Q in Equation (23) when thin aerofoil theory and exper-
imental derivatives from the Great Belt are used. The RFA as shown in Figure 7(a) results in a very good
fit when thin aerofoil theory is used because the points fall on smooth lines. For the experimental data,
irregularities pose difficulties in fitting, but still, the results are reasonably good (Figure 7(b)). These
can of course be improved with an increasing number of aerodynamic poles, which in turn though
increases the dimensions of the state space. A nonlinear least square procedure was also implemented
in the approximation where the location of the poles was not preselected but optimized; however, this
yielded only a marginally better improvement of the fitting.

Figure 8 presents a comparison of the root-loci of the full bridge when using thin aerofoil theory,
namely Figure 6, and flutter derivatives. The similarity of aerodynamic behaviour and the assumption
that the streamlined box girder under investigation resembles the behaviour of a thin aerofoil are appar-
ent. Both thin aerofoil theory and the use of flutter derivatives are very close in their prediction of the
flutter critical wind speed (81m/s vs 82m/s).

The lift and moment on the system including leading-edge and trailing-edge flaps were based on a
transformation of the wing–aileron–tab configuration [40]. The transformation is depicted in Figure 9.
In this new configuration, the aileron becomes the bridge deck, the wing is the leading-edge flap and
the tab is the trailing-edge flap. In order to re-level the bridge and return its mass centre to the correct
position, pitch-and-heave correction must be applied. For the system depicted in Figure 9, the inertial
properties of the flaps were neglected and only their aerodynamic influence on the lift and moment
applied on the deck was considered. This is a mathematically simplifying assumption based on the
premise that the mass of the flaps should be kept considerably smaller that the mass of the deck in order
to minimize the additional dead load. In a similar manner as for the case of sole deck, Equation (12)
holds, with the aerodynamic mass, damping and stiffness matrices are formed as follows:
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2016; 23: 1417–1441
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Figure 7. Roger’s approximation for the four terms of Q
^
when (a) thin aerofoil and (b) experimental flutter deriv-

atives are implemented.
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Figure 9. Transformation of the Theodorsen–Garrick wing–aileron–tab configuration into a controlled bridge
deck. (a) The wing pitch angle is α, the aileron angle is βl and the tap angle is βt; U denotes the wind speed. (b)

The leading flap angle is βl, the deck angle is α and the trailing-edge flap angle is βt.
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MncF ¼

�πρb2 0 M1;3
ncF M1;4

ncF

0 �πρb4

8
M2;3

ncF M2;4
ncF

0 0 0 0

0 0 0 0

2666664

3777775 (29)

CncF ¼

0 �πρb2U C1;3
ncF C1;4

ncF

0 �π
2
ρb3U C2;3

ncF C2;4
ncF

0 0 0 0

0 0 0 0

2666664

3777775 (30)

KncF ¼

0 0 K1;3
ncF K1;4

ncF

0 0 K2;3
ncF K2;4

ncF

0 0 0 0

0 0 0 0

266664
377775 (31)

where

M 1;3
ncF ¼ ρb3T 1 ctð Þ (32)

M 1;4
ncF ¼ ρb3 T 1 clð Þ � πclð Þ (33)

M2;3
ncF ¼ ρb4 T 7 ctð Þ þ ctT1 ctð Þð Þ (34)

M 2;4
ncF ¼ ρb4 T � T 7 clð Þ þ clT 1 clð Þ þ π

8

 �
(35)

C1;3
ncF ¼ ρUb2T 4 ctð Þ (36)
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C1;4
ncF ¼ ρUb2 T 4 ctð Þ þ πð Þ (37)

C2;3
ncF ¼ �ρb3U T 1 ctð Þ � T 8 ctð Þ � ctT 4 ctð Þ þ T 11

ct
2

 �h i
(38)

C2;4
ncF ¼ �ρb3U T1 clð Þ � T8 clð Þ � clT 4 clð Þ þ T 11

cl
2

 �
� π
2

h i
(39)

K1;3
ncF ¼ K1;4

ncF ¼ 0 (40)

K2;3
ncF ¼ �ρb2U2 T4 ctð Þ þ T10 ctð Þð Þ (41)

K2;4
ncF ¼ �ρb2U2 T4 clð Þ þ T10 clð Þð Þ (42)

The terms Tij are given in [40]. The size of MncF,CncF is 4 ×4. Indeed, there are two additional
columns related to the flap angles βt, βl (note that the upper left 2 × 2 submatrices are exactly those re-
ported in Equation (8)) and two additional zero rows corresponding to the equations of motion related
to the flap angles. Note that the structural M,C,K matrices are now enlarged to be 4 × 4 (and named
MF,CF,KF), to include the equations related to the flaps. Moreover, in this case, these additional
rows/columns are zero, because the flaps have been assumed massless and neither damping nor stiff-
ness is considered.

The matrices BF,CyF (corresponding to the old B and Cy in Equation (13)) are now given by

BT
F ¼ �2πρUb πρUb2 0 0 0 0 0 0

� �
(43)

CyF ¼ 0 U T10 ctð ÞU
π

T 10 clð ÞU
π
� U 1

b
2

T11 ctð Þ b
2π

T 11 clð Þ b
2π

þ b cl � 1
2

� �� �
(44)

The aeroelastic model of the bridge including the flaps is thus cast into a generalized state space form,
again similar to the case of sole deck in Equation (12), and the corresponding 8×8 Ec,Ac matrices are

Ec ¼
0 MF �MncF

I 0

� �
Ac ¼

�KF þ KncF �CF þ CncF

0 I

� �
(45)

The state vector is now x ¼ h; α; βt; βl; _h; _α; _βt; _βl
	 
T

.
When extending this procedure to the case of FE, Equation (16) still applies, but the state vector is now

augmented to x ¼ Q;F;Qv; ;Fvf gT , where F and Fv are all of the flap and angles and their derivatives,
respectively. Note that in this case, some elements consist of just the deck (i.e. MncF=CncF=KncF=0
and CyF= [0,U, 0, 0, 1,b/2, 0, 0]), and some include the flaps.
4. CONTROL DESIGN

We now consider the general case of a bridge having n segments put in place and k of them having
trailing-edge and leading-edge flaps (Figure 10). The uncontrolled (open-loop) system is described
by the aeroelastic model P(s) (corresponding to the state space matrices Eg,Ag,Bg,Cz), and the
leading-edge and trailing-edge flaps controllers are denoted as kli(s) and kti(s). Both controllers receive
the pitch angle αi of the corresponding element as their input and generate the flap angles βli, βti as
output. The generalized state–space model is given as

Eg
_
x^ ¼ Agx þ Bgu (46)

z ¼ Cz x
^ (47)

where u={βt1,βl1,…, βtk,βlk}T and z={α1,…αk}T. Because the controlled inputs are the flap angles
rather than torques to massy flap bodies, the model given in Equations (46) and (47) must generate
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Figure 10. Block diagram of the system. PNC (s) is the aeroelastic model without the circulatory terms, P(s) is the aero-
elasticmodel (theCi(s) feedbacks are for the inclusion of the circulatory terms), kli(s) and kti(s) are the compensators of the

leading and trailing flaps, αi are the pitch angles and βli and βti are the leading-edge and trailing-edge flap angles.
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the first and second derivatives of the flap angles internally; these derivatives are required by the
aerodynamic model. This is achieved using a generalized state space system of the form:

0 0

1 0

� �
_x1
_x2

� �
¼ 1 0

0 1

� �
x1
x2

� �
þ �1

0

� �
β (48)

in which β represents each flap angle. It follows immediately that

x1 ¼ β x2 ¼ _β _x2 ¼ €β (49)

Note that these equations are introduced in the state–space model at the rows corresponding to the
flap angles βti, βli (first row of Equation (48)) and their derivatives _βti; _βli (second row of Equation (48)).
Because Equation (48) has both its eigenvalues at infinity, the system will have 4 k eigenvalues there.
These eigenvalues are not associated with ‘real’ system dynamics, or system stability properties, and
are thus ignored throughout the paper.

We now design the controller characteristics for the leading-edge and trailing-edge flaps that result in a
closed-loop stable system with maximum robustness margin. The higher the stability robustness margin
is, the larger the uncertainties (e.g. variations in the model and/or in its parameters) that the controlled
system can cope with while remaining stable. This is an essential requirement because, ultimately, it is
the bridge and not the bridgemodel that must be stabilized. In recent years, there has been growing interest
in control design of structural systems under the presence of structured or unstructured uncertainties. In
[41], for example, the vibration control of a tensegrity structure was considered using H∞ robust control
theory and μ synthesis.

Different robustness criteria can be used, for example, robustness to additive and/or multiplicative pertur-
bation on the plant P, on the controller K, on the loop transfer function PK and so on. In this work, we use
robustness to coprime perturbation because this combines advantages from several different robustness
criteria [42,43], it can for example account for uncertainty on lightly damped natural frequencies, which play
a pivotal role in the system’s dynamics. Optimizing for additive perturbation on the plant P is known to give
controllers with poor gain margins but places a favourable explicit limit on the high-frequency gain of the
resulting controller. On the other hand, an index related to multiplicative perturbation on P is known to give
good robustness margin but may have unbounded high-frequency gain.

The normalized left coprime factorization of the plant P is defined as

P ¼ M�1N (50)

where M,N∈H∞ and

MM∼ þ NN∼ ¼ I (51)
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(�)∼ means adjoint. The perturbed plant is

PΔ ¼ M � ΔMð Þ�1 N þ ΔNð Þ (52)

The aim is to design a stabilizing controller that maximizes the size of admissible perturbation:

‖ ΔM ΔN ‖∞ < γ�1 (53)

thereby minimizing the achievable value of γ [42,43]:
K

I

� �
I � PKð Þ�1 P I½ �k∞ < γ ¼ 1

ϵ

���� (54)

In practice, the objective is to find a stabilizing feedback controller that minimizes γ while satisfying
Equation (54) (ϵ is called normalized coprime stability margin or gap metric stability margin). Note
that it is always γ≥ 1. It is worth noting that minimizing γ results in a bounded ∞-norm for KS, S,
KSP,SP (these terms are the four submatrices obtained when expanding the left-hand side of Equation
(54)), where S= (1�PK)� 1. These terms are robust stability indexes: the lower their norm, the better
the related robustness. In particular, ||KS||∞ is related to the robustness against additive perturbation on
the plant P, ||S||∞ is related to the robustness against additive perturbation on the loop transfer function
PK, ||KSP||∞ is related to the robustness against multiplicative perturbation on the controller K and ||
SP||∞ is related to the robustness against additive perturbation on controller K.

We use the H∞ control theory framework to solve this robust stabilization problem. This will result in
the optimal controller, that is, the (active) controller that gives the maximum/best stability robustness and
will serve as a reference for simpler controllers, for example, lower-order and/or passive controllers. A
characteristic of the H∞ optimal controller is that it has a size equal to that of the plant reduced by at least
one. Many times, controllers that are slightly suboptimal (i.e. controllers giving γ> γmin) are derived for a
number of reasons (numerically easier to derive, smaller gains, etc.). These controllers have the same
degree of the plant. It is now clear that, in general, these optimal and suboptimal controllers are complex
and have a very high degree. However, model reduction techniques on model and/or controller can be
implemented for practical implementation [42,43].
5. DESIGN EXAMPLE

Because the critical flutter and divergence speed of the Great Belt Bridge are already very high, a longer
version of the bridge was created. All the parameters in Table I are kept the same, but for this case, the
main span has a length of Lm=2400 m (instead of 1620m), the cable sag is f=260 m (instead of
180m) and the length of the shortest hanger remains he,min =10 m. In practice, the main span and the
towers have been upscaled by 50%, while the same deck section is kept the same. The controllable wing-
lets are concentrated in the middle of the main span so as to suppress the first critical flutter mode and are
considered to be an integral part of the deck as shown in Figure 11.

For this bridge example, the flutter and divergence speed using thin aerofoil theory is estimated at
57 m/s and 68 m/s, respectively. As shown in the left-hand part in Figure 12, there is a second flutter
mode becoming unstable at 73 m/s. Each point on the root-locus diagram corresponds to a mode of the
system at a specific wind speed. The right-hand part in Figure 12 presents the natural frequency and the
damping ratio of different modes along the first instability path. Negative aerodynamic damping
Figure 11. Bridge with flaps considered to be an integral part of the deck.
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Figure 12. (a) Root locus of the 2400m main span bridge example. The first flutter mode becomes unstable at
57m/s and the second one at 73m/s. The torsional divergence mode reaches instability at 68m/s. (b) Natural
frequency (Hz) and damping ratio for different wind speeds along the first flutter mode. The system becomes

unstable when damping is negative.
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signifies the onset of an aeroelastic instability, and the corresponding wind speed is indicated on the plot.
At zero wind speed, the natural frequency and damping ratio is that of the first torsional mode, while the
following points do not correspond to a pure structural mode because the airflow alters the system.

For points along instability paths, the corresponding complex eigenvectors are extracted to give insight in
the mode coupling, which results in aerodynamic instability. Figure 13 presents the normalized vertical pro-
jection of the complex vertical and torsional real components of the mode for the two flutter instabilities. The
left part in Figure 13 (first flutter mode) reveals the contribution of higher vertical modes near flutter speed.

The goal in this design exercise is to determine the minimum flap area that needed stretching from the
midpoint of the main span to restore the stability limits to that of the Great Belt Bridge. The system’s
robust stability margins up to wind speed of 80 m/s are examined while varying the length of the flaps.
As a first step, we follow a simplified procedure for the controller design as we optimize for coprime
robustness on the equivalent sectional model (Figure 14). Figure 15(a) presents the robustness index γ
Figure 13. Mode shape of (a) the first flutter mode and (b) the second flutter mode.

Figure 14. Sketch of the practical implementation of the active control system to the bridge deck. The pitch of the
deck is monitored, and the control signals are transmitted to the servo motors that determine the rotation angles o

the leading and trailing flaps.
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Figure 15. (a) Robustness index as a function of wind speed for different control configurations and (b) corre-
sponding root loci diagrams for the different controllers.
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of the sectional model as a function of wind speed for the case of the open-loop system (no control) as well
as for different control configurations. In this case, the trailing-edge and leading-edge flaps have a width of
3m each. The blue crosses correspond to the optimal H∞ controller, optimized for coprime robustness at
every wind speed (adaptive). These controllers are of the ninth order, which is slightly smaller than that of
the plant which is 12th order. Green hexagons indicate the robustness index for suboptimal controllers,
designed to have a γ that is 10% larger than the optimal γ. Again, they are designed for every wind speed.

For the sake of comparison, we superimpose the robustness index of a reduced stabilizing controller,
which comprises a first-order leading and a second-order trailing flap compensator. Note that, although this
controller is much leftward in the complex plane, its robustness is significantly lower, indicating that the dis-
tance from the imaginary axis is not a good indicator for robustness as it has been suggested in previous
studies. Figure 15a demonstrates that, as expected, the robustness index approaches infinity, zero robust-
ness, at flutter instability, 57 m/s for the open-loop system. The performance of the optimal and subopti-
mal controllers is very similar, and both control approaches achieve good margins up to 67–68m/s, before
the torsional divergence speed. However, system stabilization above torsional divergence has a significant
toll on robustness performance. The corresponding root-loci indicate that all closed-loop systems are sta-
ble up to 80 m/s; however, achieving good robustness margins is a much more challenging objective.
Figure 16. Coprime robustness index of the full FE model as a function of wind speed. (a) Optimal controller
designed on the sectional model. (b) 10% suboptimal controller designed on the sectional model. (c) Optimal
controller designed on the full FE model. (d) Reduced order optimal controller designed on the full FE model.
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Figure 17. Transfer functions related to four of the 22 × 11 entries of the control matrix: leftmost leading-edge and
trailing-edge flap motion from the pitch of the leftmost element and middle leading-edge and trailing-edge flap

motion from the pitch of the middle element.
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The optimal controller configuration derived on the section model is then applied to the three-
dimensional bridge model. In this case, the controller matrix has a diagonal structure, whereas the same
control law is applied to the flaps of each element with each element. The system output is the pitch of
the element deck, and the input is the rotation of the flap angles. Figure 16(a) presents the robustness
index of the entire structure with flaps along the full length, half-length and quarter-length of the
2400m main span. It is easily observed that the controller designed on the section model has poor
robustness margin when applied to the full bridge. It is evident that the system loses robustness rapidly
in the case when 25% of the span is equipped with winglets, while for longer flap surfaces, an abnor-
mal spike is observed, indicating loss of robustness for certain wind speeds.

Figure 16(b) shows similar graphs, with the difference that the suboptimal controller designed from the
sectional model is now applied to the FE model. These figures indicate this strategy yields much smoother
robustness margins, without significant loss in performance. In addition, suboptimal controller design is less
computationally demanding. Flaps along 50% of the span’s length have closely comparable performance
with the case of flaps along the 100% of the length. When the wind speed approaches the second flutter
instability, 73 m/s, as expected, these controllers are ineffective (robustness index becomes infinite) because
the sectional model does not consider those modes.

The final investigation consists in applying the controller design procedure directly on the FE model
for different flap lengths located around the midpoint. Figure 16(c) presents the coprime robustness
index for those cases. In this modelling example, the main span is modelled using 37 elements (about
65m width each). It is worth stressing that Figure 16(c) summarizes the best achievable results for en-
hancing the aeroelastic performance for the chosen model and quantifies the effectiveness of using
trailing-edge/leading-edge flaps while retaining good coprime robustness margins. The configuration
with 11 flaps, approximately 30% of the main span length, appears to be a reasonable choice as the
aerodynamic instability limit is increased up to 70 m/s with a robustness index γ≈ 5. Achieving good
robustness above the open loop divergence speed and the second flutter mode is very difficult, with a
reasonable flap width, even by covering the entire span length with controllable surfaces.

The controller design procedure based on the FE model results in a very high-order controller. For
implementation purposes, it is important to implement a reduced-order approximation, preferably with
little sacrifice in the performance. There exist several reduction procedures, and for the task at hand
[42,43], we perform a truncation operation to the balanced realization of the state space representation
of the optimal controller matrix. With this procedure, we are able to reduce substantially (from 400+ to
20 states) the size of the controllers with a negligible loss in performance; Figure 16(d) compares the
robustness of the system with full state and reduced-order controller, respectively.
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Figure 18. Maximum magnitudes of the 22 × 11 transfer functions of the reduced-order controller matrix for wind
speeds of (a) 70m/s and (b) 77m/s.
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In the frame of this design exercise, time simulations at different wind speeds are performed in the
case of approximatively 30% of the main span controlled (11 leading-edge and 11 trailing-edge flaps);
consequently, the controller matrix has dimensions 11 by 22. In Figure 17, four of the 242 entries of the
matrix are presented, namely, the ones related to the leading-edge and trailing-edge flap motion from
the pitch of the leftmost element and those related to the leading-edge and trailing-edge flap motion
Figure 19. Deck’s pitch and heave transient response at wind speed of (a) 62m/s and (b) 77m/s for the open-loop
(no controller) and closed-loop system, case 11 flaps around the middle (30% of the whole span), reduced-order

controller.
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Figure 20. Flap angles transient response at wind speed of (a) 62m/s and (b) 77m/s at three different locations,
case 11 flaps around the middle (30% of the whole span), reduced-order controller.
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from the pitch of the middle element. Different wind speeds are considered for presentation, namely,
55 m/s (below the first open loop critical flutter speed), 62 m/s (above the first critical flutter speed
and below the torsional divergence speed), 70 m/s (above the torsional divergence and below the
second flutter speed) and 77 m/s (above the second flutter speed). The 20th state, reduced-order
controller is superimposed to the full size controller, showing once again that the two are almost iden-
tical in the spectrum of frequencies of interest.

Figure 18 presents the maximum magnitudes of the controller matrix for the two highest wind speeds
considered: 70 m/s and 77 m/s. It is interesting to note that at 70 m/s, the flaps in the middle have slightly
higher gains than the flap in the edges and that trailing flaps movemore than the leading-edge flaps. On the
contrary, at 77 m/s, there is an asymmetric distribution of magnitudes due to the flap controller’s effort to
suppress the first asymmetric torsional mode.

Figure 19 presents the control effectiveness in time domain for suppressing pitching and heaving of
the bridge at wind speeds 62 m/s and 77 m/s. The initial condition chosen is that of a sinusoidal
twisting/pitch of the main deck with its maximum value at the midpoint of 2° = 0.035 rad. The transient
response of the deck’s heave and pitch is presented for two different points (middle and one-third span)
for the open-loop system (no flaps active) and the closed-loop system with the 11 flaps around the mid-
point (30% of the whole span). When the wind speed is at 62 m/s, the open-loop system diverges in an
oscillatory motion because of flutter instability, whereas for a wind speed of 77 m/s, the instability is
much more violent as this is a combination of flutter and torsional divergence. It is worth noting that
this fictitious simulation is the worst-case example as if we switch on the flap controllers at the chosen
wind speed under the given initial condition. In reality, the controllers would already be functioning at
lower wind speeds, thus preventing the deck pitch from reaching large values.
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The movement of the flaps with regard to the deck pitch is shown in Figure 20, again for the
same wind speeds and initial conditions. Rotations of the leading and trailing flaps at three differ-
ent locations are presented (middle, leftmost and midway). The time history plots give insight into
the flap behaviour for suppressing deck motion. At 62 m/s (and in general, for all wind speeds
lower than the second flutter speed), there is a similar behaviour in the movement of the trailing
and leading flaps at different locations, showing that potentially, the same control law can be
applied for all flaps along the span. On the other hand, this is not the case at 77 m/s. In addition,
note that the flap rotations are restricted to less than 10° in the simulation reported. Of course, this
depends on the initial condition. However, the transfer function magnitudes show that for wind
speeds up to 80 m/s, the rotation of the flaps does not exceed 15°, given a deck pitch of 2°. This
is an important observation as larger flap rotations cause flow separations and thin aerofoil theory
is no more valid. At this point, it is reminded that our analysis is based on thin airfoil theory, and
larger gains for the trailing flap might be required because of flow separation caused by deck bluff-
ness. In [31], it was indeed concluded that a two to three times larger flap deflection is needed than
the original controller computation. This finding, however, did not pose a serious issue as the flap
angle never exceeded 6° in the experiments.
6. CONCLUSION

The work addressed the issue of suppressing aerodynamic instabilities such as flutter and torsional
divergence on long-span suspension bridges using trailing-edge and leading-edge controllable flaps
in combination. The initial part of this study dealt with the mathematical formulation for capturing
the essential aeroelastic characteristics of suspension bridges using a reduced-size structural model.
Classical results from potential flow theory were recast in a form suitable for control analysis and
design, implementing therein the transformation of the wing–aileron–tab to the flap–deck–flap
configuration, using feedback as well as rational approximation of the circulatory terms, which
differentiates this work from previous analyses. The results were compared with previous
experimental and analytic studies, finding good agreement. The aeroelastic FE procedure was then
extended to implement a rational approximation of the experimentally obtained flutter derivatives.
The analysis showed that, for the Great Belt Bridge, the system’s aerodynamic behaviour is
similar to that predicted by thin aerofoil theory, thus supporting the use of the latter for all subse-
quent investigations using control surfaces.

In the control part of this work, H∞ control theory was employed to tackle the robust stabilization
of the unstable bridge at high wind velocities. This novel approach successfully quantifies structural
and aerodynamic uncertainty and answers questions related to the applicability of a control strategy
based on controllable winglets. It was shown that, although the stabilization of the system can be
obtained relatively easily, the closed-loop system loses robustness rapidly for wind speeds beyond
the open-loop torsional divergence speed. This is an important result that sets a qualitative limit for
the performance of all controllers using leading-edge and trailing-edge winglets. However, by fitting
the deck with controllable flaps of about 30% of the main span’s total length, it was possible to
significantly increase the structure’s aeroelastic limits with good robustness margins, that is, the
flutter critical speed was raised up to the torsional divergence critical speed. This work demonstrates
the feasibility of the proposed aeroelastic control methodology, and although further risk analysis
and experimental investigation are needed, the results are encouraging for real bridge applications.
The presented high-order active controller implementation also serves as a benchmark for ongoing
work on using low-order passive flap controllers, which avoid the use of an external power source
and sensors.
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