
1. Introduction
Virtually all watercourses experience discontinuous flows along their drainage network. Nonpermanent 
streams can be observed not only in dry regions but also in most low-order channels of the network, repre-
senting more than 89% of the global river network (G. H. Allen et al., 2018; Downing et al., 2012), even in 
wet climates (Datry et al., 2014; Durighetto et al., 2020; Fritz et al., 2013; Larned et al., 2010; Tooth, 2000). 
While the potential or geomorphic river network, here defined as the set of incised channels with banks 
and a definable channel head (Zimmer & McGlynn, 2017), can be considered as static, its temporary flowing 
portion is highly unsteady. It responds to weather and climate changes at different time scales, from single 
events to multiyear scales (Costigan et al., 2016), causing spatial and temporal variability of local hydraulic 
conditions. The temporary portions of rivers entail stream network expansion, contraction, and fragmenta-
tion with important implications across many research fields. In particular, stream intermittency is impor-
tant for freshwater ecology (Datry et al., 2014; Vander Vorste et al., 2019), biogeochemical cycles (Abbott 
et al., 2016; Berger et al., 2017; Dupas et al., 2019), carbon dioxide emissions (Boodoo et al., 2017; Datry 
et al., 2018; Schiller et al., 2014), hydrology (e.g., Godsey & Kirchner, 2014; C. Jensen et al., 2017; Mendicino 
& Colosimo, 2019), and watershed management and policy (Acuña et al., 2014; Nikolaidis et al., 2013).

Studying temporary rivers is particularly challenging for ecologists, who need to characterize “shifting mo-
saics” of lotic, lentic, and terrestrial habitats (Datry et al., 2016), and for hydrologists, who address the topic 
of “zero flow” in developing nonlinear and threshold-based approaches (e.g., Botter et al., 2009; McInerney 
et al., 2019; Mendicino & Senatore, 2013a; Zehe & Sivapalan, 2009). Temporary rivers are also an open issue 
for water policy. For example, dynamic streams are sought to be better integrated into the European Union 
Water Framework Directive 2000/60/EC (WFD; European Commission, 2000; Nikolaidis et al., 2013; Reyjol 
et al., 2014), especially in view of the increasing impact of climate change and land use development in 
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Mediterranean Europe (Skoulikidis et al., 2017), which are expected to shift permanent streams to tempo-
rary. In the Mediterranean region, stream types with extremely erratic flow regimes exist, often identified 
with specific names (“fiumara” in southern Italy; “wadi” in the Middle East and northern Africa) and char-
acterized by specific geological, hydrological, and ecological traits.

Several pioneering studies of rivers with discontinuous flow were carried out in the 1960s and 1970s (An-
derson & Burt, 1978; Blyth & Rodda, 1973; Day, 1978, 1980; Gregory & Gardiner, 1979; Gregory & Wall-
ing, 1968; Morgan, 1972; Roberts & Archibold, 1978), mainly for specific hydrological purposes (i.e., as-
sessing the link between drainage density and the hydrological response to precipitation). Nevertheless, 
as soon as the hypothesis of a strong correlation between drainage density and streamflow dynamics was 
rejected, these early studies were largely abandoned (Godsey & Kirchner, 2014). Recently, the multifaceted 
implications of river network dynamics have contributed to a renewed interest in the scientific community 
for temporary streams. Table 1 shows a representative, although not exhaustive, selection of hydrological 
studies concerning river network dynamics monitoring (and modeling, in several cases) carried out in the 
last 20 years. Different monitoring approaches were adopted, including those that rely on stream gauges 
for long-term analyses (e.g., Costigan et al., 2015; Yu et al., 2018) to aerial or satellite images (e.g., Phillips 
et al., 2011; Wigington et al., 2005). However, given several technical issues (e.g., problems related to ze-
ro-flow stream gauge readings, Zimmer et al., 2020; or limits of aerial surveys, Spence & Mengistu, 2016; 
Tomaštík et al., 2019), the prevailing observation method is represented by visual surveys, sometimes aided 
by water presence sensors (Assendelft & van Meerveld, 2019; Goulsbra et al., 2014; C. K. Jensen et al., 2019; 
Kaplan et al., 2019; Paillex et al., 2020; Peirce & Lindsay, 2015) that can significantly increase the temporal 
resolution of the data sets.

Table 1 indicates that some studies have been carried out in temperate Mediterranean climates with cool 
wet winters and cold to warm dry summers. Among them, Godsey and Kirchner  (2014) mapped active 
stream dynamics in four mainly snow-dominated Californian headwater catchments, focusing on the cor-
relation between the active drainage network length (ADNL) and the specific discharge. In the same region 
(northern California), Lovill et al. (2018) monitored four headwater drainage networks in the early and late 
summer of different years, highlighting the importance of lithological characteristics for understanding 
drainage network persistency. However, intraseasonal changes in the active network within hot-summer 
Mediterranean climates, characterized by higher summer temperatures and an extensive seasonal imbal-
ance between precipitation and evapotranspiration (ET), have not been monitored or modeled yet. In these 
conditions, the climate is expected to exert a primary control on flow intermittency and seasonal discharge 
dynamics (e.g., Garcia et al., 2017; Medici et al., 2008; Senatore et al., 2011). Zimmer and McGlynn (2017) 
also highlighted that in subtropical climates ET has a direct influence on the seasonality of runoff and its 
persistence. Likewise, the mean potential ET was one of the explanatory variables used by González-Ferre-
ras and Barquín (2017) in their random forest-based classification model for identifying temporal or peren-
nial river segments.

Linking the active river network length to weather variables is a straightforward and effective way to mod-
el its expansion and contraction dynamics. Many recent studies related the observed flowing network 
length directly to river discharge or water level (e.g., Doering et al., 2007; Prancevic & Kirchner, 2019; Shaw 
et al., 2017; Ward et al., 2018; Whiting & Godsey, 2016; Zimmer & McGlynn, 2017). However, streamflow 
itself is a dependent variable controlled by the meteorological input, and it is often controlled by precipita-
tion patterns at time scales that differ from those relevant for active channel network dynamics (Durighet-
to et  al.,  2020; Shaw,  2016). Furthermore, hydrometric stations (with related reliable rating curves) are 
much less common than precipitation stations (Fekete & Vörösmarty, 2007; Kim & Sharma, 2019). Among 
the relatively few studies relating the active drainage network to weather and climatic drivers (Goulsbra 
et al., 2014; Jaeger et al., 2019; C. K. Jensen et al., 2018, 2019; Ward et al., 2018), Durighetto et al. (2020) 
were the first to explore the dependence of the active stream length on meteorological drivers aggregated 
at different time scales. In the study of Durighetto et al. (2020), the impact of ET on network dynamics was 
determined to be negligible because of the wet climate of their study area (annual rainfall >1,500 mm). To 
date, the extent to which this site-specific result can be extended to drier climate settings remains unknown.

A comprehensive modeling framework should be developed to estimate not only the total ADNL but also 
the corresponding spatial patterns of flowing river reaches. This goal is not trivial because the spatial 
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distribution of the active network depends on several topographic and geological features. While Biswal 
and Marani  (2010) linked stream network recession features to morphological characteristics, other au-
thors highlighted the importance of subsurface and groundwater processes for the spatial patterns of flow 
persistence (e.g., Godsey & Kirchner, 2014; Goulsbra et al., 2014; Kaplan et al., 2020; Shaw, 2016; Ward 
et al., 2018; Zimmer & McGlynn, 2017). Jaeger et al. (2007) did not find satisfactory area-slope relationships 
to explain observed channel head locations in forested landscapes in Northwestern USA. In the same vein, 
Payn et al. (2012) suggested a decreasing influence of topography on stream base flow contributions during 
the recession. Floriancic et al. (2018) found large differences in flow rates from neighboring slopes with 
similar geomorphological features, highlighting the importance of bedrock properties and even of debris 
cover on space-time variability of contributions to low flows.

In the literature, there are many examples of studies that, though acknowledging that topography does 
not fully explain the observed spatial variability of active river network persistency, use topographic and 
morphologic indices to model network expansion and contraction. Most of them rely on the mean topo-
graphic wetness index (TWI, Beven & Kirkby, 1979), and, to a lesser extent, the topographic position index 
(TPI, Guisan et al., 1999), which compares the elevation of each cell in a digital terrain model (DTM) to the 
mean elevation of the neighborhood (González-Ferreras & Barquín, 2017; Jaeger et al., 2019; C. K. Jensen 
et al., 2018, 2019; Shaw et al., 2017). Existing approaches, however, exploit local morphometric properties 
of the contributing catchment and operate at the single-grid pixel or river segment level. Therefore, the 
dynamics of the whole stream network emerge from the aggregation of the local model results through a 
bottom-up approach. This can induce significant misestimation of the total active length in some circum-
stances (C. K. Jensen et al., 2018). Moreover, in the existing literature, the effect of stationary topographic 
and geological characteristics is superimposed on that induced by dynamical hydrometeorological varia-
bles, as spatial and temporal patterns of flowing streams are concurrently analyzed via regression models. 
The influence of topographic and geological attributes on the spatial patterns of flow persistency has not 
yet been isolated, and the impact of prioritization schemes that involve specific morphometric and geologic 
characteristics on the ensuing model performance remains unknown.

In this paper, a comprehensive investigation of the recession dynamics of two temporary headwater streams 
in a Mediterranean watershed is shown. The research consists of the following three main steps: (a) field 
monitoring and visual inspection of the active (i.e., flowing) stream network, characterized by higher than 
weekly resolution surveys (average time interval of ∼4–5 days) over a total area of 1.15 km2, from the end 
of the 2019 rainy season (i.e., April) until the complete drying up of the channels (June); (b) statistical mod-
eling of the total ADNL by explicitly accounting for the time variability of the hydroclimatic forcing and 
ET dynamics; and (c) prediction of the spatial distribution of the active nodes based on topographic and 
geological characteristics of the drainage basin.

The application of the proposed methodology fulfills the following specific objectives: (a) further increasing 
the range of experimental studies on temporary streams characterizing the effect of seasonal flow recession 
on the active channels of a headwater catchment with a temperate (hot-summer Mediterranean) climate; 
(b) providing insights into the time scales of network contraction and seasonal dry down, through an inno-
vative approach relating them dynamically to relevant hydroclimatic variables and evaluating the role of ET 
in network contraction; and (c) assessing to what extent the spatial distribution of the active river reaches 
can be explained by a model relying only on topography and evaluating the model improvement with addi-
tional information related to the geology.

2. Data and Methods
2.1. Study Area and Geological Setting

The study area consists of two headwater catchments (located approximately at 39.524°N, 16.130°E) feed-
ing the upper course of the Turbolo creek, a tributary of the Crati River in southern Italy (Figure 1a). The 
Turbolo creek has been investigated for over 20 years (e.g., Mendicino, 1999; Mendicino & Sole, 1997), and 
streamflow in its upper course is monitored at the outlet of Fitterizzi section, where both a weather station 
and a water stage gauge are installed, managed by the Regional Agency for the Protection of the Environ-
ment (ARPACal).
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The upper Turbolo creek catchment is ∼7 km2, with elevation ranging from 183 to 1,005 m a.s.l. Its channel 
network mainly consists of two forks, originating from the Calabrian Coastal Range, which is dominated 
by strongly altered and fractured crystalline-metamorphic rocks that entail widespread slope instability and 
have overall high permeability (Tortorici et al., 1995). The geology allows ample groundwater recharge and 
storage that sustains almost perennial flow at the Fitterizzi gauge.

The catchment is characterized by steep slopes on the metamorphic rocks in the west. In the eastern part, 
where the two test catchments are located, slopes are less steep but affected by water erosion processes, 
inducing shallow landslides and soil creep.

The two headwater catchments selected for this study, hereafter referred to as east (E) and west (W) catch-
ments (in agreement with their geographical position; Figure  1b), are two subcatchments upstream the 
Fitterizzi gauge with areas of 0.67 and 0.48 km2, respectively; their main topographic and geomorphological 
features are summarized in Table 2. The dominant lithologies (Figure 1c) are silty marly clays of the Mid-
dle-Late Pliocene, with poor erosion resistance and low permeability. North-westerly, poorly consolidated, 
and highly permeable sandy-conglomerate formations of the Late Pliocene (Calabrian) overlap. The sharp 
permeability contrast between the two lithologies results in shallow unconfined aquifers that feed tempo-
rary springs. The surface layers of the clay formations are generally altered and more permeable than the 
underlying layers. Moreover, they are characterized by variable thickness due to the aforementioned geo-
morphological characteristics and because of an anticline fold (Figure 1c). These layers also contain shallow 
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Figure 1. Study area: (a) the upper Turbolo catchment closed at the Fitterizzi outlet (red pin). Red outlines highlight the two study headwater catchments; 
(b) zoom of the two headwater catchments (W catchment on the left, E catchment on the right); (c) geolithological map of the study area: silty marly clays 
of the Middle-Late Pliocene are shown in yellow; overlapping Late Pliocene sandy-conglomerate formations are drawn in light beige. The double dashed red 
line represents the anticline fold. Point A highlights the intersection at the lowest elevation of the separation line between the two sandy and clay lithological 
formations with the main channel of the W catchment drainage network, point B the intersection of the anticline fold with the E catchment drainage network; 
(d) study catchments areas and drainage networks overlaid on orthophotos provided by the Calabria Region geoportal.
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aquifers seasonally contributing to surface flow (more details about geo-
logical features of the area are provided in the supporting information, 
Figure S1).

The erosive processes affecting the two test catchments are mainly domi-
nated by surface flowing water and landslides, which can cause landscape 
evolution, especially in areas with limited vegetation cover (including 
agricultural areas). Therefore, the catchment morphology is likely sub-
ject to local changes with consequent variations in channel incision and 
geometry every few years. The W catchment’s drainage network is char-
acterized by eroded gullies, steeper morphology, and bare surfaces with 
evident signs of recurrent landslides. On the other hand, the E catchment 
has gentler slopes. As a comparison, Table 2 shows that the TPI stand-
ard deviation is 0.24 and 0.16 for the W and E catchments, respectively. 
Another important difference between the study sites concerns land use 
(Figure 1d). The E catchment is dominated by nonirrigated arable land 
(66%), while the W catchment by a dense herbaceous cover (53%). Olive 
groves are almost equally widespread in the two catchments (27% and 
23% in the W and E catchment, respectively). More details about land 
cover in the two catchments are provided in the supporting information 
(Table S1).

Finally, it is noteworthy that stretches with standing water, due to low 
infiltration rates and morphological irregularities, are common in the 
study area. Standing water was not considered part of the active network, 
yet it facilitates ephemeral stream reactivations (even of a few hours) in 
the gullies, even following low rainfall amounts. Standing water was dif-
ferentiated from slow-moving surface water empirically, evaluating the 

behavior of an injected tracer. Although it was not systematically measured during the field campaign, the 
length of the network hosting standing water during the initial and intermediate survey period (i.e., April–
May) can be roughly estimated in 15%–20% of the active length.

2.2. Hydrometeorological Data Set

The Fitterizzi monitoring station (Figure 1a) is located very close to the two test catchments (∼175 m from 
the outlet of the E catchment, and ∼2,150 m from the farthest point of the W catchment). The weather data 
during the 18-year long period from July 2001 to June 2019 reveal a typical Mediterranean climate (Csa, 
according to Köppen classification; Köppen, 1936), with hot and dry summers (average July temperature of 
24.9°C) and wet, not very cold winters (average January temperature of 7.9°C). The average annual precip-
itation and reference crop ET are 1,245 mm year−1 (only 26% of which falls between April and September) 
and 1,236 mm year−1, respectively (Figures 2a and 2b). The 1-year period from July 2018 to June 2019 (cor-
responding to the dry down month in our survey) was less rainy than average (990 mm year−1) and ET was 
slightly lower than average (1,205 mm year−1). Nevertheless, May 2019, which is the month with the highest 
number of field surveys in this study, was particularly wet (94.6 mm, the second rainiest May on record).

The total amount of rainfall during the study period (from April 18, 2019 until the end of June 2019) was 
101.8 mm, and the corresponding reference ET was 375.4 mm (Figure 2c). During this 74-day period, there 
were 23 rainy days (precipitation ≥0.2 mm day−1), 18 in May, with the highest intensity of 28.8 mm day−1 on 
May 6. The average number of consecutive dry days was 6.4, but June was almost completely dry. The lim-
ited rainfall in June corresponded to an almost simultaneous sudden increase in temperatures. Specifically, 
from June 3 to 7, there was an increase of more than 10°C in the maximum daily temperature and ∼8°C in 
the mean daily temperature.

Correspondingly, the mean reference ET increased from 4.0 ± 0.7 mm day−1 during the period of April 
18–June 3 to 6.9 ± 0.6 mm day−1 during the period of June 4–30.
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W catchment E catchment

Catchment area (km2) 0.48 0.67

Maximum elevation (m a.s.l.) 545 481

Mean elevation (m a.s.l.) 358 263

Minimum elevation (m a.s.l.) 213 183

Average exposure NW NW

Average slope (°) 23 15

Maximum TWI 14.67 16.21

Mean TWI 4.50 5.13

Maximum TPI 2.80 0.90

TPI standard deviation 0.24 0.16

Minimum TPI −1.70 −0.93

GDNL (km) 2.26 2.88

Notes. GDNL is the geomorphic drainage network length, TWI the 
topographic wetness index, and TPI the topographic position index 
(calculated through the homonymous GDAL—geospatial data abstraction 
library—algorithm in QGIS). For each cell,   8

0 1TPI / 8iiZ Z , 
where Z0 is the elevation of the cell under evaluation and Zi the elevation 
of each of the eight surrounding cells.

Table 2 
Summary of the Main Properties of the E and W Catchments

TPI Z Z
i

i
  


0

1

8

8/



Water Resources Research

Water stage data were also available at Fitterizzi. The stage-discharge rating curve was reconstructed by 
carrying out frequent discharge measurements (∼1 per month) from March to August 2019 with a three-di-
mensional flow tracker based on acoustic Doppler velocimeter technology, whose sensor allowed reliable 
measurements starting from flow depths greater than 25 mm, with a maximum tolerance of ±8 mm (more 
details about the stage-discharge rating curve are provided in the supporting information, Figure S2a).

2.3. Field Surveys and Drainage Network Mapping

The on-site surveys, aimed to reconstruct the topology and dynamics of the flowing network, were carried 
out from April 2019 until complete dry down occurred in June 2019. The mapping strategy that was repli-
cated was defined by Durighetto et al. (2020) and consisted of hiking the whole stream network, moving 
upstream along the reaches and collecting the coordinates and status of each network node. A network 
node is a point along the network where the status (active or dry) has been assessed through on-site surveys. 
These nodes allow the reconstruction of the spatial and temporal patterns of the flowing network. The GPS 
coordinates of the nodes were collected with a handheld receiver. The average distance between neighbor-
ing nodes was set at 20 m; however, in some cases, adverse morphological and vegetation conditions (espe-
cially in the W catchment) did not allow a uniform distance to be maintained throughout the network. The 
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Figure 2. Box plots of (a) accumulated monthly precipitation and (b) reference crop evapotranspiration ET0 from July 2001 to June 2019. Blue horizontal 
lines represent the average values, red dots the values in the period July 2018–June 2019; (c) time series of daily precipitation and ET0 in the period July 2018–
June 2019. White background highlights the study period. Note that, while ET0 in figure (c) was calculated using the Penman-Monteith equation (R. G. Allen 
et al., 1998), due to the numerous gaps in many variables, the monthly ET0 in figure (b) was calculated through the Hargreaves-Samani equation following the 
approach of Mendicino and Senatore (2013b).
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spatial distribution of nodes is shown in the supporting information, Figure S3. Each node was classified as 
active when there was flowing water on it and dry otherwise (dry node or node with standing water). The 
minimum width of flowing water for identifying an active node was fixed to 10 cm. The 10 cm threshold was 
selected considering different factors. First, this threshold is consistent with the resolutions that other sur-
vey techniques can achieve, based, for example, on UAVs and water presence sensors. Furthermore, a width 
below 10 cm usually is associated with extremely low flows (<0.1 L s−1, approximately). In such conditions, 
it is not trivial distinguishing surface flow from standing water or saturated soil.

A total of 11 (8) complete surveys were carried out for the E (W) catchment, until the complete dry down 
of the whole network in both catchments (Table 3). Afterward, periodic (e.g., biweekly) inspections were 
carried out during the summer season to verify the lack of surface flows in the test catchments (the reac-
tivation of the network took place in November 2019). The overall duration of the campaigns was 53 and 
28 days, respectively, for the E and W catchment. For the E catchment, the average time interval between 
two consecutive surveys was 5.3 days (maximum 15 days, minimum 2 days); for the W catchment, it was 
4 days (maximum 8 days, minimum 2 days). The timeline of the surveys was not significantly affected by 
the underlying weather conditions. Therefore, the surveys were performed under different hydrologic con-
ditions and postponed by 1–2 days only in case of heavy rainfall.

Field recorded information was archived in a GIS environment in which the nodes were connected and 
the whole network was delineated for each survey. Specifically, the drainage networks were reconstructed 
from a combination of information derived from field surveys and official sources, such as the DTM and 
orthophotos provided by the Calabria Region geoportal. The DTM has a spatial resolution of 5 m (enough 
to reconstruct accurate stream networks; Li & Wong, 2010) and was preliminarily corrected with a pit re-
moval algorithm to eliminate the most evident DTM artifacts (i.e., pits collecting drainage from more than 
four cells, i.e., 100 m2), and then flow directions and flow accumulation were calculated through a classical 
D8-type algorithm (Jenson & Domingue, 1988). The consistency of the flow directions derived from the 
DTM with the observations was checked by overlaying the tracked nodes. Inconsistencies were solved by 
manually modifying the DTM, but differences in positions were never greater than two cells (i.e., <10 m). 
The surveyed nodes were connected by stretches following the GIS-derived flow accumulation grids, and 
from each grid cell in between two observed nodes, a virtual node was extracted. Each stretch was then set 
as active only if both the upstream and downstream nodes were observed as active.

Subsequently, for each survey, every node was assigned with an active or nonactive label that made it pos-
sible to calculate some global properties, such as the total ADNL (km) and the active drainage density 
(ADD, km−1). Furthermore, the persistency of active drainage on each stretch i during the survey period was 
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W catchment E catchment

Date ADNL (km) Date ADNL (km)

May 18, 2019 1.33 Apr 18, 2019 2.74

May 21, 2019 1.20 May 03, 2019 1.95

May 24, 2019 0.88 May 07, 2019 2.54

Jun 01, 2019 0.87 May 11, 2019 1.95

Jun 05, 2019 0.45 May 17, 2019 2.10

Jun 07, 2019 0.28 May 21, 2019 1.68

Jun 10, 2019 0.14 May 24, 2019 1.62

Jun 15, 2019 0.00 Jun 01, 2019 1.40

Jun 05, 2019 1.40

Jun 07, 2019 0.15

Jun 10, 2019 0.00

Note. ADNL is the active drainage network length.

Table 3 
Summary of the Field Surveys
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quantified through a persistency index Pi calculated as the ratio of the number of surveys with the stretch 
classified as active to the total number of surveys (Durighetto et al., 2020).

2.4. Modeling the Drainage Network Length Dynamics

The models used for estimating the total active streamflow network length follow the approach adopted by 
Durighetto et al. (2020), but some novel elements were introduced to represent the peculiarity of the climate 
in the study area and the seasonality of the flow regime.

In the first model (model 1, hereafter), the ADNL is assumed to be linearly dependent on the antecedent 
excess precipitation EPT (mm) accumulated during the previous T days:

    EPADNL EPTt k t (1)

where kEP (km mm−1) is a parameter representing the rate of ADNL increase per unit of EPT. EPT is calcu-
lated integrating the daily excess precipitation EP (mm day−1) over the period T:

    


 EP EP
t

T
t T

t d (2)

where        CEP ETt R t t , with R (mm day−1) as the daily precipitation and ETC (mm day−1) as the daily 
crop ET. The latter can be calculated following R. G. Allen et al. (1998) using a crop coefficient kc:

 C c 0ET ETk (3)

where ET0 is the daily reference crop ET estimated with the Fitterizzi monitoring station data from. It is 
noted that the daily excess precipitation is forced to be positive or null.

The excess precipitation accumulated over the period T in Equation 1 accounts for water either available for 
direct runoff or stored and released later. The calibration of the model relied on the parameters kc, kEP, and 
T, according to the following procedure. First, the parameters kc and T were estimated by maximizing R2 
by searching in a two-dimensional domain in which physically reasonable ranges of (0, 1) and (0, 60 days) 
were assumed for kc and T, respectively. Once the values of kc and T were fixed, linear regression (which 
minimizes the sum of squared residuals) was used to estimate kEP. Calibrations were performed for both 
the E and W catchments, checking their robustness through leave-one-out cross-validations. Furthermore, 
each study catchment was used for the validation of the model parameters during the calibration in the 
other catchment.

Model 1 is the only model of the three models proposed by Durighetto et al. (2020) that accounts for evapo-
transpirative losses. In contrast to the alpine climate where it was first applied, in our study area, the advent 
of high temperatures, typically from late spring, leads to a significant and rather sudden increase in ET (Fig-
ure 2c), making occasional rain showers ineffective for the groundwater recharge. Therefore, the term EPT 
tends to zero rather rapidly (depending on T), resulting in the complete dry down of the stream network. 
Notably, in the calibration strategy shown in this paper, the parameter kc represents the average behavior 
of the whole vegetation in the catchment and can implicitly include the effect of water stress conditions; 
therefore, the accumulated ETC calculated for the whole analysis period is presumably representative of the 
accumulated actual ET.

The importance of ET for the contraction and dry down of the Turbolo river network was further evaluated 
by comparing model 1 to the other two models proposed by Durighetto et al. (2020) in which EP is replaced 
by precipitation. Specifically, the simplest of these models simply assumes that the ADNL linearly depends 
on the precipitation RT (mm) accumulated in the previous T days through a coefficient kP (km mm−1). It will 
be called model 2, hereafter:

  ADNL P Tk R t (4)

The last model (model 3, hereafter) considers two amounts of precipitation (RT1 and RT2) as explanatory 
variables for ADNL, accumulated over different periods T1 and T2 to account for different contributions 
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(interflow and base flow, respectively) to the flow. These two quantities are then linked to ADNL with linear 
regression using the coefficients kP1 and kP2:

      1 21 2ADNL P T P Tk R t k R t (5)

Similar to model 1, models 2 and 3 also have no parameters accounting for the length of the permanent 
drainage network. Therefore, model 2 needs calibration only for parameters kP and T, while kP1, kP2, T1, and 
T2 are calibrated for model 3. The calibration procedures adopted for these two models are similar to that 
used with model 1, that is, for each model, the optimal set of parameters was selected by maximizing R2 with 
either T or T1 and T2(for further details, the reader is referred to Durighetto et al., 2020). The performance 
indices considered for model comparisons were the R2 and the mean absolute error (MAE) between the 
observed and modeled ADNLs. Furthermore, models were intercompared using the Akaike information 
criterion (AIC), which combines model performance and complexity. Specifically, the AIC corrected for 
small sample sizes AICc was used (Akaike, 1974):

 
  

 
p p

c p
s s s p

1 1RSSAIC 2 ln 2
1

n n
n

n n n n (6)

where RSS is the residual square sum, np the number of calibrated parameters, and ns the sample size.

Finally, parameter uncertainty of models 1–3 was addressed through a simplified generalized likelihood un-
certainty estimation (GLUE) analysis (Beven & Binley, 1992). Specifically, for each model, the set of param-
eters determining R2 values greater than 95% of the maximum were selected from the related n-dimensional 
domains (where n is the number of parameters calibrated for each model). Then, for each parameter, the re-
lated posterior marginal probability distribution function (pdf) was derived and compared with the best fit.

2.5. Modeling the Spatial Distribution of the Active Drainage Network

Compared to approaches in the literature that aimed to provide spatially distributed information of the 
degree of network activity (e.g., González-Ferreras & Barquín,  2017; Jaeger et  al.,  2019; C. K. Jensen 
et al., 2018; Kaplan et al., 2020), the novelty of the method proposed here is that it starts from the active 
drainage network total length (whose extent is estimated based on a moving time window in which the an-
tecedent excess precipitation is dynamically calculated) and then focuses on the allocation of the estimated 
total length in space, depending on local geomorphological or geological features. The latter step is carried 
out by transferring the information concerning the nodes surveyed to the grid cells making up the DTM, 
thus representing the study area through a regular grid with a resolution equal to that of the DTM.

Topographic features can be the foundation of a straightforward and objective method for assessing the 
spatial distribution of the ADNL. Among the various terrain metrics, the TWI is likely the one that more 
clearly shows a direct link with runoff persistency (e.g., C. K. Jensen et al., 2018, 2019; Shaw et al., 2017).

If it is assumed that the persistency of surface runoff in a given grid cell is directly dependent on the TWI, 
then it is possible to spatially distribute the active network across the whole stream network. This can be ac-
complished by locating it such that it starts from the cell with the highest TWI value and gradually decreases 
until it reaches a threshold value that corresponds to a network length equal to the (observed or modeled) 
ADNL. This approach can be pursued once a bijective correspondence between network length and TWI 
values has been defined. Specifically,

1.  if two grid cells are connected horizontally (i.e., in the N-S or E-W directions), the associated length of 
the channel is equal to the lateral dimension (resolution) of the cell l;

2.  if two grid cells are connected diagonally (NW-SE or NE-SW directions), the associated length is equal 
to 2 l; and

3.  in the case of isolated cells, the associated length can be arbitrarily assumed between 0 and 2 l (in our 
case, a length equal to 0.5l was set).

In some cases, when suggested by either field surveys or geological analyses, the general rule of dependence 
on higher TWI values can be amended by prioritizing or penalizing reaches that have specific features (e.g., 
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the presence of a spring or, conversely, a wide alluvial bed with high storage potential). In particular, if per-
manent or semipermanent springs are identified, active cells can be allocated primarily downstream of the 
springs, still following a higher-TWI-based rule that is limited to the downstream channels until the outlet 
is reached and then moving to the remaining portion of the drainage network. Of course, this approach can-
not be separated from an accurate knowledge of the pedolithology and bedrock geology of the study area, 
where reaches prioritization or penalization is dictated by field surveys or targeted geological investigations.

The accuracy of the model was evaluated through cell-by-cell comparisons involving, for every survey i, all 
the cells of the geomorphic drainage network. The results were summarized in confusion matrices, from 
which an accuracy index was achieved:




TP TNAccuracy i i
i n

 (7)

where TPi and TNi represent the cells correctly modeled as active (true positives) and not active (true neg-
ative), respectively, and n is the total number of cells belonging to the geomorphic drainage network, that 
is, the sum of TPi, TNi, false positives FPi (i.e., cells erroneously modeled as active), and false negatives FNi 
(i.e., cells erroneously modeled as not active).

3. Results
3.1. Active Drainage Network Observations

Table  3 shows the observed ADNL for the 19 surveys. In the E catchment, the ADNL changed from a 
maximum of 2.74 km (95% of the potential—geomorphic—drainage network, ADD = 4.09 km−1) to 0 in 
∼53 days, with an average observed value of ∼1.59 km. The high initial value of the active network length 
is most likely due to the precipitation events in the previous 2 weeks (∼80 mm and 13 rainy days out of 14; 
Figure 2c). Despite a general decreasing trend, the dynamics of the ADNL are nonmonotonic because the 
rainfall events between May 3 and 7 (45.8 mm overall) and between May 11 and 17 (25 mm overall) led to a 
temporary increase of the variable. On the other hand, in the W catchment after the first survey (May 18) no 
relevant rainfall events occurred until the complete dry down (∼28 days later), with an average of less than 
1 mm day−1 of rainfall; hence, we observed a continuous decrease of ADNL from the first observed value 
(1.33 km, corresponding to 59% of the geomorphic drainage network, and an ADD = 2.77 km−1) to 0, with 
an average observed ADNL of ∼0.64 km.

Disconnected ADNL (i.e., the length of the portion of the active drainage network not connected to the 
outlet) was not common in both catchments. In the E catchment, only during one survey (June 7) was the 
active network disconnected (5.3% of the geomorphic network length). On the other hand, the rougher 
morphology of the W catchment led to some disconnected portions of the network in six out of eight sur-
veys, but with disconnected lengths that never exceeded 15% of the geomorphic network.

Figure 3 shows the spatial distribution of the persistency index Pi for the study catchments. Owing to the 
ephemeral nature of the stream network in this region, the mean persistency values in the E and W catch-
ments are 0.55 and 0.30, respectively. Figure 3 also highlights a significant spatial variability of P throughout 
the network; in particular, both catchments have one main branch where Pi values are remarkably higher 
than all the other reaches. This pattern can be reasonably linked to the lithogeological features of the study 
sites (Section 2.1). Specifically, point A (reported in both Figures 1c and 3) upstream of the most persistent 
branch in the W catchment represents the lowest elevation where the two sandy and clay lithological for-
mations intersect the main channel, while point B (also drawn in Figures 1c and 3) upstream of the most 
persistent branch in the E catchment is the approximate location of the intersection of the anticline fold 
with the drainage network. Both points A and B play an important role because the geological features that 
correspond to those points foster temporary springs.
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3.2. Active Drainage Network Length Modeling

From April 18 to June 30, 2019, a significant decreasing trend in the average daily discharge was recorded, 
from 104 to 23 L s−1, respectively. The highest average daily discharge (198 L s−1) was recorded after the 
event that occurred on May 6 (the hydrograph for the whole study period is provided in the supporting 
information, Figure S2b). Figure 4 relates the ADNLs of the E and W catchments to the average daily dis-
charge Q at the Fitterizzi gauge. The observed discharge is likely too high and shows a reduced variability 
in time if compared with the actual drainage network length in the study catchments since Q reflects the 
hydrological processes taking place in a larger area (7 km2 against 1.15 km2), including the mountain areas 
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Figure 3. Persistency index Pi for the E and W catchments. Points A and B from Figure 1c are also reported.

Figure 4. Observed mean daily runoff Q versus active drainage network length (ADNL) observed in (a) the E and (b) 
the W catchment. Different fill colors highlight the date for each point of the series, while the red dashed tracks indicate 
the time evolution of observations in the Q-ADNL domain.
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with geolithological characteristics leading to semiperennial flow (Section 2.1). Nevertheless, in both catch-
ments, we tried to express the observed ADNLs as a function of the observed discharge as

   0ADNL Q Q (8)

where α is a constant, β is the scaling exponent, and Q0 is the highest discharge value for which ADNL = 0. 
Calibration led to a value of 0.494 for the scaling exponent value in the E catchment, which is within the 
literature range (Godsey & Kirchner, 2014; C. Jensen et al., 2017). Instead, in the W catchment, it is >1 
(Figure 4b). This difference in the exponents is possibly generated by the difference in the dates when the 
surveys started (in the W catchment, the surveys started closer to the dry down than in the E catchment).

The power regressions based on Equation 7 were well correlated to observed ADNLs (R2 equal to 0.87 and 
0.94, MAE equal to 0.23 and 0.08 km, respectively, for the E and W catchment). Nevertheless, they oversim-
plify the different response times of different hydrological processes (i.e., active network expansion and con-
traction and discharge generation and routing) triggered by meteorological forcing, enhancing the risk of 
spurious correlations. In Figures 4a and 4b, the colors of the circles and the red dashed tracks highlight the 
time evolution of observed points in the Q-ADNL domain. In the E catchment, we observed some counter-
clockwise hysteretic effect, similar to those described by Zimmer and McGlynn (2017) during the precipita-
tion event that took place on May 6, 2019. The ADNL was slightly lower during the rising limb than during 
the receding limb (ADNL = 1.948 km and Q = 66 L s−1 on May 3, ADNL = 1.953 km and Q = 64 L s−1 on 
May 11), confirming that network contraction might have a delayed response compared to flow recession. 
Other examples in support of this finding exist. For instance, in the E catchment, despite a flow recession of 
∼12 L s−1 from June 1 to 5 (with 2.8 mm of rainfall in-between), ADNL did not vary. The counterclockwise 
hysteretic effect emerges despite that the size of the catchments where the ADNL was monitored (1.15 km2 
altogether) is much smaller than the contributing area at the discharge gauging station (7 km2). Instead, 
such an instance is expected to smooth the discharge response and hasten the ADNL response.

Drainage network dynamics were related to the underlying meteorological drivers (precipitation and ET) 
using the statistical models described in Section 2.4. Table 4 summarizes the results achieved using model 
1 that accounts for ET, and its performance is compared to models 2 and 3 that only rely on precipitation 
data. It shows that model 1 systematically outperforms other models in the E catchment with a longer sur-
vey period, while in the W catchment, with a shorter survey period, statistics are comparable. The decrease 
of performance observed in the E catchment when ET is not included in the statistical regression (models 
2 and 3) indicates that in Mediterranean climates, ET plays a relevant role for drainage network dynamics. 
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Model
Parameters (E catchment 

calibration)

E catchment 
(calibration)

W catchment 
(validation)

Parameters (W 
catchment calibration)

E catchment 
(validation)

W catchment 
(calibration)

R2 MAE R2 MAE R2 MAE R2 MAE

Model 1 Equation 1 T = 31 0.92 0.19 ± 0.02 0.83 0.43 T = 34 0.79 0.53 0.98 0.05 ± 0.01

kc = 0.449 kc = 0.755

kEP = 0.034 ± 0.0006 kEP = 0.035 ± 0.0003

Model 2 Equation 4 T = 24 0.63 0.42 ± 0.03 0.83 0.70 T = 9 0.58 0.58 0.96 0.07 ± 0.01

kP = 0.026 ± 0.0007 kP = 0.047 ± 0.0012

Model 3 Equation 5 T1 = 5 0.78 0.27 ± 0.02 0.95 0.59 T1 = 8 0.58 0.70 0.99 0.04 ± 0.01

T2 = 24 T2 = 18

kP1 = 0.025 ± 0.0023 kP1 = 0.029 ± 0.0015

kP2 = 0.021 ± 0.0009 kP2 = 0.007 ± 0.0005

Notes. The left side of the table refers to the calibration performed in the E catchment, where R2 and the mean absolute error (MAE) for the W catchment were 
calculated using the mean values of the parameters kEP, kP, kP1, and kP2. Analogously, the right side of the table shows the results achieved with the calibration 
performed in the W catchment. Parameters units: T, T1, T2 (days); kc; kEP, kP, kP1, and kP2 (km mm−1); R2; MAE (km).

Table 4 
Comparison of the Calibrated Parameters With Models 1–3 and Related Performance
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Nevertheless, due to the simplicity of the models, the AIC-based analysis performed heavily penalized mod-
els with a larger number of parameters. In the E catchment, the AICc values of the models 1, 2, and 3 were 
4.7, 2.8, and 11.2, respectively. In the W catchment, they were instead 9.2, 2.3, and 25.6. According to the 
AIC ranking, model 3 is by far the less performing in all cases. In the E catchment, differences between 
models 1 and 2 are not so sharp (ΔAICc lower than 2) indicating comparable performance according to 
Burnham and Anderson (2002). As expected, in the W catchment owing to the reduced number of obser-
vations, model 2 clearly outperforms the others. Overall, the results based on both statistical performance 
indices and AIC suggest that including ET data allows more robust estimates of the flowing length, but 
precipitation data alone can contribute as a first approximation to evaluate flowing network dynamics even 
in hot-summer Mediterranean climate.

Focusing on model 1 including ET, we observed some differences in the calibrated parameters between the 
E and W catchments. The period T over which the excess precipitation was accumulated on the E catch-
ment was slightly shorter than for the W catchment (31 vs. 34 days). This result can be explained by the 
smoother landscape of the E catchment compared to the W catchment, where incised channels might more 
strongly connect the surface drainage network to the subsurface flow. However, this hypothesis needs to be 
further verified, given the uncertainty in the estimate of T in the W catchment (see Figure 6 and the related 
uncertainty analysis). The calibrated kc value in the E catchment was also lower than the optimal kc in the 
W catchment (0.449 vs. 0.755), in line with the observed differences in the land use of the two catchments 
(with more agriculture and controlled vegetation growth in the E catchment). The patterns of the R2 values 
in the T-kc domain for both the E and the W catchments are shown in Figures 5a and 5b, respectively. Even 
though R2 values tend to be higher in the W catchment, which can be simulated more “easily,” the patterns 
are quite similar in the two cases. In particular, the smallest T values are associated with the lowest R2 values 
for any kc, suggesting that the short-term cumulative value of weather variables is poorly correlated with the 
observed dynamics of the drainage network.

The T and kc parameters summarize the effects of the differences in topography and land cover in the 
two catchments. Taking this into account, interestingly, the ratio between the ADNL and the accumulated 
excess precipitation is almost the same (0.034 ± 0.0006 and 0.035 ± 0.0003 for the E and W catchment, 
respectively). Table 4 also shows the cross-validation analysis performed for the parameter kEP. The results 
highlighted the robustness of the model (coefficients of variation of kEP on the order of 0.01) that was also 
confirmed by the MAE values achieved with different parameter subsets.

Figures  5d and 5e show the modeled network dynamics using the parameter sets calibrated with both 
the test catchments and the observations. The graphs provide a visual representation of the good perfor-
mance of the models that are confirmed by the high R2 and low MAE values (Table 4). Model 1 not only 
performs very well in the catchment where it is calibrated (R2 = 0.92 and 0.98, MAE = 0.19 ± 0.02 km 
and 0.05 ± 0.01 km, for the E and W catchments, respectively) but also provides reliable forecasts in the 
corresponding validation catchments (R2 = 0.83 and MAE = 0.43 km in the W catchment; R2 = 0.79 and 
MAE = 0.53 km in the E catchment).

Figures 5a and 5b show that, for the E catchment, the best set of parameters is mostly concentrated in a 
well-defined region of the T-kc domain, while for the W catchment the region of the parameter space where 
performances are higher is more scattered. Uncertainty analysis performed through the GLUE approach 
confirmed this behavior. For both the catchments, Figure 6 isolates the marginal probability density func-
tions (pdfs) of the parameters T and kc whose combination allowed us to achieve R2 values greater than 95% 
of the maximum (the pdfs of the parameter kEP are also shown in the figure for the sake of completeness). In 
the E catchment, the best fit parameters match the medians of the distributions, highlighting the robustness 
of the parameterization. On the other hand, the posterior pdfs for the W catchment reveal that a relatively 
wide range of parameters could provide performances similar to the best fit. This result is most probably due 
to the shorter duration of the observation period in the W catchment. Despite the relevant uncertainty of the 
parameters T and kc (standard deviations of 13.6 days and 0.191, respectively for T and kc), their posterior 
medians (45.5 days and 0.643, respectively) are both higher than those found for the E catchment, therefore 
supporting the previous hypotheses about parameter differences in the two catchments.
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3.3. Spatial Distribution of the Active Drainage Network

Figure 7 shows the variation of the active network length, considering as active only the cells of the DTM 
having TWI values equal to or greater than a given threshold. To facilitate the comparison between the two 
catchments, the active network length and the TWI values were scaled with the catchment area (ADD) and 
the maximum TWI value (TWImax), respectively. The graph highlights an almost linear increase in ADD 
while reducing the TWI threshold in the W catchment; in the E catchment, instead, the increase in ADD is 
slower for higher TWI values (i.e., at lower elevations) and faster for lower values. Figure 7 resembles the 
right tails of TWI frequency distributions in the study catchments (corresponding to the channelized net-
work). Moreover, the observed pattern of ADD versus TWI/TWImax in the E catchment reflects the higher 
bifurcation ratio of the upstream network, and the presence of a single relatively long main channel in the 
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Figure 5. R2 of model 1 as a function of T and kc, calibrated for the observations (a) in the E catchment and (b) in the W catchment; (c) daily precipitation 
during the period from April 12 to June 21, 2019; (d) calibrated model based on model 1 in the E catchment (red points represent the observed active drainage 
network length [ADNL] values); (e) calibrated model based on model 1 in the W catchment (blue points represent the observed ADNL values). In (a and b), the 
red stars highlight the best parameter set. In (d and e), the dashed lines represent the cross-validation results achieved using the calibrated parameter sets.
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lower part of the basin. Therefore, in the E catchment, the ADNL is more 
sensitive to changes in the TWI threshold for lower TWI values and vice 
versa.

The TWI-ADNL relationship can be used for modeling the spatial distri-
bution of the active network if TWI values of the cells are significantly 
correlated with the corresponding persistency values. Specifically, it can 
be hypothesized that a cell in the channel network with higher TWI is 
active for longer than a cell with a smaller TWI; hence, its persistency 
Pi is higher. Indirectly, this assumption implies that the activation of the 
reaches in the whole network follows a hierarchical order since TWI is a 
time-invariant feature.

TWI values in the cells that host the geomorphic channel networks are 
well correlated with Pi (Figure  8) both in the E catchment (r  =  0.714, 
p << 0.001) and the W catchment (r = 0.833, p << 0.001). Correlation 
analysis suggests that other topographic indices such as TPI, which 
proved to be useful in other contexts (e.g., C. K. Jensen et al., 2018), can-
not add significant information in this case (r = 0.059 and 0.098, for the E 
and W catchments, respectively).

The ADNL-TWI relationships found in the two test catchments were 
used to drive the spatial distribution of the modeled ADNL in the cells 
of the DTM. Figures 9a and 9b (left histogram series, labeled with “T”) 
summarize the performance of the whole modeling chain (i.e., ADNL 
modeling based on effective rainfall and consequent spatial allocation of 
the channelized sites), highlighting for each survey in each catchment, 
the percentage of TP, TN, FP, and FN (these results are also provided in 

SENATORE ET AL.

10.1029/2020WR028741

18 of 26

Figure 6. Probability distribution functions of the parameters allowing R2 values greater than 95% of the maximum for 
both the E catchment (panels a, c, and e) and the W catchment (panels b, d, and f). In each panel, the circles indicate 
the best fit (Table 4), the triangles the median value of the pdf.

Figure 7. Relationship between the active drainage density (ADD) 
obtained when only the cells of the digital terrain model (DTM) having the 
ratio topographic wetness index (TWI)/TWImax equal to or greater than a 
given threshold are activated and the respective TWI/TWImax thresholds.
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Table S2, as supporting information). The mean accuracy in the E catchment (Figure 9a) varies from 72.8% 
(June 1) to 99.4% (June 10), with an average value of 81.7%. In the W catchment (Figure 9b), the accuracy 
varies from 84.8% (June 7) to 97.6% (June 15), with an average value of 89.5%. FP and FN percentages are 
comparable in both catchments (FP = 7.8% and FN = 10.5% in the E catchment, FP = 4.2% and FN = 6.3% 
in the W catchment), highlighting the similar model performance in the two case studies.

A comparison of the modeled spatial distribution of the active cells with the observational data (some 
examples representative of different wetness conditions are given in Figure 10) highlights that model per-
formance can be further improved integrating the topographical features summarized by the TWI with 
lithogeological information. Specifically, the stream reaches starting from points A (sand-clay interface, 
Figure 1c) and B (anticline) where temporary springs emerge (Section 3.1) need to be prioritized when de-
fining the activation rules since observations showed that cells belonging to such reaches are more quickly 
activated than cells with higher TWI values belonging to other reaches. Therefore, the spatial allocation of 
the active cells in each catchment is ruled by two TWI-ADNL curves, with the second (low priority) activat-
ed only when the maximum ADNL associated with the first (high priority—reaches starting from point A 
or B) is reached.

Assuming the priorities suggested by the analysis of the lithogeological features, the results shown in Fig-
ures 9a and 9b (right histogram series, labeled with “T-G”) were achieved. The mean accuracy in the E 
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Figure 8. Box plots of topographic wetness index distribution (a) in the E catchment and (b) in the W catchment, and topographic wetness index distribution 
(c) in the E catchment and (d) in the W catchment, divided according to the corresponding Pi values, for each digital terrain model cell belonging to the 
geomorphic drainage network. Red dots represent the mean values.
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catchment increases by 9.4% compared to the model relying only on TWI (Figure 9a), with an average value 
of 91.1% and a range that varies from 84.9% (June 7) to 99.4% (June 10). In the W catchment (Figure 9b), 
the improved version of the model increases model performances to a lesser extent (+2.4%). FP and FN 
percentages remain comparable in both catchments, but with smaller values compared to the version of the 
model that uses only topographic information (FP = 3.2% and FN = 5.8% in the E catchment; FP = 3.1% 
and FN = 5.0% in the W catchment).

Figure 10 shows some examples of the cell-by-cell comparisons between observed and modeled active drain-
age networks using both the TWI-based model and the integrated topographical and lithogeological model. 
Specifically, for the E catchment, the surveys performed on May 7 and June 5 were selected as representative 
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Figure 9. Summary of cell-by-cell comparison of the observed and modeled spatial distribution of active cells for all surveys: (a) E catchment and (b) W 
catchment. In each graph, the left histogram series are related to the model using only topographic wetness index (TWI) (label “T”), the right histogram series 
to the model using both TWI and lithogeological information (label “T-G”). TP, true positives; TN, true negatives; FP, false positives; FN, false negatives.

Figure 10. Cell-by-cell comparison of the observed and modeled spatial distribution of active cells: (a) E catchment, 
May 7, 2019; (b) E catchment, June 5, 2019; (c) W catchment, June 1, 2019; and (d) W catchment, June 5, 2019. For each 
figure in the panel, the left map is related to the model using only topographic wetness index (TWI), the right map to 
the model using both TWI and lithogeological information. TP, true positives; TN, true negatives; FP, false positives; FN, 
false negatives.
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of wet and dry (but without complete dry down) conditions, respectively. On the first date (Figure 10a), the 
catchment was quite wet and the prioritization of the stretch intersecting the anticline had a small effect 
on the observed spatial pattern of the active network. On the other hand, on June 5 (Figure 10b), the same 
strategy led to an improvement in the total accuracy of more than 20%. Concerning the W catchment, the 
example reported in Figure  10c, which refers to June 1, highlights the beneficial consequences implied 
by the prioritization of the main channel (with an improvement in the accuracy of almost 11%); however, 
when the main channel is not fully active (June 5, Figure 10d), the two approaches are almost equivalent.

4. Discussion and Conclusions
This study presents the results of a comprehensive analysis based on a field campaign in two Mediterranean 
catchments in which the active network was monitored during the flow recession phase at the beginning of 
the summer of 2019 until complete dry down. The paper also presents an integrated model of the space-time 
dynamics of the active drainage network that couples meteorological, topographic, and geological informa-
tion in a sequential manner. The temperate Mediterranean climate of the study area (typically characterized 
by hot and dry summers with high values of potential ET) jointly with the specific focus on network dry 
down represents one of the key novelties of this work. The work expands the range of hydroclimatic settings 
within which empirical information on the temporal dynamics of the actively flowing streams is available.

The results shown in this paper strengthen the hypothesis that the temporal variability of the overall active 
network length is modulated by weather dynamics. Specifically, the high correlation between the anteced-
ent excess precipitation and the active network length suggests the following major conclusions: (a) ADNL 
temporal variability can be successfully described based on weather data; (b) in the analyzed meteorological 
setting, there is enough statistical evidence that ET likely improves the prediction of the observed dynamics 
of the active streams. This outcome allows a step forward from the study of Durighetto et al. (2020), who 
could not appreciate a visible effect of ET on the temporal dynamics of the flowing length because of the 
wetness of the underlying climatic conditions (annual precipitation of 1,500  mm, with a mean annual 
temperature of ∼5°C). The uncertainty on the role of ET modulation highlighted by the AICc tests will be 
reduced with further research into how different hydrological processes control the dynamics of the active 
length; (c) while the temporal dynamics of the ADNL are controlled by the underlying climatic variability, 
the actual length of active streams also depends on topographic or geological features, which in model 1, 
influence the period of integration T over which the accumulated excess precipitation needs to be evaluat-
ed. Specifically, T turns out to be longer in the more incised but smaller W catchment, and shorter in the 
gentler E catchment. Provided that differences in land cover (which modulates ET) and topography are 
summarized by the different values of the parameters kc (Equation 3) and T (Equation 1), the proportion-
ality factor between accumulated excess precipitation and ADNL (i.e., ≈0.035 km mm−1) was almost the 
same for the two neighboring study catchments, despite the differences in catchment area and geomorphic 
drainage density.

The statistical model linking active length and antecedent excess precipitation was compared to an alter-
native approach that relies on a power function linking ADNL and discharge. Our results indicate (Sec-
tion  active drainage.2) a good performance of the discharge power function (Equation  8) in describing 
ADNL dynamics, though the performance was slightly lower than that of model 1. Discharge is a variable 
well representing ADNL behavior during the recession phase. Several studies used antecedent discharge 
to predict recession coefficients (e.g., Bart & Hope, 2014; Biswal & Nagesh Kumar, 2014; Reddyvaraprasad 
et al., 2020). However, we argue that relying on weather variables rather than water discharge for modeling 
ADNL dynamics is preferable for three reasons, other than the performance:

1.  Discharge and active network length are two different types of responses to a common hydrological 
forcing, even though these responses are characterized by distinct characteristic lag-times. This feature 
is highlighted by the counterclockwise hysteretic behavior observed between Q and ADNL (Shaw, 2016; 
Zimmer & McGlynn, 2017), which implies that the discharge response is faster than the active network 
length.

2.  In many settings, discharge data are much rarer and much more challenging to gather than weather data. 
Nonetheless, they can be crucial for analyzing the coevolution of ADNL and Q and for characterizing 

SENATORE ET AL.

10.1029/2020WR028741

21 of 26



Water Resources Research

the hysteresis in the stream length-streamflow relationship. Therefore, a larger availability of streamflow 
data is certainly desirable.

3.  The use of meteorological data makes the parameters of the regression less sensitive to the specific ob-
servation period during which the survey was carried out. As an example, Table 4 shows that model 1 
calibrated in the W catchment (less field surveys and only during the last part of the recession period) 
provides reasonable results also in the E catchment (more field surveys on a slightly longer period), 
while the power function calibrated in the same period in the W catchment with the scaling exponent 
greater than 1 is not applicable for the E catchment.

While the weather forcing controls the observed temporal changes in the active network length, the main 
drivers of the active network’s spatial patterns are represented by physiographic features such as topogra-
phy, hydraulic properties of surface soil, bedrock structure, and permeability, and geological singularities 
such as faults and anticlines in line with previous studies (Costigan et al., 2016; Godsey & Kirchner, 2014; 
Goulsbra et al., 2014; C. K. Jensen et al., 2018, 2019; Kaplan et al., 2020; Prancevic & Kirchner, 2019; Whit-
ing & Godsey, 2016). Specifically, the high correlation between the persistency index Pi and TWI for both 
catchments, which is here enhanced by the spatial homogeneity of soil properties, confirms the primary 
importance of surface topography in delineating spatial patterns of active drainage networks (C. K. Jensen 
et al., 2018).

The relatively low number of disconnections observed in the study sites can be explained by the prevalence 
of clay soils that do not promote the formation of losing streams and water reinfiltration. Nevertheless, even 
in a rather homogenous geological setting such as the study area (Figure 2c), topography cannot fully ex-
plain the spatial dynamics of stream expansion and contraction (C. K. Jensen et al., 2019). The presence of 
pedological and lithogeological singularities can impair the hypothesis that the location of flowing streams 
is only constrained by topography (e.g., Godsey & Kirchner, 2014), especially during the recession phase 
(Payn et al., 2012) and even in neighboring catchments with similar geomorphological characteristics (Flo-
riancic et al., 2018). In our case study, accounting for some key geological features (namely, the sand-clay 
interface and the anticline) helped to improve the representation of the spatial patterns of active stream 
dynamics, especially during the late stages of the dry down, when the effect of geological singularities be-
came more evident.

The proposed approach based on a bijective correspondence between the network length and TWI (either 
with or without prioritization) was shown to be effective in both the case studies investigated herein. As 
per the aim of the study, a double advance was achieved: first, a statistical framework which provides in-
formation about the total active network length (i.e., the model proposed by Durighetto et al., 2020) was 
successfully integrated with a morphometric model for the identification of the spatial patterns of flowing 
channels; second, the role of topographic and geological attributes on the spatial patterns of the active net-
work was disentangled from that of hydrometeorological factors.

In general, the concept of prioritization proposed in this work can be made more complicated; for example, 
the priority given to the stretches located downstream of a geological singularity can be effective only within 
a given region of influence, for example, as defined by a certain TWI (lower) threshold. However, the adop-
tion of this strategy is conditioned by detailed knowledge of the specific features of the catchment and can 
be difficult to generalize. Also, the calibration of the statistical model showed that even neighbor subcatch-
ments are described by different sets of parameters. Therefore, information transfer to other networks and 
generalization of the results is not straightforward and requires adequate knowledge of the new study area, 
acquired also through several field surveys. Nevertheless, the simple and flexible methodology proposed in 
this study, including both monitoring and modeling, can be generalized to all headwater flowing networks.

Concerning the burden of the monitoring campaign, it is worth noting that both morphologic and geolith-
ological characteristics are time-invariant features of the catchment. The dependence of the persistency on 
such features evidenced by our data supports the hypothesis of the existence of a predefined hierarchical 
order in the activation and deactivation of stretches, implying that those activating later are the first that 
dry down and vice versa. The consequences of such behavior, which needs to be confirmed and generalized 
by further studies, are discussed in Botter and Durighetto (2020). These include more straightforward mon-
itoring campaigns of river networks dynamics (in which the activity of less persistent nodes can be inferred 
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by monitoring more persistent ones), and the possibility of linking the total length of the active network to 
the spatial patterns of the active streams, as proposed also in this work.

Future work will expand the analysis of the network dynamics in the study area to other recession periods 
to further validate the model and to confirm the extent of the integration period of antecedent meteorology. 
Furthermore, the analysis will move beyond the recession phase, including the winter reactivation phase. 
As suggested by previous studies (e.g., Zimmer & McGlynn, 2018), the expansion and contraction of the 
flowing network are connected to the seasonal variations of the storage in the underlying shallow uncon-
fined aquifers. Given the peculiar geological features of the area, the temporary springs are likely reactivat-
ed only when the water table elevation exceeds a given threshold. This hypothesis will be evaluated in future 
studies that also use a higher-resolution DTM derived from a LiDAR survey, UAV-based monitoring, and 
more detailed information about soil properties and bedrock structure.

Data Availability Statement
Weather data are delivered, upon request, by the “Centro Funzionale Multirischi-ARPACAL” (http://www.
cfd.calabria.it/). The original DTM, the geolithological map of the study area, and the orthophotos are pro-
vided by the Calabria Region geoportal: http://geoportale.regione.calabria.it/opendata. The modified DTM 
and the experimental data collected for this study are available at Senatore et al. (2020).
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