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1  | INTRODUC TION

Ambrosia beetles (Coleoptera: Curculionidae) represent about 3,400 
species within the subfamily Scolytinae and 1,400 species within the 

Platypodinae mostly living in the tropics (Hulcr et al., 2015). They 
bore into the xylem and feed on their symbiotic fungi, which they 
transport in specialized mycetangia (Vega & Biedermann, 2020). 
Mutualism between beetles and ambrosia fungi has independently 
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Abstract
Ethanol emitted by stressed trees is an olfactory cue used by ambrosia beetles 
(Coleoptera; Curculionidae; Scolytinae) to locate susceptible hosts to colonize. In ad-
dition, ethanol enhances the growth of ambrosia beetle fungal symbionts, improv-
ing colonization. Whether host selection and colonization are affected also by the 
amount of ethanol produced by stressed trees and by tree species is unclear. To 
investigate these mechanisms, we induced attacks by ambrosia beetles in bolts of 
eight tree species by coring and filling them with either 5% or 90% ethanol solutions 
in water. For each ethanol concentration, bolts of the eight different tree species 
were replicated six times in a randomized complete block design. Entry holes were 
used as a proxy for host selection whereas gallery development stage was used as 
a proxy for colonization. Ethanol concentration differentially affected host selection 
of the three ambrosia beetles that were active during this study. Anisandrus dispar 
Fabricius preferentially attacked bolts with 90% ethanol concentration, Xylosandrus 
crassiusculus (Motschulsky) preferentially attacked bolts with 5% ethanol concentra-
tion, and Xyleborinus saxesenii (Ratzeburg) attacked bolts irrespective of ethanol con-
centration. Colonization of X. crassiusculus reflected the same pattern observed for 
entry holes. The effect of host tree species on host selection was most prominent 
for X. saxesenii, while X. crassiusculus established a higher number of developed gal-
leries in Ostrya carpinifolia Scopoli bolts than on five of the other tested tree species. 
Our results suggest that ethanol concentration and host tree species may influence 
ecological niche partitioning among ambrosia beetle species.
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evolved several times (Johnson et al., 2018; Vanderpool et al., 2018), 
and ambrosia beetles represent a key research system for stud-
ies on symbioses (Hulcr et al., 2020). Ambrosia beetles, especially 
in the tribe Xyleborini, are highly successful as invasive species in 
new habitats (Gomez et al., 2018; Hulcr & Stelinski, 2017; Rassati 
et al., 2016). Their broad host range, cryptic habitat in woody tis-
sue, haplodiploid reproduction, and sib- mating, along with massive 
international transport of wood products and woody dunnage have 
favored dispersal among continents (Gohli et al., 2016; Lantschner 
et al., 2020; Meurisse et al., 2019). More than 50 species are estab-
lished outside their native range (Lantschner et al., 2020), includ-
ing serious pests of trees growing in natural and managed habitats 
(Hughes et al., 2017; Ranger et al., 2016; Umeda et al., 2016).

Most ambrosia beetles colonize dying or recently dead hosts 
(Hulcr & Stelinski, 2017), but some species preferentially attack liv-
ing but stressed trees (Hulcr et al., 2017; Ranger et al., 2015; Wang 
et al., 2021). To discern among stressed and healthy trees most am-
brosia beetles exploit olfactory cues, in particular ethanol (Oliver 
& Mannion, 2001; Ranger et al., 2010, 2012, 2015, 2021; Reding 
et al., 2011; Werle et al., 2019), which is induced and emitted by 
trees stressed by abiotic (Kelsey et al., 2014; La Spina et al., 2013; 
Ranger et al., 2013, 2019) or biotic (Kelsey et al., 2013; McPherson 
et al., 2008) factors. Ethanol within host tissues can also influence 
ambrosia beetle colonization. Apparently- healthy trees baited with 
ethanol are attacked but not colonized by Xylosandrus germanus 
(Blandford) or other ambrosia beetles, while X. germanus found-
resses establish fungal gardens and offspring within stems of trees 
irrigated with dilute ethanol solutions (Ranger et al., 2018). Ethanol 
incorporated into agar based media also promotes the growth of 
certain ambrosia beetle nutritional fungal symbionts and inhibits 
the growth of antagonistic fungi (Lehenberger et al., 2021; Ranger 
et al., 2018).

Ambrosia beetle host selection and colonization are also affected 
by the amount of ethanol associated with stressed trees (Kelsey 
& Joseph, 1997, 1999; Klimetzek et al., 1986; Ranger et al., 2011). 
Kelsey et al. (2013) documented four times more ambrosia beetle 
attacks above ethanol- infused sapwood tissue than in the opposite 
side of the same log. Xylosandrus germanus and Xyleborinus saxesenii 
were differentially attracted to bolts soaked in varying concen-
trations of ethanol; the number of entry holes decreased with in-
creasing ethanol concentration for X. germanus and increased for 
X. saxesenii (Rassati et al., 2020). Only X. germanus established suc-
cessful galleries, and the number of emerged X. germanus adults in-
creased and then decreased with increasing ethanol concentrations 
(Rassati et al., 2020), following the pattern observed for the growth 
of its fungal symbiont (Ranger et al., 2018). These results suggest 
that different ambrosia beetle species are more attracted by a cer-
tain ethanol concentration over others, which might correspond to 
the optimal concentration at which their colonization is maximized.

Although most ambrosia beetles attack a broad range of spe-
cies (Hulcr et al., 2007), certain tree species may be preferentially 
attacked over others (Egonyu et al., 2017; Mayfield & Hanula, 2012; 
Rassati et al., 2016; Reding & Ranger, 2020). For example, X. germanus 

preferentially attacks bolts of chestnut (Castanea sativa Mill.) (Rassati 
et al., 2016) or red maple (Acer rubrum L.) (Reding & Ranger, 2020) 
over a number of other broadleaved species. Xylosandrus crassiuscu-
lus entrance holes were more than five times higher on California bay 
laurel (Umbellularia californica (Hook. & Arn.) Nutt) than on camphor 
tree (Cinnamomum camphora (L.) J. Presl), and only a few holes or 
none at all were found on seven other species (Mayfield et al., 2013). 
Different tree species emit volatiles that might enhance or in-
hibit attraction of ambrosia beetles (Burbano et al., 2012; Martini 
et al., 2015; Owens et al., 2017; Pham et al., 2020; VanDerLaan & 
Ginzel, 2013; Yang et al., 2018). Moreover, Castrillo et al. (2012) 
demonstrated that X. germanus produces more progeny on sawdust- 
based artificial diet made with European buckthorn (Rhamnus ca-
thartica L.) over American beech (Fagus americana L.), black walnut 
(Juglans nigra L.), and red oak (Quercus rubra L.). Menocal et al. (2018) 
showed better performance of Xyleborus bispinatus Eichhoff on me-
dium made from avocado (Persea americana Mill.) than medium made 
from silkbay (Persea humilis Nash.). Differential success of ambrosia 
beetle colonization on different tree species may reflect success of 
their fungal symbionts.

In the present study, we examined the effect of ethanol concen-
tration and host tree species on host selection and colonization of 
ambrosia beetles. We hypothesized that different host tree species 
and different ethanol concentrations within the host tissues would 
influence interspecific differences in the attraction and colonization 
of ambrosia beetles. These results are discussed in relation to a niche 
partitioning mechanism whereby host tree and ethanol concentra-
tion might assist in reducing interspecific competition for resources 
of ambrosia beetle species with overlapping flight activity period.

2  | MATERIAL S AND METHODS

2.1 | Study site, bolt preparation and experimental 
scheme

The study was conducted in a broadleaf forest (45° 17’ 14’’N; 11° 
41’ 9’’E) located on the northern slope of Monte Fasolo (260 m 
a.s.l.) in the Euganean Hills area, Veneto region, north- eastern Italy 
(Figure S1). The forest is dominated by O. carpinifolia and Quercus pu-
bescens Willd., with lesser amounts of C. sativa, Fraxinus ornus L., and 
Robinia pseudoacacia L., and was selected because it hosts a diver-
sity of both native and exotic ambrosia beetle species. The climate 
is characterized by an annual mean temperature of approximately 
14°C and precipitation of approximately 800 mm (Table S1).

In mid- May 2020, 96 bolts (diam. 6.0 ± 1.3 cm, length 
30 ± 2.3 cm) were cut from branches of eight tree species (12 
bolts per species), that is Acer platanoides L., C. sativa, Carpinus 
betulus L., Corylus avellana L., F. ornus, O. carpinifolia, Quercus robur 
L., and Picea abies (L.) H. Karst. (Figure S1 and Figure S2a). All are 
widespread in temperate forests of Europe and are hosts for many 
ambrosia beetles. For each selected tree species, bolts were ob-
tained from three different standing trees (four bolts per tree). For 
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each bolt, a 10- cm deep hole was then made on one end using a 
1.5- cm- diameter drill (hole vol. = 17.3 cm3). Six bolts of each spe-
cies were randomly selected to receive a 5% (v:v) aqueous ethanol 
solution and six to receive 90% aqueous ethanol solution. The 5% 
concentration was selected based on previous host selection and 
colonization studies on X. saxesenii and Xylosandrus spp. (Ranger 
et al., 2018; Rassati et al., 2020), and the 90% concentration was 
selected because it is highly attractive to many ambrosia beetle 
species (Klingeman et al., 2017). The aqueous ethanol solution 
was poured into the drilled hole, which was then plugged with a 
silicon cap (Figure S1). Bolts were brought to the field on 22 May. 
Using plastic cable ties attached to an eye bolt screwed into the 
wood near the silicon cap (Figure S2a), bolts were hung approxi-
mately 2 m from the ground, a height at which ambrosia beetles 
are abundant (Marchioro et al., 2020; Miller et al., 2020). Bolts of 
the eight different tree species were hung 5 m apart in randomized 
complete blocks, with alternating blocks for each ethanol concen-
tration 40 m apart (Figure S1). We did not test the two ethanol 
concentrations within the same block because we wanted to avoid 
potential repellent effects of the highest ethanol concentration. 
Bolts were checked every week until 10 July when bolts were 
brought back to the lab. At each check, the ethanol solutions were 
replenished, and entry holes bored during the previous week were 
circled with a permanent marker using a different colour for each 
week (Figure S2b).

2.2 | Analysis of ambrosia beetle attacks and 
colonization

In the laboratory adult females blocking entry holes (Biedermann & 
Taborsky, 2011; Nuotclà et al., 2019) were carefully excised avoid-
ing damage to the entry hole and then were identified to species. 
Width of adult beetles was measured with a stage micrometer under 
a stereomicroscope. Pins of a thickness comparable to the width 
of beetles of each species were used to measure entry hole diam-
eter. This methodology allowed us to reliably assign entry holes to 
X. saxesenii and X. crassiusculus. The other two colonizing species, 
A. dispar and the auger beetle, Scobicia chevrieri (Villa & Villa), have 
the same width and entry hole diameter. For the latter species, we 
analysed only galleries in which we found and identified an adult 
beetle. At the end of September, bolts were peeled using an electric 
planer (Figure S2c,d) and galleries were classed as either developed 
or superficial (Figure S3), indicating successful or unsuccessful at-
tack, respectively.

2.3 | Statistical analysis

Generalized linear mixed- effects models (GLMMs) were used to 
analyse flight and attack activity for each species. The number of 
entry holes of a given species bored during each week (Poisson dis-
tribution) was the dependent variable, the week number since the 

starting day (and both quadratic and cubic terms) was the independ-
ent variable. The models were fitted using the ‘glmer’ function in 
the package ‘lme4’ (Bates et al., 2017) implemented in R (R Core 
Team, 2019). Overdispersion and residual distribution were checked 
via the ‘DHARMa’ package (Hartig, 2017). To determine the influ-
ence of tree species and ethanol concentration on host selection 
and colonization we used linear mixed- effects models (LMMs). For 
host selection, the number of entry holes of a given species visible 
on the bolt surface was used as dependent variable whereas tree 
species (categorical variable), ethanol concentration (categorical 
variable) and their interaction were independent variables. The in-
teraction term was included in the model for X. saxesenii and X. cras-
siusculus but not for A. dispar and S. chevrieri due to the lack of data 
points for certain treatments. For colonization, the percentage of 
developed galleries of a given species per bolt was the dependent 
variable whereas tree species and ethanol concentration were in-
dependent variables. The effect of the interaction between the 
latter two variables was not tested due to the lack of data points 
for certain treatments. When necessary, the number of entry holes 
or the percentage of developed galleries was either log-  or square 
root- transformed to satisfy the assumption of normality. The latter 
models were fitted using the ‘lmer’ function in the package ‘lme4’ 
(Bates et al., 2017) implemented in R (R Core Team, 2019). All post 
hoc pairwise comparisons among means were performed using the 
‘glht’ function from the ‘multcomp’ package (Hothorn et al., 2016) 
with Tukey correction. In all three analyses, block was a random vari-
able. Statistical significance was always set at the 0.05 level.

3  | RESULTS

Bolts were attacked by two native ambrosia beetles (A. dispar and 
X. saxesenii) and one exotic ambrosia beetle (X. crassiusculus), and the 
auger beetle, S. chevrieri.

The majority of 706 entry holes had a diameter corresponding 
either to X. crassiusculus (329) or X. saxesenii (110). We were able to 
assign 96 of the remaining 267 holes to either S. chevrieri (57 holes) 
or A. dispar (39 holes). Xylosandrus crassiusculus, X. saxesenii, A. dis-
par and S. chevrieri attacked 68%, 44%, 25% and 26% of the bolts, 
respectively.

Only 108 of 706 entry holes resulted in developed galleries, 94 
for X. crassiusculus, seven for X. saxesenii, six for S. chevrieri, and one 
for A. dispar. Xylosandrus crassiusculus also had the highest success 
rate (28.5%), followed by S. chevrieri (10.5%), X. saxesenii (6.3%) and 
A. dispar (2.5%).

The temporal analysis of entry holes showed a significant non- 
linear trend for A. dispar (Figure 1a), X. crassiusculus (Figure 1c), and 
S. chevrieri (Figure 1d) (Table S2), with a peak in mid- June for all three 
species. A significant non- linear trend was found also for X. saxesenii 
(Figure 1b, Table S2), but the peak was less evident and was followed 
by a slight further increase at the end of the sampling period. For 
X. crassiusculus, the percentage of developed galleries per bolt was 
higher in June (33.4%) than in July (7.4%).
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3.1 | Effect of ethanol concentration and host tree 
species on host selection

Host tree species and ethanol concentration significantly affected 
the number of A. dispar entry holes (LMMs, F = 2.33, p = 0.03 and 
F = 21.62, p < 0.001, respectively), with significantly more entry 
holes on O. carpinifolia than on P. abies, and no difference between 
O. carpinifolia and the other species (Figure 2a). In addition, the num-
ber of entry holes was significantly higher in bolts filled with 90% 
ethanol than with 5% ethanol (Figure 2b).

Host tree species and ethanol concentration also significantly af-
fected the number of X. crassiusculus entry holes (LMMs, F = 2.38, 
p = 0.02 and F = 12.85, p < 0.01, respectively), with no interaction 
between host tree species and ethanol concentration. The number of 
entry holes was significantly higher on Q. robur than on P. abies, whereas 
no difference was observed between Q. robur and the other species 
(Figure 2e). In addition, the number of entry holes was significantly 
higher in bolts filled with 5% ethanol than with 90% ethanol (Figure 2f).

The number of X. saxesenii entry holes was affected by host tree 
species (LMM, F = 11.23, p < 0.001, Figure 2c), but not ethanol con-
centration (LMM, F = 0.020, p = 0.88, Figure 2d) or the interaction 
between ethanol concentration and host tree species. The number 
of entry holes was significantly higher on Q. robur than on all the 
other species except F. ornus (Figure 2c).

Finally, the auger beetle S. chevrieri was affected by both host 
tree species (LMM, F = 5.32, p < 0.001, Figure 2g) and ethanol 

concentration (LMM, F = 49.09, p < 0.001, Figure 2h). The number of 
entry holes was significantly higher on A. platanoides than on C. bet-
ulus and F. ornus (Figure 2g), as well as on bolts filled with 90% etha-
nol than with 5% ethanol (Figure 2h).

3.2 | Effect of ethanol concentration and host tree 
species on colonization

Only X. crassiusculus constructed a sufficiently large number of 
developed galleries to justify analysing the effect of host tree spe-
cies and ethanol concentration on colonization. The percentage 
of developed galleries per bolt was affected by host tree species 
(LMM, F = 3.41, p < 0.01, Figure 3a), being significantly higher on 
O. carpinifolia than A. platanoides, C. avellana, C. betulus, F. ornus 
and P. abies but similar to C. sativa and Q. robur (Figure 3a). The 
percentage of developed galleries was significantly higher in bolts 
filled with 5% ethanol than with 90% ethanol (LMM, F = 11.92, 
p < 0.01; Figure 3b).

4  | DISCUSSION

In addition to supporting the importance of ethanol in host selection 
and colonization by ambrosia beetles (Lehenberger et al., 2021; Oliver 
& Mannion, 2001; Ranger et al., 2018, 2021; Reding et al., 2011) our 

F I G U R E  1   Number of entry holes 
bored per week by the ambrosia beetles 
A. dispar (a), X. saxesenii (b), X. crassiusculus 
(c) and the auger beetle S. chevrieri (d) 
based on GLMMs output. Plots include 
model estimate (black line) and 95% 
confidence interval (shaded areas) [Colour 
figure can be viewed at wileyonlinelibrary.
com]
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results demonstrate that these processes are also affected by ethanol 
concentration and host species, with major differences among ambrosia 
beetle species. Certain species seek high or low ethanol concentration 
emitted by their hosts, whereas others are less selective. Moreover, 
some species have more prominent host preference than others. Finally, 
for X. crassiusculus we show that tree species can affect colonization.

We found that bolts infused with two different concentrations 
of ethanol (5% and 90%) differentially affected host selection of the 
three ambrosia beetles and the auger beetle that were active under 
field conditions over the time span of this study. In particular, A. dispar 
and S. chevrieri preferentially attacked bolts infused with ethanol at the 
highest concentration (90%), X. crassiusculus preferentially attacked 
bolts with the lowest ethanol concentration (5%), whereas X. saxesenii 
was indifferent to ethanol concentration. All three species are known 
to be attracted to ethanol- emitting trees (Ranger et al., 2016, 2021; 
Reed et al., 2015; Tanasković et al., 2016), but our results suggest that 
the beetles use ethanol concentration as an indicator of host tree sus-
ceptibility, and possibly as a means to reduce interspecific competition.

The preference of A. dispar and S. chevrieri for bolts infused 
with 90% ethanol can be related to their habit of colonizing dying 
or severely stressed trees. This pattern is in line with previous 
studies showing that both species are strongly attracted to etha-
nol, with attraction increasing with ethanol concentration (Byers 
et al., 2020; Klimetzek et al., 1986; Schroeder & Lindelöw, 1989). 
In contrast, the preference of X. crassiusculus for bolts infused 
with 5% ethanol suggests a preference for trees in the early stages 
of physiological stress. This differential host preference is in 
agreement with the higher ability of Ambrosiella hartigii Batra, the 
fungal symbiont of A. dispar, to tolerate ethanol in host tissue than 
Ambrosiella roeperi T.C. Harr. & McNew, the fungal symbiont of 
X. crassiusculus (Lehenberger et al., 2021; Ranger et al., 2018). This 
scenario would explain why exotic X. crassiusculus has become a 
major pest of stressed living trees in ornamental hardwood nurs-
eries in the USA (Ranger et al., 2016, 2021) and would also explain 
why A. dispar and X. crassiusculus do not simultaneously attack the 
same trees or logs despite their overlapping flight activity (Frank & 

F I G U R E  2   Effect of host tree species 
and ethanol concentration on the number 
of entry holes bored by A. dispar (a, b), 
X. saxesenii (c, d), X. crassiusculus (e, f) 
and the auger beetle S. chevrieri (g, h). 
Ap = Acer platanoides; Ca = Corylus 
avellana; Cb = Carpinus betulus; 
Cs = Castanea sativa; Fo = Fraxinus ornus; 
Oc = Ostrya carpinifolia; Pa = Picea abies; 
Qr = Quercus robur. Means with the same 
letter are not significantly different. 
Post hoc comparison was carried out 
using the ‘glht’ function with Tukey 
correction [Colour figure can be viewed at 
wileyonlinelibrary.com]
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Ranger, 2016; Klingeman et al., 2017; Ranger et al., 2015; Rassati, 
et al., 2016). Other ambrosia beetles such as Trypodendron spp. at-
tacking apparently healthy trees in both urban and natural settings 
(Kühnholz et al., 2001) might show the same preference for trees 
producing and emitting low amounts of ethanol. The lack of a pref-
erence by X. saxesenii for bolts infused with 5% or 90% ethanol 
suggests an ability to attack trees under various stages of decline, 
which could explain its high abundance in ethanol- baited traps and 
on ethanol- infused trees or bolts irrespective of the ethanol dose 
(Galko et al., 2014; Kelsey et al., 2013; Oliver & Mannion, 2001; 
Reding et al., 2011). The ecological niche of X. saxesenii might thus 
differ from that of X. crassiusculus and A. dispar more in terms of 
seasonal flight pattern (Coyle et al., 2005) or in the portion of 
wood colonized (Iidzuka & Osawa, 2016) than on host tree chem-
istry and ethanol content.

We also found a higher number of developed X. crassiusculus 
galleries in bolts filled with 5% than with 90% ethanol, reflecting 
the similar pattern observed for entry holes and again support-
ing the hypothesis that the symbiotic fungus A. roeperi is adapted 
to weakly stressed hosts with low ethanol concentration (Ranger 
et al., 2018). In fact, adult female ambrosia beetles neither oviposit 
nor construct developed galleries if the substrate is unsuitable for 
growth of their mutualistic fungi (Biedermann, 2020; Biedermann 
et al., 2009; Cruz et al., 2018). In further support of this hypoth-
esis, Ranger et al. (2018) showed that growth of Ambrosiella gros-
manniae McNew, C. Mayers, and T. C. Harr., the fungal symbiont of 
X. germanus, was enhanced when ethanol concentration in rearing 
media was between 0.5% and 3%. The main difference between 
the two fungi is that the activity of alcohol dehydrogenase is lower 
in A. roeperi than A. grosmanniae, and thus A. roeperi has a lower 
ethanol tolerance (Ranger et al., 2018). This pattern might explain 
why X. crassiusculus could establish developed galleries in logs 
infused with 5% ethanol but not 90% ethanol. The low number 
of developed galleries observed for A. dispar and X. saxesenii sug-
gests that other factors, such as nutrient level, moisture level, or 
pH affect their colonization success (Adams et al., 2009; Maner 
et al., 2013; Menocal et al., 2017).

The effect of host tree species on host selection was more prom-
inent for X. saxesenii than for A. dispar and X. crassiusculus. In partic-
ular, X. saxesenii showed a clear preference for Q. robur bolts over six 
of the other tested tree species. Ambrosia beetle species that use 
ethanol as the primary olfactory cue to locate the most suitable host 
to colonize, such as A. dispar and X. crassiusculus, might not have par-
ticular preference for a specific tree species provided that the opti-
mal ethanol concentration is produced and emitted by a tree (Reding 
et al., 2017). In contrast, ambrosia beetle species that do not show 
a clear preference for ethanol concentration, such as X. saxesenii, 
might have a stronger preference for certain tree species based on 
host- derived compounds other than ethanol. This hypothesis is sup-
ported by a higher attraction of X. saxesenii to traps baited with box-
elder (Acer negundo L.) bolts infused with ethanol than traps baited 
with ethanol only (Chen et al., 2021), the synergistic influence of 
benzaldehyde on X. saxesenii response to ethanol (Yang et al., 2018), 
and the general attraction of X. saxesenii to host produced com-
pounds like quercivorol or α– copaene (Owens et al., 2019).

Xylosandrus crassiusculus established a higher number of devel-
oped galleries in O. carpinifolia bolts than in five other tree species. 
Similarly, Mayfield et al. (2013) found that brood X. crassiusculus 
emerged from California bay laurel bolts was more than 20- fold 
higher than from camphor tree or silkbay, with no individuals emerg-
ing from bolts of five other tree species. Also, congeneric X. ger-
manus produced more offspring in artificial media prepared with 
sawdust from European buckthorn compared to American beech, 
black walnut, and red oak (Castrillo et al., 2012). These results, along 
with ours, support (but do not confirm) the hypothesis that the sym-
biotic fungi of Xylosandrus spp. have variable capability to colonize 
and grow in different host tree species. In addition, developed gal-
leries mainly originated from attacks during the first month of the 
sampling period (i.e., June), when bolts were still fresh. Although 
not important for other species (Sanguansub et al., 2012), this trend 
suggests that wood suitability for X. crassiusculus decreases with in-
creasing wood oldness.

Our study provides support for the potential role of ethanol con-
centration and host tree species in determining the ecological niche 

F I G U R E  3   Effect of host tree species (a) and ethanol concentration (b) on the percentage of developed galleries constructed by 
X. crassiusculus. Ap = Acer platanoides; Ca = Corylus avellana; Cb = Carpinus betulus; Cs = Castanea sativa; Fo = Fraxinus ornus; Oc = Ostrya 
carpinifolia; Pa = Picea abies; Qr = Quercus robur. Means with the same letter are not significantly different. Post hoc comparison was carried 
out using the ‘glht’ function with Tukey correction [Colour figure can be viewed at wileyonlinelibrary.com]
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of ambrosia beetle species. We only tested two extremes of ethanol 
concentration (5% versus 90%) and on only three ambrosia beetle 
species, and we did not measure the amount of ethanol actually 
present in or emitted by host tissues. Testing more ethanol concen-
trations on a larger number of ambrosia beetle species would allow 
further unravelling of the role of ethanol in defining species- specific 
ecological niches, knowledge that can have important implications 
both from ecological and applied viewpoints. Species with similar 
preferences in term of ethanol concentration in wood tissues might 
be more prone to exchange fungal symbionts, which could lead to 
novel beetle- fungus associations with unpredictable impact (Carrillo 
et al., 2014; Rassati et al., 2019; Wingfield et al., 2016). In addition, 
identifying the most attractive ethanol concentration for different 
ambrosia beetle species could increase the efficacy of monitoring 
and surveillance programs (Addesso et al., 2019; Reding et al., 2011), 
as well as open new opportunities for push and pull tactic and 
mass- trapping (Ranger et al., 2021). Given that bark thickness and 
structure were recently shown to affect hole boring of Euwallacea 
kuroshio Gomez & Hulcr and Platypus quercivorus (Murayama), re-
spectively (Boland & Woodward, 2021; Kuma et al., 2021), future 
studies should also investigate the effect of bark and wood prop-
erties on host selection and colonization of other ambrosia beetle 
species.
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