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Abstract. Gabions are steel mesh cages filled with stones. Recently, they have had a great
diffusion for numerous applications such as erosion control and soil retention along cuts and
natural slopes. The study of their mechanical behaviour under different loading conditions is a
fundamental prerequisite for an improved understanding of their overall performance and in a
design perspective. In this respect, the Discrete Element Method (DEM) appears a robust
and effective technique. The DEM is particularly suited for modelling granular materials,
and recently it has efficiently been applied for modelling deformable structures such as welded
meshes. This work presents a discrete framework for the modelling of rock-filled gabions. The
gabion module is modelled as an assembly of deformable cylindrical elements, while the filling
material is represented using rigid aggregates of spherical particles. The tensile behaviour of
the gabion elements is set in order to fit the mechanical response of the steel bars adopted in
practice. The model is applied to analyse a uniaxial compression test on a single gabion.

1. Introduction
Gabions are cellular structures fabricated from a steel mesh and filled with rocks. These elements
are nowadays largely applied in engineering practice. They are considered to be a “green”
structural solution and their applications range from retaining structures to riverbank erosion
control (see Figure 1a).

Gabion cells are characterised by a non-trivial mechanical behaviour. On one hand, the
structural cage permits the self-stability of the cell and provide confinement of the filling material;
on the other hand, the latter provides an internal resistance that permits the gabion cell to
support significant external loads. Finally, the discrete nature of the granular filling determines
that its interaction with the structural elements and local effects (e.g. force localisation due to
stones alignment) may largely affect the overall behaviour of the gabion.

In this work, the discrete element method (DEM) is adopted in order to simulate a rock-
filled welded gabion unit. A particle-based approach is in fact well suited to deal with coarse
granular materials such as the gabion filling material. Moreover, the effectiveness of a discrete
element approach for simulating wire mesh cellular or flexible retaining structures has already
been proven [1–13]. The recent introduction of deformable cylindrical elements [14, 15] has open
the possibility of analysing beam-like elements in a discrete element framework.
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Figure 1. (a) Tie-back earth structure made of gabions combined with self-drilling anchors.
(b) Transversal section showing the internal bracing system and (c) frontal view of the gabion’s
panel.

In the present study, the welded gabion module produced by Sirive s.r.l. company is
considered. The geometry of the gabion and the layout of its components are shown in Figure
1b-c. This work aims to propose an approach for the modelling of welded gabions.

The paper is organised as follows. Firstly, the numerical approach and the model of the
gabion module are described (Sec. 2). Secondly, a compression test on the gabion steel cage
is presented (Sec. 3). Finally, a compression test on the filled gabion module is reported (Sec.
4). The numerical simulations presented in this work are performed with the open-source code
YADE [16].

2. Numerical methodology
2.1. Gabion structural elements
The structural elements of the gabion cage (i.e. steel bars) are described as a collection of
interconnected cylindrical elements. A cylindrical element (see Figure 2a) is geometrically
defined as the Minkowski sum of a sphere and a segment; it behaves like a standard discrete
element, but it may deform along its longitudinal direction according to the relative displacement
of the extremities nodes. The interaction between the cylinder’s nodes is ruled by a user-
defined contact law. This permits one to model elastic perfectly plastic beams which are
able to withstand normal, shearing, bending and twisting loadings. Further details about the
implementation of cylindrical elements can be found in [14, 15].

In this work, cylindrical elements of length 2.5cm are used to discretise the structure of the
gabion; therefore, the 1m and 2m length steel bars are subdivided into 40 and 80 cylindrical
elements respectively. This discretisation permits a smooth representation of the geometry of
the bars elements and the behaviour of the latter to be correctly represented also at large
displacements [14].

The gabion module here considered is composed of three different steel bar types characterised
by a diameter of 5.5mm, 8mm and 12mm respectively (see Figure 1b-c). The bars composing
the internal bracing systems have a diameter of 8mm; differently from the bars belonging to
the external cage, the elements of the bracing system are modelled as a single cylindrical
element since they are supposed to mainly experience tensile loading in serviceability conditions.
The tensile behaviour of the cylinder elements (i.e. the interaction between nodal particles) is
perfectly elastic with an ultimate tensile strength of 500MPa and an elastic modulus of 210GPa.
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Micromechanical elastic modulus, Ec
m 2.1e11 Pa

Tangent to normal contact stiffness coefficient, νcm 0.3
Contact friction angle, φcm 30°

Table 1. Numerical parameters of the cylinder elements.
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Figure 2. (a) Graphical scheme of two interconnected cylindrical elements. (b) 3D view of
the model of the gabion cage (elements schematising the hooked end of the bars are highlighted
in blue). (c) View of the hooked ends of the gabion’s bars.

The capability of the model of accounting for buckling of the bars is verified by performing ad-
hoc simulations (the three bar’s diameters are considered) in which a 1m length bar is axially
loaded. All the degrees of freedom of the bottom extremity node are fixed, while the top
extremity node can translate only along the bar axis. A very slight asymmetry of the bar is
imposed by laterally shifting the position of the top extremity node by 0.1mm from the bar’s
longitudinal axis. The compressive load is applied by a moving plate (displacement rate of
0.5mm/s) in contact with the top node of the bar. The buckling load numerically obtained
(i.e. maximum force before the bar instability) are compared with Euler critical load theory. A
difference lower than 6% is observed from the analytical solution confirming that the model is
able to account for the onset of buckling.

The numerical model of the gabion module is shown in Figure 2b. The gabion side panels
are joined together by inserting the 12mm bars in the hooked end of the 5.5mm and 8mm bars
(see Figure 2c). In the numerical model, the real geometry of the hooked ends is replaced with
cylindrical elements (blue elements in Figure 2b) whose maximum tensile resistance correspond
to the opening load of the hooks (i.e. 5kN). The contact parameters of the cylindrical elements
are summarised in Table 1.

2.2. Filling material
The filling material plays a key role in the behaviour of the gabion module. In fact, it permits
the cellular structure to sustain high compressive and shear loads, as well as the transmission of
static and dynamics loads coming from anchor plates or impacting objects. Different granular
materials can be used as filling material ranging from rounded pebbles to very angular quarry
stones depending on the gabion module and on the available materials on site. The geometrical
and mechanical characteristics of the filling material will affect the module resistance. Moreover,
the filling procedure may strongly influence the final mechanical behaviour of the module having
this a direct impact on the degree of compaction of the granular filling.
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Micromechanical elastic modulus, Es
m 2.85e8 Pa

Tangent to normal contact stiffness coefficient, νsm 0.3
Contact friction angle, φsm 70°

Table 2. Numerical parameters of the filling material.
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43°

Figure 3. (a) View of the filling material at the end of the heap test and of different clumps
shapes. (b) Repose angle of the granular pile φM as a function of the contact friction angle φsm.

In this work, rigid aggregates of spherical particles (i.e. clumps) are adopted for the numerical
description of the filling material. Four clump types are used, whose geometry is shown in Figure
3a. The choice of the dimensions of the clumps has been made according to the guidelines of
the manufacturer: the minimum axis should be greater than 1.5 times the mesh opening size.

The contact friction angle has been calibrated in order to fit the range of the macroscopic
friction angle recommended by the manufacturer (40° ≤ φM ≤ 45°). The other contact
parameters are reasonably assumed according to values reported in the literature for similar
applications [5, 17]. In this perspective, a cloud of particles is let settle under gravity on a plane.
The angle of the thus obtained granular pile is measured, once the sample has reached a stable
configuration. A view of the granular sample at the end of the heap test is reported in Figure
3a for the sake of clarity.

The influence of the contact friction angle on the macroscopic friction angle granular material
is shown in Figure 3b. The contact parameters of the filling material are reported in Table 2.

3. The behaviour of the gabion cage under compression
The mechanical behaviour of the gabion steel cage is here investigated in unconfined compression
conditions. In the test setup the bottom panel of the cage is fixed (i.e. all the degrees of freedom
of the bottom panel’s nodal particles are fixed), while the top border (i.e. the part in contact
with the plate) can translate only along the vertical direction. The compressive load is applied
through a flat plate, which is moved downwards at a fixed displacement rate of 1cm/s (see Figure
4a). During the test, the force acting on the plate as well as the displacement of the latter are
registered, thus providing as output a force-displacement relation as reported in Figure 4b. The
test is considered finished after a displacement of the plate of 5cm.

Observing the trend of the force-displacement curve reported in Figure 4b it can be noted
that the gabion cage initially provides a strong contrast to the plate displacement; subsequently,
the vertical bars suddenly buckle determining a step-wise force-displacement response with a
gradual loss of the gabion compressive resistance. The instability of the vertical bars is evident
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Figure 4. (a) 3D view of the compression test geometry. (b) Force-displacement curve. (c)
Lateral views of the gabion cage at different steps of the compression test.
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Figure 5. (a) Force-displacement curve. (b) Tensile stress acting on the chains of the bracing
system as a function of the plate displacement.

observing the lateral views of the gabion cage during the test reported in Figure 4c.

4. The behaviour of the filled gabion module under compression
After having tested the solely steel cage, the mechanical behaviour of the filled gabion module
is addressed. A similar test setup to the one presented in Sec. 3 is adopted, but in this case the
gabion is filled with the granular material described in Sec. 2.2. Furthermore, the dimension
of the loading plate is slightly reduced (i.e. 0.9m × 1.9m) in order to impose the load directly
on the filling material. This permits a better contact between the moving plate and the filling
material to be obtained.

Before the beginning of the compression test, the gabion module is filled through a two-phase
procedure. Firstly, a cloud of particles is let settle inside the gabion under gravity. Secondly,
a temporary external force, in the normal directions to the gravity force, is iteratively applied
to the particles aiming to mimic a vibratory compaction until reaching the desired porosity (i.e
n=0.29). This phase permits a higher compaction of the granular filling to be reached. Finally,
the particles that are outside the gabion cage are removed and the top surface of the granular
volume is regularised. After this preliminary phase, the displacement rate (1cm/s) is imposed to
the loading plate, thus stating the test; the latter is ended after a displacement of the plate equal
to 10cm for which most of the bracing elements have failed and severe ruptures in the gabion
cage (e.g. detachment of the panels at the cage’s corners) are observed. During the test, the
force acting on the plate as well as the displacement of the latter are registered, thus providing
as output a force-displacement relation. From the force-displacement curve reported in Figure
5a, it can be observed that after the initial regularisation of the contact surface between the
plate and the filling material (i.e. plate displacement <5 mm) there is a linear increment of the
force with the plate displacement. Subsequently, for a displacement greater than approximately
35mm a change in the trend of the force-displacement curve is observed; this is caused by both
the breakage of some of the cylinders connecting the gabion’s panels and the progressive failure
of the elements of the bracing system. In particular, the failure of the upper internal horizontal
chains determines an increase of the lateral deformability of the gabion module and consequently
a sudden reduction of the soil confinement under the plate. Once the internal chains have failed,
a strong drop of the force-displacement curve is observed (i.e. plate displacement >45 mm) and
the progressive failure of the connections between the gabion panels is observed. In the last
part of the test (i.e. plate displacement >70 mm), the force seems to stabilise to a constant
value showing that, even if the gabion cage has undergone several ruptures it is still able to
apply a “residual” confining action on the filling material. At the end of the test, the gabion is
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Figure 6. (a) 3D views of the gabion module and (b) tensile stress acting on the internal
bracing system at different steps of the compression test.

significantly deformed and shows severe ruptures along its edges. The progressive deformation
of the gabion module during the compression test can be appreciated from the 3D views of the
model reported in Figure 6a.

The adopted modelling approach permits one to access the mechanical condition of each
cylinder elements during the simulation. For instance, the evolution of the tensile stress in
the chains of the internal bracing system as a function of the plate displacement is reported
in Figure 5b. Firstly, it can be noted that, as expected, the central chain (chain 2) shows
a prompter response in contrasting the plate displacement; the central chain is also the first
element of the bracing system to break as shown in Figure 6b. Secondly, it is interesting to note
that, even if the chains 1 and 3 are placed symmetrically with respect to the middle section of
the gabion module, they contribute at a different time to the gabion mechanical response. For
the same level of the plate displacement, the contribution of the chain 1 is higher than the one
provided by the chain 3; this may be related to a non-homogeneous redistribution of the load in
the filling material due to local effects deriving from geometrical irregularities in the granular
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packing. This result shows that, differently from a continuum-based approach, the adoption of
a particle-based approach allows local effects to be accounted for. The progressive breakage of
the elements of the bracing system can be observed in Figure 6b.

5. Conclusions
In this work, an approach based on the discrete element method for the analysis of the
mechanical behaviour of welded gabion modules has been presented. This approach combines the
effectiveness of the DEM in simulating granular materials to the possibility of modelling grid-like
deformable structures introduced by the recent development of deformable cylindrical elements.
Despite the simplifications on the particles’ shape and the steel bar mechanical behaviour, this
work had put the light on the potential of the presented approach for investigating rock-filled
cellular structures. In the authors’ perspective, the peculiar capability of the DEM in handling
local effects and ruptures of the gabion’s elements is of significant importance for a realistic
description of the behaviour of gabion structures.

The compression tests described in the present work represent a preliminary step in the
definition of a numerical framework for the modelling of rock-filled gabion modules. It should
be noted that the force-displacement relations here presented have to be seen as a qualitative
description of the mechanical response of the gabion module, since a calibration of the model
with real-scale tests is still undergoing. The effect of using more complex particles’s shapes and
the adoption of breakable aggregates of particles are currently under investigation.
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