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Human beta-defensins (hBDs) are broad-spectrum antimicrobial peptides, secreted
by epithelial cells of the skin and mucosae, and astrocytes, which we and others have
shown to inhibit HIV-1 in primary CD4+ T cells. Although loss of CD4+ T cells contributes to
mucosal immune dysfunction, macrophages are a major source of persistence and
spread of HIV and also contribute to the development of various HIV-associated
complications. We hypothesized that, besides T cells, hBDs could protect
macrophages from HIV. Our data in primary human monocyte-derived macrophages
(MDM) in vitro show that hBD2 and hBD3 inhibit HIV replication in a dose-dependent
manner. We determined that hBD2 neither alters surface expression of HIV receptors nor
induces expression of anti-HIV cytokines or beta-chemokines in MDM. Studies using a G-
protein signaling antagonist in a single-cycle reporter virus system showed that hBD2
suppresses HIV at an early post-entry stage via G-protein coupled receptor (GPCR)-
mediated signaling. We find that MDM express the shared chemokine-hBD receptors
CCR2 and CCR6, albeit at variable levels among donors. However, cell surface
expression analyses show that neither of these receptors is necessary for hBD2-
mediated HIV inhibition, suggesting that hBD2 can signal via additional receptor(s). Our
data also illustrate that hBD2 treatment was associated with increased expression of
APOBEC3A and 3G antiretroviral restriction factors in MDM. These findings suggest that
hBD2 inhibits HIV in MDM via more than one CCR thus adding to the potential of using
b-defensins in preventive and therapeutic approaches.

Keywords: macrophages, HIV-1, human b-defensin 2, CCRs, APOBEC3G, APOBEC3A
INTRODUCTION

Mucosal surfaces, especially of the genital and gastrointestinal tracts, are the primary sites of initial
transmission of HIV-1. The virus can reach target cells across both intact and damaged mucosal
surfaces via different mechanisms [reviewed in (Moutsopoulos et al., 2006)]. Virus may also enter
via damaged mucosal surfaces to infect susceptible dendritic cells (DCs), macrophages and T cells.
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Regardless of the mode of entry, once the virus has breached the
mucosal barrier and entered susceptible target cells, including
macrophages, it is subsequently transported via the lymphatic
system and blood stream to other sites in the body.

Macrophages are versatile cells of the immune system. They
can independently recognize and attack foreign antigens, activate
various aspects of the innate immune response, as well as interact
with and activate cells of the adaptive immune response
(Dobrovolskaia and Vogel, 2002; Mantovani et al., 2004;
Gordon and Taylor, 2005; Gordon and Mantovani, 2011; Sica
and Mantovani, 2012; Wynn et al., 2013). Macrophages are
susceptible to infection by HIV and are in mucosae, potentially
exposing them to infection during heterosexual transmission
(Greenhead et al., 2000). Several studies have shown that cells of
the monocyte/macrophage lineage serve as both, an active site for
virus replication and dissemination through the body (Gartner
et al., 1986b), especially to protected sites such as perivascular
macrophages (Williams et al., 2001) and microglia in the central
nervous system (Gartner et al., 1986a; Koenig et al., 1986), and as
a reservoir of latent virus (Gendelman et al., 1989; Brown et al.,
2006; Li et al., 2010; Honeycutt et al., 2016; Honeycutt et al.,
2017; Ganor et al., 2019; Ko et al., 2019). Additionally, infected
macrophages alter the innate immune response, making the host
more vulnerable to other infections. Thus, by virtue of their
importance in the regulation of the immune response, their
relatively long life span, and their susceptibility to infection,
macrophages contribute to the persistence and amplification of
HIV infection [reviewed in (Alexaki et al., 2008; Koppensteiner
et al., 2012; Churchill and Nath, 2013)].

Current antiretroviral therapy (ART) for HIV infection has
evolved tremendously over the past thirty years and has resulted
in significant reductions in morbidity and mortality. Despite
these advances, toxicity, multi-drug resistance, lack of response
to drugs, failure to restore immune competence and to eradicate
latent virus reservoirs are some of the common problems
associated with ART. The problem is further compounded by
the high cost, lack of compliance, and/or unavailability of
treatment and patients also remain susceptible to the serious
complications of AIDS. In particular, while the introduction of
cART has significantly decreased the occurrence of HIV-
associated dementia, and the incidence of AIDS, the prevalence
of HIV-Associated Neurocognitive Disorders (HAND) has
increased despite long standing viremia suppression [reviewed
in (Broder, 2010; Deeks, 2013; Nath and Tyler, 2013)]. Hence,
there is an urgent need to develop strategies that serve as
complementary or alternative therapies.

Components of innate immunity participate to control HIV
infection and studying their mechanisms of action may
contribute to the development of new treatments. Our studies
highlight potential therapeutic application of human defensins
and the pathways that they induce in cells susceptible to
HIV infection.

Defensins are a heterogeneous group of small molecular
weight peptides that exhibit potent antimicrobial properties
against a broad variety of pathogens, including bacteria, fungi,
and viruses [reviewed in (Lehrer and Lu, 2012; Jarczak et al., 2013;
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Wilson et al., 2013; Holly et al., 2017; Brice and Diamond, 2020)].
In addition, they are involved in stimulation, proliferation,
differentiation, morphogenesis, motility and function of
immune cells, hence, playing significant roles in both innate
and adaptive immunity [reviewed in (Yang et al., 2007)].
Several studies have also identified defensins as potential
immunotherapies for different cancers (Papo and Shai, 2005;
Kesting et al., 2012; Mei et al., 2012), auto-immune (Badr,
2013) and inflammatory disorders (Niyonsaba et al., 2001;
Poiraud et al., 2012). In humans, two major subclasses, a- and
ß-defensins, are produced. Human b-defensins are produced
primarily by epithelial cells of diverse mucosal tissues and by
monocytes, macrophages, astrocytes and DCs [reviewed in (Yang
et al., 2007)]. Immunohistochemical studies show that hBD2 is
constitutively expressed in the oral mucosa of normal healthy
individuals, producing a barrier across the epithelium. In contrast,
a previous study from our group showed that hBD2 levels were
not detectable in HIV-1-positive individuals (Sun et al., 2005),
which may predispose them to oral complications of AIDS.

Studies by various groups over the years show that both a-
and ß-defensins exhibit anti-HIV activity in vitro. a-defensins
can inhibit HIV-1 replication by direct interaction and
inactivation of the virions or by affecting target cells
(Nakashima et al., 1993; Mackewicz et al., 2003; Wang et al.,
2004; Chang et al., 2005). Previous studies from our laboratory
(Sun et al., 2005; Lafferty et al., 2010; Lafferty et al., 2017) and
from others (Quinones-Mateu et al., 2003; Feng et al., 2006)
show that hBD2 and hBD3 elicit anti-HIV activity in peripheral
blood mononuclear cells (PBMCs) and CD4+ T cells. It
was further shown by our group (Lafferty et al., 2010; Lafferty
et al., 2017) that hBD2 inhibits HIV at an early stage post-
entry and the intracellular mechanism involves induction of
the host anti-viral restriction factor apolipoprotein B mRNA-
editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) via
the CC chemokine receptor 6 (CCR6). CCR6 is expressed on
cells that are highly permissive to HIV infection, including
memory T cells, Th17 cells, a4ß7 cells, and microglia (Liao
et al., 1999; Flynn et al., 2003; Acosta-Rodriguez et al., 2007;
Singh et al., 2008; El Hed et al., 2010; Gosselin et al., 2010;
Monteiro et al., 2011; Christensen-Quick et al., 2016; Lafferty
et al., 2017). It has been shown that chemokine receptors can be
functionally bound by non-chemokine ligands such as defensins
(Yang et al., 1999; Jin et al., 2010; Lafferty et al., 2010; Rohrl
et al., 2010).

Due to the lack of studies on macrophages, we tested the
ability of hBD2 to inhibit HIV-1 infection in primary human
monocyte-derived macrophages (MDM) and elucidate its
mechanism(s) of action. We demonstrate that in MDM, hBD2
inhibits HIV post-entry via more than one mechanism. It
inhibits virus at an early stage in the life cycle via binding to
and signaling through more than one CCR type that results in
induction of anti-retroviral restriction factors of the APOBEC3
family i.e. 3G and 3A. This suggests that the mechanism(s)
of hBD2-mediated HIV-1 inhibition in primary human
macrophages is quite different from that in primary human
CD4+ T cells.
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MATERIALS AND METHODS

Ethics Statement
Human PBMCs were isolated from healthy blood donor’s
leukopaks obtained from New York Blood Center, Long Island,
NY, in accordance with their guidelines. Donors were
anonymous; hence, patient consent was not required.

Reagents
Recombinant human IFN-a was obtained from R&D Systems,
Inc. The HIV-1 reverse transcriptase (RT) inhibitor
azidothymidine (AZT); the chemical antagonist of CCR2,
RS102895, Cytochalasin D (CytD) and paraformaldehyde were
purchased from Sigma-Aldrich. Pertussis toxin (Bordetella
pertussis, glycerol solution) was from Calbiochem. TURBO
DNase I was from Ambion. The HIV-1 fusion inhibitor T20
peptide was a kind gift from Dr. Lai-Xi Wang at the Institute of
Human Virology.

Isolation and Culture of Primary Cells
Human PBMCs were isolated from leukopaks from healthy
human subjects with the use of Histopaque-1077 (Sigma-
Aldrich). Monocyte-derived macrophages (MDM) were
prepared by adherence method. Cells were plated at ~2x106

cells/ml in 100mm petri dishes (Corning) and left to differentiate
for 5–7 days in Roswell Park Memorial Institute (RPMI)-1640
(Cellgro, Mediatech, Inc.) complete medium (which is
supplemented with 1% penicillin/streptomycin, 2 mM L-
glutamine [Quality Biochemical, Gaithersburg, MD], 20% heat-
inactivated Fetal Bovine Serum [Gemini Bio-Products]) in the
presence of 10% human AB serum (Gemini Bio-Products). Non-
adherent cells were removed by thorough washing and
differentiated macrophages were cultured in RPMI-1640
complete medium only (no human serum here onwards). In
this study, differentiated macrophages were detached with
StemPro Accutase (GIBCO by Life Technologies) following
manufacturer’s recommendations and gentle scraping when
needed. Flow cytometry analyses confirmed that more than
95% of the adherent cells were macrophages. Cell viability was
determined using trypan blue exclusion method.

Virus Production
HIV-1BaL (R5 isolate) virus stocks were prepared in MDM, while
the transmitted-founder isolate HIV-1AD17 (kindly provided
by George Shaw was produced in PM1 cells (Li et al., 2010).
Virus p24 levels were measured using a commercial ELISA kit
(Perkin Elmer, Foster City, CA). TCID50 of virus stocks were
determined in PBMCs using the protocol of ACTG Laboratory
Technologist Committee. Luciferase reporter pseudotyped virus
was generated by cotransfection of 293T cells with pNL4-
3.Luc.R-E- plasmid which has the firefly luciferase gene
inserted into the nef gene, and an Amphotropic Murine
Leukemia Virus (AMLV) envelope-expressing plasmid, using
Fugene 6 (Roche Diagnostics and Promega) and plasmids kindly
provided by Dan R. Littman (New York University) (Page et al.,
1990). Supernatants from 293T cells were harvested 72 hours
after cotransfection and p24 levels measured as described above.
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Virus was concentrated, if needed, by ultra-centrifugation on a
sucrose cushion. Virus was titrated in primary MDM.

Total Chemical Synthesis of Human
b-Defensins
hBDs 1, 2 and 3 were chemically synthesized by solid phase
peptide synthesis with a custom-modified procedure tailored
from the published in situ neutralization protocol developed for
Boc chemistry (Schnolzer et al., 1992). The syntheses,
purification, folding, and characterizations were published
previously (Wu et al., 2003). The beta connectivity of three
disulfide bonds (Cys1-Cys5, Cys2-Cys4, and Cys3-Cys6) in
highly pure synthetic hBDs 1 to 3 was independently verified
by mass mapping of peptide fragments generated by enzymatic
digestion and Edman degradation (Wu et al., 2003). Protein
concentrations were determined by absorbance measurements at
280 nm using molar extinction coefficients calculated according
to a published algorithm (Pace et al., 1995).

Cell Metabolism Assay
Cell metabolism was determined by using the MTS [3,4-(5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxy phenyl)-2-(4-
sulfophenyl)-2H-tetrazolium salt] assay (Promega, Madison,
WI), which measures conversion of MTS tetrazolium into
formazan by cellular dehydrogenase enzymes in metabolically
active cells. For this, MDM (105 cells/well) were cultured in
triplicate in 96-well plates with media alone as a control or hBDs
for 3-4 days and then the MTS/PMS mixture was added as per
manufacturer’s protocol and incubated for 1 to 4 hours before
spectrophotometric absorbance reading at 490 nm. Triplicate
readings were averaged and OD ratios of treated/control cells
were calculated as percentages.

Infectivity Assays
MDM (2x106 cells/ml) were infected with 6-8x104 TCID50/ml of
HIV-1BaL for 2 hours followed by three washes, and then
cultured at 105 cells/well of 96-well plate in RPMI complete
medium with the appropriate treatment(s) up to 14 days at 37°C.
Half of the culture supernatants were changed with fresh
medium on days 4, 7 and 10. Each culture was performed in
triplicate. As a positive control, cells were pretreated with AZT
(10 µM) prior to infection. Infection/HIV-1 replication was
determined by measuring the amount of p24 antigen in the
culture supernatants using a commercially available p24 antigen
capture assay kit (Perkin Elmer, Foster City, CA) following
manufacturer’s protocol. For experiments with the chemical
antagonist of CCR2, RS102895, after infection of MDM with
HIV-1BaL, cells were pretreated with the inhibitor (15 µM) at
37°C for 2 hours, followed by addition of hBD2, and cultured as
described above. Percentage of inhibition in treated cells was
calculated with the use of the following formula: % Inhibition= [1 −
(p24treated/p24control)] x 100, where p24treated and p24control are
concentrations of HIV-1 p24 measured in supernatants of treated
and untreated cells, respectively.

Single-round infections were performed with the use of
AMLV envelope-pseudotyped HIV-1. MDM were incubated
July 2021 | Volume 11 | Article 535352
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with pseudotyped virus for 3 hours and subsequently washed
with PBS and then cultured (2x105 cells/well of 48-well plate) in
RPMI complete medium in the presence or absence of hBD2 (4.7
µM) for 3 days at 37°C. Following this, infected cells were washed
with PBS and lysed with Reporter Lysis Buffer (SteadyGlo kit,
Promega), and luciferase activity was measured in a Turner
Luminometer. For inhibition of Gi-protein signaling with
pertussis toxin (PTx), cells were infected with pseudotyped
virus as described above followed by treatment with PTx (100
ng/ml) for at least 3 hours and then cultured in the presence or
absence of hBD2.

Flow Cytometry
Effect of hBD2 on cell surface expression of HIV-1 receptor and
co-receptors, CD4, CCR5 and CXCR4 was analyzed by flow
cytometry. For this, MDM were treated with hBD2 and hBD3
(4.7 µM) for time periods described in the Results section below,
after which the cells were harvested, processed and stained.
Briefly, the cells were washed with cold FACS buffer (PBS
containing 2% FBS and 0.1% Na-azide), and then blocked with
either 5% human AB serum or human FcR blocking reagent
(Miltenyi Biotec) in FACS buffer for up to 30 minutes followed
by washing and staining with mouse monoclonal anti-human
antibodies (mAbs) for 30 minutes at 4°C in the dark. After
incubation, cells were washed and fixed in 1% paraformaldehyde
in FACS buffer. The cell preparations were analyzed with a FACS
Calibur flow cytometer (BD Biosciences, CA). Macrophage
surface markers including CD14, CD11b, CD36, and HLA-DR
were used to identify and gate on macrophages. Live cells were
gated to exclude all nonviable cells and debris according to
forward and scatter profiles. These gated events were further
analyzed for expression of CD4, CCR5 and CXCR4. Positives
and negatives were determined by comparison with matching
isotype controls. The following mAbs were used: PE-conjugated
anti-CD4, APC-conjugated anti-CCR5, and PE-conjugated anti-
CXCR4 (all from BD Pharmingen, San Jose, CA). In all cases,
isotype-matched control mAbs were used. For flow cytometry
analysis of cell surface expression of CCR2 and CCR6 on MDM,
similar FACS staining method was used with following mAbs:
APC-conjugated anti-CCR2 (R&D Systems, Inc.) and PE-
conjugated anti-CCR6 (BD Pharmingen). All data were
analyzed using FlowJo software (Tree Star Inc., San Carlos, CA).

Quantitation of Interferons and
b-Chemokines in hBD2 Treated
MDM Supernatants
Supernatants derived from MDM incubated for different times
up to 24 hours with hBD2 (4.7 µM) were tested for the presence
of interferon-a and –b and the b-chemokines RANTES, MIP-1a
and MIP-1b by commercial ELISA kits following the
manufacturer’s protocols (R&D Systems, Inc.).

Real-Time Quantitative PCR of HIV-1 DNA
MDM (106 cells/time point) were untreated or pretreated with
AZT (10 µM) or fusion inhibitor T20 (2.5 µM) and infected for 2
hours at 37°C with 105 TCID50/ml of DNase I–treated HIV-1BaL.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Cells were washed to remove extracellular virus, and
resuspended in RPMI complete media, and infected untreated
cells were incubated in the presence or absence of hBD2 (4.7
µM). Total cellular DNA was extracted with the use of the
DNeasy Blood and Tissue Kit (QIAGEN) at 6, 12, 24 and 48
hours post-infection. DNA was analyzed by real-time
quantitative PCR to determine the number copies of early
(negative strand strong stop) reverse transcripts present with
iQSYBR green supermix (Bio-Rad) and primers F: 5’-
GGCTAACTAGGGAACCCACTG - 3 ’ a n d R : 5 ’ -
CTGCTAGAGATTTTCCACACTGAC-3’ (Lafferty et al.,
2010). Transcript levels were normalized using endogenous
albumin gene as a reference. Primers used for albumin are F:
5 ’ -TGTTGCATGAGAAAACGCCA -3 ’ and R : 5 ’ -
GTCGCCTGTTCACCAAGGAT -3’ (Lafferty et al., 2010).
Annealing temperatures of 60°C and 62°C were used for strong
stop and albumin, respectively. Reactions were performed in
triplicate with the use of a Bio-Rad iQ5 Real-Time PCR machine.
A standard curve for number of HIV-1 DNA copies was set up
with dilutions of HxB2 plasmid DNA. Data was analyzed with
Bio-Rad iQ5 and Microsoft Excel software.

Real-Time Quantitative RT-PCR Analysis
of APOBEC3G and APOBEC3A
Cells (106 cells per time point) were untreated or treated with
hBD2 (4.7 µM) or IFN-a (1000 U/ml). RNA was extracted with
the Rneasy Kit (Qiagen) at the indicated time points. First strand
cDNA was synthesized from 500 ng total RNA with iScript
cDNA Synthesis Kit (Bio-Rad). cDNA was analyzed by real-time
quantitative PCR with iQSYBR green supermix (Bio-Rad) with
the use of primers specific for APOBEC3G; F: 5’-CGCAGCCTG
TGTCAGAAAAG-3 ’ and R: 5 ’-CCAACAGTGCTGA
AATTCGTCATA-3’ (Jin et al., 2005), and for 18S ribosomal
RNA; F: 5’-ATCAACTTTCGATGGTAGTCG-3’ and R: 5’-
TCCTTGGATGTGGTAGCCG-3’ (Lafferty et al., 2010) and
annealing temperature of 60°C. For APOBEC3A, cDNA was
synthesized as described above and analyzed by real-time
quantitative PCR with iQ Supermix (Bio-Rad) and Taqman
primer-probe sets Hs00377444_m1 APOBEC3A-FAM and
Hs03928985_g1 RN18S1-VIC_PL (Applied Biosystems) and
annealing temperature of 60°C. In both cases, all reactions
were performed in triplicate with the use of a Bio-Rad iQ5
Real-Time PCR machine. Data was analyzed with Bio-Rad iQ5
and Microsoft Excel software. The DDCt method was used to
calculate fold change between untreated and treated cells
normalized to 18S ribosomal RNA.

Immunoblotting
For CCR6 western blots, untreated MDM and JKT-FT7 cells
were lysed with RIPA buffer (Sigma) containing 0.1 mM PMSF,
1X EDTA-free protease inhibitor cocktail (Sigma). Total protein
concentration was determined with the BCA Protein Assay
kit (Pierce, Thermo Scientific, Inc.), and equal amounts of
total protein were subjected to sodium dodecyl sulfate–
polyacrylamide gel electrophoresis analysis. Immunoblots were
probed with either mouse monoclonal anti-human CCR6
July 2021 | Volume 11 | Article 535352
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antibody (MAB195, R&D Systems, Inc.) or rabbit polyclonal
anti-human CCR6 antibody (ab78429, Abcam Inc.) followed by
horseradish peroxidase-conjugated anti-mouse or anti-rabbit
secondary antibodies (Santa Cruz Biotechnology) detected with
the ECL-plus kit (GE Healthcare, Bucks, UK) on a PharosFX
Plus Molecular Imager (Bio-Rad). Immunoblotting for CCR6 in
CD4+ T CCR6+ and CCR6- sorted cell lysates was performed on
a separate blot that was previously used for another experiment
in our lab. The low frequency of these subsets of cells in total
human PBMCs and the high cost involved limits the availability
of whole cell lysates from these populations.

For APOBEC3 induction experiments, MDM were incubated
in the presence or absence of increasing concentrations of hBD2
or IFN-a (1000 U/ml) for 0, 4, 8, and 24 hours. Cells were lysed
as described above. Immunoblots were probed with either rabbit
polyclonal anti-hAPOBEC3G antisera or rabbit anti-
hAPOBEC3G-C antisera for APOBEC3A and mouse anti-hb-
actin antibody (Abcam Inc.) or rabbit anti-GAPDH monoclonal
antibody (Cell Signaling Technology, Inc.) as load control
followed by horseradish peroxidase-conjugated anti-rabbit or
anti-mouse secondary antibodies (Santa Cruz Biotechnology)
detected with the ECL-plus kit (GE Healthcare, Bucks, UK). The
polyclonal anti-APOBEC3G antibodies from Drs. Warner C.
Greene (#9968), Klaus Strebel (anti-ApoC17 #10082), and Jaisri
Lingappa (#10201) and, rabbit anti-APOBEC3G-C antibody
from Dr. Klaus Strebel (#9906) (Kao et al., 2003) used to
detect APOBEC3A were obtained through the National
Institutes of Health AIDS Research and Reference Reagent
Program, Division of AIDS, National Institute of Allergy and
Infectious Diseases, National Institutes of Health. Densitometric
quantification of protein levels was done with Quantity One
software, version 4.6.9 (Bio-Rad Laboratories, Inc., CA, USA).
Each lane/sample was normalized to its respective load control,
and background signal for the blot was subtracted from all lanes.

Replicates
With the exception of FACS analyses and pseudotyped HIV
infections, every experiment was performed in triplicate with
cells from a particular donor and was performed independently
in cells from 3 or more donors. The number of donors used is
noted in each figure legend as n.

Data analyses was performed using Microsoft Excel and
GraphPad Prism 5. Images and figures were prepared using
Adobe Photoshop 7.0 or CS software (Adobe Systems, San
Jose, CA).
RESULTS

hBD2 Inhibits HIV-1 Replication
in Macrophages in a Dose-
Dependent Manner
To evaluate the effect of hBDs 1, 2 and 3 on replication of R5
virus in primary human MDM, cells were infected with 1.24x103

TCID50 of HIV-1BaL and then cultured in the absence or
presence of hBD 1, 2 or 3, at a final concentration of 4.7 µM,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
for up to 14 days. AZT was used as a positive control in all
infection experiments. Release of HIV-1 p24 was quantified in
supernatants every 3 days starting at day 7 after infection.
Figure 1A shows p24 amounts in the culture supernatants.
Both hBD2 (40-57%) and hBD3 (70-80%) inhibited HIV-1
replication, in contrast to hBD1 which, at the concentration
tested, appears to increase HIV-1 replication in MDM. To test
for toxicity of hBDs on MDM, cell metabolism was measured by
the MTS assay on cells treated with hBD 1, 2 or 3 for 3 to 4 days.
As shown in Figure 1C, at the concentrations used, these ß-
defensins have a marginal positive effect on cell metabolism in
MDM. Although hBD3 shows more potent inhibition of HIV-1
infection in macrophages as compared to hBD2 and it does not
appear to be affecting cell metabolism, it was shown to decrease
proliferation of PBMCs (Sun et al., 2005), thereby making it a less
desirable candidate as compared to hBD2 for further studies.
Hence, from here onward, studies to determine and characterize
the mechanism(s) of ß-defensin-mediated suppression of HIV-1
infection in macrophages were limited to hBD2. To evaluate the
effect of different concentrations of hBD2 on HIV infection in
MDM, cells were infected and cultured as described above in the
presence or absence of hBD2 concentrations ranging from 0.9 to
23.3 µM (corresponds to 4 to 100 µg/ml). As shown in Figure 1B,
hBD2 significantly inhibited R5 virus replication in a dose-
dependent manner. We also tested the effect of hBD2 in a
transmitted/founder virus, AD17 (Li et al., 2010). As seen with
BaL, 4.7 µM concentration shows inhibition ranging from 45-
65% over time, and the higher concentration of 23.3 µM shows
inhibition ranging from 70-80% over time (Figure 1D). These
results, taken together with published reports in PBMCs and
CD4+T cells (Quinones-Mateu et al., 2003; Sun et al., 2005),
suggest that the effect of hBD2 on HIV-1 replication extends to
macrophages. Since the concentration of 4.7 µM hBD2 is well
within the range of secreted hBD2 measured in oral mucosa and
epidermal tissues (Liu et al., 2002), we used this concentration in
further studies.

hBD2 Does Not Alter Surface Expression
of HIV Receptors on Macrophages
Previous studies have shown that b-defensins alter HIV-1
coreceptor CXCR4 expression on PBMCs and CD4+ T cell
lines (Quinones-Mateu et al., 2003; Feng et al., 2006).
This raises the possibility that interaction of hBD2 with
macrophages may affect the expression pattern of HIV-1
receptor and coreceptors. To test this hypothesis, we measured
cell surface expression of CD4, CCR5 and CXCR4 on cells after
treatment with hBD2 for different time periods. To this end, we
treated uninfected MDM with hBD2 for 1, 2, 3, and 24 hours
followed by staining with PE-CD4 or PerCP-CD4, APC-CCR5,
PE-CXCR4, and isotype-matched control antibodies and flow
cytometric analyses. hBD2 had no significant effect on the
surface expression of CD4, CXCR4 or CCR5 on MDM.
Figure 2 shows the results at 1 and 24 hours post-treatment
with hBD2; similar results were obtained with 2 and 3 hours of
treatment (data not shown). Table 1 shows the median
fluorescence intensity (MFI) values for each surface marker at
the different times tested. These results indicate that treatment
July 2021 | Volume 11 | Article 535352

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Bharucha et al. ß-Defensin 2 Inhibits HIV-1 Replication in Macrophages
with hBD2 does not modulate HIV receptors. We observed
similar results treating MDMs with hBD3 (Figure S1).

hBD2 Does Not Reproducibly Induce
Expression of Anti-Viral Cytokines or
b-Chemokines in Macrophages
Type I interferons (IFN) -a and -ß are induced in response to
viral infections and are the cytokines that suppress HIV
replication both in vitro and in vivo [reviewed in (Shankar
et al., 2012)]. Several studies have also demonstrated the
significance of ß-chemokines in restriction of, and protection
from, HIV infection both in vitro and in vivo [reviewed in
(Garzino-Demo et al., 2000; DeVico and Gallo, 2004)].
Previous studies have shown that a-defensins can inhibit
HIV-1 replication in macrophages by triggering release of
HIV-1 inhibitory ß-chemokines (Guo et al., 2004) and that
treatment of DCs with hBD2 upregulated the expression and
release of ß-chemokines (MIP-1a and MIP-1ß) in culture
supernatants (Biragyn et al., 2002). Therefore, we tested
whether hBD2 inhibition of HIV-1 in MDM is mediated via
up-regulation of the expression of (anti-R5 tropic) ß-
chemokines- MIP-1a, MIP-1ß and RANTES and/or Type I
IFNs. Culture supernatants obtained from MDM treated with
hBD2 up to 24 hours were used to quantify these molecules by
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
commercial ELISA kits. As shown in Figure S2, treatment with
hBD-2 induced an increase in production of all three ß-
chemokines at the 24 hour time point in Donor 1, and an
increase in production of RANTES at the 4 and 8 hour time
points in Donor 3 as compared to levels in untreated cultures. It
is unlikely; however, that the modest increase in b-chemokines
observed at different time points post-treatment significantly
contribute to the anti-HIV-1 activity of hBD2 in macrophages as
the concentrations measured in the hBD2 treated culture
supernatants are well below the concentrations needed to
efficiently inhibit HIV replication (Cocchi et al., 1995).
Boniotto et al. had made similar observations with hBD2 in
PBMCs (Boniotto et al., 2006). Further, IFN-a and -ß were not
detected in supernatants of both untreated control cells as well as
hBD2 treated cells at any time points in any of the donors (data
not shown). These data suggest that the anti-HIV-1 effect of
hBD2 in macrophages is not mediated through induction and
release of these anti-viral cytokines and ß-chemokines.

hBD2 Suppresses HIV-1 at an Early
Post-Entry Stage
We and others have shown that hBD2 and hBD3 interact directly
with HIV-1 decreasing infectivity irreversibly (Quinones-Mateu
et al., 2003; Sun et al., 2005; Lafferty et al., 2010). In the current
A B

D
C

FIGURE 1 | Human b-defensins inhibit HIV-1 replication in macrophages in vitro. MDM were infected with HIV-1BaL. After virus removal and washing, hBD1, hBD2,
and hBD3 (4.7 µM) (A) or increasing concentrations of hBD2 (0-23.3 µM) (B) were added to cultures. Cells were pretreated with AZT as control. Infection was
monitored by assaying supernatants for HIV p24 production by ELISA at the times indicated. Data are presented as mean ± SEM of triplicates. Representative
experiment, n=3. *P < 0.05, **P < 0.005, ***P < 0.0005, ****P < 0.0001 between treatment and control groups determined with unpaired two-tailed t test.
(C) ß-defensins are not toxic to macrophages at the concentrations that inhibit HIV-1. Cells treated with hBDs were tested using MTS assay. Cells were cultured in
triplicate in 96-well plates for 3 days in the presence or absence of b-defensins; MTS mix was added and incubated 1 to 4 hrs prior to spectrophotometric
absorbance readings at 490 nm. Triplicate readings were averaged (± SEM) and percentage OD ratios of treated/control cells were calculated. (D) hBD2 inhibit
infection of MDM with a transmitted-founder HIV strain. MDM were infected with transmitter-founder virus AD17. After virus removal and washing, hBD2 at
concentrations indicated above were added to cultures. HIV p24 release in supernatants was monitored by ELISA at the time indicated, and % inhibition was
calculated as % of HIV p24 production from untreated MDM. Data are presented as mean ± SEM of triplicates, N=3.
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study, hBD2 was always added to macrophage cultures post-
infection, decreasing the direct impact of hBD2 on HIV. To
investigate whether hBD2 inhibits HIV-1 in macrophages post-
entry, a single-cycle infection assay was employed with an HIV
luciferase reporter virus pseudotyped with the AMLV envelope
that does not use either CXCR4 or CCR5 for host entry. MDM
were infected for 3 hours and incubated for 3 days in presence or
absence of hBD2. AZT was used as a positive control.
Subsequently, luciferase activity was measured and the
percentage of inhibition compared with infected untreated cells
was calculated. As shown in Figure 3A, hBD2 treatment resulted
in significant inhibition (>70%) of luciferase expression in 3 of 4
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
donors tested. Treatment with AZT under the same conditions
resulted in inhibitory activity greater than 80% in all donors. We
observed donor-to-donor variability exemplified by the lack of
inhibition with hBD2 in Donor 1 which is not unusual in studies
with primary cells from a random pool of human subjects. This
may be due to lack of hBD2 receptor(s) on the cell surface, or
other parameters. Overall, these results show that hBD2-
mediated restriction of HIV-1 is not dependent on the Env-
host cell interaction, and occurs post-entry.

To probe the intracellular mechanism of inhibition, the
presence of early (negative strand strong stop, -sss) products of
HIV-1 reverse transcription were quantified in MDM infected
FIGURE 2 | hBD2 does not alter surface expression of HIV receptors on macrophages. MDM were cultured in the absence (black solid lines) or presence (black
dotted lines) of hBD2 for different times. The surface expression of CD4, CCR5, and CXCR4 was assessed by flow cytometry as described in Materials and
Methods. Data analyzed using FlowJo software. Left, middle, and right panels show staining of CD4, CCR5, and CXCR4, respectively. Isotype-matched control
antibodies are shown in grey. The x-axis and y-axis show fluorescence intensity and cell count, respectively. Representative experiment, n=2.
TABLE 1 | Median Fluorescence Intensity (MFI) values for surface receptor expression on MDM.

Time (hr) post treatment Condition Donor 1 Donor 2

CD4-PE CCR5-APC CXCR4-PE CD4-PE CCR5-APC CXCR4-PE

1 untreated 17.30 8.27 4.71 11.35 6.82 2.97
hBD2 17.72 7.77 4.58 10.76 6.53 2.83

2 untreated 19.04 8.82 5.25 11.29 7.35 3.28
hBD2 20.07 9.12 5.00 11.17 7.27 2.94

3 untreated 21.89 9.60 5.34 13.67 8.42 3.39
hBD2 21.61 9.53 5.12 12.53 8.67 3.32

24 untreated 68.72 18.12 14.04 45.86 14.40 5.50
hBD2 70.00 20.26 12.51 48.33 20.86 5.57
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with HIV-1BaL by real-time quantitative PCR at various time
points post-infection, using a-tubulin as the reference gene.
Cells were infected, treated after infection with hBD2 (4.7 µM)
and harvested for processing as described in Materials and
Methods. For positive controls, cells were pretreated with either
AZT or T20. Percent inhibition was calculated for ratio of HIV
infected treated cells to infected untreated cells. The results in
Figures 3B, C and Figure S3 confirm that inhibition occurs
post-entry, as HIV-1 DNA products are detected in the presence
and absence of hBD2. After 6 hours post-infection, hBD2 treated
samples showed significant inhibition of accumulation of
LTR/RU5 products (Figures 3C, S3). Pretreatment with AZT
also inhibited accrual of these products (data not shown). Some
variability in the level of inhibition was observed in cells from
different donors, ranging from 40-90%, but overall they all
showed inhibition of early reverse transcription products.
Thus, hBD2 restriction acts after the initiation of reverse
transcription, preventing the completion of full length viral
DNA products.

hBD2 Inhibits HIV-1 in Macrophages Post-
Entry via Gi-Protein Mediated Signaling
hBD2 is known to use C-C chemokine receptor 6 (CCR6) and
C-C chemokine receptor 2 (CCR2) to induce cell migration in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
immature DCs, memory T (Yang et al., 1999) and mast cells
(Niyonsaba et al., 2002), respectively, although there is evidence
that additional receptors might be involved in the migration of
cells of myeloid origin (Soruri et al., 2007). Preincubation of cells
with pertussis toxin (PTx) abrogated migration towards hBD2,
indicating that hBD2 signals via a receptor(s) coupled to PTx-
sensitive Gai proteins (Soruri et al., 2007). To elucidate whether
the inhibition of HIV by hBD2 in macrophages is mediated by
Gai-proteins signaling, we used PTx in our assays. MDM were
infected with the AMLV pseudotyped HIV luciferase reporter
virus and pretreated with PTx (100 ng/ml) and incubated for 3
days in presence or absence of hBD2. AZT was used as a positive
control. Treatment of infections with PTx alone resulted in
some inhibition of HIV LTR driven luciferase gene expression.
Both inhibition (Alfano et al., 1999; Copeland et al., 1999;
Alfano et al., 2000; Alfano et al., 2001; Iordanskiy et al., 2002;
Lapenta et al., 2005; Hu et al., 2006) and enhancement (Momoi
et al., 2000) of HIV infection in response to varying
concentrations of PTx have been previously reported by
different groups. However, in our experiments pretreatment
with PTx resulted in abrogation of hBD2 inhibition of HIV
(Figure 4), although inhibition was not completely reversed in all
donors tested, which is indicative of more than one mechanism
for hBD2 inhibition of HIV in macrophages. This result suggests
A B

C

FIGURE 3 | hBD2 suppresses HIV-1 at an early post-entry stage. (A) Single-cycle infection of MDM. Cells were infected with HIV-luciferase pseudotyped with AMLV
envelope. After infection, cells were incubated 3 days in presence or absence of hBD2. Subsequently, cells were lysed and luciferase activity was measured.
Percentage of inhibition was calculated for treated infected cells in reference to untreated infected cells. Data are presented for independent experiments from 4
different donors. (B) hBD2 inhibits accumulation of early reverse transcription products of HIV-1. MDM were challenged with DNase I-treated HIV-1BaL. Post-
infection, hBD2 was added to the cultures. Total cellular DNA was isolated at the indicated time points and copies of LTR/RU5 products of reverse transcription
were measured in triplicate by real-time PCR. Readings were averaged ± SEM and are presented as copies per million cells; log-scale graph. *P < 0.05, **P < 0.005,
***P < 0.0005, ****P < 0.0001 between treatment and control groups determined with unpaired two-tailed t test. Data are presented for independent experiments from 4
different donors and (C) summary graph of the average inhibition for the four donors shown in 3B was determined as the percentage of HIV-1 DNA copies in treated infected
cells in reference to untreated infected cells.
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that, at least in part, hBD2 binds GPCRs on the surface of
macrophages and activates intracellular Gi-protein signaling
pathways to mediate its HIV inhibitory activity.
Expression Pattern of Known hBD2
Receptors on the Surface of Macrophages
CCR6 is responsible for both hBD1 and hBD2 binding and
chemotaxis of memory T cells, immature DCs (Yang et al., 1999),
and TNF-a-treated neutrophils (Niyonsaba et al., 2004). Several
studies have reported that hBD3 and hBD4 are chemotactic for
peripheral blood monocytes (Wu et al., 2003; Soruri et al., 2007)
and mast cells which do not express CCR6 (Soruri et al., 2007)
implying the existence of an unidentified receptor. Two
independent studies implicated CCR2 as the GPCR responsible
for hBD2 and hBD3-mediated signaling and chemotaxis of
monocytes (Jin et al., 2010; Rohrl et al., 2010). CCR2 is largely
expressed on myeloid cells, such as monocytes (Katschke et al.,
2001), DCs, macrophage subsets (Lin et al., 2008), and
neutrophils (Iida et al., 2005).

In order to identify the receptor(s) used by hBD2 on
macrophages for intracellular signaling that results in
restriction of HIV-1 replication, we analyzed the surface
expression patterns of the known hBD2 receptors i.e. CCR2
and CCR6 on seven to ten days old MDM from healthy human
donors (n=53) by flow cytometry. Based on the percentage of
cells expressing the CCR, MDM were classified as follows: ≥50%
cells positive= + (moderate to high levels); 10-49% cells positive=
+/- (low to moderate); <10% cells positive= - (negative). Results
are summarized in Tables 2, 3 representative MDM of each type
is shown in Figures 5A–C. Figure 5D shows the MFI of CCR6
signal, as compared to its respective isotype-matched control, on
MDM from these different donors. As shown in Table 2, only 4%
of the donors were CCR2+ and 9% were CCR2+/- compared to
87% that were CCR2-. In contrast, 15% of the same donors were
CCR6+ and 28% were CCR6+/- while 57% of the donors were
CCR6-. However, as shown in Table 3, MDM from 51% of the
donors were negative for both CCR2 and CCR6. These data
indicate that hBD2 may be using additional receptors on primary
human MDM.

Since this is the first report of CCR6 surface expression on
macrophages, we used additional biochemical methods to
confirm CCR6 protein expression in MDM. To this end, we
performed immunoblot analysis for CCR6 on whole cell lysates
of MDM and used JKT-FT7 cell line (CCR6-) and primary
human CD4+ T cells that were sorted into CCR6+ and CCR6-

populations as controls. As shown in Figure 5E, MDM do
synthesize CCR6 protein at levels sufficient to be detected
in immunoblots.

hBD2 Can Signal via More Than One
Receptor on Macrophages to Inhibit HIV-1
Although several studies show that CCR2 acts as the receptor for
hBD2 and hBD3 on monocytes, Phillips et al. (Phillips et al.,
2005) determined that CCR2 expression is down regulated as
human monocytes gradually differentiate into macrophages. To
determine whether CCR2, when expressed on MDM, is involved
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
in hBD2-mediated intracellular inhibition of HIV-1, we used
CCR2+ MDM. Cells were infected, pretreated with the potent
and selective CCR2 pharmacological antagonist RS102895 (Jin
et al., 2010) and subsequently cultured in the presence or absence
of hBD2. As expected, hBD2 showed 60 to 75% inhibition of R5
virus replication over time in cells that were not treated with the
inhibitor. The CCR2 antagonist, or DMSO control, by itself did
not have a significant effect on infection. In contrast, blocking
CCR2 resulted in complete reversal of HIV-1 inhibition by hBD2
(Figure 6A) suggesting a role for CCR2, when present, in
mediating intracellular inhibition of the virus.

Since all MDM (from different donors) tested were not
positive for surface expression of CCR2, CCR6 or both, we
hypothesized that hBD2 signals in macrophages via additional
receptors. To examine this possibility, we tested the ability of
hBD2 to inhibit HIV-1 in CCR2- CCR6- MDM.Unexpectedly, we
found that hBD2, at the same concentration used in previous
infectivity experiments, completely abrogated HIV-1 replication
in these cells up to 14 days post-infection, similar to the AZT
control (Figure 6B). This is not attributable to low or no infection
as all cells were infected in the same tube and split post-infection
into infected untreated and infected hBD2-treated. These data
suggest that hBD2 can use receptor(s) other than CCR2 and
CCR6 on MDM.We decided to follow the infection over a longer
time period, replenishing hBD2 in the culture every 3 days. As
shown in Figure 6B, after 14 days, we observed virus replication
gradually in the hBD2 treated cells, although inhibition (ranging
from 92% to 64% on days 17 and 24, respectively) was still
present. The MDMwere also analyzed at the same time points for
CCR2 and CCR6 surface expression. As seen in the scatter plots
in Figure 6C, compared to no expression of either CCR2 or
CCR6 at Day 0 (gray), 49% of the cells expressed CCR2 and 83%
expressed CCR6 at Day 23 (black overlay on Day 0). Collectively,
these data lead us to hypothesize that hBD2 uses different CCRs
on macrophages with varying affinities.
hBD2 Upregulates APOBEC3G and/or
APOBEC3A in Macrophages
Our results suggest that the post-entry inhibition occurs during
early reverse transcription. To explore the mechanism(s) by
which hBD2 suppresses HIV-1, we examined its ability to
affect host restriction factors, specifically members of the
APOBEC3 family of cytidine deaminases, namely APOBEC3G
(A3G) and APOBEC3A (A3A) which are known intracellular
inhibitors of HIV-1 in macrophages (Dong et al., 2006; Peng
et al., 2007; Hou et al., 2009; Thielen et al., 2010; Chaipan et al.,
2013; Mashiba and Collins, 2013). In addition, data from our lab
demonstrated that hBD2 induced A3G expression via CCR6
resulting in HIV inhibition in CD4+ T cells (Lafferty et al., 2010).
Also, recent reports show that A3A expression is significantly
upregulated and is the major cytidine deaminase in myeloid cells
in response to IFN-a treatment (Peng et al., 2007; Koning et al.,
2009; Thielen et al., 2010).

To determine whether hBD2 influences A3G and/or A3A
expression, macrophages were treated with hBD2 and kinetics of
message levels were determined by real-time RT-PCR.
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FIGURE 4 | hBD2 inhibits HIV-1 in macrophages post-entry via Gi-protein-mediated signaling. MDM were infected with single-cycle HIV-luciferase virus
pseudotyped with AMLV envelope followed by pretreatment with or without PTx (100 ng/ml). Cells were then incubated 3 days in presence or absence of hBD2.
Subsequently, cells were lysed and luciferase activity was measured. Percentage of inhibition was calculated for treated infected cells in reference to untreated
infected cells. Data are presented for independent experiments from 3 different donors.
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Treatment of cells with hBD2 induced a 2 to 3-fold increase in
A3G mRNA signal in five of six donors tested, with one donor
showing an 8-fold increase as compared to untreated cells,
although we observed differences in the kinetics of induction
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
among different donors (Figure 7A). In contrast, A3A levels
increase from 1.5 to 6-fold within the first hour post-treatment
with hBD2 compared with untreated cells, with variable kinetics
between different donors (Figure 7A). To determine whether
this increase in expression translated into increase in protein,
cells were treated with hBD2 and lysates were prepared at 4, 8,
and 24 hours. Equal amounts of total protein were subjected to
immunoblotting with anti–human A3G antibodies. hBD2
enhanced A3G protein levels (Figure 7B) but high levels
of endogenous A3G in untreated MDM made it difficult to
decipher a clear increase in treated cell lysates from different
donors. In case of A3A, we observed 1.5- to 2-fold increase in
protein 24 to 48 hours post-treatment compared with
endogenous levels in untreated MDM (Figure 7C). Peak
protein signal was delayed compared to peak RNA signal for
A3A, which may be due to differences in the kinetics of RNA and
protein expression of this protein, and donor-to donor
variability. Overall, gene expression and protein production
analyses reveal that hBD2 induced both A3G and A3A in
MDM with stronger induction of A3A.
DISCUSSION

We and others previously demonstrated that hBD2 and hBD3
inhibit HIV-1 replication in primary human PBMCs and CD4+
TABLE 2 | Expression of chemokine receptors from blood donors.

CCR Phenotype %of Donors

CCR2+ 4
CCR2 +/- 9
CCR2- 87
CCR6+ 15
CCR6 +/- 28
CCR6- 57
key: - = negative; + = 50% cells positive; +/- = 10-49% cells positive.
TABLE 3 | Patterns of co-expression of chemokine receptors from blood donors.

CCR Phenotype No. of Donors %of Donors

CCR2+ CCR6+ 4 8
CCR2- CCR6- 27 51
CCR2 OR CCR6 22 42
Total (n) 53
N, no. of donors.
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FIGURE 5 | CCR6 is expressed on macrophages. Untreated, uninfected MDM were harvested and stained for flow cytometry analysis of CCR6 as described in
Materials and Methods. Data analyses were performed using FlowJo software. Forward scatter dot plots show the fluorescence and percentage of cells positive for
CCR6 as compared to the respective isotype-matched control. A representative of each type (A) CCR6-, (B) CCR6+/-, and (C) CCR6+ is shown. (D) Median
Fluorescence Intensity (MFI) values for CCR6 surface expression (as compared to MFI for isotype control) on MDM from different donors designated as either CCR6-,
CCR6+/-, or CCR6+. Data are presented as median and range of MFI values. Each dot represents one donor. ****P < 0.0001 between CCR6+/- and CCR6- or
CCR6+ and CCR6- determined with unpaired two-tailed t test. (E) Immunoblot analysis of CCR6 on MDM from 3 donors, 1 day and 10 days of tissue culture without
treatment. JKT-FT CCR6 GFP cell line lysate in first lane from left is used as a positive control; the second lane is empty; subsequent lanes are donors #1-3, at day 1
and day 10 of tissue culture.
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FIGURE 6 | hBD2 can signal via more than one receptor type on macrophages. (A) Neutralization of CCR2 rescues HIV-1 infection. MDM were infected with HIV-
1BaL. Cells were pretreated with AZT as control. Post-infection, infected untreated cells were pretreated with pharmacological antagonist RS102895 or DMSO control
for 2 hrs followed by culture in presence or absence of hBD2 to the cultures. Infection was monitored by assaying supernatants for HIV p24 production by ELISA at
the times indicated. Data are presented as mean ± SEM of triplicates. *P < 0.05 between treatment and control infection determined with unpaired two-tailed t test.
Representative experiment, n=2. (B) hBD2 signals via an as yet unidentified receptor. MDM, that were CCR2- CCR6- (by FACS staining), prior to start of infection,
were infected with HIV-1BaL. Cells were pretreated with AZT as control. Post-infection, cells were cultured in presence or absence of hBD2. Infection was monitored
by p24 ELISA. Data are presented as mean ± SEM of triplicates. **P < 0.005, ****P < 0.0001 between treatment and control infection determined with unpaired two-
tailed t test. (C) CCR2 and CCR6 surface expression levels vary with time. Uninfected, untreated cells from the donor used in (B) were harvested and stained for
flow cytometry analysis as described in Materials and Methods. Data analyzed using FlowJo software. Forward scatter dot plots show the fluorescence and
percentage of cells positive for CCR2 and CCR6 at Day 0 (grey) and Day 23 (black) as compared to the respective isotype-matched controls.
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T cells (Quinones-Mateu et al., 2003; Sun et al., 2005; Lafferty
et al., 2010; Lafferty et al., 2017). To the best of our knowledge, we
demonstrate here for the first time that hBD2 and hBD3, but not
hBD1, inhibit HIV-1 in human MDM. This inhibition occurs in
the micromolar range of concentrations similarly to our previous
observations on T cells, without effects on cell metabolism that
we previously observed in CD4+ T cells treated with hBD3 (Sun
et al., 2005). The dose-response profile of hBD2 that we observed
was probably on primary cells was probably affected by donor-
to-donor variability in expression of CCR6 and CCR2 (see
below). The enhancement of HIV replication we observed by
hBD1 was not observed in PBMC, where hBD1 has low
inhibitory activity (Quinones-Mateu et al., 2003; Sun et al.,
2005). The earlier studies on the effects of hBDs on HIV
replication showed that the inhibitory activity was due to both
a virucidal component, and an intracellular component (Sun
et al., 2005). In this study, we addressed mostly intracellular
mechanisms of inhibition in MDM. We further show that hBD2
acts via more than one receptor type to inhibit the virus post-
entry, and not by altering surface expression levels of HIV
receptor-co-receptors or by enhancing expression of anti-viral
cytokines and b-chemokines. One mechanism is via binding to
and signaling through different CCRs (GPCRs) on the cell
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
surface. The known hBD2 receptor on monocytes, CCR2, is
expressed on the surface of human MDM in 4% of donors we
tested. We found CCR6 expression on MDM from more than
40% of the donors tested, albeit at varying levels. To our best
knowledge, this is the first report of CCR6 expression on
peripheral blood monocyte-derived macrophages. Our data
differs from published data that CCR6 is not expressed on
peripheral blood monocytes (Ruth et al., 2003; Rohrl et al.,
2010) or macrophages (Soruri et al., 2007). However, low level
of CCR6 expression has been reported on myeloid blasts from
the peripheral blood of AML patients (Cignetti et al., 2003), and
on CD14+ monocytes from peripheral blood and synovial fluid of
rheumatoid arthritis patients (Ruth et al., 2003). Also, studies
have reported surface expression of CCR6 on microglial cells
(Flynn et al., 2003), the resident macrophages of the brain,
astrocytes (Flynn et al., 2003), and spinal cord infiltrate
macrophages (Mony et al., 2014). The broader biological
significance of this discovery warrants further exploration
because of the role of CCR6 in both pro- and anti-
inflammatory immune responses. The lack of a good CCR6
specific neutralizing antibody, antagonist, or a human CCR6
expressing monocyte cell line at this time restricts our ability to
test the role of CCR6 in hBD2-mediated inhibition of HIV in
A
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FIGURE 7 | hBD2 upregulates APOBEC3G and/or APOBEC3A in macrophages. (A) APOBEC3G and APOBEC3A expression in response to hBD2. MDM were
treated with hBD2 for indicated times and mRNA levels were assessed by quantitative real-time RT-PCR. The data was normalized to 18S ribosomal RNA. Triplicate
measurements were used to calculate fold change as described in Materials and Methods. Data are presented as fold change in treated samples compared to
untreated samples at matched time points. Data are for independent experiments from different donors. Analyses of APOBEC3G (B) and APOBEC3A (C) protein
levels in response to hBD2. MDM were treated with hBD2 for various times and cell lysates were used to detect APOBEC3G and APOBEC3A proteins by western
blotting. ß-actin and GAPDH serve as load controls. Representative experiment, n=3.
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MDM, and/or whether some of the activity of hBD2 may be due
to penetration of the peptide in cells.

Further support for our hypothesis that hBD2 signals in
macrophages via more than one CCR comes from our
experiments with PTx. MDM used from different donors for
these experiments (Figure 4) expressed no CCR2 and either
no CCR6 or low levels of CCR6 suggesting that these are
not the only CCRs used by hBD2 on macrophages. Further,
unexpectedly, maximum hBD2 inhibition of HIV was observed
in MDM that were CCR2- CCR6- (Figure 6B). Therefore, we
hypothesized that hBD2 may inhibit HIV in macrophages via
additional receptors. This is consistent with a study which
demonstrated that hBD2 mediates chemotaxis of mast cells via
signaling through more than one receptor, and identified both
high and low affinity receptors for hBD2 on this cell type
(Niyonsaba et al., 2002). Our results on putative receptors for
defensins open up more avenues of investigation as there
may be more such b-defensin-CCR interactions on other cell
types as well. Our results with PTx show that regardless of
receptor usage, hBD2 requires Gai signaling pathway(s) for HIV
inhibition in macrophages. When Ptx was used in conjuction
with hBD2 treatment, HIV replication was not just restored, but
it appeared to be enhanced. While this finding does not
invalidate the role of Gi-mediated signaling in the inhibitory
effects of hBD2, It open the possibility that hBD2 may also
induce activation of other intracellular pathways that increase
HIV replication.

Similar to previous findings from our laboratory in CD4+ T
cells (Lafferty et al., 2010; Lafferty et al., 2017), we found that
post-entry hBD2 blocks virus replication at an early stage of the
life cycle after the initiation of reverse transcription as evidenced
by inhibition of the accumulation of early reverse transcription
products. The intracellular inhibition is further mediated via
upregulation of the innate anti-viral restriction factors
APOBEC3G (A3G) and APOBEC3A (A3A) to different levels.
We detected increased A3G RNA signal in most donors tested
with a corresponding increase in protein levels at 24 hours in
macrophage lysates. As mentioned in the Results, high signal
for endogenous A3G detected in untreated MDM lysates
complicates our ability to accurately determine the effect of
hBD2 on the level of A3G protein synthesized in MDM. The
level of variability we observed is not unexpected in primary cells,
so that it is possible that the effects of hBD2 may vary in vivo. We
observed A3A induction, although while RNA levels increased
within the first hour following addition of hBD2, either very
weak or no signal was observed for A3A protein in both
untreated and treated cells until 48 hours post-treatment. This
is similar to studies of IFN-a-induction of A3A in monocytes
(Thielen et al., 2010) and macrophages (Goujon et al., 2013) that
showed low levels of A3A protein 8-10 hours post-treatment,
and more robust signal 24 hours post-treatment, hence, our
results may be due to the kinetics of translation and/or the half-
life of this protein in myeloid cells. Our data that hBD2 enhanced
A3G and A3A expression support our model that elevated levels
of APOBEC3 proteins contribute to hBD2-mediated anti-HIV-1
activity in macrophages.
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Taken together, our results provide evidence that hBD2 has
the ability to suppress HIV-1 infection of primary macrophages
in vitro. While the role of macrophages in the initial stages of
infection is still debated (Collins et al., 2000; Greenhead et al.,
2000; Gupta et al., 2002; Hladik et al., 2007; Bouschbacher et al.,
2008; Shen et al., 2011), it is widely accepted that macrophages
are not only a major target of HIV during both the acute and
chronic phases of disease-they produce and spread infectious
virus-but also a major reservoir of latent virus that, especially in
the CNS, eludes eradication by existing therapies. Since hBD2 is
expressed by epithelial cells in mucosae and in the CNS by
astrocytes (Hao et al., 2001), our findings could be relevant to
both systemic infection and neurological complications of the
disease. Indeed, a protective role for human ß-defensins against
HIV acquisition in high risk exposed individuals has been
suggested by Rugeles and colleagues (Zapata et al., 2008;
Aguilar-Jimenez et al., 2013), and hBD2 has been shown to be
correlated with ant- HIV activity in cervical-vaginal secretions
(Ghosh et al., 2010; Patel et al., 2014). Several studies have also
demonstrated an association between different ß-defensin gene
polymorphisms and HIV infection in adults as well as children of
diverse ethnicities (Braida et al., 2004; Milanese et al., 2006;
Baroncelli et al., 2008; Milanese et al., 2009; Ricci et al., 2009;
Aguilar-Jimenez et al., 2011; Freguja et al., 2012; Hardwick et al.,
2012). Human ß-defensins, especially hBD2, therefore merit
further consideration as both an immunotherapeutic and
topical microbicide to prevent spread through sexual contact.
While we did not address the effects of hBDs in a model of
HIV-latency in MDM in this study, the possibility that hBDs
can influence HIV reservoirs deserves to be addressed in
further studies.
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