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Abstract

The efficient simulation of fault and fracture mechanics is a key issue in several applications and is attracting a growing
interest by the scientific community. Using a formulation based on Lagrange multipliers, the Jacobian matrix resulting from the
Finite Element discretization of the governing equations has a non-symmetric generalized saddle-point structure. In this work, we
propose a family of block preconditioners to accelerate the convergence of Krylov methods for such problems. We critically review
possible advantages and difficulties of using various Schur complement approximations, based on both physical and algebraic
considerations. The proposed approaches are tested in a number of real-world applications, showing their robustness and efficiency
also in large-size and ill-conditioned problems.
c⃝ 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:

//creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Accurate simulation of fault and fracture mechanics is a key component in a wide number of subsurface engineering
applications. Faults and fractures are typically treated by modelers as discontinuity surfaces embedded in three
dimensional (3D) continuous media. From a mathematical standpoint, they are described as internal boundaries whose
behavior is governed by the displacement and stress fields acting on the surrounding continuum and the traction
constitutive relationship defined on the surface, which leads to strongly coupled non-linear problems. Here, we focus
on efficient preconditioning techniques for the linear systems arising from the discretization and linearization of
the governing equations that describe the contact mechanics of faulted and fractured geological media based on a
Lagrange multiplier formulation.
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Two methods are mainly used to deal with discontinuities in a continuous domain. The first method, referred
to as penalty approach [1,2], consists of introducing very stiff springs connecting the faces of the discontinuity to
enforce locally the geometrical non-penetration condition. When the stress satisfies a specified failure criterion, the
springs yield irreversibly and consequently the contact surfaces become free to move. Because the elastic springs
deform for any non-zero stress value, the penalty method is mathematically inexact. Furthermore, from a numerical
point of view, this method may cause a severe ill-conditioning of the stiffness matrix [3,4] due to the use of penalty
coefficients. Nevertheless, such an approach is widely used, mainly for the ease of implementation. Some examples of
application of the penalty approach, including fields beyond geomechanics, can be found in [5–14]. Alternatively, the
constraint conditions can be imposed by using Lagrange multipliers [1,2,15–18], namely in an analytically exact way.
The Lagrange multipliers represent a new set of unknowns, thus the problem is numerically enlarged. We observe
that from a physical point of view the Lagrange multipliers are contact traction vectors, i.e. strength acting on the
discontinuity plane. Lagrange multiplier-based models rely on two governing equations, namely a linear momentum
balance equation coupled to an equation enforcing the compatibility conditions of contact over discontinuity surfaces,
which need to be solved for the displacement vector and Lagrange multipliers as primary unknowns. As opposed to
penalty formulations, the discrete system changes its nature and becomes indefinite with a 2 × 2 block structure.
Nevertheless, the increase of the computational cost is generally compensated by a more robust convergence in the
non-linear steps and a more stable numerical behavior. Other methods, based on the previously discussed algorithms,
have been also developed. For example, the augmented Lagrangian method has been introduced as a compromise
between the two techniques [1,19]. Nitsche’s method [20] is another intermediate approach between penalty and
Lagrange techniques. Improvements and applications of Nitsche’s method can be found in [21,22].

In this work, we use the Lagrange multiplier-based formulation developed for fault mechanics modeling in [23].
Faults and fractures are simulated as a pair of inner surfaces embedded in a 3D geological formation. The application
of the fault model to large-scale problems gives rise to a set of sparse discrete systems of linearized equations with a
generalized non-symmetric saddle point structure. The development of efficient algorithms for the iterative solution
of this kind of system is the object of the present work. We focus on preconditioning techniques which exploit the
native 2 × 2 block structure of the Jacobian. Although this topic is well developed in the recent literature, the efficient
solution to large-size indefinite saddle-point linear systems is still an issue in several applications, including the one
discussed in this work. On the one hand, it is well recognized that the most effective paradigm for building an optimal
preconditioner for this class of problems relies on computing the Schur complement of the native matrix [24–26]. On
the other hand, defining a good approximation of the Schur complement and its inverse, which generally cannot be
computed explicitly, is strongly problem-dependent and no general rules are available for such a choice [26]. Our work
is a contribution aimed to address this issue in the context of the saddle-point problems arising from the treatment of
contact mechanics by Lagrange multipliers.

The quality and performance of this class of preconditioners rely on two steps: (i) the preconditioning of the
leading (1,1) block and (ii) the Schur complement computation. In this paper we concentrate on the second step and
propose and compare various Schur complement preconditioners. The computation can be founded on an explicit
algebraic approximation of the leading block inverse or on a physics-based block diagonal block algorithm. As the
inverse of the Schur complement must be applied, other possibilities come in. The approximate Schur complement
can be inverted inexactly by using another preconditioner, but also a nested direct solver can be efficiently used.
Another possibility relies on approximating directly the inverse of the Schur complement by a novel application of
the least-square commutator originally introduced for Navier–Stokes problems [27].

The paper is organized as follows. The model problem is first derived, describing the properties of the resulting
discrete equations and the associated block Jacobian matrix. Then, a general framework for the preconditioning
algorithm is introduced, based on a block triangular approach. At this point, different approximations for the resulting
Schur complement are investigated and compared. An extensive numerical experimentation highlights advantages and
drawbacks of the different approaches in a set of examples taken from real-world applications of faulted and fractured
media. Finally, a conclusive discussion closes the presentation.

2. Model problem

2.1. Governing equations

Consider a linear elastic domain Ω ⊂ R3 delimited by boundary Γ = Γu ∪ Γσ such that Γu ∩ Γσ = ∅, with n
denoting its outer unit normal vector (Fig. 1a). Let assume a well-defined internal boundary Γ f embedded in Ω that
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Fig. 1. Physical domain for fault modeling (a), and local fault reference (b).

is initially represented by two overlapping surfaces Γ−

f and Γ+

f – hence, pairs of corresponding points on each side
of Γ f are readily identified – with unit normal vectors oriented as shown in Fig. 1b. Note that n f coincides with n−

f .
Let I = (0, tmax) denote the time domain of interest. Assuming an infinitesimal strain framework, we focus on the
following quasi-static contact model problem [15,17,18].

Given b : Ω × I → R3, ū : Γu × I → R3, t̄σ : Γσ × I → R3, and u0 : Ω → R3, find u : Ω × I → R3 such that

− ∇ · σ = b in Ω × I (linear momentum balance), (1a)

u = ū on Γu × I (prescribed boundary displacement), (1b)

σ · n = t̄ on Γσ × I (prescribed boundary traction), (1c)

u|t=0 = u0 in Ω (initial displacement), (1d)

subject to the constraints

tN = t · n f ≤ 0 on Γ f × I (normal contact conditions), (1e)

gN = [[u]] · n f ≥ 0 on Γ f × I, (1f)

tN gN = 0 on Γ f × I, (1g)

Φ = ∥tT ∥2 − (c − tN tanϕ) ≤ 0 on Γ f × I (Coulomb frictional contact conditions), (1h)

ġT − α
tT

∥tT ∥2
= 0 on Γ f × I, (1i)

α ≥ 0 on Γ f × I, (1j)

Φα = 0 on Γ f × I. (1k)

Here, u is the displacement vector; σ is the Cauchy stress tensor, which is related to the displacement field in terms
of the fourth-order elasticity tensor C such that σ = C : ∇

su, with ∇· and ∇
s the divergence and symmetric gradient

operator, respectively, and (:) denoting a tensor contraction; b is the body force; t = σ · n−

f = −σ · n+

f = (tN n f + tT )
is the traction vector over Γ f , with tN and tT = (tm1m1 + tm2m2) its normal and tangential component, respectively,
relative to the local reference system shown in Fig. 1b; c and ϕ are the cohesion and friction angle, respectively, which
define the limit value τmax = τmax(tN ) = (c − tN tanϕ) for the modulus of tT according to Coulomb’s criterion; [[·]]
denotes the jump of a quantity across Γ f , namely [[u]] = (u|Γ+

f
− u|Γ−

f
) = (gN n f + gT ) is the relative displacement

across Γ f having gN and gT as normal and tangential components, respectively, with u|Γ+

f
and u|Γ−

f
the restriction of

u on Γ+

f and Γ−

f ; and α denotes a consistency parameter indicating the magnitude of the rate of the tangential relative
motion according to (1i), which is based on a general rate form. For additional details pertaining the derivation of the
equations governing the contact initial boundary value problem (IBVP) we refer the reader to [15,17,18].

Generally speaking, Γ f encompasses the whole region over which potential contact events may take place at any
t ∈ I [17]. Three operating modes are considered for the discontinuity surface, which provide the following partition
of Γ f = Γ stick

f ∪ Γ
slip
f ∪ Γ

open
f , namely:
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• Stick mode on Γ stick
f : the discontinuity is fully closed and compressed with the Coulomb criterion satisfied,

i.e. tN < 0 (Eq. (1e)) and Φ < 0 (Eq. (1h)). The three components of the traction are unknown and such that no
relative movement is allowed between Γ+

f and Γ−

f ;
• Slip mode on Γ

slip
f : the fault is compressed, but the inequality (1h) becomes an equality on the slip surface Φ,

i.e. the analogue of the yield surface in theories of plasticity [17]. A slip displacement gT between Γ+

f and Γ−

f
is allowed for. Only the normal traction component tN is unknown. The tangential traction is known, having
magnitude ∥t∗T ∥2 = τmax and direction collinear with gT ;

• Open mode on Γ
open
f : Γ+

f and Γ−

f are not in contact and a free relative displacement [[u]] is allowed. The
traction is known and equal to the zero vector in R3.

It is important to emphasize that, in this work, Γ f is considered to be fixed and well defined during the entire time
domain of interest, just its partitioning into stick, slip, and open patches evolves.

Remark 1. On Γ
slip
f tangential traction and relative displacement can be expressed as:

t∗T = t∗T (u, t) = τmax
ġT

∥ġT ∥2
, (2a)

gT = gT (u) = (1 − n f ⊗ n f ) · [[u]], (2b)

with 1 the second-order identity tensor, and ⊗ denoting the dyadic product. Since a dilation-free model is considered,
note that gN is always zero on Γ

slip
f , hence gT = [[u]] − gN n f = [[u]].

Remark 2. Relationships (1e)–(1g) are the Karush–Kuhn– Tucker (KKT) complementary conditions [16] for normal
contact. They state that: (i) the normal traction tN nF must be compressive (Eq. (1e)); (ii) no penetration is allowed
for between the two sides of the discontinuity surface Γ f (Eq. (1f)); and (iii) the compressive normal traction is
nonzero only if the discontinuity is in contact mode (Eq. (1g)). Conversely, Eqs. (1h)–(1k) are the KKT conditions
for frictional contact and describe if Γ f is in stick or slip mode, namely: (i) an upper bound for the magnitude of the
tangential traction vector is established based on the classic Mohr–Coulomb criterion (Eqs. (1h)); (ii) the tangential
relative displacement gT (slip displacement) and tT are collinear vectors (Eqs. (1i)–(1j)); and (iii) a slip displacement
is allowed for only if

t∗T
 = τmax (Eqs. (1k)).

2.2. Variational form

To derive an appropriate variational principle for problems of constrained evolution, such the contact IBVP (1k),
two approaches may be considered [15,17,18]: (i) the variational inequality, and (ii) the variational equality. The
first approach requires the definition of a space K of constrained trial functions, i.e. its members satisfy both the
prescribed displacement boundary condition on Γu and the impenetrability condition (1f) at any t ∈ I, that is also
used to express the trial functions. Then, a variational inequality involving the virtual work due to internal stresses
and applied loadings along with a frictional functional associated with Γ f must be enforced over K. The second
approach circumvents the need for the variational inequality by introducing either penalty regularizations or Lagrange
multipliers, so that the problem reduces to a variational equality that is amenable for traditional finite element methods.
For an exhaustive review of available methods and a comprehensive mathematical analysis the reader is referred
to [15]. Here, we follow the second approach based on a Lagrange multiplier formulation.

Let us first define the spaces of (unconstrained) trial (U ) and test (V) functions for the displacement

U :=
{
u
⏐⏐u ∈ [H 1(Ω )]3, u = ū on Γu

}
, (3)

V :=
{
v
⏐⏐v ∈ [H 1(Ω )]3, v = 0 on Γu

}
, (4)

with H 1(Ω ) the Sobolev space of square integrable functions with square integrable gradients. Note that U generally
depends on time due to the possible temporal variation of ū over Γu. Conversely, V is constant in time. The traction
vector t acting on Γ f is introduced as an additional primary variable serving as Lagrange multiplier to enforce the
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constraint conditions (1e)–(1k). We define a vector value Lagrange multiplier space M that is the dual space of the
trace space W of V restricted to Γ f . The following subspace of M is then defined [15,28]:

M(t) :=

{
µ |µ ∈ M, µN ≤ 0,

∫
Γ f

µ · w dΓ ≤

∫
Γ f

τmax(tN ) ∥wT ∥2 dΓ , w ∈ W with wN ≥ 0

}
(5)

where µN = µ · n f , wN = w · n f , and wT = (1 − n f ⊗ n f ) · w. Then, the weak mixed formulation for the contact
IBVP (1k) reads as follows.

Find {u, t} ∈ U × M(t) such that for all t ∈ I:

Ru =

∫
Ω

∇
sv : σ dΩ −

∫
Ω

v · b dΩ −

∫
Γσ

v · t̄ dΓ +

∫
Γ f

[[v]] · t dΓ = 0, ∀v ∈ V, (6a)

Rt =

∫
Γ f

(tN − µN )gN dΓ +

∫
Γ f

(tT − µT ) · ġT dΓ ≥ 0, ∀µ ∈ M(t). (6b)

In (6a), the first three integrals represent the virtual work due to internal stresses and applied loadings, whereas the
last integral denotes the virtual work due to the contact forces, i.e.∫

Γ f

[[v]] · t dΓ =

∫
Γ+

f

v · t dΓ −

∫
Γ−

f

v · t dΓ = −

∫
Γ+

f

v · σ · n+

f dΓ −

∫
Γ−

f

v · σ · n−

f dΓ . (7)

Also, note that the same decomposition into normal and tangential components is used for both t and µ in (6b).

Remark 3. It may be noted an apparent dimensional inconsistency in Eq. (6b), the argument of the first and second
integral having units of traction times displacement and traction times velocity, respectively. Actually, the rate of the
tangential displacement should be regarded as a pseudo-time dependent quantity. To avoid any confusion, ġT will
be replaced by ∆gT from now on. As in [17], the notation ∆(•) is used to denote the algorithmic approximation to
the change of a quantity (•) during a time step δt , namely ∆(•) = (•)t+δt − (•)t ≈

∫ t+δt
t (•) dt . In other words, the

collinearity condition (1i) will be enforced as ∆gT = ∆α
tT

∥t∥2
, hence (2a) becomes t∗ = τmax

∆gT
∥∆gT ∥2

, resolving then
the dimensional inconsistency.

2.3. Discrete form

A fundamental challenge of the Lagrange multiplier formulation is associated with the identification of which
portions of Γ f are in contact, slip and open mode, respectively. Knowing stick and slip regions of Γ f at a given
t ∈ I allows for writing the weak form in terms of equality relationships [18]. Indeed, only portions of Γ f where
the contact is active, precisely Γ stick

f and Γ
slip
f , contribute to the virtual work due to contact forces. For any point

belonging to Γ stick
f , the three components of t are unknown since tN < 0 and ∥tT ∥2 < τmax(tN ), hence three kinematic

equations are needed to enforce the constraints gN = 0 and ġT = 0. Conversely, for a point over Γ slip
f only tN is

unknown, which requires a single kinematic equation to ensure gN = 0, with tT = t∗T . Unfortunately, the set of active
constraints is not in general known a priori. To enable an incremental solution step procedure for the nonlinear contact
problem by a Newton loop, iterative techniques that identify regions Γ stick

f and Γ
slip
f are needed—e.g., an active set

strategy (see [15,17,18] and references therein to the optimization literature). Since the central focus of this work is on
preconditioning for the linear solve required at each Newton’s step, the details of the developed contact formulation
are not discussed. The interested reader is referred to [23,29].

For the remainder of this section we will assume that at a given time t ∈ I the active contact regions Γ stick
f and Γ

slip
f

are known. Hence, the integral over Γ f in Eq. (6a) can be rewritten as follows∫
Γ f

[[v]] · t dΓ =

∫
Γ stick

f ∪Γ
slip
f

[[v]] · (n f ⊗ n f ) · t  
=tN n f

dΓ +

∫
Γ stick

f

[[v]] · (1 − n f ⊗ n f ) · t  
=tT

dΓ

+

∫
Γ

slip
f

[[v]] · (1 − n f ⊗ n f ) · t  
=t∗T

dΓ , (8)
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and (6b) simplifies to the variational equality

Rt =

∫
Γ stick

f ∪Γ
slip
f

µ · (n f ⊗ n f ) · [[u]]  
=gN n f

dΓ +

∫
Γ stick

f

µ · (1 − n f ⊗ n f ) · [[∆u]]  
=∆gT

dΓ = 0, ∀µ ∈ M(t), (9)

enforcing the impenetrability constraint gN = 0 on Γ stick
f ∪ Γ

slip
f and the no-slip condition ∆gT = 0 on Γ stick

f . We
emphasize that in Eq. (8), t∗T does not represent a primary unknown and depends on u and t – precisely, the normal
component of the traction acting on Γ f – according to Eq. (2a).

Let us consider a 3D computational grid consisting of ne elements that conform to the discontinuity surfaces Γ+

f
and Γ−

f such that Ω ≈ Ω h
=
⋃ne

i=1Ω
e
i , with Ω e

i indicating nonoverlapping tetrahedral or hexahedral elements. The
discrete domain boundary and discontinuity surface are denoted by Γ h

= Γ h
u ∪ Γ h

σ and Γ h
f , respectively. The discrete

displacement (uh) and traction vector (th) fields may be expressed as:

u ≈ uh
= ůh

+ ūh
=

nu∑
i=1

Nu
i di +

nū∑
i=1

Nu
(nu+i)d̄i , (10)

t ≈ th
= t̊h

+ t̄h
=

nt∑
i=1

Nt
iλi +

n t̄∑
i=1

Nt
(nt+i)λ̄i . (11)

In (10), uh is given by superposition of function ůh , which honors homogeneous Dirichlet conditions on Γ h
u , and

function ūh , which provides a lifting [30] of an approximation of the boundary datum given in Eq. (1b). Similarly,
th is split into sum of function t̊h , which vanishes where traction components are known, and function t̄h , which
interpolates such known components — namely, normal and tangential components on Γ

h,open
f and Γ

h,open
f ∪ Γ

h,slip
f ,

respectively. The unknown discrete displacement (di ) and traction (λi ) degrees of freedom (DOFs) are collected in
vectors d and λ, respectively. Known discrete displacement (d̄i ) and traction DOFs (λ̄i ) are collected in vector d̄ and
λ̄. Vector functions Nu

i and Nt
i are bases for discrete function spaces U h , Vh , and Mh(th) that approximate U , V , and

M(t), respectively. Clearly, we have (nu + nū) = dim(U h), nu = dim(Vh), and (nt + n t̄) = dim(M(t)).

Remark 4. Displacement DOFs are associated to mesh nodes and expressed in terms of the global reference frame,
i.e. three DOFs are linked to each mesh node and correspond to displacement components in x-, y-, and z-direction,
respectively. By distinction, traction DOFs are associated to mesh nodes lying on Γ h

f and are more conveniently
expressed in a local reference frame [18]. For each mesh node lying on Γ f three Lagrange multiplier components
are defined that correspond to a traction component in the normal direction (nh

f ) and two traction components in the
tangential directions (mh

1 , mh
2).

The discretization of the two residual equations (6a) and (9) is based on approximations (10) and (11) and the
corresponding discrete function spaces. Time integration is carried out by partitioning the time interval I into nδt

subintervals In = (tn−1, tn], n = 1, . . . , nδt . A backward Euler integrator is adopted. Let the vector xT
n = {dT

n , λT
n }

represent the discrete solution at time tn . The fully-discrete system of equations is provided by the global residual
vector r

r (dn, λn) =

{
ru
rt

}
= 0, (12)

where ru and rt are assembled as sum of element contributions. For detailed expressions of ru and rt see Appendix A.
The system of residual equations (12) is nonlinear due to the constraint conditions in (1k). To drive r to zero a full
Newton iteration is performed. If k denotes the iteration count, with xk

n the k-estimate of the solution at tn , the updated
solution vector is determined by: (i) solving: J k

n δx = −rk
n , and (ii) updating: xk+1

n = xk
n + δx, with J k

n = (∂r/∂x)k
n

the Jacobian matrix evaluated at the current configuration k.
Since the residual vector r consists of two blocks, a 2 × 2 block structure is reflected in the Jacobian system that

needs to be solved in each Newton update, namely [23][
A B1
B2

]k

n

{
δd
δλ

}
= −

{
ru
rt

}k

n
(13)
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with

A = K + E, (14a)
B1 = C − F, (14b)

B2 = CT
= (B1 + F)T . (14c)

Here, K is the elasticity stiffness matrix, C is the rectangular block coupling the displacement variables with the
Lagrange multipliers, and E and F are low-rank matrices arising from the linearization of the tangential traction t∗T
acting on Γ

h,slip
f . Obviously, if the discontinuity is entirely in contact mode, i.e. Γ h,stick

f = Γ h
f , both E and F vanish,

therefore B2 = BT
1 . Detailed expressions for each sub-matrix are given in Appendix A. Matrix K is symmetric if

C is so, which is the case for linear elastic material behavior. Note that this is also guaranteed in the framework of
elasto-plasticity if the plastic flow rule is associative and the kinematic hardening is symmetric [1]. In addition, K is
positive definite. As to matrices E and F , the following propositions hold true.

Proposition 2.1. The matrix E = E(d, λ) is symmetric positive semidefinite.

Proposition 2.2. Let ∥∆gT ∥2 → 0 and ∥uh
∥2 > 0. Then for any compatible matrix norm ∥ · ∥p we have: (i)

∥E∥p → +∞, and (ii) ∥F∥p → 0.

Proposition 2.1 ensures that matrix A, i.e. the (1,1)-block of the Jacobian matrix, is symmetric positive
definite (SPD). The proof is given in Appendix B. Proposition 2.2 tells us that at incipient sliding condition –namely,
when the shear stress magnitude exceeds the limiting value τmax but ∥∆gT ∥2 → 0 – the coefficients of E can become
numerically unstable. Actually, if the limiting shear stress is exceeded with no sliding, contribution to E and F should
be zero. In practice, terms in E are computed only if ∆gT is “large enough”, i.e. numerically larger than a prescribed
tolerance. For additional details regarding the implementation see [23,29]. The proof of Proposition 2.2 is given
in Appendix C.

3. Block triangular preconditioners

The solution at each Newton iteration of the Jacobian system (13) represents the most expensive computational
kernel in Lagrange multiplier-based contact mechanics formulations. Such generalized non-symmetric saddle point
systems of linearized equations are typically highly ill-conditioned. Because of the large size of realistic 3D models,
global iterative solution techniques are the method of choice—typically non-symmetric Krylov solvers, such as
the generalized minimal residual (GMRES, [31]) or Bi-Conjugate Gradient Stabilized (Bi-CGStab, [32]) methods.
Nevertheless, to achieve fast and robust convergence any iterative method must be coupled with some form of
preconditioning, which should be at the same time as cheap and accurate as possible.

To derive the preconditioner, consider first the following block LDU-decomposition of the Jacobian matrix:

J =

[
Iu

B2 A−1 It

] [
A

S

] [
Iu A−1 B1

It

]
, (15)

with Iu and It identity operators in Rnu and Rnt , respectively, and S = −B2 A−1 B1 the Schur complement of A in J .
The exact inverse of J can be now written as:

J −1
=

[
Iu −A−1 B1

It

] [
A−1

S−1

] [
Iu

−B2 A−1 It

]
. (16)

Having (16) as starting point for the preconditioner design, we elect to use the following block triangular operator
as a right-preconditioner for J :

P−1
=

[
Ã B1

S̃

]−1

=

[
Ã−1

It

] [
Iu −B1

It

] [
Iu

S̃−1

]
, (17)

where Ã−1 and S̃−1 are suitable preconditioners for A and S—i.e., Ã−1 and S̃−1 can be regarded as inexact solvers
for linear systems involving A and S. As usual, P−1 is treated as an implicit operator since the objective in a
preconditioned iterative method is to compute its action on block vectors. Overall, the application of the preconditioner
requires one solve for Ã, one solve for S̃, and one matrix–vector product with B1.
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The block approach mentioned above is the general preconditioning framework that is typically used for saddle-
point problems [25,26]. The motivation behind block triangular preconditioning stems from the fact that use of exact
solves in (17)–namely, Ã−1

= A−1 and S̃−1
= S−1—results in at most two inner iterations for an iterative method.

Indeed, the spectrum of the preconditioned matrix consists of the unit eigenvalue only and JP−1 has minimum
polynomial of degree two [25]. Clearly, the availability of efficient, approximate solvers for both the mechanical
subproblem involving A and the Schur complement S is the key factor for the performance of block triangular
preconditioners. Several effective off-the-shelf SPD algebraic preconditioners Ã−1 are already available, in the field
of incomplete factorizations, approximate inverses, domain decomposition and multigrid methods, e.g. [33–37].
Unfortunately, designing robust and at the same time inexpensive preconditioners for the exact Schur complement
– which is almost completely dense due to the term A−1 – is a challenging task and represents the cornerstone the
global preconditioner behavior rests on. The Schur complement approximation can be very problem-dependent and
still represents an open issue in the simulation of contact mechanics by Lagrange multipliers, such that this technique
is often avoided in large-scale simulations because no well-established iterative solution strategy is available. In the
remainder of this section we present three approaches for approximating and inverting S̃.

Remark 5. Right-preconditioning strategies are typically adopted for norm-minimizing iterative methods such as
GMRES. In case of left-preconditioning, a lower block triangular version of P−1 is usually preferred:

P−1
left =

[
Ã
B2 S̃

]−1

=

[
Iu

S̃−1

] [
Iu

−B2 It

] [
Ã−1

It

]
. (18)

Note that with Bi-CGStab the computational experience typically does not show significant differences between
the two approaches.

3.1. Block diagonal (BD) Schur complement

The block diagonal approximate Schur complement S̃BD is built exploiting some physics-based assumptions that
are related to the locality of deformation—i.e., a variation of stress on a fault interface element produces a relevant
variation of displacements only on the close vicinity of that element. For example, in [38,39] the authors utilized
such assumption for computing the increment in Newton–Raphson’s algorithm. Here, the same idea is used for
preconditioning purposes. A similar strategy was proposed in the field of mixed finite element coupled poromechanics
in [40].

The procedure for constructing S̃BD consists in clustering the traction unknown DOFs associated with each pair
of mesh nodes lying on Γ h

f into supernodes—for a definition of supernode see, e.g., [41]. The size n(k)
t of the kth

supernode is three for node pairs belonging to Γ h,stick
f , but reduces to one if the pair lies on Γ

h,slip
f where only the

normal traction component is unknown. For each supernode we introduce the following two linear operators: (i) a
restriction operator, R(k)

t , onto the kth supernode unknown traction DOFs, i.e.

R(k)
t : Rnt → Rn(k)

t , λ ↦→ λ(k)
= R(k)

t λ, (19)

and (ii) a restriction operator, R(k)
u , onto the n(k)

u unknown displacement DOFs coupled to traction DOFs that are
collected in λ(k), i.e.

R(k)
u : Rnu → Rn(k)

u , d ↦→ d(k)
= R(k)

u d. (20)

Using R(k)
t and R(k)

u , we define the following three sub-matrices associated with the kth supernode (Fig. 2):

A(k)
= R(k)

u AR(k),T
u , B(k)

1 = R(k)
u B1 R(k),T

t , B(k)
2 = R(k)

t B2 R(k),T
u . (21)

As A(k) is a diagonal block of an SPD matrix, it is non-singular and can be regularly inverted. Finally, the BD
approximate Schur complement is defined as:

S̃BD = −

nSN∑
k=1

R(k),T
t

(
B(k)

2 A(k),−1 B(k)
1

)
R(k)

t , (22)

with nSN the number of supernodes.
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Fig. 2. Non-zero entries (in red) of A, B1, and B2 required in the computation of the contribution to S̃DB according to (22). The pattern of the
Jacobian matrix is shown in gray.

The BD approach allows for obtaining either a symmetric or a non-symmetric matrix, according to the fact that
B1 = BT

2 = C , or B1 = (C − F) and B2 = CT . Given the block structure of S̃BD, applying exactly its inverse through
a direct solver is the optimal choice.

3.2. Least square commutator (LSC) Schur complement

The LSC Schur complement approximation was originally introduced in [27] as a “black-box” variant of the
so-called pressure convection–diffusion (PCD) preconditioner for the incompressible Navier–Stokes equations [42].
The core idea of the standard versions of PCD preconditioning is to circumvent the inversion of the (1,1)-block in the
Jacobian replacing the exact Schur complement by a triple product approximation that requires two linear solves for a
pressure diffusion- and mass-matrix, respectively, and a matrix–vector product with a matrix explicitly constructed—
namely, the discrete convection–diffusion operator on the pressure space. To provide a fully algebraic alternative, the
LSC approach mimics PCD methods by constructing the preconditioner based on an algebraic commuting relationship
that utilizes Jacobian sub-matrices only.

Let us derive the LSC preconditioner S̃LSC. The objective is to approximate the exact Schur complement as follows:

S̃LSC = −B2 B1 A−1
t , (23)

where At ∈ Rnt×nt is constructed such that B1 A−1
t ≈ A−1 B1, i.e. the commutator relationship AB1 ≈ B1 At [27]. This

is achieved computing each column of At as the solution to the system of the normal equations associated with the
least square problem

min
[AB1]∗ j − B1[At]∗ j


2 , (24)

where [AB1]∗ j and [At]∗ j denote the j th column of matrix AB1 and At, respectively. Another way to define the
operator At implies the minimization of the Frobenius norm

∥AB1 − B1 At∥F . (25)

With both definitions, At reads:

At = (BT
1 B1)−1 BT

1 AB1, (26)
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hence the LSC Schur complement approximation is

S̃LSC = −B2 B1(BT
1 AB1)−1 BT

1 B1, (27)

with the related inverse

S̃−1
LSC = −(BT

1 B1)−1 BT
1 AB1(B2 B1)−1. (28)

From (28), it is clear the advantage of the LSC approach that does not require A−1 while inverting S̃LSC. Note that
S̃LSC is non-symmetric. However, if we allow B2 ≈ BT

1 = B the preconditioner can be symmetrized. Both (B2 B1) and
(BT

1 B1) have the structure of a mass matrix for the Lagrange multiplier space. In our fault/fracture formulation [23]
a piecewise constant interpolation is utilized for the Lagrange multipliers, which leads to block diagonal (B2 B1) and
(BT

1 B1), with block size at most 3 × 3. Hence, the computation and application of (B2 B1)−1 and (BT
1 B1)−1 is totally

inexpensive.

Remark 6. In the solution of the incompressible Navier–Stokes equations, the inversion of BT
1 B1 can be done only

inexactly and the LSC Schur complement is an approximation of the optimal operator [27]. By distinction, in our case
we can invert BT

1 B1 exactly and inexpensively. Thus, the available Schur complement is the optimal approximation
in the framework of the least square commutator. In particular, both the “static” and “adaptive” techniques presented
in [27] provide the same result, being the unique minimum of the function (25).

The following result holds true for the eigenspectrum of the LSC Schur complement preconditioner.

Theorem 3.1. Let J ∈ R(nu+nt)×(nu+nt) be the saddle-point matrix in (13), with A ∈ Rnu×nu SPD, B1 = B ∈ Rnu×nt

full-rank, B2 = BT and nt < nu. Then, the eigenvalues of SS̃−1
LSC are real and bounded from below by 1.

Theorem 3.1 ensures that the eigenspectrum of the preconditioned problem JP−1 has a theoretical lower bound at
1 whenever A−1 is applied exactly. The proof is given in Appendix D.

Remark 7. If we set B†
= (BT B)−1 BT , i.e. the pseudo-inverse for the full-rank matrix B = B1 according to the

Moore–Penrose definition, the inverse of the symmetrized S̃LSC can be formally written as

S̃−1
LSC = −B† AB†,T . (29)

3.3. Factorized sparse approximate inverse (FSAI) Schur complement

The FSAI Schur complement approximation is built by exploiting an algebraic FSAI preconditioner of the (1,1)-
block in J . The basic idea of FSAI was originally introduced by Kolotilina and Yeremin [43] and consists of building
a sparse approximation G of the inverse of the exact lower Cholesky factor L of A by solving the Frobenius norm
minimization problem

min
G∈Rnu×nu

∥Iu − GL∥F , (30)

with G a lower triangular nu × nu matrix with non-zero pattern SG . One of the main difficulties in the computation
of a good approximation is the selection of SG . The optimal a priori choice of an appropriate nonzero pattern is a
difficult task which has been addressed either statically or dynamically—see, e.g., [44–47] and references therein.

Here, we use the adaptive FSAI variant implemented in the FSAIPACK software package [33]. The idea for the
pattern detection was extended following [47] so as to select dynamically an optimal lower triangular non-zero pattern
of G. The advantages of such an approach are manifold: (i) the algorithm building and applying G is very robust, as it
does not suffer from the typical numerical instabilities characterizing incomplete factorizations; (ii) the computation
of G can be done independently row-by-row, thus being perfectly parallelizable; (iii) the convergence ensured by
adaptive FSAI is typically fast with SPD structural stiffness matrices.

Once G is available, it allows for the explicit computation of the Schur complement through matrix–matrix
products. In fact, setting A−1

≈ Ã−1
= GT G, the approximate Schur complement can be written as

S̃FSAI = −B2GT G B1, (31)
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providing a non-symmetric expression for S̃. Under the assumption B2 ≈ BT
1 = BT , the approximate Schur

complement is symmetric and negative definite. Depending on the selected strategy – namely, a non-symmetric or
a symmetric one – the inverse of S̃FSAI is applied through either a direct solver or an appropriate preconditioner.

4. Numerical results

In this section three sets of numerical experiments are discussed to highlight advantages and difficulties associated
with using the different Schur complement preconditioning strategies presented in Section 3. The first example (Test
1) addresses a synthetic academic problem with a single fracture to illustrate the mesh-dependency of the proposed
approach with regards to the convergence rate of the iterative solver. The second set of examples (Test 2) includes
two synthetic problems consisting of single- and multiple-fractured media, respectively, that provide evidence of the
numerical performance of the proposed class of block triangular preconditioners as compared to a modern sparse direct
solver. Finally, the robustness of the algorithms is investigated in the third set of examples (Test 3), which address
real-life applications dealing with groundwater withdrawal and underground gas storage operations in fissured/faulted
geological formations.

In all tests, to warrant a well-scaled system – i.e. an essential requirement to ensure that both linear momentum
balance and constraint equations are satisfied when evaluating the convergence criterion – a block diagonal scaling of
the Jacobian matrix J is applied prior to solving as suggested in [48], namely:

Ĵ =

[
D−1/2

It

] [
A B1
B2

] [
D−1/2

It

]
, (32)

with matrix D defined as follows

[D]i j =

{
[A]i j if i th and j th displacement DOFs are associated with the same grid node,
0 otherwise. (33)

Note that, if displacement DOFs are ordered by node, matrix D is block diagonal, with block size at most 3 × 3.
The non-symmetric linear system is solved by using GMRES as implemented in routine mi24 from the HSL

collection of FORTRAN linear algebraic solvers for sparse matrices [49]. The right-hand side is computed so that the
true solution is the unitary vector. The null vector is used as initial guess x(0). The stopping criterion is based on the
reduction of the Euclidean norm of the iterative residual r(k) below a specified tolerance τ , i.e. ∥r(k)

∥2 ≤ τ∥r(0)
∥2, with

k the iteration number.
We consider several variants of the block triangular preconditioner P−1 based on different choices of precondition-

ing operators Ã−1 and S̃−1 for the (1,1)-block and its Schur complement, respectively. When the Schur complement
approximation is tackled using either the block diagonal approach, S̃−1

= S̃−1
BD , or the least square commutator

approach, S̃−1
= S̃−1

LSC, the application of S̃−1 is performed exactly, while with the FSAI approach the application of
S̃−1 is performed either exactly, S̃−1

FSAI−DIR, or inexactly by means of another FSAI approximation, S̃−1
FSAI−FSAI. In any

case, two options are considered for Ã−1, namely either an incomplete Cholesky (IC) factorization, Ã−1
= A−1

IC , or a
factorized sparse approximate inverse (FSAI), Ã−1

= A−1
FSAI.

In this work, for the IC factorization we use the variant with a prescribed degree of fill-in, IC(ρ), proposed in [50],
because it allows for an easy control of the memory occupation. The fill-in integer parameter ρ is the number of
non-zero entries computed for each row of the IC factor in excess to the number of non-zeros of the same row of the
matrix. Moreover, we refer to the adaptive FSAI implementation available in the FSAIPACK software package [33].
We use the notation FSAI(nmax, ϵ) to emphasize that default parameters are always used except for: (i) nmax, i.e. an
integer value denoting the maximum number of steps of the inner adaptive procedure for the dynamic construction of
the non-zero pattern SG ; and (ii) ϵ, i.e. the tolerance to exit the adaptive procedure before achieving nmax steps. For
additional algorithmic details we refer the reader to [33].

The computational performance is evaluated in terms of iteration count niter and CPU times Tp and Ts for the
preconditioner computation and the solver to converge, respectively, with Tt = Tp + Ts the total time. The overall
preconditioner density:

µ =
nnz( Ã−1) + nnz(B1) + nnz(S̃−1)
nnz(A) + nnz(B1) + nnz(B2)

, (34)

with nnz the function providing the number of non-zeros of a sparse matrix, is also evaluated whenever meaningful.
The results reported below were obtained on an Intel(R) Xeon(R) CPU E5-2643 processor at 3.3 GHz with 256-GB
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Fig. 3. Test 1: Single crack plane cutting through a homogeneous elastic block.

of memory. In this work, we are mainly interested in the algorithmic developments, hence we limit our attention to
sequential computations only. Nevertheless, we will underline whenever a method can be potentially attractive also
for an HPC environment.

4.1. Test 1: Single fractured elastic media

A synthetic case, denoted as Test 1, consisting of a single crack plane embedded in a homogeneous isotropic
domain Ω , is first considered to assess the behavior in terms of iteration count needed to achieve convergence by
each preconditioning strategy. A sketch of the model is provided in Fig. 3a. The simulation is defined in terms of
dimensionless quantities. The block exhibits linear elastic behavior with unit Lamé parameters that correspond to a
Young modulus E = 1.0 and Poisson ratio ν = 0.25. The dimensions of the computational domain are ℓξ = ℓ, ℓη = 2ℓ,
and ℓζ = 5ℓ. The crack plane cuts the entire domain in the y-directions and spans 80% of the vertical dimension.
A roller support condition over domain boundaries lying on planes ξ=0 and ζ=0 is assigned. On such boundaries
zero-displacements in η-direction are also enforced over η = ℓη/2, , while a traction condition is prescribed on the
remaining portion of the boundary. In practice, if the domain boundary, Γ , is decomposed as Γ = Γu ∪ Γσ , with
Γu ∩ Γσ = ∅, homogeneous Dirichlet conditions for u are imposed in a strong way on Γu, while traction is assigned
on Γσ in a weak way. The domain has been discretized using hexahedral elements with characteristic mesh size h, as
shown in Fig. 3b.

We consider a manufactured exact solution to have both control on the residual and the error. The exact fields for
the displacement vector u and the discontinuity traction λ are given by:

u(ξ ) =
ū
5ℓ

⎡⎣ 5ξ

5 (η − ℓ)

−ζ

⎤⎦ , λ(ξ ) =
ū
5ℓ

⎡⎣19
19
7

⎤⎦ , (35)

with ū an assigned given positive value. The traction condition prescribed on Γσ is inferred from (35).
We investigate the quality of the Schur complement approximation in the sequence of refined problems reported

in Table 1. The iteration counts to converge of right-preconditioned full GMRES are provided in Table 2 for different
options for S̃, namely S̃BD, S̃LSC, and S̃FSAI. In order to provide evidence of the effect of the selected Schur complement
approach only, the exact inverse of both A and S̃ is applied via a nested direct or iterative solver. In this way, the
results shown in Table 2 can be regarded as the minimum number of iterations that can be obtained with each
Schur complement approximation. Of course, this approach with nested solvers cannot be competitive in terms of
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Table 1
Test 1: Size and number of non-zeros of the Jacobian block matrices as a function of the characteristic mesh size h.

h ntotal nu nt nt/nu nnz(A) nnz(B1) nnz(B2)

ℓ/2 735 615 120 0.195 28,197 720 720
ℓ/4 3,699 3,267 432 0.132 189,225 2,592 2,592
ℓ/8 22,083 20,451 1,632 0.080 1,376,361 9,792 9,792
ℓ/16 148,995 142,659 6,336 0.044 10,476,873 38,016 38,016
ℓ/32 1,085,955 1,060,995 24,960 0.024 81,710,217 149,760 149,760
ℓ/64 8,272,899 8,173,827 99,072 0.012 645,325,065 594,432 594,432

Table 2
Test 1: Number of iteration required by P−1-preconditioned GMRES to achieve convergence as a function of mesh refinement for different
strategies used to approximate the Schur complement S. The inverses A−1 and S̃−1 are applied exactly via nested either direct or iterative solvers.

h P−1
(

A−1, S̃−1
BD

)
P−1

(
A−1, S̃−1

LSC

)
P−1

(
A−1, S̃−1

FSAI(5, 0.01)

)
P−1

(
A−1, S̃−1

FSAI(20, 0.01)

)
ℓ/2 27 22 22 20
ℓ/4 34 27 29 25
ℓ/8 40 32 35 30
ℓ/16 48 39 41 36
ℓ/32 56 46 49 43
ℓ/64 65 54 57 51

Table 3
Test 2a and 2b: Size and number of non-zeros of the Jacobian block matrices.

ntotal nu nt nt/nu nnz(A) nnz(B1) nnz(B2)

Test 2a 349,131 293,052 56,079 0.191 12,432,060 336,474 336,474
Test 2b 547,782 379,983 167,799 0.442 13,876,785 1,006,794 1,006,794

computational efficiency with an inexact application of A−1 and S̃−1. For this reason, we use Test 1 to evaluate only
the mesh-dependency on the convergence rate of the proposed approaches.

Quite obviously, the quality of S̃FSAI depends on the fill-in parameters (nmax, ϵ). Increasing the density of the matrix
G in Eq. (31) yields an acceleration to the convergence rate. For reasonable values of (nmax, ϵ), such as those reported
in Table 2, the outcome is comparable to the one obtained with the LSC approximation. The proposed alternatives
are not optimal with respect to h, however the use of S̃LSC appears to be slightly less sensitive to progressive grid
refinement. In all cases, the BD approximation S̃BD gives the largest iteration count. It should be remembered, however,
that this is also the less expensive Schur complement approach. Table 2 shows that the presented approaches are only
mildly mesh-dependent, as the number of iterations grows by a factor about 2.5 when the grid is refined 32 times.
Hence, these methods appear to preserve an attractive efficiency for a wide range of discretization sizes.

Figs. 4 and 5 show the eigenspectra of the preconditioned matrices Ĵ P−1 for the choices of S̃ of Table 2 and
different values of h. As expected from Theorem 3.1, with S̃LSC the eigenvalues are bounded from below by 1. Also
with the other approximations the smallest eigenvalue is close to 1, while a few right outliers tend to increase when h
decreases, thus accounting for the iteration count growth with ℓ/h shown in Table 2.

4.2. Test 2: Single and multiple fractured elastic media

Tests 2a and 2b consider problems where: (i) the discretization of a single fracture plane is much more refined than
the surrounding medium (2a), and (ii) several fractures cut the porous medium (2b). The largest examples in Test 1
are characterized by a very small ratio nt/nu. By distinction, the ratio nt/nu increases here up to about 0.45. These
test cases are used to investigate the computational performance of the proposed class of block preconditioners. The
size and number of non-zeros of the related Jacobian block matrices are given in Table 3.

In Test 2a, the same domain and boundary conditions as Test 1 are considered (Fig. 3a) with a single crack
cutting a homogeneous elastic block. An irregular tetrahedral discretization is used, with the largest element size
hmax = 0.25ℓ and a mesh refinement on the crack plane with edge length hmin = hmax/10 (Fig. 6). The numerical
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Fig. 4. Test 1: eigenvalue distribution of Ĵ P−1 with Ã−1
= A−1 and S̃BD (left panels) or S̃LSC (right panels) for different values of the mesh

size h.

performance obtained for different choices of S̃ and Ã is provided in Table 4. We denote by S̃FSAI−FSAI and S̃FSAI−DIR

the approximation (31) for the Schur complement with the inverse applied inexactly through a FSAI preconditioner
of S̃FSAI and a nested direct solver, respectively. The pair (nmax, ϵ) = (50, 0.01) is used to set-up both G in the
computation of S̃FSAI and the FSAI approximation of S̃−1

FSAI. For each option, the number of iterations obtained by
using Ã−1

= A−1 through a nested direct solver is also reported as a reference. Inspection of Table 4 reveals that
the BD and LSC approaches can provide cheap and effective alternatives for the solution of faulted problems. Notice
that the largest cost for the preconditioner set-up, which can undermine the overall performance, is mainly due to the
FSAI computation for the (1,1) block A. This cost cannot be avoided with S̃FSAI. Such an approach, however, can be
of interest when using a massively parallel implementation because of the almost ideal parallel potential of FSAI. It
goes without saying that any other choice for Ã−1, e.g., Algebraic Multigrid (AMG) methods, would be possible.

Test 2b addresses the multiple fractured elastic medium shown in Fig. 7. Fifteen horizontal fracture planes are
considered in a ℓξ × ℓη × ℓζ box, with ℓξ = ℓη = 2ℓ and ℓζ = ℓ. The elastic properties of the medium are
E = 20 GPa and ν = 0.3. The fractured body has fixed zero displacements on the bottom boundary, is traction-free
on the outer surfaces and is loaded on top. This problem shows an extreme case where the ratio nt/nu grows up to
0.442. The numerical performance provided in Table 5 shows that this test case is more challenging than the ones
already discussed. Nevertheless, all the proposed approaches are able to achieve convergence, with the exception of
the LSC Schur complement and a FSAI approximation of the (1,1) block A. However, convergence is soon achieved
also in this case by improving the quality of Ã−1 as an approximation of A−1 by either increasing the FSAI density or
using an IC factorization. In Test 2b, the best performance is obtained by using the BD Schur complement.



390 A. Franceschini et al. / Comput. Methods Appl. Mech. Engrg. 344 (2019) 376–401

Fig. 5. Test 1: the same as Fig. 4 with S̃FSAI(5,0.01) (left panels) and S̃FSAI(20,0.01) (right panels).

Fig. 6. Test 2a: Single crack plane cutting through a homogeneous elastic block discretized using a tetrahedral grid obtained with TetGen [51].
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Table 4
Test 2a: Numerical performance of right-preconditioned GMRES(100), with exit tolerance τ = 10−8. The fill-in parameters (nmax, ϵ) and ρ for
the FSAI, A−1

FSAI, and IC, A−1
IC , approximation of A are also reported, respectively. Densities and CPU times are not reported when Ã−1

= A−1.

S̃BD S̃LSC

µ niter Tp [s] Ts [s] Tt [s] µ niter Tp [s] Ts [s] Tt [s]

Ã−1
= A−1

FSAI(50,0.010) 0.693 340 13.5 22.1 35.6 0.786 276 13.5 23.7 37.2
Ã−1

= A−1
FSAI(50,0.005) 0.956 315 28.3 21.9 50.2 1.049 244 28.3 22.0 50.3

Ã−1
= A−1

IC (0) 0.535 238 1.6 20.7 22.3 0.628 153 2.0 14.8 16.8
Ã−1

= A−1
IC (20) 0.970 206 3.5 19.2 22.8 1.063 114 3.8 13.2 17.0

Ã−1
= A−1 – 21 – – – – 14 – – –

S̃FSAI−FSAI S̃FSAI−DIR

µ niter Tp [s] Ts [s] Tt [s] µ niter Tp [s] Ts [s] Tt [s]

Ã−1
= A−1

FSAI(50,0.010) 0.739 264 15.0 17.3 32.3 2.038 259 16.3 36.9 53.2
Ã−1

= A−1
FSAI(50,0.005) 1.002 229 29.4 15.7 45.1 2.779 223 32.1 26.5 58.6

Ã−1
= A−1

IC (0) 0.582 125 17.1 10.5 27.7 1.880 124 18.9 19.9 38.8
Ã−1

= A−1
IC (20) 1.017 88 18.7 8.7 27.4 2.315 89 21.5 12.3 33.8

Ã−1
= A−1 – 12 – – – – 12 – – –

Fig. 7. Test 2b: Multiple fractured medium cut by 15 horizontal cracks.

To get a sense of the effectiveness of the proposed approaches, we compare the performance reported in Tables 4
and 5 with that of a modern sparse direct solver such as PARDISO [52]. Using a state-of-the-art direct solution
technique is the most robust way to address the problem of interest. CPU times and memory requirements obtained
with PARDISO in Tests 2a and 2b are provided in Table 6. These results show that using a preconditioned iterative
method might become mandatory when dealing with real-world applications with hundreds of thousands unknowns.

4.3. Test 3: Real faulted formations

The performance, effectiveness and robustness of the proposed approaches are investigated in three applications
referring to real-world problems dealing with fractured and faulted formations. The problems are denoted as Test 3a,
3b and 3c as follows.

• Test 3a (Fig. 8): the Wuxi area, Jiangsu Province, China, was subjected to a significant groundwater withdrawal
from a shallow fresh aquifer system, which has caused an extensive land subsidence and the occurrence of
important ground fissures [53,54]. The geological setting is characterized by a shallow rocky paleo-basement
covered by compressible sedimentary deposits from the Yangtze River. A rock ridge, buried below the
sedimentary sequence, triggers the generation of ground fissures in the permeable sediments along the plane
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Table 5
Test 2b: the same as Table 4. The acronym ‘nc’ (‘not converged’) means that convergence was not achieved after 1000 iterations.

S̃BD S̃LSC

µ niter Tp [s] Ts [s] Tt [s] µ niter Tp [s] Ts [s] Tt [s]

Ã−1
= A−1

FSAI(50,0.010) 0.662 482 13.7 54.4 68.1 1.137 nc *** *** ***
Ã−1

= A−1
FSAI(50,0.005) 0.862 491 27.7 62.0 89.7 1.337 866 26.6 135.0 161.6

Ã−1
= A−1

IC (0) 0.546 701 2.6 84.0 86.6 1.021 603 2.6 98.7 98.3
Ã−1

= A−1
IC (20) 0.947 574 3.9 76.7 80.6 1.422 407 4.3 73.5 77.8

Ã−1
= A−1 – 268 – – – – 99 – – –

S̃FSAI−FSAI S̃FSAI−DIR(*)

µ niter Tp [s] Ts [s] Tt [s] µ niter Tp [s] Ts [s] Tt [s]

Ã−1
= A−1

FSAI(50,0.010) 0.837 428 27.9 52.8 80.7 3.382 409 24.7 71.8 96.5
Ã−1

= A−1
FSAI(50,0.005) 1.033 385 46.3 45.4 91.7 4.758 379 45.2 71.6 116.8

Ã−1
= A−1

IC (0) 0.721 309 33.5 38.9 72.4 3.267 309 27.9 54.7 82.5
Ã−1

= A−1
IC (20) 1.123 227 35.5 32.4 67.9 3.668 229 29.4 44.1 73.5

Ã−1
= A−1 – 92 – – – – 100 – – –

(*) Because of the large size of the Schur complement, the direct solver is replaced by 3 Conjugate Gradient iterations preconditioned by IC(0).

Table 6
Test 2a and 2b: CPU times and memory requirements for PARDISO.

Tt [s] # non-zeros factorization Memory occupation [GB]

Test 2a 81.1 537,602,245 4.11
Test 2b 612.0 1,576,783,074 11.89

Fig. 8. Test 3a: Conceptual scheme, computational grid and fracture plane.
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Fig. 9. Test 3b: Conceptual scheme, computational grid and fracture plane.

highlighted in Fig. 8c. A computational model is developed to simulate the generation and propagation of
the ground rupture, using the formulation developed in Section 2. The domain extends for 2 × 5 km2 in the
horizontal plane and from the land surface down to 250 m depth in the vertical direction. Zero displacements
are prescribed on the bottom and outer boundaries, while the top is traction-free. Further details on the model
properties are provided in [55].

• Test 3b (Fig. 9): the development of ground fissures due to shallow aquifer exploitation is a well-known
occurrence in Queretaro City, Mexico. The ruptures are typically generated by the differential compaction
occurring in the soft fluvio-lacustrine sediments with respect to stiff rock outcrops bounding the pumped
formations. The simplified configuration sketched in Fig. 9a, with a rock structure confining a shallow aquifer
system, is used to understand the mechanics of this occurrence. The computational model covers a 30 km-side
square area and extends vertically from the ground surface down to 50 m. Zero displacements on bottom and
outer boundaries, along with a traction-free top surface are prescribed. The geomechanical parameters along
with the full model details are provided in [55] and [23].

• Test 3c (Fig. 10): underground gas storage (UGS) in depleted hydrocarbon reservoirs is a strategic practice
occurring in many sites in Europe and North America. Modeling the geomechanical effects of the cyclic loading
due to summer injection and winter withdrawal is the object of several recent works, e.g., [56–59], and is of
paramount importance for an optimal management and schedule of the storage activities. One of the main issues
is the seismicity that has been recognized to be possibly induced or triggered by fault activation during the UGS
operations [60–63]. Fig. 10 shows the geomechanical model of a faulted UGS site in Italy. The computational
grid has a regional size with a 50 × 50 km2 areal extent and extends down to 10-km depth. The porous medium
is highly heterogeneous and a severely distorted mesh is necessary to reproduce the geometry of the geological
structures of interest. Zero displacements are prescribed on the bottom and outer boundaries, with a traction-free
top surface representing the ground. Similar models are discussed, for instance, in [59,64].

The size and number of non-zeros of the Jacobian matrices resulting in Test 3a, 3b and 3c are summarized in
Table 7. The problems have quite different sizes, varying from about 70,000 to 1,200,000 DOFs, with nt smaller than
10% nu. In these real-world examples, the portions of the faults that are activated during the simulation is pretty
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Fig. 10. Test 3c: Conceptual scheme, computational grid and fault plane traces.

Table 7
Test 3: Size and number of non-zeros of the test matrices.

ntotal nu nt nt/nu nnz(A) nnz(B1) nnz(B2)

Test 3a 72,666 69,909 2,757 0.039 2,946,915 16,542 16,542
Test 3b 183,177 171,150 12,027 0.070 7,313,814 72,162 72,162
Test 3c 1,180,764 1,142,655 38,109 0.033 49,858,749 228,654 228,654

small, hence the contribution provided by matrix F (Eq. (14c)) is usually negligible with respect to C . Therefore, for
preconditioning purposes, we assume B1 = BT

2 = C , thus obtaining a symmetric Schur complement approximation.
Table 8 provides the numerical performance of the block triangular preconditioners in Tests 3. For each

combination of Ã and S̃ the lowest total CPU time Tt is reported, along with the corresponding iteration count niter to
reduce the 2-norm of the initial residual by a factor τ = 10−8. GMRES(100) is used as non-symmetric solver. For the
sake of completeness, the number of iterations obtained by using a nested direct solver for applying A−1 is also given.

As already mentioned before, the number of iterations to converge for Ã−1
= A−1 can be regarded as the limiting

niter value when progressively increasing the quality of the (1,1) block approximation. Table 8 reveals that the use
of a good local preconditioner for A might yield convergence for any choice of S̃. The BD approximation, however,
appears to be the less robust alternative, with no convergence achieved in less than 1000 iterations in Test 3c both
with an FSAI and IC preconditioner for A. By distinction, the LSC approach provides the best Schur complement
approximation and the most efficient outcome. If an FSAI preconditioner is used for the (1,1) block, as it can be
desirable when working in a parallel computational environment, then the S̃FSAI approach is usually preferable. The
exact application of S̃−1

FSAI is a convenient option whenever the ratio nt/nu is small enough, i.e., nt/nu < 0.05 in the
present test cases.
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Table 8
Test 3: Lowest total CPU time for each combination of Ã and S̃. The best performance for each row is highlighted. The acronym ‘nc’ (‘not
converged’) means that convergence was not achieved after 1000 iterations.

Ã−1 S̃BD S̃LSC S̃FSAI−FSAI S̃FSAI−DIR

niter Tt [s] niter Tt [s] niter Tt [s] niter Tt [s]

A−1
FSAI 371 5.5 77 2.6 73 2.0 72 1.7

Test 3a A−1
IC 189 3.0 24 0.8 34 1.8 34 1.6

A−1 129 – 12 – 24 – 21 –

A−1
FSAI 255 13.0 175 12.3 126 9.1 123 9.6

Test 3b A−1
IC 240 12.2 59 6.8 97 10.1 98 10.3

A−1 126 – 23 – 34 – 35 –

A−1
FSAI nc *** 768 287.1 623 172.7 496 156.5

Test 3c A−1
IC nc *** 125 73.2 195 128.3 194 116.1

A−1 276 – 35 – 50 – 50 –

5. Discussion and conclusions

The accurate and efficient simulation of fault and fracture mechanics is a topic attracting a growing interest in the
scientific community. In this work, we focussed on the formulation proposed in [23] based on the use of Lagrange
multipliers. The Jacobian matrix J , resulting from the Finite Element discretization of the governing equations
(1a)–(1d) subject to the KKT complementary conditions (1e)–(1g) and (1h)–(1k) for normal and tangential contact,
respectively, is characterized by a non-symmetric generalized saddle-point structure (Eq. (13)). A family of block
triangular preconditioners was presented and discussed to accelerate the convergence of Krylov subspace methods.

The key ingredients for the preconditioner set-up and application are: (i) the selection of a local preconditioner Ã−1

for the (1,1) block A, and (ii) the approximation S̃ of the Schur complement S = −B2 A−1 B1 and its inverse. Since for
point (i) several well-established techniques are already available, we concentrated on point (ii) by introducing three
different approaches for S̃:

1. the BD Schur complement S̃BD is built by exploiting physics-based considerations on the locality of stress and
deformation along a fracture. The matrix S̃BD is block-diagonal, with at most 3 × 3 diagonal blocks associated
to the supernodes detected on the fracture planes, and can be inverted exactly at a negligible cost;

2. the LSC Schur complement S̃LSC is derived as an extension of the PCD preconditioner originally introduced for
Navier–Stokes equations. The advantage of this approach lies on the fact that S̃−1

LSC is known explicitly and can
be directly applied by a sequence of matrix-by-vector products involving sparse and block-diagonal matrices;

3. the FSAI Schur complement S̃FSAI is built in a fully algebraic way by replacing A−1 in the S definition by
an explicit sparse approximate inverse. Generally, the resulting matrix S̃FSAI has no specific structure, so other
possibilities come into play for applying its inverse. This can be done either inexactly, e.g., by means of another
FSAI approximation of S̃−1

FSAI, or exactly, with the aid of a nested direct solver.

The theoretical properties and computational performance of these approaches were investigated in three sets of
numerical examples, reproducing both synthetic and real-world test cases.

The analysis of the numerical results reveals that all the proposed approaches are effective for solving the target
problem, provided that a sufficiently good preconditioner is used for Ã−1. There is not a clear winner among BD, LSC
and FSAI, with the most efficient choice being generally problem- and user-dependent. The main points arising from
the theoretical and numerical evidences obtained in this work are as follows.

• The BD Schur complement is less robust than LSC and FSAI, requiring more iterations to converge and
exceeding the limiting value of 1000 iterations in the largest test case. This should not be a surprise, as S̃BD
is a very sparse approximation of S that can be too poor whenever the assumption of the locality of deformation
is far from being verified. Nevertheless, due to the ease of implementation and the very low memory demand,
the BD approach can become interesting in problems where the ratio nt/nu is relatively large, i.e., the size of S
is a significant fraction of A, such as applications characterized by multiple-fractured media.
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• The LSC approach provides the best approximation of the Schur complement, requiring the lowest iteration
count when A−1 is applied exactly. This result is theoretically founded, because we proved that the eigenvalues
of the preconditioned matrix are bounded from below by 1 whereas with the other approximations a similar
bound is not available. This generally leads to the most efficient computational performance for LSC obtained
with Ã−1

= A−1
IC , i.e., in sequential implementations.

• The FSAI approach requires the computation of an explicit approximate inverse of the (1,1) block for obtaining
S̃, hence it is quite natural to use the same matrix as Ã−1. It is well-known that sparse approximate inverses
have generally a lower quality as preconditioners with respect to other techniques, such as for instance
incomplete factorizations, and this can penalize the performance of the overall algorithm. Computing two
different approximations of A−1, i.e., one as Ã−1 and one for building S̃FSAI, increases the set-up costs and
so often is not convenient.

• All the different alternatives proposed for S̃ can be efficiently implemented in a parallel computational
environment. Hence, the key factor for the overall preconditioner suitability to High Performance Computing
(HPC) relies on the parallel degree of Ã−1. An efficient HPC option is A−1

FSAI, which is known to show a nearly
ideal parallel behavior [33]. In this context, the most natural and attractive option appears to be using the FSAI
Schur complement, because it exploits A−1

FSAI also in the computation of S̃FSAI. With this choice usually the FSAI
approach exhibits a faster convergence than BD and LSC.

• The FSAI approach is also the most flexible one, as it gives the user the chance to select several other options:
(i) fill-in parameters for A−1

FSAI, (ii) fill-in parameters for G in the computation of S̃FSAI (Eq. (31)), (iii) if the
approximate Schur complement is applied inexactly, another local preconditioner for S̃FSAI must be selected
with its own fill-in parameters. It can be easily guessed that, depending on the choice for the preconditioner of
S̃, the number of user-specified parameters can grow significantly.

• By distinction with the FSAI approach, the BD and LSC Schur complement allow the user to specify the choice
of Ã−1 only. This may result in a lower control of the overall preconditioner quality, but at the same time the
final algorithm is much simpler to use and optimize also by a non-expert practitioner.

Acknowledgments

Funding for this research was provided by the University of Padova project “Stable and efficient discretizations
of the mechanics of faults” (to A.F. and M.F.). N.C. gratefully acknowledges the financial support provided by the
Reservoir Simulation Industrial Affiliates Consortium at Stanford University (SUPRI-B) and Total S.A. through the
Stanford Total Enhanced Modeling of Source rock (STEMS) project. Portions of this work were performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. The authors are grateful to Joshua White, and three anonymous reviewers for helpful comments.

Appendix A. Finite element vectors and matrices

The vectors and matrices introduced in Section 2.3 are assembled in the standard way from element contributions.
The global expressions for the residual block vectors (12) read:

{ru}i =

∫
Ωh

∇
sNu

i : σ n dΩ −

∫
Ωh

Nu
i · bn dΩ −
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Γ h
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+
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Γ h,stick
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dΓ

+

∫
Γ

h,slip
f

[[Nu
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dΓ ∀i ∈ {1, 2, . . . , nu}, (A.1a)
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{rt}i =

∫
Γ h,stick

f ∪Γ
h,slip
f

Nt
i · (n f ⊗ n f ) · [[uh

n]]  
=gh

N ,nn f

dΓ

+

∫
Γ h,stick

f

Nt
i · (1 − n f ⊗ n f ) · [[∆uh]]  

=∆gh
T,n

dΓ ∀i ∈ {1, 2, . . . , nt}. (A.1b)

with [[∆uh]] = [[uh
n]] − [[uh

n−1]]. Recalling the definitions (14a)–(14c), the global expressions for the sub-matrices
appearing in the global Jacobian matrix (13) read:

[K ]i j =

∫
Ωh

∇
sNu
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(
∂σ

∂ϵ
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n
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sNu
j dΩ ∀(i, j) ∈ {1, 2, . . . , nu} × {1, 2, . . . , nu}, (A.2a)

[E]i j =

∫
Γ

h,slip
f
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j ]] dΓ ∀(i, j) ∈ {1, 2, . . . , nu} × {1, 2, . . . , nu}, (A.2b)
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∫
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f
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[F]i j = −

∫
Γ

h,slip
f
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with the partial derivatives expanded as:

∂σ

∂ϵ
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n

= C, (A.3a)
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∂t∗T
∂t

⏐⏐⏐⏐k
n

= −tanϕ
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n
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Appendix B. Proof of Proposition 2.1

Proof. By definition [65], a matrix A ∈ Rn×n is positive semidefinite if:

cT Ac ≥ 0, ∀c ∈ Rn, c ̸= 0. (B.1)

Let us introduce vh
=
∑nu

i=1Nu
i ci ∈ Vh and the vector c ∈ Rnu containing the ci coefficients defining vh . For matrix

E(d, λ), (B.1) becomes:
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To show that (B.2) holds true, it is sufficient to prove that (∂t∗T /∂([[u]]))
⏐⏐k
n is symmetric and positive semi-definite.

Let β and mT denote magnitude and direction of ∆gT , i.e. β = ∥∆gT ∥2 and mT = ∆gT /∥∆gT ∥2. Since mT ·n f = 0,
(A.3b) may be rewritten as:

∂t∗T
∂([[u]])

=
τmax

β
(1 − mT ⊗ mT − n f ⊗ n f ), (B.3)

where indexes n and k have been omitted. In (B.3) both τmax and β are positive, while (1 − mT ⊗ mT − n f ⊗ n f )
represents the orthogonal projector onto the orthogonal complement of the subspace span(mT , n f ), hence it is self-
adjoint [65]—i.e., symmetric—and has two zero eigenvalues corresponding to the unit eigenvectors mT and n f and
one unit eigenvalue [65]—i.e., positive semidefinite. This completes the proof. □

Appendix C. Proof of Proposition 2.2

Proof. The first statement follows immediately from the definition of matrix E . Indeed, if we substitute (B.3)
in (A.2b), any entry [E]i j reads

[E]i j =

∫
Γ h,slip

[[Nu
i ]] ·
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β
(1 − mT ⊗ mT − n f ⊗ n f ) · [[Nu

j ]] dΓ , (C.1)

with indexes n and k again omitted. All terms in (C.1) are finite, with the exception of β = ∥∆gT ∥2 → 0, hence
limβ→0+∥E∥p = +∞, regardless of the behavior of uh .

To prove the second part of the proposition we first introduce two linear operators R and I. The former maps u
into ∆gT , namely R : R3

→ R3, u ↦→ R(u) = ∆gT . The latter is defined such that for any couple of vector a and b
in R3 the relationship R(a) · R(b) = a · I[R(b)] holds true. Using such operators along with (A.3c), any entry [F]i j
of (A.2d) becomes

[F]i j =

∫
Γ h,slip
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with βz = I [R (u)]. If β tends to zero, then [F]i j vanishes, thus limβ→0+∥F∥p = 0. This completes the proof. □

Appendix D. Proof of Theorem 3.1

Proof. The matrix M = SS̃−1
LSC reads:

M =
(
BT A−1 B

) (
BT B

)−1 (
BT AB

) (
BT B

)−1
. (D.1)

Let us write the singular-value decomposition (SVD) of B:

B = VΣW T , (D.2)

where V ∈ Rnu×nt is such that V T V = I , Σ is diagonal with nt entries, and W ∈ Rnt×nt is orthogonal. The
Moore–Penrose left pseudoinverse of B, B†

= (BT B)−1 BT , is

B†
=
(
BT B

)−1
BT

=
(
WΣV T VΣW T )−1

WΣV T
= WΣ−2W T WΣV T

= WΣ−1V T . (D.3)

Introducing Eqs. (D.2) and (D.3) into (D.1) we obtain

M = WΣV T A−1V V T AVΣ−1W T
= WΣ M̃Σ−1W T , (D.4)

hence M is similar to M̃ . Using the QR factorization of V , with Q ∈ Rnu×nu and R ∈ Rnu×nt in the form:

R =

[
I
0

]
, I ∈ Rnt×nt , (D.5)
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the matrix M̃ reads:

M̃ =
(
RT QT AQ R

) (
RT QT A−1 Q R

)
=
(
RT H R

) (
RT H−1 R

)
, (D.6)

having denoted the projection QT AQ by H . Let us split H into four blocks, according to the dimensions nt and
(nu − nt):

H =

[
H11 H12

H T
12 H22

]
, H11 ∈ Rnt×nt , H22 ∈ R(nu−nt)×(nu−nt). (D.7)

With the block structure (D.7), the inverse of H is

H−1
=

[
S−1

1 −S−1
1 H12 H−1

22
−H−1

22 H T
12S−1

1 S−1
2

]
, (D.8)

where S1 = H11 − H12 H−1
22 H T

12 and S2 = H22 − H T
12 H−1

11 H12. Through Eqs. (D.5), (D.7), and (D.8), Eq. (D.6) simply
becomes:

M̃ = H11S−1
1 . (D.9)

Using the Woodbury identity, S−1
1 reads:

S−1
1 =

(
H11 − H12 H−1

22 H T
12

)−1
= H−1

11 + H−1
11 H12

(
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11 H12
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H T
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11

= H−1
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11 H12S−1
2 H T

12 H−1
11 , (D.10)

and the product (D.9) is

M̃ = I + H12S−1
2 H T

12 H−1
11 = I + E, (D.11)

where E = H12S−1
2 H T

12 H−1
11 is similar to:

Ẽ = H−1/2
11 H12S−1

2 H T
12 H−1/2

11 = PT S−1
2 P, (D.12)

having set P = H T
12 H−1/2

11 . Since S2 is SPD, the eigenvalues of Ẽ , hence E , are real and positive, thus completing the
proof. □
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