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Abstract
In this paper we consider an impulsive extension of an optimal control problem with
unbounded controls, subject to endpoint and state constraints. We show that the existence of
an extended-sense minimizer that is a normal extremal for a constrained Maximum Principle
ensures that there is no gap between the infima of the original problem and of its extension.
Furthermore, we translate such relation into verifiable sufficient conditions for normality in
the form of constraint and endpoint qualifications. Links between existence of an infimum
gap and normality in impulsive control have previously been explored for problems without
state constraints. This paper establishes such links in the presence of state constraints and
of an additional ordinary control, for locally Lipschitz continuous data.

Keywords Impulsive optimal control problems · Maximum principle · State constraints ·
Gap phenomena · Normality · Degeneracy
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1 Introduction

In Optimal Control Theory it is quite common practice to extend the domain of a mini-
mum problem to ensure the existence of the minimum or to identify optimality conditions.
In doing this, it is of course desirable to avoid the so-called infimum gap phenomenon,
i.e. that the minimum of the extended problem is different from the minimum of the orig-
inal problem. This is relevant not only for theoretical reasons of ‘well-posedness’ of the
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extension, but also for the actual usefulness of the extended problem in order to identify,
for instance, necessary optimality conditions or a non degenerate Hamilton-Jacobi-Bellman
equation for the original minimum problem. For the classical extension of a minimum prob-
lem by convex relaxation –where the original velocity set of the trajectories is replaced by
its convexification– it has emerged that a sufficient condition to avoid the infimum gap
is the normality of an extended sense minimizer, namely, that all sets of multipliers ver-
ifying a Maximum Principle have cost multiplier, λ in the following, different from zero
[29, 30, 36, 38–40]. In [26] the ‘normality test’ has been proved to be sufficient to guaran-
tee the absence of an infimum gap also for the impulsive extension of an optimal control
problem with unbounded controls. Very recently, in [27, 28] this link between normality
and no-infimum-gap has been established for the extension of an abstract minimum con-
trol problem, which includes both relaxation and impulsive extension. All the above results
in the case of the impulsive extension concern problems without state constraints, with C1

data, and no ordinary controls in the dynamics. However, state constraints, together with
nonsmoothness of the data and additional ordinary controls, arise very frequently in the
applications of impulsive optimal control (see e.g. [7, 16, 19, 22, 34] and the references
therein).

This paper provides ‘normality type’ sufficient conditions to avoid a gap between the
infima of the following optimization problem (P) and the extended optimization problem
(Pe) below:

minimize Ψ (t1, x(t1), t2, x(t2), v(t2)) (P)

over t1, t2 ∈ R, t1 < t2, (x, v, u) ∈ W 1,1([t1, t2];Rn+1+m), a ∈ L1([t1, t2]; A) satisfying
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

(t) = f (t, x(t), a(t)) + ∑m
j=1 gj (t, x(t)) duj

dt
(t) a.e. t ∈ [t1, t2],

dv
dt

(t) = ∣
∣ du

dt
(t)

∣
∣ a.e. t ∈ [t1, t2],

du
dt

(t) ∈ C a.e. t ∈ [t1, t2],
h1(t, x(t)) ≤ 0, . . . , hN(t, x(t)) ≤ 0 for all t ∈ [t1, t2],
v(t1) = 0, v(t2) ≤ K, (t1, x(t1), t2, x(t2)) ∈ T0,

where K > 0 is a fixed constant (possibly equal to +∞), A ⊂ R
q is a compact subset,

C ⊆ R
m is a closed convex cone, T0 ⊆ R

1+n+1+n is a closed subset, and the data are locally
Lipschitz continuous in t , x (the precise assumptions will be given in Section 2). Problem
(P) is a free end-time minimization problem depending on an ordinary control a and on a
control u whose derivatives appear linearly in the dynamics. Furthermore, there are time-
dependent state constraints in the form of N inequalities, endpoint constraints, and we may
have a bound K on the total variation of u –notice that v is nothing but the total variation
function of u. Due to a lack of coerciveness, minimizers for problem (P) do not exist in gen-
eral. Hence, adopting a by now standard extension, we embed the original problem into the
space-time problem (Pe) below, where the extended state variable is (y0, y, ν) := (t, x, v),
and the extended trajectories are (t, x, v)-paths which are (reparameterized) C0-limits of
graphs of the original trajectories [10, 21, 23, 32, 37]:1

minimize Ψ (y0(0), y(0), y0(S), y(S), ν(S)) (Pe)

1As it is well-known, a distributional approach, where du
dt

is interpreted as a Radon measure, does not work
unless gi = gi(x) and the Lie brackets [gi , gj ](x) ≡ 0 for every i, j = 1, . . . , m (see e.g. [10, 15]).
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over S > 0, (y0, y, ν) ∈ W 1,1([0, S];R1+n+1), (ω0, ω, α) ∈ L1([0, S];C×A) satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy0

ds
(s) = ω0(s) a.e. s ∈ [0, S],

dy
ds

(s) = f (y0, y, α)(s)ω0(s) + ∑m
j=1 gj (y

0, y)(s)ωj (s) a.e. s ∈ [0, S],
dν
ds

(s) = |ω(s)| a.e. s ∈ [0, S],
h1(y

0(s), y(s)) ≤ 0, . . . , hN(y0(s), y(s)) ≤ 0 for all s ∈ [0, S],
ν(0) = 0, ν(S) ≤ K,

(
y0(0), y(0), y0(S), y(S)

)
∈ T0,

where C := {
(ω0, ω) : (ω0, ω) ∈ [0, +∞[×C, ω0 + |ω| = 1

}
. To any process

(t1, t2, u, a, x, v) of problem (P), by setting σ(t) := t − t1 + v(t), t ∈ [t1, t2], through the
time-change y0 := σ−1 we can associate a process (S, ω0, ω, α, y0, y, ν) of the extended
problem with ω0 = dy0(s)/ds > 0 a.e.. In particular, problem (P) can be identified with the
restriction of problem (Pe) to the set of processes with ω0 > 0 a.e. (see Section 2). Let us
refer to such processes as embedded strict sense processes in the following. The extension
consists therefore in considering extended sense processes with ω0 = 0 on non-degenerate
intervals, where the time t = y0(s) is constant but the extended state y(s) evolves according
to the ‘fast’ dynamics dy(s)/ds = ∑m

j=1 gj (y
0(s), y(s))ωj (s). This explains why (Pe) is

also called the impulsive problem, although it is a conventional optimization problem with
bounded controls. In fact, one could give an equivalent t-based description of this extension
using bounded variation trajectories and controls [2, 7, 19, 22, 24, 25, 33, 41].

The main result of the paper, obtained in Theorem 4.1 below, establishes that the exis-
tence of an extended sense minimizer for problem (Pe) which is a normal extremal for a
constrained version of the Maximum Principle, is a sufficient condition for the infimum
gap avoidance. The occurrence of a gap is strictly related to the presence of endpoints and
state constraints. In particular, since the set of trajectories corresponding to embedded strict
sense processes is C0-dense in the set of trajectories of the extended system, the infimum
gap phenomenon can show up only when some extended sense process verifying the con-
straints is isolated, namely cannot be approximated by trajectories of the original system
that satisfy the constraints. From this observation, Theorem 4.1 will be derived from a gen-
eral result on the properties of isolated processes (see Theorem 3.2). The proof makes use
of perturbation and penalization techniques and of the Ekeland’s variational principle, in
the same spirit of [26, 29]. This approach is very different from that of [28, 38–40], which
is based on the construction of approximating cones to reachable sets and on set separation
arguments. We recall that normality is not necessary to exclude the gap phenomenon: for
example, it is known that without the drift f in the dynamics, gap never occurs [26, Lemma
4.1] (see also [20]).

The normality criterium for the absence of an infimum gap has some disadvantages. First
of all, it requires to know a priori a minimizing extended sense process, information that is
not always available. Then, it is necessary to verify that all sets of multipliers associated to
the minimizer that meet the conditions of the Maximum Principle have λ > 0. In addition,
in the presence of state constraints the normality condition may never be met, making the
criterium in fact useless. In particular, it is well known that when the state constraint is active
at the initial point of a minimizing process, sets of degenerate multipliers with λ = 0 may
always exist. Rather surprisingly, it seems that no attention has been paid to this ‘degeneracy
question’ in previous articles on the relationship between gap and normality in the presence
of state constraints.
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Based on the above considerations, in the second part of the paper we first introduce
a nondegenerate version of the Maximum Principle and provide simple geometrical con-
ditions on endpoint and state constraints, under which abnormal –namely, not normal–
extremals for the original Maximum Principle turn out to be abnormal extremals also for the
nondegenerate Maximum Principle. In this case, Theorem 4.1 can be rephrased as follows:
‘normality among nondegenerate multipliers implies no infimum gap’. This ‘nondegener-
ate normality test’ is useful especially because in certain special cases it allows to deduce
the absence of the infimum gap from easily verifiable conditions, some examples of which
we will provide. In particular, these are constraint and endpoint qualification conditions.

Although this article is mainly focused on the infimum gap phenomenon, it also estab-
lishes some new sufficient conditions for normality which extend previous conditions in
[25]. In the literature on conventional, non-impulsive problems with state constraints, a
variety of constraint qualifications to avoid degeneracy as well as to ensure normality are
known (see e.g. [4, 5, 8, 9, 11–14, 18, 30, 31] and the references therein). In impulsive con-
trol, instead, some nondegenerate Maximum Principles have been obtained in [6, 7, 17, 25],
while a Maximum Principle in normal form has only recently been introduced in [25].

The paper is organized as follows: in Section 2 we introduce precisely problems (P), (Pe)

and a constrained version of the Maximum Principle for the extended problem. Section 3 is
devoted to prove that an isolated extended sense extremal cannot be normal and, as a corol-
lary, we deduce that presence of an infimum gap implies abnormality of any extended sense
minimizer. In Section 4 we provide sufficient conditions for normality, which guarantee a
priori, without any knowledge of the multipliers associated with the given extended sense
minimizer, the non occurrence of gap-phenomena. In Section 5, we present some examples
to illustrate the results.

1.1 Notations and Preliminaries

Given an interval I ⊆ R and a set X ⊆ R
k , we write C0(I ; X), W 1,1(I ;X), C0,1(I ;X),

C
0,1
loc (I ;X) for the space of continuous functions, absolutely continuous functions, Lipschitz

continuous functions, locally Lipschitz continuous functions defined on I and with values
in X, respectively. For all the classes of functions introduced so far, we will not specify
domain and codomain when the meaning is clear. Furthermore, we denote by �(X), co(X),
Int(X), ∂X the Lebesgue measure, the convex hull, the interior and the boundary of X,
respectively. As customary, χ

X
is the characteristic function of X, namely χ

X
(x) = 1 if

x ∈ X and χ
X
(x) = 0 if x ∈ R

k \ X; I · X denotes the set {r x | r ∈ I, x ∈ X}. Given two
nonempty subsets X1, X2 of Rk , we denote by X1+X2 the set {x1+x2 | x1 ∈ X1, x2 ∈ X2}.
Let X ⊆ R

k1+k2 for some natural numbers k1, k2, and write x = (x1, x2) ∈ R
k1 × R

k2

for any x ∈ X. Then projxi
X will denote the projection of X on R

ki , for i = 1, 2. We
denote the closed unit ball in R

k by Bk , omitting the dimension when it is clear from the
context. Given a closed set O ⊆ R

k and a point z ∈ R
k , we define the distance of z from

O as dO(z) := miny∈O |z − y|. We set R≥0 := [0, +∞[. For any a, b ∈ R, we write
a ∨ b := max{a, b}.
For all τ1, τ2, τ̄1, τ̄2 ∈ R, τ1 < τ2, τ̄1 < τ̄2, and for any pair (z1, z2) ∈ C0([τ1, τ2],Rk) ×
C0([τ̄1, τ̄2],Rk), let us define the distance

d∞
(
(τ1, τ2, z1), (τ̄1, τ̄2, z2)

) := |τ1 − τ̄1| + |τ2 − τ̄2| + ‖z̃1 − z̃2‖L∞(R), (1)

where for any z ∈ C0([a, b],Rk), z̃ denotes its continuous constant extension to R and ‖ ·
‖L∞(I ) is the ess-sup norm on I ⊆ R interval. When the domain is clear, we will sometimes
simply write ‖ · ‖L∞ .
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We denote by NBV +([0, S];R) the space of increasing, real valued functions μ on [0, S]
of bounded variation, vanishing at the point 0 and right continuous on ]0, S[. Each μ ∈
NBV +([0, S];R) defines a Borel measure on [0, S], still denoted by μ, its total variation
function is indicated by ‖μ‖T V or equivalently by μ([0, S]), and its support by spt{μ}.

Some standard constructs from nonsmooth analysis are employed in this paper. For back-
ground material we refer the reader for instance to [35]. A set K ⊆ R

k is a cone if αk ∈ K

for any α > 0, whenever k ∈ K . Take a closed set D ⊆ R
k and a point x̄ ∈ D, the proximal

normal cone NP
D(x̄) of D at x̄ is defined as

NP
D(x̄) :=

{
η ∈ R

k : ∃M > 0 such that η · (x − x̄) ≤ M|x − x̄|2 ∀x ∈ D
}

.

The limiting normal cone ND(x̄) of D at x̄ is given by

ND(x̄) :=
{
η ∈ R

k : ∃xi
D→ x̄, ηi → η s.t. ηi ∈ NP

D(xi) for each i ∈ N

}
,

in which the notation xi
D−→ x̄ is used to indicate that all points in the converging sequence

(xi)i∈N lay in D. In general, NP
D(x̄) ⊆ ND(x̄). Take a lower semicontinuous function G :

R
k → R and a point x̄ ∈ R

k , the limiting subdifferential of G at x̄ is

∂G(x̄) :=
{
ξ ∈ R

k : (ξ,−1) ∈ Nepi(G)(x̄,G(x̄))
}

,

where epi(G) is the epigraph of G. If G : R
k × R

h → R is a lower semicontinuous
function and (x̄, ȳ) ∈ R

k×R
h, we write ∂xG(x̄, ȳ), ∂yG(x̄, ȳ) to denote the partial limiting

subdifferential of G at (x̄, ȳ) w.r.t. x, y, respectively. Given G ∈ C
0,1
loc (Rk;R) and x̄ ∈ R

k ,
the reachable hybrid subdifferential of G at x̄ is

∂∗>G(x̄) := {
ξ ∈ R

k : ∃ (xi)i ⊂ diff(G) \ {x̄} s.t.
xi → x̄, G(xi) > 0 ∀i and ∇G(xi) → ξ} ,

while the reachable gradient of G at x̄ is

∂∗G(x̄) :=
{
ξ ∈ R

k : ∃(xi)i ⊂ diff(G) \ {x̄} s.t. xi → x̄ and ∇G(xi) → ξ
}

where diff(G) denotes the set of differentiability points of G and ∇ is the usual gradient
operator. We define the hybrid subdifferential as ∂>G(x̄) :=co ∂∗>G(x̄). The set ∂∗G(x̄)

is nonempty, closed, in general non convex, and its convex hull coincides with the Clarke
subdifferential ∂CG(x̄), that is ∂CG(x̄) =co ∂∗G(x̄). Finally, when G is locally Lipschitz
continuous, ∂CG(x̄) =co ∂G(x̄).

2 Optimal Control Problems and aMaximum Principle

In this section we introduce rigorously the constrained optimization problem over W 1,1-
controls u and its embedding in an extended, or impulsive, problem. Furthermore, we state
a Maximum Principle for the extended problem. For simplicity, we will establish all the
results for a single state constraint, explaining from time to time with remarks how to adapt
these results to the case with N constraints.

Throughout the paper we shall consider the following hypotheses.

(H0) The control set C ⊆ R
m is a convex cone, the set of ordinary controls A ⊂ R

q is
compact, and the endpoint constraint set T0 ⊆ R

1+n+1+n is closed.
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(H1) The drift function f ∈ C0(R1+n × A;Rn) and, for every a ∈ A, f (·, a) ∈
C

0,1
loc (R1+n;Rn), uniformly w.r.t. A; gj ∈ C

0,1
loc (R1+n;Rn) for any j = 1, . . . , m;

h ∈ C
0,1
loc (R1+n;R).

(H2) The cost function Ψ ∈ C0,1((t̄1, x̄1, t̄2, x̄2, v̄2) + δB;R) for some δ > 0, where
(t̄1, x̄1, t̄2, x̄2, v̄2) denotes the endpoints of the optimal trajectory that we will
consider in all our results; moreover, for every (t1, x1, t2, x2), the map v2 �→
Ψ (t1, x1, t2, x2, v2) is monotone non-decreasing.

2.1 The Original Optimal Control Problem

We set T := T0×] − ∞,K] and define the set U of strict sense controls as

U :=
{

(t1, t2, u, a) : t1, t2 ∈ R, t1 < t2, a ∈ L1([t1, t2]; A),

u ∈ W 1,1([t1, t2];Rm), du(t)/dt ∈ C a.e. t ∈ [t1, t2]

}

.

Definition 2.1 (Strict sense processes) Let (t1, t2, u, a) ∈ U be a strict sense control, we
call (t1, t2, u, a, x, v) a strict sense process if the pair (x, v) ∈ W 1,1([t1, t2];Rn+1) verifies

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
(t) = f (t, x(t), a(t)) +

m∑

j=1

gj (t, x(t))
duj

dt
(t)

dv
dt

(t) = ∣
∣ du

dt
(t)

∣
∣

a.e. t ∈ [t1, t2].

Furthermore, we say that (t1, t2, u, a, x, v) is feasible if v(t1) = 0, h(t, x(t)) ≤ 0 for each
t ∈ [t1, t2] and

(
t1, x(t1), t2, x(t2), v(t2)

) ∈ T .

The original optimal control problem is defined as
{

minimize Ψ (t1, x(t1), t2, x(t2), v(t2))

over the set of feasible strict sense processes (t1, t2, u, a, x, v).
(P)

We consider the following concept of local minimizer.

Definition 2.2 We call a feasible strict sense process (t̄1, t̄2, ū, ā, x̄, v̄) a local strict sense
minimizer of (P) if there exists δ > 0 such that

Ψ (t̄1, x̄(t̄1), t̄2, x̄(t̄2), v̄(t̄2)) ≤ Ψ (t1, x(t1), t2, x(t2), v(t2)) (2)

for any feasible (t1, t2, u, a, x, v) verifying d∞
(
(t̄1, t̄2, x̄, v̄), (t1, t2, x, v)

)
< δ, where

d∞ is the distance defined in Eq. 1. If relation (2) is satisfied for all feasible strict sense
processes, we say that (t̄1, t̄2, ū, ā, x̄, v̄) is a (global) strict sense minimizer.

Remark 2.1 Arguing similarly to [25], we could consider a more general cost of the form

Ψ (t1, x(t1), t2, x(t2), v(t2)) +
∫ t2

t1

�0(t, x(t), a(t)) + �1(t, x(t), |u̇(t)|) dt,

where �0, �1 are nonnegative and the extended Lagrangian L, defined by

L(t, x, ω0, r, a) := �0(t, x, a)ω0 + lim
ρ→ω0

�1

(
t, x, ρ−1r

)
ρ,

verifies L ∈ C0(R × R
n × R≥0 × R≥0 × A;R≥0) and, for every a ∈ A, L(·, a) ∈

C
0,1
loc (R × R

n × R≥0 × R≥0;R≥0), uniformly w.r.t. A. The results of this article can also
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be applied to the case where dynamics, cost, and constraints depend on the variable u.
In fact, it is sufficient to add to the control system in (P) the equations dxn+1(t)/dt =
du1(t)/dt, . . . , dxn+m(t)/dt = dum(t)/dt .

Remark 2.2 As is not difficult to see, given a closed, Hausdorff-Lipschitz continuous mul-
tifunction X : [t1, t2] � R

n, the function h(t, x) := dX(t)(x) belongs to C0,1(R1+n;R).
Therefore, we could allow implicit time-dependent state constraints of the form x(t) ∈ X(t)

for all t ∈ [t1, t2], since one clearly has that x(t) ∈ X(t) if and only if h(t, x(t)) ≤ 0 on
[t1, t2].

2.2 The Extended Optimal Control Problem

We set
C :=

{
(ω0, ω) ∈ R≥0 × C : ω0 + |ω| = 1

}
(3)

and introduce the set of extended sense controls, defined as follows:

W :=
⋃

S>0

{S} × L1([0, S];C × A).

Definition 2.3 (Extended sense processes) For any extended sense control (S, ω0, ω, α) ∈
W, we refer to (S, ω0, ω, α, y0, y, ν) as an extended sense process if (y0, y, ν) ∈
W 1,1([0, S];R1+n+1 verifies

⎧
⎪⎪⎨

⎪⎪⎩

dy0

ds
(s) = ω0(s)

dy
ds

(s) = f (y0, y, α)(s)ω0(s) +
m∑

i=1
gi(y

0, y)(s)ωi(s)

dν
ds

(s) = |ω(s)|
a.e. s ∈ [0, S]. (4)

We say that (S, ω0, ω, α, y0, y, ν) is feasible if ν(0) = 0, h(y0(s), y(s)) ≤ 0 for each
s ∈ [0, S] and

(
y0(0), y(0), y0(S), y(S), ν(S)

) ∈ T .

The set of strict sense processes, say Σ , can be embedded into the set of extended sense
processes, Σe, through the following map I : Σ → Σe, defined as

I(t1, t2, u, a, x, v) := (S, ω0, ω, α, y0, y, ν), (5)

where, setting σ(t) := t − t1 + v(t), S := σ(t2), and y0 := σ−1 : [0, S] → [t1, t2], we
associate to any strict sense process (t1, t2, u, a, x, v) the extended sense process

(S, ω0, ω, α, y0, y, ν) :=
(

S,
dy0

ds
,

(
du

dt
◦ y0

)

· dy0

ds
, a ◦ y0, y0, x ◦ y0, v ◦ y0

)

, (6)2

where clearly ω0 > 0 a.e.. Conversely, if (S, ω0, ω, α, y0, y, ν) is an extended sense
process with ω0 > 0 a.e., the absolutely continuous, increasing and surjective inverse σ :
[t1, t2] → [0, S] of y0, allows us to define the strict sense process

(t1, t2, u, a, x, v) :=
(

t1, t2,

∫ σ(t)

σ (t1)

ω(s) ds, α ◦ σ, y ◦ σ, ν ◦ σ

)

. (7)

2Since every L1-equivalence class contains Borel measurable representatives, we are tacitly assuming that
all L1-maps we are considering are Borel measurable.
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Therefore, I is injective,3 I(Σ) = {(S, ω0, ω, α, y0, y, ν) ∈ Σe : ω0 > 0 a.e.}, and the
extension consists in considering also extended sense processes with w0 possibly zero on
some non-degenerate intervals. As anticipated in the Introduction, we will sometimes refer
to the processes in I(Σ) as embedded strict sense processes.

We define the extended problem as
{

minimize Ψ (y0(0), y(0), y0(S), y(S), ν(S))

over feasible estended-sense processes (S, ω0, ω, α, y0, y, ν).
(Pe)

Definition 2.4 A feasible extended sense process (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is said to be a local
minimizer for the extended problem (Pe) if there exists δ > 0 such that

Ψ (ȳ0(0), ȳ(0), ȳ0(S), ȳ(S), ν̄(S))) ≤ Ψ (y0(0), y(0), y0(S), y(S), ν(S)) (8)

for all feasible extended sense processes (S, ω0, ω, α, y0, y, ν) that satisfy d∞
(
(y0(0),

y0(S), y, ν), (ȳ0(0), ȳ0(S̄), ȳ, ν̄)
)

< δ, where d∞ is as in Eq. 1. If Eq. 8 is satisfied for all

feasible extended sense processes, we call (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) a (global) extended sense
minimizer.

Remark 2.3 The notion of extended sense local minimizer is the natural extension of the
definition of strict sense local minimizer. Indeed, in view of [3, Prop. 2.7], (t̄1, t̄2, ū, ā, x̄, v̄)

is a strict sense local minimizer for (P) if and only if I(t̄1, t̄2, ū, ā, x̄, v̄) is an extended sense
local minimizer for (Pe) among the feasible embedded strict sense processes.

2.3 AMaximum Principle for the Extended Problem

Consider the unmaximized Hamiltonian H , defined by

H(t, x, p0, p, π, ω0, ω, a) := p0ω
0 + p ·

(
f (t, x, a)ω0 + ∑m

i=1 gi(t, x)ωi
)

+ π |ω|,
for all (t, x, p0, p, π, ω0, ω, a) ∈ R

1+n+1+n+1 × C × A.

Theorem 2.1 (PMP) Assume (H0)-(H2). Let (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) be an extended sense
local minimizer for (Pe) . Then there exist a path (p0, p) ∈ W 1,1([0, S̄];R × R

n), λ ≥
0, π ≤ 0, μ ∈ NBV +([0, S̄];R), (m0,m) : [0, S̄] → R

1+n Borel measurable and μ-
integrable functions, verifying the following conditions:

(i) (NON-TRIVIALITY)

‖p0‖L∞ + ‖p‖L∞ + ‖μ‖T V + λ �= 0; (9)

(ii) (ADJOINT EQUATION) for a.e. s ∈ [0, S̄],
(

−dp0

ds
(s),−dp

ds
(s)

)

∈ co ∂t,x H
(
ȳ0(s), ȳ(s), q0(s), q(s), π, ω̄0(s), ω̄(s), ᾱ(s)

)
,

3Of course, up to translations of u.
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(iii) (TRANVERSALITY)
(
p0(0), p(0),−q0(S̄),−q(S̄),−π

) ∈ λ∂Ψ
(
ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ν̄(S̄)

)

+NT
(
ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ν̄(S̄)

) ;
(10)

(iv) (MAXIMIZATION AND VANISHING OF THE HAMILTONIAN) for a.e. s ∈ [0, S̄],
H

(
ȳ0(s), ȳ(s), q0(s), q(s), π, ω̄0(s), ω̄(s), ᾱ(s)

)

= max
(ω0,ω,a)∈C×A

H
(
ȳ0(s), ȳ(s), q0(s), q(s), π, ω0, ω, a

)
= 0;

(11)
(v) (m0, m)(s) ∈ ∂>

t,x h
(
ȳ0(s), ȳ(s)

)
μ-a.e. s ∈ [0, S̄];

(vi) spt (μ) ⊆ {s ∈ [0, S̄] : h
(
ȳ0(s), ȳ(s)

) = 0},
where

(q0, q)(s) :=

⎧
⎪⎪⎨

⎪⎪⎩

(p0, p)(s) +
∫

[0,s[
(m0, m)(τ )μ(dτ) s ∈ [0, S̄[,

(p0, p)(S̄) +
∫

[0,S̄]
(m0,m)(τ )μ(dτ) s = S̄.

Furthermore:

(vii) if λ∂vΨ
(
ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ν̄(S̄)

) = 0 and ν̄(S̄) < K , then π = 0;
(viii) if ȳ0(0) < ȳ0(S̄), (i) can be strengthened to ‖p‖L∞ + ‖μ‖T V + λ �= 0.

Proof The extended problem (Pe) is a conventional optimization problem in the state-space
(y0, y, ν) ∈ R

1+n+1, with endpoint constraint T and state constraint h(y0, y) ≤ 0, to which
standard ‘free end-time’ versions of the constrained Maximum Principle are applicable. In
particular, the current result can be deduced from [35, Theorem 9.3.1] by means of usual
reparameterization techniques (see e.g. [35, Theorem 8.7.1]). Actually, by these arguments
it follows the existence of a further multiplier r ∈ W 1,1([0, S̄];R) such that

dr

ds
(s) = −Hs

(
ȳ0(s), ȳ(s), q0(s), q(s), π, ω̄0(s), ω̄(s), ᾱ(s)

)
a.e. s ∈ [0, S̄],

r(S̄) ∈ −λΨs

(
ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ν̄(S̄)

)
,

max
(ω0,ω,a)∈C×A

H
(
ȳ0(s), ȳ(s), q0(s), q(s), π, ω0, ω, a

)
= r(s) a.e. s ∈ [0, S̄],

where Hs , Ψs denote the partial derivatives w.r.t. s of H and Ψ , respectively. However,
since the vector fields f and (gj )j=1,...,m, the cost function Ψ , and the constraints do not
depend explicitly on the pseudo-time s, this yields the constancy of the Hamiltonian with
constant equal to 0 in (iv). Finally, the strengthened non-triviality condition (9), which does
not involve the multiplier π associated to ν, and the refinements (vii), (viii), can be proved
as in [26, Theorem 3.1].

Remark 2.4 (Multiple state constraints) As observed in [35, Section 9], when in problem
(Pe) the single state constraint is replaced with a collection of constraints hi(t, x) ≤ 0, hi ∈
C

0,1
loc (R1+n;R) for i = 1, . . . , N , from Theorem 2.1 one can deduce the following corollary:
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given an extended sense local minimizer (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄), there exist (p0, p) ∈ W 1,1,
λ ≥ 0, π ≤ 0, μi ∈ NBV +([0, S̄];R) for i = 1, . . . , N and Borel measurable and μi-
integrable functions (m0i

, mi), such that (m0i
, mi)(s) ∈ ∂>

t,xhi

(
ȳ0(s), ȳ(s)

)
μi-a.e. s ∈

[0, S̄], spt (μi) ⊆ {s ∈ [0, S̄] : hi

(
ȳ0(s), ȳ(s)

) = 0}, and conditions (i)–(iv), (vii) and
(viii) of Theorem 2.1 are met with (q0, q) and μ verifying

(q0, q)(s) :=
{

(p0, p)(s) + ∫

[0,s[
∑N

i=1(m0i
, m)(τ )μi(dτ) if s < S̄

(p0, p)(S̄) + ∫

[0,S̄]
∑N

i=1(m0i
, m)(τ )μi(dτ) if s = S̄,

μ(A) = μ1(A) + · · · + μN(A) for all Borel subsets A ⊆ [0, S̄].
(12)

Definition 2.5 (Normal and abnormal extremal) We say that a feasible extended sense
process (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is an (extended sense) extremal if there exists a set of multi-
pliers (p0, p, π, λ, μ) and functions m0 and m which meet the conditions of Theorem 2.1.
We will call an extremal normal if all possible choices of multipliers as above have λ > 0,
and abnormal when there exists at least one set of such multipliers with λ = 0.

3 InfimumGap and Abnormality

Write J (t1, t2, u, a, x, v) := Ψ (t1, x(t1), t2, x(t2), v(t2)) for the cost of a strict
sense process (t1, t2, u, a, x, v) in problem (P), and Je(S, ω0, ω, α, y0, y, ν) :=
Ψ (y0(0), y(0), y0(S), y(S), ν(S)) for the cost of an extended sense process
(S, ω0, ω, α, y0, y, ν) in problem (Pe). We also write Σf ⊆ Σ and Σ

f
e ⊆ Σe for the sub-

set of feasible strict sense processes and for the subset of feasible extended sense processes,
respectively.

Definition 3.1 (Infimum gap) We shall say that there is infimum gap if

inf
Σ

f
e

Je(S, ω0, ω, α, y0, y, ν) < inf
Σf

J (t1, t2, u, a, x, v).

Furthermore, if (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is an extended sense local minimizer, we shall say
that there is local infimum gap at (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) if, for some δ > 0,

Je(S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) < inf
Bδ(S̄,ω̄0,ω̄,ᾱ,ȳ0,ȳ,ν̄)∩Σf

J (t1, t2, u, a, x, v),

where we have set

Bδ(S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) :=
{
(t1, t2, u, a, x, v) ∈ Σ : (S, ω0, ω, α, y0, y, ν)

:= I(t1, t2, u, a, x, v) and d∞
(
(y0(0), y0(S), y, ν), (ȳ0(0), ȳ0(S̄), ȳ, ν̄)

)
< δ

}
.

To prove that, in the presence of a gap, extended sense local minimizers for problem (Pe)
are abnormal extremals, it is convenient to rephrase Definition 3.1 only in terms of extended
sense processes. Precisely, using the above notation, by the properties of the map I (see
Eq. 6) it follows that

inf
Σf

J (t1, t2, u, a, x, v) = inf
I(Σf )

Je(S, ω0, ω, α, y0, y, ν),

infBδ(S̄,ω̄0,ω̄,ᾱ,ȳ0,ȳ,ν̄)∩Σf J (t1, t2, u, a, x, v)

= infBδ
e (S̄,ω̄0,ω̄,ᾱ,ȳ0,ȳ,ν̄)∩I(Σf ) Je(S, ω0, ω, α, y0, y, ν),
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where

Bδ
e (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) :=

{
(S, ω0, ω, α, y0, y, ν) ∈ Σe :

d∞
(
(y0(0), y0(S), y, ν), (ȳ0(0), ȳ0(S̄), ȳ, ν̄)

)
< δ

}
.

Even if the set of embedded strict sense processes is dense into the set of extended sense
processes with respect to the distance d∞, the infimum gap can actually occur, since all
embedded strict sense processes close to a given feasible extended sense process might
violate either the endpoint constraints or the state constraint. This leads us to the following
definition:

Definition 3.2 (Isolated feasible extended sense process) A feasible extended sense
process (S, ω0, ω, α, y0, y, ν) is called isolated if, for some δ > 0, one has

Bδ
e (S, ω0, ω, α, y0, y, ν) ∩ I(Σf ) = ∅.

The following result relates isolated feasible extended sense processes and infimum gap.

Proposition 3.1 Assume (H0)-(H1). Let (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) be an extended sense
minimizer [resp., local minimizer] for the extended problem (Pe) and assume Ψ ∈
C0((ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ν̄(S̄))+δB;R) for some δ > 0. If there is infimum gap [resp.,
local infimum gap at (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄)], then (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is an isolated
feasible extended sense process.

Proof Suppose by contradiction that (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is not isolated. Then we can

take a sequence δj ↓ 0 and, for each j ∈ N, there exists
(
Sj , ω

0
j , ωj , αj , y

0
j , yj , νj

)
∈

B
δj
e (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) ∩ I(Σf ). By the definition of d∞ and the continuity of the cost

function Ψ , this implies that no infimum gap may occur.

In the following theorem we establish the main result of this section:

Theorem 3.1 Assume (H0)-(H1). Let (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) be an extended sense min-
imizer [resp., local minimizer] for the extended problem (Pe) and assume Ψ ∈
C0((ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ν̄(S̄))+δB;R) for some δ > 0. If there is infimum gap [resp.,
local infimum gap at (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄)], then (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is an abnormal
extremal.

Thanks to Proposition 3.1, Theorem 3.1 is a straightforward consequence of the fol-
lowing result, which extends [26, Th. 4.4] to the case with state constraints, an additional
ordinary control in the drift, and nonsmooth data.

Theorem 3.2 Assume (H0)-(H1). If (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is an isolated feasible extended
sense process, then it is an abnormal extremal.

Proof Since the proof involves only space-time trajectories (y0, y) which are close to the
reference space-time trajectory (ȳ0, ȳ) and the controls assume values in a compact set,
using standard truncation and mollification arguments we can assume that there exists some
L > 0 such that the functions f , g1, . . . , gm, and h are L-Lipschitz continuous and bounded
by L. The proof is divided into several steps in which successive sequences of optimization
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problems are introduced that have as eligible controls only embedded strict controls, and
costs that measure how much a process violates the constraints. Using the Ekeland Principle,
minimizers are then built for these problems, which converge to the initial isolated process.
Furthermore, applying the PMP to these approximate problems with reference to the above
mentioned minimizers, we obtain in the limit a set of multipliers with λ = 0 for problem
(Pe), with reference to the isolated process (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄).

Step 1. Define the function Φ : R1+n+1+n+1 → R, given by

Φ (t1, x1, t2, x2, v2) := dT0(t1, x1, t2, x2) ∨ [(v2 − K) ∨ 0]
and for any (y0, y, ν) ∈ W 1,1([0, S̄];R1+n+1), introduce the payoff

J (y0, y, ν) := Φ
(
y0(0), y(0), y0(S̄), y(S̄), ν(S̄)

)
∨ max

s∈[0,S̄]
h(y0(s), y(s)). (13)

Fixed a sequence (εi)i such that εi ↓ 0, for each i ∈ N we consider the fixed end-time
optimal control problem:

(
P̂i

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J (y0, y, ν)

over (y0, y, ν) ∈ W 1,1([0, S̄]), (ζ, ω, α) ∈ L1([0, S̄]) satisfying
dy0

ds
(s) = (1 + ζ(s))(1 − |ω(s)|) a.e. s ∈ [0, S̄]

dy

ds
(s) = (1 + ζ )

[
f (y0, y, α)(1 − |ω|) +

m∑

j=1

gj (y
0, y)ωj

]
(s) a.e. s ∈ [0, S̄]

dν

ds
(s) = (1 + ζ(s))|ω(s)| a.e. s ∈ [0, S̄]

ν(0) = 0

ω(s) ∈ (1 − εi)(C ∩ B), ζ(s) ∈ [−1/2, 1/2], α(s) ∈ A a.e. s ∈ [0, S̄].
We will call an element (ζ, ω, α, y0, y, ν) satisfying the constraints in (P̂i) a feasible pro-
cess for problem (P̂i). For every i ∈ N, let (S̄, ω̂0

i , ω̂i , α̂i , ŷ
0
i , ŷi , ν̂i ) be the extended sense

process in which (ŷ0
i , ŷi , ν̂i )(0) = (ȳ0, ȳ, ν̄)(0) and

(
ω̂0

i , ω̂i , α̂i

)
(s) :=

⎧
⎪⎨

⎪⎩

(
εi, (1 − εi)

ω̄(s)
|ω̄(s)| , ᾱ(s)

)
if ω̄0(s) < εi

(
ω̄0(s), ω̄(s), ᾱ(s)

)
if ω̄0(s) ≥ εi .

Notice that (S̄, ω̂0
i , ω̂i , α̂i , ŷ

0
i , ŷi , ν̂i ) is an embedded strict sense process for the extended

problem (Pe), since ω̂0
i (s) ≥ εi > 0 for a.e. s ∈ [0, S̄]. Moreover, (ζ̂i , ω̂i , α̂i , ŷ

0
i , ŷi , ν̂i )

with ζ̂i ≡ 0 is a feasible process for (P̂i), since ω̂i (s) ∈ (1 − εi)(C ∩ B) a.e. s ∈ [0, S̄].
Furthermore,

α̂i ≡ ᾱ,

∥
∥
∥

(
ω̂0

i , ω̂i

)
−

(
ω̄0, ω̄

)∥
∥
∥

L∞([0,S̄]) → 0 as i → ∞, (14)

therefore, by the continuity of the input-output map (ζ, ω, α) �→ (y0, y, ν), we have:
∥
∥
∥

(
ŷ0
i , ŷi , ν̂i

)
−

(
ȳ0, ȳ, ν̄

)∥
∥
∥

L∞([0,S̄]) → 0 as i → ∞. (15)

SinceJ is nonnegative and vanishes at (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄), by the L-Lipschitz continuity
of h and the 1-Lipschitz continuity of dT0(·), Eq. 15 implies that there exist a sequence
ρi ↓ 0 such that, for every i ∈ N, (0, ω̂i , α̂i , ŷ

0
i , ŷi , ν̂i ) has cost not greater than ρ2

i , namely

is a ρ2
i -minimizer for the problem (P̂i).
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Step 2. If we endow the set of feasible processes for problem (P̂i), say Γ̂i , with the
distance

d̂
(
(ζ, ω, α, y0, y, ν) , (ζ̃ , ω̃, α̃, ỹ0, ỹ, ν̃)

)
:= |(y0, y)(0) − (ỹ0, ỹ)(0)|

+‖ω − ω̃‖L1([0,S̄]) + �{s ∈ [0, S̄] : (ζ(s), α(s)) �= (ζ̃ (s), α̃(s))}
for every pair (ζ, ω, α, y0, y, ν), (ζ̃ , ω̃, α̃, ỹ0, ỹ, ν̃) ∈ Γ̂i , (P̂i) can be seen as an opti-
mization problem with continuous cost over the complete metric space (Γ̂i , d̂). Hence, by
Ekeland’s Principle, if we introduce the function

�i(s, ζ, a) := χ{(ζ,a)�=(ζi (s),αi (s))} ∀(s, ζ, a) ∈ [0, S̄] ×
[

−1

2
,

1

2

]

× A,

for any i ∈ N there is a feasible process (ζi , ωi, αi, y
0
i , yi , νi) for (P̂i) which is a minimizer

of

(Pi)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J (y0, y, ν) + ρi

(∣
∣(y0, y)(0) − (y0

i , yi)(0)
∣
∣

+ ∫ S̄

0 [|ω − ωi |(s) + �i(s, ζ(s), α(s))] ds
)

over (y0, y, ν) ∈ W 1,1([0, S̄]), (ζ, ω, α) ∈ L1([0, S̄]) satisfying
dy0

ds
(s) = (1 + ζ(s))(1 − |ω(s)|) a.e. s ∈ [0, S̄]

dy

ds
(s) = (1 + ζ )

[
f (y0, y, α)(1 − |ω|) +

m∑

j=1

gj (y
0, y)ωj

]
(s) a.e. s ∈ [0, S̄]

dν

ds
(s) = (1 + ζ(s))|ω(s)| a.e. s ∈ [0, S̄]

ν(0) = 0

ζ(s) ∈ [−1/2, 1/2], ω(s) ∈ (1 − εi)(C ∩ B), α(s) ∈ A a.e. s ∈ [0, S̄]
and verifies

∣
∣
∣

(
ŷ0
i , ŷi

)
(0) −

(
y0
i , yi

)
(0)

∣
∣
∣ +

∫ S̄

0

[|ω̂i − ωi |(s) + �i(s, 0, ᾱ(s))
]

ds ≤ ρi → 0. (16)

Thus, by Eqs. 14 and 16 it follows that, as i → +∞,
∥
∥
∥

(
y0
i , yi , νi

)
−

(
ȳ0, ȳ, ν̄

)∥
∥
∥

L∞([0,S̄]) → 0, ‖ωi − ω̄‖L1([0,S̄]) → 0 (17)

�{s ∈ [0, S̄] : (ζi(s), αi(s)) �= (0, ᾱ(s))} → 0 (18)

so that, eventually passing to a subsequence, (ωi)i converges to ω̄ almost everywhere.
Let us now show that, through suitable reparameterization techniques, the sequence of

minimizing processes (ζi , ωi, αi, y
0
i , yi , νi) can be associated to a sequence of embedded

strict processes converging to the original isolated process (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄).
Precisely, for each i ∈ N, let us consider the surjective, bi-Lipschitz continuous, and

strictly increasing function σi : [0, S̄] → [0, S̃i], given by

σi(s) :=
∫ s

0
(1 + ζi(r)) dr, S̃i := σi(S̄).

Using as reparameterization the inverse function σ−1
i : [0, S̃i] → [0, S̄], we derive that the

corresponding process (S̃i , ω̃
0
i , ω̃i , α̃i , ỹ

0
i , ỹi , ν̃i ), where

(ỹ0
i , ỹi , ν̃i ) := (y0

i , yi , νi , ) ◦ σ−1
i , (ω̃0

i , ω̃i , α̃i ) := (1 − |ωi |, ωi, αi) ◦ σ−1
i , (19)
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is an embedded strict sense process for problem (Pe). In particular, we have

ω̃0
i (s) = 1 − |ω̃i (s)| , ω̃i (s) ∈ (1 − εi) (C ∩ Bm) a.e. s ∈ [0, S̃i],

(ỹ0
i (0), ỹi (0), ỹ0

i (S̃i ), ỹi (S̃i ), ν̃i (S̃i )) = (y0
i (0), yi(0), y0

i (S̄), yi(S̄), νi(S̄)) .
(20)

Hence, we deduce from Eq. 17 that, for i sufficiently large,

d∞
(
(ỹ0

i (0), ỹ0
i (S̃i ), ỹi , ν̃i ), (ȳ

0(0), ȳ0(S̄), ȳ, ν̄)
)

< δ, (21)

where δ > 0 is the constant appearing in Definition 3.2, with reference to the isolated feasi-
ble extended sense process (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄). As a consequence, for all i large enough,
(S̃i , ω̃

0
i , ω̃i , α̃i , ỹ

0
i , ỹi , ν̃i ) cannot be a feasible embedded strict sense process, namely, it

must violate either the endpoint constraints or the state constraint. By Eqs. 19 and 20 this
implies that J (y0

i , yi , νi) > 0, namely, at least one of the following three inequalities holds
true:

dT0(y
0
i (0), yi(0), y0

i (S̄), yi(S̄)) > 0, νi(S̄) > K, max
s∈[0,S̄]

h(y0
i (s), yi(s)) > 0. (22)

In the following, as is clearly not restrictive, we will always assume that the properties valid
from a certain index onwards, apply to each index i ∈ N.

Step 3. For each i ∈ N, define ci := maxs∈[0,S̄] h(y0
i (s), yi(s)) and set

h̃(t, x, c) := h(t, x) − c ∀(t, x, c) ∈ R
1+n+1.

The process (ζi , ωi, αi, y
0
i , yi , νi , ci) turns out to be a minimizer for

(Qi)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize Φ(y0(0), y(0), y0(S̄), y(S̄), ν(S̄)) ∨ c(S̄)

+ρi

(∣
∣(y0, y)(0) − (y0

i , yi)(0)
∣
∣ + ∫ S̄

0 [|ω − ωi |(s) + �i(s, ζ(s), α(s))] ds
)

over (y0, y, ν, c) ∈ W 1,1([0, S̄]), (ζ, ω, α) ∈ L1([0, S̄]) satisfying
dy0

ds
(s) = (1 + ζ(s))(1 − |ω(s)|) a.e. s ∈ [0, S̄]

dy

ds
(s) = (1 + ζ )

[
f (y0, y, α)(1 − |ω|) +

m∑

j=1

gj (y
0, y)ωj

]
(s) a.e. s ∈ [0, S̄]

dν

ds
(s) = (1 + ζ(s))|ω(s)| a.e. s ∈ [0, S̄]

dc

ds
(s) = 0 a.e. s ∈ [0, S̄]

ν(0) = 0

h̃(y0(s), y(s), c(s)) ≤ 0 for all s ∈ [0, S̄]
(ζ, ω, α, c)(s) ∈ [−1/2, 1/2] × (1 − εi)(C ∩ B) × A × R a.e. s ∈ [0, S̄].

Our aim is now to apply the Pontryagin Maximum Principle to problem (Qi) with reference
to the minimizer (ζi , ωi, αi, y

0
i , yi , νi , ci). Preliminarily, let us observe that, passing even-

tually to a subsequence, we may assume that either ci > 0 for each i ∈ N or ci ≤ 0 for each
i ∈ N.

Assume first that ci > 0 for each i ∈ N. Fix i ∈ N and set ω0
i := 1 − |ωi |. In the Max-

imum Principle, several generalized subdifferentials are involved which it is convenient to
make as explicit as possible. First of all, the condition ‘h(y0

i (s), yi(s)) − ci > 0’ implies
‘h(y0

i (s), yi(s)) > ci > 0’, so that ∂
>

t,x,ch̃(y0
i (s), yi(s), ci) = ∂

>

t,xh(y0
i (s), yi(s)) × {−1}.

Furthermore, by the ‘max rule’ of subdifferential calculus (see [35, Th. 5.5.2]), the prop-
erties of the subdifferential of the distance function (see [35, Lemma 4.8.3]), and Eq. 22,



No Infimum Gap and Normality...

we have that (γ 1
0i

, γ 1
i , γ 2

0i
, γ 2

i , γ 2
νi

, γ 2
ci
) ∈ ∂

(
Φ(y0(0), y(0), y0(S̄), y(S̄), ν(S̄)) ∨ c(S̄)

)

implies that there are some σ 1
i , σ 2

i , σ 3
i ≥ 0 with

∑3
k=1 σk

i = 1, such that

(γ 1
0i

, γ 1
i , γ 2

0i
, γ 2

i )∈ σ 1
i

(
∂dT0(y

0
i (0), yi(0), y0

i (S̄), yi(S̄)) ∩ ∂B1+n+1+n

)
,

γ 2
νi

= σ 2
i (since ∂

(
(νi(S̄) − K) ∨ 0

) = 1 when νi(S̄) > K), γ 2
ci

= σ 3
i ,

and σk
i = 0 when the maximum in Φ

(
y0
i (0), yi(0), y0

i (S̄), yi(S̄), νi(S̄)
) ∨ ci(S̄) is strictly

greater than the k-th term in the maximization. Thus, the Maximum Principle in [35, Th.
9.3.1] yields the existence of some multipliers (p0i

, pi, πi, ri) ∈ W 1,1([0, S̄];R1+n+1+1)

associated with (y0
i , yi , νi , ci), μi ∈ NBV +([0, S̄];R), λi ≥ 0, σ 1

i , σ 2
i , σ 3

i ≥ 0 with
∑3

k=1 σk
i = 1, and Borel-measurable, μi-integrable functions (m0i

, mi) : [0, S̄] → R
1+n,

such that:

(i)′ ‖p0i
‖L∞ + ‖pi‖L∞ + ‖μi‖T V + λi + ‖ri‖L∞ + ‖πi‖L∞ = 1;

(ii)′
(

−dp0i

ds
(s),−dpi

ds
(s)

)

∈ co ∂t,x

{[
qi(s) · (f ((y0

i , yi , αi)(s))ω
0
i (s)

+∑m
j=1 gj ((y

0
i , yi)(s))ω

j
i (s)

)]
(1 + ζi(s))

}

and dπi(s)/ds = dri(s)/ds = 0 for a.e. s ∈ [0, S̄];
(iii)′

(
p0i

(0), pi(0),−q0i
(S̄),−qi(S̄)

) ∈ λiρiB1+n × {01+n}
+λiσ

1
i

(
∂dT0(y

0
i (0), yi(0), y0

i (S̄), yi(S̄)) ∩ ∂B1+n+1+n

)
,

−πi = λi σ 2
i , ri(0) = 0, −ri(S̄) + ∫

[0,S̄] μi(ds) = λiσ
3
i ;

(iv)′
∫ S̄

0 {[qi · (f (y0
i , yi , αi)ω

0
i + ∑m

j=1 gj (y
0
i , yi)ω

j
i ) + q0i

ω0
i + πi |ωi |](1 + ζi)}ds

≥ ∫ S̄

0 {[qi · (f (y0
i , yi , α)ω0 + ∑m

j=1 gj (y
0
i , yi)ω

j ) + q0i
ω0 + πi |ω|](1 + ζ )

−λiρi [|ω − ωi | + �i(s, ζ(s), α(s))]} ds

for all measurable selectors (ζ, ω, α) of [− 1
2 , 1

2 ] × (1 − εi)(C ∩ Bm) × A;
(v)′ (m0i

, mi)(s) ∈ ∂
>

t,xh
(
y0
i (s), yi(s)

)
μi-a.e. s ∈ [0, S̄],

(vi)′ spt (μi) ⊆ {s : h
(
y0
i (s), yi(s)

) − ci = 0},
where

(q0i
, qi)(s) :=

⎧
⎪⎪⎨

⎪⎪⎩

(p0i
, pi)(s) +

∫

[0,s[
(m0i

, mi)(τ )μi(dτ) s ∈ [0, S̄[,

(p0i
, pi)(S̄) +

∫

[0,S̄]
(m0i

, mi)(τ )μi(dτ) s = S̄.

Observe that, for each i ∈ N, by (ii)′ and (iii)′ we have

ri ≡ 0, ‖μi‖T V =
∫

[0,S̄]
μi(ds) = λiσ

3
i , |πi | = λi σ 2

i ; (23)

furthermore, ‖(m0i
, mi)‖L∞ ≤ L by (v)′ and the L-Lipschitz continuity of h. Then by (iii)′

and Eq. 23, we get

λi(1 − σ 3
i ) − λiρi ≤ ∣

∣
(
p0i

(0), pi(0),−q0i
(S̄), −qi(S̄)

)∣
∣ + |πi |

≤ 2‖p0i
‖L∞ + 2‖pi‖L∞ + 2L‖μi‖T V + |πi |.
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By this estimate, Eq. 23, the non-triviality condition (i)′, and using the facts that ρi ≤ 1
2 for

i sufficiently large and λi ∈ [0, 1], for such i we get

3‖p0i
‖L∞ + 3‖pi‖L∞ + (2L + 2)‖μi‖T V + 3|πi |

≥ λi(1 − σ 3
i ) − λiρi + 1 − λi + λiσ

2
i + λiσ

3
i = 1 + λiσ

2
i − λiρi ≥ 1

2 .

Hence, scaling the multipliers, we obtain

‖p0i
‖L∞ + ‖pi‖L∞ + ‖μi‖T V + |πi | = 1, λi ≤ L̃ := 6 ∨ 4(1 + L). (24)

Suppose now ci ≤ 0 for each i ∈ N. In this case, by Eq. 22, either νi(S̄) > K

or dT0(y
0
i (0), yi(0), y0

i (S̄), yi(S̄)) > 0. Thus, for ε > 0 suitably small, the process
(ζi , ωi, αi, y

0
i , yi , νi , ĉi ) with ĉi := ci + ε is still a minimizer for problem (Qi) and, in

addition, it verifies h(y0
i (s), yi(s)) − ĉi < 0 for all s ∈ [0, S̄] (namely, the state con-

straint is inactive on [0, S̄]). Hence, by applying the Maximum Principle for problem (Qi)

with reference to this minimizer we deduce the existence of multipliers (p0i
, pi, πi, ri) ∈

W 1,1([0, S̄];R1+n+1+1), which satisfy conditions (i)′–(vi)′ with μi = 0, σ 3
i = 0, πi ≤ 0,

and λi > 0. In this case, by considering again i sufficiently large to have ρi ≤ 1
2 , from (iii)′

we get

λi(1 − ρi) ≤ ∣
∣
(
p0i

(0), pi(0),−q0i
(S̄),−qi(S̄)

)∣
∣ + |πi | ≤ 2‖p0i

‖L∞ + 2‖pi‖L∞ + |πi |,
and, scaling the multipliers appropriately after summing (i)′, we finally obtain

‖p0i
‖L∞ + ‖pi‖L∞ + |πi | = 1, λi ≤ 6 (≤ L̃). (25)

Step 4. From the previous step, we arrive at the following properties (for either the case
where ci > 0 for each i ∈ N or the case where ci ≤ 0 for each i ∈ N): for any i ∈ N,
there exist (p0i

, pi) ∈ W 1,1([0, S̄];R1+n), πi ≤ 0, μi ∈ NBV +([0, S̄];R) and Borel-
measurable, μi-integrable functions (m0i

, mi) : [0, S̄] → R
1+n, such that:

(i) ‖p0i
‖L∞ + ‖pi‖L∞ + ‖μi‖T V + |πi | = 1,

(ii)

(

−dp0i

ds
(s),−dpi

ds
(s)

)

∈ co ∂t,x

{[
qi(s) · (f (y0

i (s), yi(s), αi(s))ω
0
i (s)

+∑m
j=1 gj (y

0
i (s), yi(s))ω

j
i (s)

)]
(1 + ζi(s))

}
for a.e. s ∈ [0, S̄];

(iii)
(
p0i

(0), pi(0),−q0i
(S̄),−qi(S̄),−πi

)

∈ [0, L̃] · ∂Φ(y0
i (0), yi(0), y0

i (S̄), yi(S̄), νi(S̄)) + L̃ρiB1+n × {01+n} × {0};
(iv)

∫ S̄

0 {[qi · (f (y0
i , yi , αi)ω

0
i + ∑m

j=1 gj (y
0
i , yi)ω

j
i ) + q0i

ω0
i + πi |ωi |](1 + ζi)}ds

≥ ∫ S̄

0 {[qi · (f (y0
i , yi , α)ω0 + ∑m

j=1 gj (y
0
i , yi)ω

j )

+q0i
ω0 + πi |ω|](1 + ζ ) − 3L̃ρi}ds,

for all measurable selectors (ζ, ω, α) of [− 1
2 , 1

2 ] × (1 − εi)(C ∩ Bm) × A;
(v) (m0i

, mi)(s) ∈ ∂>
t,xh

(
y0
i (s), yi(s)

)
μi-a.e. s ∈ [0, S̄],

(vi) spt (μi) ⊆ {s : h
(
y0
i (s), yi(s)

) − ci = 0},
where

(q0i
, qi)(s) :=

⎧
⎪⎪⎨

⎪⎪⎩

(p0i
, pi)(s) +

∫

[0,s[
(m0i

, mi)(τ )μi(dτ) s ∈ [0, S̄[,

(p0i
, pi)(S̄) +

∫

[0,S̄]
(m0i

, m)(τ )μi(dτ) s = S̄.
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Here L̃ is the same constant as in Eq. 24. By Banach-Alaoglu’s Theorem, there exist
a subsequence of (μi)i , μ ∈ NBV +([0, S̄];R), (m0,m) : [0, S̄] → R × R

n

Borel measurable and μ-integrable, such that μi
∗
⇀ μ weakly* in C∗([0, S̄]) and

miμi(ds)
∗
⇀ mμ(ds), m0i

μi(ds)
∗
⇀ m0μ(ds) (see [35, Proposition 9.2.1]). Furthermore,∫

[0,s[(m0i
, mi)(τ )μi(dτ) → ∫

[0,s[(m0, m)(τ )μ(dτ) for a.e. s ∈ [0, S̄]; the real sequence
(πi) is bounded; the functions (p0i

, pi) are uniformly bounded and have uniformly inte-
grable, bounded derivatives. Hence, there exist π ≤ 0 and (p0, p) ∈ W 1,1([0, S̄];R1+n)

(see e.g. [35, Th 2.5.3 and Ch. 9]) such that, eventually for a further subsequence, πi → π ,

(p0i
, pi) → (p0, p) in L∞, and

(
dp0i

ds
,

dpi

ds

)
⇀

(
dp0
ds

,
dp
ds

)
weakly in L1, as i → +∞.

By this analysis it also follows that the functions (q0i
, qi) are uniformly integrably bounded

and verify for a.e. s ∈ [0, S̄],
lim

i→+∞(q0i
, qi)(s) = (q0, q)(s) := (p0, p)(s) +

∫

[0,s[
(m0,m)(τ )μ(dτ).

Hence, by the dominated convergence theorem, one has

(q0i
, qi) → (q0, q) in L1([0, S̄]). (26)

Passing to the limit as i → +∞ and using Eq. 17, by (i),(v), and (vi) we get

‖p0‖L∞ + ‖p‖L∞ + ‖μ‖T V + |π | = 1, (27)

(m0, m)(s) ∈ ∂>
t,xh

(
ȳ0(s), ȳ(s)

)
μ-a.e. s ∈ [0, S̄], (28)

spt (μ) ⊆ {s : h
(
ȳ0(s), ȳ(s)

)
= 0}. (29)

Furthermore, using that
(
ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ν̄(S̄)

) ∈ T , the properties of distance
function, and the ‘max-rule’ for subdifferentials, by (iii) we have

(p0(0), p(0),−q0(S̄),−q(S̄),−π) ∈ [0, L̃] · ∂Φ
(
ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ν̄(S̄)

)

⊆ [0, L̃] · [(NT0

(
ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ν̄(S̄)

) ∩ B1+n+1+n

) × {0}
+{01+n+1+n} × ∂

(
(νi(S̄) − K) ∨ 0

)]

⊆ NT0

(
ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)

) × N]−∞,K](ν̄(S̄)),

(30)

Incidentally, from this relation we immediately deduce that π = 0 if ν̄(S̄) < K . Passing to
the limit in (iv), with the help of a measurable selection theorem, using Eqs. 17 and 18 and
the dominated convergence Theorem, we deduce that, for a.e. s ∈ [0, S̄],

H
(
ȳ0(s), ȳ(s), q0(s), q(s), π, ω̄0(s), ω̄(s), ᾱ(s)

)

= max
(ζ,ω0,ω,a)∈[− 1

2 , 1
2 ]×C×A

H
(
ȳ0(s), ȳ(s), q0(s), q(s), π, ω0, ω, a

)
(1 + ζ ).

Since 0 is in the interior of [− 1
2 , 1

2 ], this implies that, for a.e. s ∈ [0, S̄],
H

(
ȳ0(s), ȳ(s), q0(s), q(s), π, ω̄0(s), ω̄(s), ᾱ(s)

)

= max
(ω0,ω,a)∈C×A

H
(
ȳ0(s), ȳ(s), q0(s), q(s), π, ω0, ω, a

)
= 0.

(31)
To prove that (p0, p) verifies the adjoint equation in Theorem 2.1, for each i ∈ N we set

Ai :=
{
s ∈ [0, S̄] : (ζi(s), αi(s)) = (0, ᾱ(s))

}
⊆ [0, S̄].
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By Eq. 18 it follows that �(Ai ) → S̄ as i → +∞. Hence, by the L-boundedness of f

and g1, . . . , gm, we deduce that the functions (y0
i , yi) are uniformly integrable, so that by

[35, Th. 2.5.3] and Eq. 17,

(
dy0

i

ds
,

dyi

ds

)

⇀
(

dy0

ds
,

dy
ds

)
weakly in L1, as i → +∞. Moreover,

for a.e. s ∈ Ai , we have
(

dy0
i

ds
,
dyi

ds

)

(s) =
(
ω0

i , f (y0
i , yi , ᾱ)ω0

i +
m∑

j=1

gj (y
0
i , yi)ω

j
i

)
(s),

(

−dp0i

ds
,−dpi

ds

)

(s) ∈ co ∂t,x

{
qi(s) ·

(
f (y0

i , yi , ᾱ)ω0
i +

m∑

j=1

gj (y
0
i , yi)ω

j
i

)
(s)

}
,

By Eqs. 17, 26, and [35, Theorem 2.5.3] we can conclude that, for a.e. s ∈ [0, S̄],4
(

−dp0

ds
,−dp

ds

)

(s) ∈ co ∂t,x

{
q(s) ·

(
f (ȳ0, ȳ, ᾱ)ω̄0 +

m∑

j=1

gj (ȳ
0, ȳ)ω̄j

)
(s)

}
. (32)

In view of relations Eqs. 28, 29, 30, 31 and 32, to conclude the proof that the isolated feasible
process (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is an abnormal extremal, it remains only to show that

‖p0‖L∞ + ‖p‖L∞ + ‖μ‖T V �= 0. (33)

Suppose by contradiction that Eq. 33 is not true. Then q0 ≡ 0, q ≡ 0 a.e., and by Eq. 27
we deduce that π �= 0, which in turn implies ν̄(S̄) = K > 0. Thanks to these information

and integrating (31) in [0, S̄] we find that 0 = ∫ S̄

0 π |ω̄| ds = π ν̄(S̄) = π K , which is not
possible.

Remark 3.1 (Multiple state constraints) In order to allow multiple state constraints
hi for i = 1, . . . , N , it is sufficient replacing the payoff J in Eq. 13 by
the function Φ

(
y0(0), y(0), y0(S̄), y(S̄), ν(S̄)

) ∨ maxs∈[0,S̄] h1(y
0(s), y(s)) ∨ · · · ∨

maxs∈[0,S̄] hN(y0(s), y(s)), and making obvious changes to the preceding proof.

4 Nondegeneracy, Normality and No InfimumGap

As a consequence of Theorem 3.1, ‘normality implies no infimum gap’. Precisely, as a
corollary of the results in Section 3, we have:

Theorem 4.1 Assume hypotheses (H0)-(H2) are satisfied.

(i) Suppose that there exists an extended sense minimizer for (Pe) which is a normal
extremal. Then there is no infimum gap.

(ii) Let (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) be an extended sense local minimizer for the extended
problem (Pe) which is a normal extremal. Then there is no local infimum gap at
(S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄).

As observed in the Introduction, the above ‘normality test’ is of more theoretical than
practical interest (specially in the presence of state constraints). In this section we identify

4Notice that, since the convex hull of a compact subset of some space R
k is compact, our hypotheses on the

vector fields f, g1, . . . , gm guarantee that the multifunction in the differential inclusion is closed.
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some verifiable conditions guaranteeing that every set of multipliers is normal. To begin
with, let us introduce the notion of nondegenerate estremal.

Definition 4.1 (Nondegenerate Maximum Principle) Given an extended sense local min-
imizer for problem (Pe), (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄), we say that the Maximum Principle is
nondegenerate when there is a choice of the multipliers (p0, p, π, λ, μ) and of the functions
m0, m that meets the conditions (i)–(vi) of Theorem 2.1, and such that

μ(]0, S̄]) + ‖q0‖L∞ + ‖q‖L∞ + λ �= 0 if ȳ0(S̄) = ȳ0(0),

μ(]0, S̄]) + ‖q‖L∞ + λ �= 0 if ȳ0(S̄) > ȳ0(0),
(34)

where q0, q are defined as in Theorem 2.1.

Definition 4.2 (Nondegenerate normal and abnormal extremals) We say that a fea-
sible extended sense process (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is an extremal of the nondegenerate
Maximum Principle, in short, a nondegenerate extremal, if there exists a set of multipliers
(p0, p, π, λ, μ) and functions m0, m which meet the conditions of Theorem 2.1 and also
satisfy (34). We call (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) a nondegenerate normal extremal if all possible
choices of multipliers as above have λ > 0, and a nondegenerate abnormal extremal when
there exists at least one set of such multipliers with λ = 0.

As it is easy to see, a nondegenerate abnormal extremal is always an abnormal extremal,
and, on the contrary, any normal extremal is also nondegenerate normal. To obtain the con-
verse implications, we introduce condition (CNa) below. In the following, we will often use
the notation

Ω := {(t, x) : h(t, x) ≤ 0}.

Condition for Nondegenerate Abnormality (CNa) . A feasible extended sense process
(S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is said to verify condition (CNa) if

∂>h(ȳ0(0), ȳ(0)) ∩
(
−proj(t1,x1)

(NT0(ȳ
0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)))

)
= ∅. (35)

Remark 4.1 To clarify the geometrical meaning of condition (CNa), let us notice that, if
(ȳ0(0), ȳ(0)) ∈ Int(Ω), condition (35) is trivially satisfied, since the hybrid subdifferential
∂>h(ȳ0(0), ȳ(0)) = ∅. Incidentally, observe that {(t, x) : h(t, x) < 0} ⊆ Int(Ω) but
the inclusion is in general strict. When instead (ȳ0(0), ȳ(0)) ∈ ∂Ω , Eq. 35 implies that
0 /∈ ∂>h(ȳ0(0), ȳ(0)). If h ∈ C2 in a neighborhood of (ȳ0(0), ȳ(0)) ∈ ∂Ω , Eq. 35 simply
reads (∇h(ȳ0(0), ȳ(0)) �= 0 and)

∇h(ȳ0(0), ȳ(0)) /∈ −proj(t1,x1)
(NT0(ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄))). (36)

Condition (36) is satisfied at (ȳ0(0), ȳ(0)) with h(ȳ0(0), ȳ(0)) = 0 and
∇h(ȳ0(0), ȳ(0)) �= 0, when, for instance, T0 = T1 ×T2 with T1, T2 closed subsets of R1+n,
T1 ⊆ Ω , and NT1(ȳ

0(0), ȳ(0)) is pointed.5 In this case, indeed, Eq. 36 can be derived by
the following relations

∂>h(ȳ0(0), ȳ(0)) = {∇h(ȳ0(0), ȳ(0))} ⊆ NP
Ω(ȳ0(0), ȳ(0))

⊆ NP
T1

(ȳ0(0), ȳ(0)) ⊆ NT1(ȳ
0(0), ȳ(0)).

5A cone K ⊆ R
k is pointed if it contains no line, i.e. if ξ , −ξ ∈ K implies that ξ = 0.
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Remark 4.2 Consider the quite customary situation where initial and final time are fixed
and the state constraint is time independent, namely T0 = {t̄1}×T 1

0 × T 2
0 with T 1

0 ⊆ R
n,

T 2
0 ⊆ R

1+n closed subsets, and h(t, x) = h̄(x). In this case, ∂>h(t, x) = {0}× ∂>h̄(x) and
N{t̄1}×T 1

0
(t, x) = R × NT 1

0
(x) for all (t, x) ∈ R

1+n. Hence, condition (35) reduces to

∂>h̄(ȳ(0)) ∩
(
−NT 1

0
(ȳ(0))

)
= ∅.

Proposition 4.1 Assume (H0)-(H2) and suppose that (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is a feasible
extended sense process which is an abnormal extremal, namely, there exist a set of multipli-
ers (p0, p, π, λ, μ), and some functions (m0, m) as in Theorem 2.1, with λ = 0. If condition
(CNa) is satisfied, then (p0, p, π, 0, μ), (m0, m) verify the strengthened non-triviality
condition (34).

Proof Assume that (CNa) is verified and suppose by contradiction that ‖q0‖L∞ +‖q‖L∞ +
μ(]0, S̄]) = 0. Then, in view of Theorem 2.1, we have

(p0, p) ≡ −μ({0})(ξ0, ξ), μ({0}) �= 0, (ξ0, ξ) ∈ ∂>h(ȳ0(0), ȳ(0)).

In particular, μ({0}) �= 0 implies that (ȳ0(0), ȳ(0)) ∈ ∂Ω . By the transversality condition
(iii) of Theorem 2.1, it follows that

(ξ0, ξ) ∈ ∂>h(ȳ0(0), ȳ(0)) ∩
(
−proj(t1,x1)

(NT0(ȳ
0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)))

)
, (37)

in contradiction with Eq. 35.
To conclude it remains to show that ‖q‖L∞ + μ(]0, S̄]) �= 0 whenever ȳ0(S̄) > ȳ0(0).

If we suppose by contradiction μ(]0, S̄]) + ‖q‖L∞ = 0, then Theorem 2.1, (ii), (iv) and the
first part of the proof yield that 0 �= q0 is a constant and

q0w̄
0(s) + π |w̄(s)| = max

w0∈[0,1]
{π + (q0 − π)w0} = 0 a.e. s ∈]0, S̄[. (38)

Then π < 0 leads easily to a contradiction. If π = 0, since q0 �= 0, Eq. 38 yields w̄0 = 0

a.e., in contradiction with
∫ S̄

0 w̄0(s) ds = ȳ0(S̄) − ȳ0(0) > 0.

As a straightforward consequence of Proposition 4.1, we have:

Proposition 4.2 Assume (H0)-(H2). Let (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) be a feasible extended sense
process verifying condition (CNa). Then (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is a nondegenerate normal
extremal if and only if it is a normal extremal.

Remark 4.3 (Multiple state constraints) The result of Proposition 4.1 can be easily extended
to the case of multiple state constraints hi for i = 1, . . . , N , by considering the nondegener-
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acy condition (34) with (q0, q) and μ as in Remark 2.4 and by replacing the nondegenerate
abnormality condition (35) with

(
N∑

i=1
[0, +∞[·∂>hi(ȳ

0(0), ȳ(0))

)

∩ (−proj(t1,x1)
(NT0(ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)))
) = ∅.

(39)6

We now provide some sufficient conditions in the form of constraint and endpoint
qualifications to guarantee normality. In the following, we will use the notation

F(t, x, ω0, ω, a) := f (t, x, a)ω0 +
m∑

i=1

gi(t, x)ωi ∀(t, x, ω0, ω, a) ∈ R
1+n × C × A,

and, given a feasible extended sense process (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) for problem (Pe), we set

F̄ (s) := F((ȳ0, ȳ, ω̄0, ω̄, ᾱ)(s)) ∀s ∈ [0, S̄], z̄ := (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄).

Constraint Qualifications for Normality (CQn)b , (CQn)f Let z̄ be a feasible extended sense
process for the extended optimization problem (Pe).

(CQn)b We say that z̄ meets condition (CQn)b if for every s ∈]0, S̄] where
(ȳ0(s), ȳ(s)) ∈ ∂Ω there exist ε, δ > 0 such that7

inf
a∈A

max
(ξ0,ξ)∈∂∗h(ȳ0(s),ȳ(s))

[
ξ ·

(
f (ȳ0(s), ȳ(s), a) − f (ȳ0(s), ȳ(s), ᾱ(σ ))

)]
< −δ,

inf
ω∈C∩∂B

max
(ξ0,ξ)∈∂∗h(ȳ0(s),ȳ(s))

[
ξ · (

m∑

j=1

gj (ȳ
0(s), ȳ(s))(ωj − ω̄j (σ )

|ω̄j (σ )| )
)]

< −δ

for a.e. σ ∈ E(s, ε), defined as follows

E(s, ε) := {r ∈ [s − ε, s] ∩ [0, S̄] : max
(ξ0,ξ)∈∂∗h(ȳ0(r),ȳ(r))

(ξ0ω̄
0 + ξ · F̄ )(r) ≥ 0};

(CQn)f We say that z̄ meets condition (CQn)f if for every s ∈ [0, S̄[ where
(ȳ0(s), ȳ(s)) ∈ ∂Ω there exist ε, δ > 0 such that

sup
a∈A

min
(ξ0,ξ)∈∂∗h(ȳ0(s),ȳ(s))

[
ξ ·

(
f (ȳ0(s), ȳ(s), a) − f (ȳ0(s), ȳ(s), ᾱ(σ ))

)]
> δ,

sup
ω∈C∩∂B

min
(ξ0,ξ)∈∂∗h(ȳ0(s),ȳ(s))

⎡

⎣ξ · (

m∑

j=1

gj (ȳ
0(s), ȳ(s))(ωj − ω̄j (σ )

|ω̄j (σ )| ))
⎤

⎦ > δ

for a.e. σ ∈ Γ (s, ε), defined as follows

Γ (s, ε) := {r ∈ [s, s + ε] ∩ [0, S̄] : min
(ξ0,ξ)∈∂∗h(ȳ0(r),ȳ(r))

(ξ0ω̄
0 + ξ · F̄ )(r) ≤ 0}.

Remark 4.4 The ‘forward’ constraint qualification (CQn)f is at our knowledge new, while
a version of the ‘backward’ constraint qualification (CQn)b was first introduced in [25],
as an adaptation to impulsive optimal control of a condition due to [13]. In particular,

6To simplify the notation, when X ⊆ R
k , we use the convention X + ∅ = X. Thus, in particular, ∅ + ∅ = ∅.

7We use the convention that ω
|ω| = 0 when ω = 0.
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(CQn)b, (CQn)f prescribe that drift and fast dynamics satisfy separately outward or inward
pointing conditions, respectively. This is a stronger requirement than the existence of an
inward/outward pointing velocity. In fact, as discussed in [25, Remark 4.4], the statement
of Theorem 4.3 below holds true even if (CQn)b, (CQn)f are replaced, respectively, with
the (weaker) conditions:

(CQn)′b for every s ∈]0, S̄] such that (ȳ0(s), ȳ(s)) ∈ ∂Ω there exist ε, δ > 0 and
a measurable control (ω̃, α̂) taking values in (C ∩ ∂B) × A, satisfying for all
σ ∈]s − ε, s[∩[0, S̄]:

max
(ξ0,ξ)∈∂∗h(ȳ0(σ ),ȳ(σ ))

ξ ·
(
F(ȳ0, ȳ, ω̄0, ω̂, α̂)(s′) − F̄ (s′)

)
< −δ, (40)

where ω̂ := (1 − ω̄0)ω̃, for a.e. s′ ∈ E(s, ε), defined as in (CQn)b;
(CQn)′f for every s ∈ [0, S̄[ such that (ȳ0(s), ȳ(s)) ∈ ∂Ω there exist ε, δ > 0 and

a measurable control (ω̃, α̂) taking values in (C ∩ ∂B) × A, satisfying for all
σ ∈]s, s + ε[∩[0, S̄]:

min
(ξ0,ξ)∈∂∗h(ȳ0(σ ),ȳ(σ ))

ξ ·
(
F(ȳ0, ȳ, ω̄0, ω̂, α̂)(s′) − F̄ (s′)

)
> δ, (41)

where ω̂ := (1 − ω̄0)w̃, for a.e. s′ ∈ Γ (s, ε), defined as in (CQn)f .

Notice that conditions (CQn)′b, (CQn)′f also cover situations in which the drift does not
depend on the ordinary control a, i.e. f = f (t, x), unlike (CQn)b, (CQn)f , where in this
case the hypotheses involving f are clearly never fulfilled.

Remark 4.5 The constraint qualifications (CQn)b, (CQn)f are respectively inward/outward
pointing conditions at the boundary which involve the minimizer but have to be satisfied
just on a subset of instants at which the optimal trajectory has an outward/inward point-
ing velocity. As discussed in detail in [25, Lemma 4.1], when the constraint function h is
smooth, (CQn)b, (CQn)f could be replaced by the following simpler conditions:

(IPFCn)b for every s ∈]0, S̄] such that (ȳ0(s), ȳ(s)) ∈ ∂Ω , one has h ∈ C1 on a
neighborhood of (ȳ0(s), ȳ(s)) and there exists δ > 0 satisfying

inf
a∈A

∇xh(ȳ0(s), ȳ(s)) · f (ȳ0(s), ȳ(s), a) < −δ,

inf
ω∈C∩∂B

∇xh(ȳ0(s), ȳ(s)) ·
m∑

i=1
gi(ȳ

0(s), ȳ(s))ωi < −δ;

(IPFCn)f for every s ∈ [0, S̄[ such that (ȳ0(s), ȳ(s)) ∈ ∂Ω , one has h ∈ C1 on a
neighborhood of (ȳ0(s), ȳ(s)) and there exists δ > 0 satisfying

sup
a∈A

∇xh(ȳ0(s), ȳ(s)) · f (ȳ0(s), ȳ(s), a) > δ,

sup
ω∈C∩∂B

∇xh(ȳ0(s), ȳ(s)) ·
m∑

i=1
gi(ȳ

0(s), ȳ(s))ωi > δ,

respectively. Here ∇x denotes the classical partial gradient operator w.r.t. the variable x.

Remark 4.6 Note that for a feasible process z̄ = (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) with
h(ȳ0(s̄), ȳ(s̄)) = 0 for some s̄ ∈]0, S̄], we can assume that there exists some ε̄1 > 0 suf-
ficiently small such that �(E(s̄, ε)) > 0 for all ε ∈]0, ε̄1]. Indeed, if ∃ε > 0 such that

�(E(s̄, ε)) = 0, then max
(ξ0,ξ)∈∂∗h(ȳ0(r),ȳ(r))

[
ξ0ω̄

0(r) + ξ · F̄ (r)
]

< 0 for a.e. r ∈ [s̄ − ε, s̄].
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But then, the function H := h ◦ (ȳ0, ȳ) is differentiable a.e. in [s̄ − ε, s̄] and verifies

dH
ds

(s) ≤ max
(ξ0,ξ)∈∂Ch(ȳ0(s),ȳ(s))

[
ξ0

dȳ0

ds
(s) + ξ · dȳ

ds
(s)

]

= max
(ξ0,ξ)∈∂∗h(ȳ0(s),ȳ(s))

[
ξ0ω̄

0(s) + ξ · F̄ (s)
]

< 0,

since the scalar product is bilinear. Thus, for all s ∈ [s̄ − ε, s̄[ one has

−h(ȳ0(s), ȳ(s)) = h(ȳ0(s̄), ȳ(s̄)) − h(ȳ0(s), ȳ(s)) =
∫ s̄

s

dH
ds

(σ ) dσ < 0,

so that h(ȳ0(s), ȳ(s)) > 0, in contradiction with the feasibility of z̄. In an analogous way,
one can derive that, if h(ȳ0(s̄), ȳ(s̄)) = 0 at s̄ ∈ [0, S̄[, then �(Γ (s̄, ε)) > 0 for all ε > 0
small enough.

Furthermore, by the bilinearity of the scalar product, in (CQn)b, (CQn)f ,
and (CQn)′b, (CQn)′f , one can replace ∂∗h(ȳ0(s), ȳ(s)) with ∂Ch(ȳ0(s), ȳ(s)).
Hence, in particular, all these conditions are verified for any (ξ0, ξ) ∈
∂>h(ȳ0(s), ȳ(s)), since ∂>h(ȳ0(s), ȳ(s)) ⊆ ∂Ch(ȳ0(s), ȳ(s)).

We can now establish the following normal Maximum Principle, which extends [25, Th.
4.2].

Theorem 4.2 Assume (H0)-(H2). Let (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) be an extended sense local
minimizer for (Pe). Assume that (p0, p, λ, π, μ), (m0,m) meet the conditions of Theo-
rem 2.1 and verify the strenghtened non-triviality condition (34). Then,

(i) if hypothesis (CQn)b is satisfied, one has

|q(S̄)| + λ �= 0 if ȳ0(S̄) > ȳ0(0),

|q0(S̄)| + |q(S̄)| + λ �= 0 if ȳ0(S̄) = ȳ0(0).
(42)

In particular, if proj(t2,x2)NT0(ȳ
0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) = {(ξt2 , 0)} and ξt2 = 0

whenever ȳ0(S̄) = ȳ0(0), then λ �= 0;
(ii) if hypothesis (CQn)f is satisfied, one has

|q(0)| + λ �= 0 if ȳ0(S̄) > ȳ0(0),

|q0(0)| + |q(0)| + λ �= 0 if ȳ0(S̄) = ȳ0(0).
(43)

In particular, if proj(t1,x1)NT0(ȳ
0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) = {(ξt1 , 0)} and ξt1 = 0

whenever ȳ0(S̄) = ȳ0(0), then λ �= 0.

The proof of this result is given in the Appendix.

Remark 4.7 (Multiple state constraints) The normal Maximum Principle in Theorem 4.2
can be extended to the case with multiple state constraints hi for i = 1, . . . , N , by modi-
fying condition (CQn)′b as follows: for every s ∈]0, S̄] such that hij (ȳ

0(s), ȳ(s)) = 0 for
some indexes 1 ≤ i1 < · · · < ik ≤ N , j = 1, . . . , k, there exist ε, δ > 0 and a measurable
control (ω̃, α̂) taking values in (C ∩ ∂B) × A, satisfying for all σ ∈]s − ε, s[∩[0, S̄] and for
all j = 1, . . . , k:

max
(ξ0,ξ)∈∂∗hij

(ȳ0(σ ),ȳ(σ ))
ξ ·

(
F(ȳ0, ȳ, ω̄0, ω̂, α̂)(s′) − F̄ (s′)

)
< −δ, (44)
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where ω̂ := (1 − ω̄0)ω̃, for a.e. s′ ∈ E(s, ε), defined as follows

E(s, ε) :=
{
r ∈ [s − ε, s] ∩ [0, S̄] :

max
(ξ0,ξ)∈∂∗hij

(ȳ0(r),ȳ(r))
[ξ0ω̄

0(r) + ξ · F̄ (r)] ≥ 0 ∀j = 1, . . . , k
}

.

Notice that, arguing as in Remark 4.6, one can deduce that �(E(s, ε)) for all ε > 0
sufficiently small. Similar modifications are to be made for condition (CQn)′f .

Theorem 4.2 implies nondegenerate normality when essentially the endpoint constraint
either at the final or at the initial position is inactive. We provide below some sufficient
conditions to guarantee normality even in some situations where initial and final positions
lay on the boundary of the endpoint constraint.

Endpoint Qualifications for Normality (TQn)b , (TQn)f . Let us consider z̄ :=
(S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄), a feasible extended sense process for the extended optimization
problem (Pe).

(TQn)b We say that z̄ meets condition (TQn)b if there exists ε > 0 such that
(ȳ0(s), ȳ(s)) ∈ Int(Ω) for each s ∈ [S̄ − ε, S̄[ and one among the following
conditions (a), (b) holds true:

(a)
(−proj(t2,x2)

NT0(ȳ
0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) \ {01+n}

)

∩ ∂>h(ȳ0(S̄), ȳ(S̄)) = ∅ (45)

and for any (ζt2 , ζx2) ∈ proj(t2,x2)
NT0(ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄))

+[0, +∞[·∂>h(ȳ0(S̄), ȳ(S̄)), one has

min
a∈A

[
ζx2 · f (ȳ0(S̄), ȳ(S̄), a) + ζt2

]
< 0 if (ζt2 , ζx2) �= (0, 0); (46)

(b)
(

− projx2
NT0(ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) \ {0n}
)

∩ projx∂
>h(ȳ0(S̄), ȳ(S̄)) = ∅ (47)

and for any (ζt2 , ζx2) ∈ proj(t2,x2)
NT0(ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄))

+[0, +∞[·∂>h(ȳ0(S̄), ȳ(S̄)) with ζx2 �= 0, one has

ȳ0(S̄) > ȳ0(0), ν̄(S̄) < K, min
ω∈C∩∂B

⎡

⎣ζx2 ·
⎛

⎝
m∑

j=1

gj (ȳ
0(S̄), ȳ(S̄))ωj

⎞

⎠

⎤

⎦ < 0.

(48)
(TQn)f We say that z̄ meets condition (TQn)f if there exists ε > 0 such that

(ȳ0(s), ȳ(s)) ∈ Int(Ω) for each s ∈]0, ε] and one among the following
conditions (a), (b) holds true:

(a)
(−proj(t1,x1)

NT0(ȳ
0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) \ {01+n}

)

∩ ∂>h(ȳ0(0), ȳ(0)) = ∅ (49)

and for any (ζt1 , ζx1) ∈ proj(t1,x1)
NT0(ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄))

+[0, +∞[·∂>h(ȳ0(0), ȳ(0)) one has

max
a∈A

[
ζx1 · f (ȳ0(0), ȳ(0), a) + ξt1

]
> 0 if (ζt1 , ζx1) �= (0, 0); (50)
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(b)
(

− projx1
NT0(ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) \ {0n}
)

∩ projx∂
>h(ȳ0(0), ȳ(0)) = ∅ (51)

and for any (ζt1 , ζx1) ∈ proj(t1,x1)
NT0(ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄))

+[0,+∞[·∂>h(ȳ0(0), ȳ(0)) with ζx1 �= 0, one has

ȳ0(S̄) > ȳ0(0), ν̄(S̄) < K, max
ω∈C∩∂B

ζx1 ·
m∑

j=1

gj (ȳ
0(0), ȳ(0))ωj > 0. (52)

Condition (TQn)b generalizes endpoint constraint qualifications considered in [25] for the
case with fixed initial point, which were in turn inspired by no gap conditions in [1, 26].
Notice that both conditions Eqs. 45 and 47 [resp., Eqs. 49 and 51] are trivially verified when-
ever (ȳ0(S̄), ȳ(S̄)) ∈ Int(Ω) [resp., (ȳ0(0), ȳ(0)) ∈ Int(Ω)], since ∂>h(ȳ0(S̄), ȳ(S̄)) = ∅
[resp., ∂>h(ȳ0(0), ȳ(0)) = ∅].

Proposition 4.3 Assume (H0)-(H2). Let (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) be an extended sense
local minimizer for (Pe). Assume that (p0, p, λ, π, μ), (m0,m) meet the conditions of
Theorem 2.1. Then, if either (i) or (ii) below holds true, one has λ �= 0:

(i) hypothesis (TQn)b is satisfied and the multipliers (p0, p, λ, π, μ) verify the strength-
ened non-triviality condition (42);

(ii) hypothesis (TQn)f is satisfied and the multipliers (p0, p, λ, π, μ) verify the strength-
ened non-triviality condition (43).

The proof of this result is postponed to the Appendix.

Remark 4.8 (Multiple state constraints) Proposition 4.3 can be easily adapted to the case
with multiple state constraints hi for i = 1, . . . , N by simply choosing h := h1 ∨ · · · ∨ hN .
In particular, by applying the max-rule for subdifferentials, in (TQn)b, (b), condition (47)
can be replaced with

(
N∑

i=1
projx[0, +∞[·∂>hi(ȳ

0(S̄), ȳ(S̄))

)

∩ (−projx2
NT0(ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) \ {0n}
) = ∅,

and one can require that condition (48) is satisfied for all (ζt2 , ζx2) in the set
proj(t2,x2)

NT0(ȳ
0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) +∑N

i=1 [0, +∞[·∂>hi(ȳ
0(S̄), ȳ(S̄)). The other

conditions can be adapted in a similar way.

From Propositions 4.2, 4.3, and Theorem 4.2 we deduce as a corollary the main result of
this section.

Theorem 4.3 Assume (H0)-(H2). Consider the optimal control problem (P) and its
extended sense formulation (Pe). Assume that there exists a local or global extended sense
minimizer (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) such that condition (CNa) and either (CQn)b-(TQn)b or
(CQn)f -(TQn)f are verified. Then (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) is a normal extremal and, in
consequence of Theorem 4.1, there is no local or global infimum gap, respectively.



G. Fusco, M. Motta

5 Some Examples

Let us illustrate the preceding theory through some examples.

Example 5.1 Here, the absence of an infimum gap can be easily deduced from the sufficient
conditions introduced in Section 4. Consider the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize Ψ (x(1))

over (x, v, u) = (x1, x2, x3, v, u1, u2) ∈ W 1,1([0, 1];R3 × R × R
2) satisfying

dx

dt
(t) = f (x(t)) + g1(x(t))

du1

dt
(t) + g2(x(t))

du2

dt
(t)

dv

dt
(t) =

∣
∣
∣
∣
du

dt
(t)

∣
∣
∣
∣

du

dt
(t) ∈ C := R

2 a.e. t ∈ [0, 1],
x(t) ∈ Ω(t) ∀t ∈ [0, 1],
v(0) = 0, v(1) ≤ 2, x(0) ∈ T 1

0 , x(1) ∈ T 2
0 .

(53)
in which Ψ (x) := −x1,

Ω(t) := {(t, x) ∈ R × R
3 : −1 ≤ x1 ≤ 1 + t, −1 ≤ x2 ≤ 1, −1 ≤ x3 ≤ 1},

T 1
0 := {x ∈ R

3 : (x1 − 1)2 + (x2)2 + (x3)2 ≤ 1/9, x1 ≤ 1},
T 2

0 := {x ∈ R
3 : (x1 + 1)2 + (x2)2 + (x3)2 ≤ 1, x1 ≥ −1},

and

g1(x) :=
⎛

⎝
1
0
0

⎞

⎠ , g2(x) :=
⎛

⎝
0

−1
−x1

⎞

⎠ , f (x) :=
⎛

⎝
0
x2x3

0

⎞

⎠ ∀x ∈ R
3 .

The extended problem is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize Ψ (y(S))

over S > 0, (y0, y1, y2, y3, ν, ω0, ω1, ω2) ∈ W 1,1([0, S]) satisfying

dy0

ds
(s) = ω0(s)

dy

ds
(s) = f (y(s))ω0(s) + g1(y(s)) ω1(s) + g2(y(s)) ω2(s)

dν

ds
(s) = |ω(s)|

(ω0, ω)(s) ∈ C a.e. s ∈ [0, S],
y(s) ∈ Ω(y0(s)) ∀s ∈ [0, S],
ν(0) = 0, ν(S) ≤ 2, (y0(0), y(0)) = {0} × T 1

0 , (y0(S), y(S)) ∈ {1} × T 2
0 .

(54)

An extended sense minimizer is clearly given by the feasible extended sense process
(S̄, ω̄0, ω̄, ȳ0, ȳ, ν̄), where

S̄ = 2, (ω̄0, ω̄) = (ω̄0, ω̄1, ω̄2) = (1, 0, 0)χ[0,1] + (0,−1, 0)χ]1,2] , (55)
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and one considers the corresponding trajectory with initial state condition y(0) = (1, 0, 0),
namely,

(ȳ0, ȳ, ν̄) = (ȳ0, ȳ1, ȳ2, ȳ3, ν̄) = (s, 1, 0, 0, 0)χ[0,1] + (1, 2 − s, 0, 0, s − 1)χ[1,2] . (56)

Indeed, for all points (x1, x2, x3)∈ T 2
0 one has x1 ∈ [−1, 0], so that ȳ1(2) = 0 is the

minimum admissible value of the cost function Ψ (y(S)) = −y1(S). It is not difficult to
check that this process verifies conditions (CNa), (CQn)b, and (TQn)b. In consequence,
the absence of a gap between the infima of problems Eqs. 53 and 54 follows directly from
Theorem 4.3.

Next example shows how the criterion of normality can guarantee the absence of the
infimum gap in situations where other sufficient conditions fail.

Example 5.2 Consider again the minimization problem (53) and its extended version (54),
where T 1

0 is as above, while the time-dependent state constraint Ω(t) and the final-point
constraint T 2

0 are replaced with

Ω := {(x1, x2, x3) : −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, −1 ≤ x3 ≤ 1},
T 2

0 := {(x1, x2, x3) : −1 ≤ x1 ≤ 0, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1},
respectively. Then the extended sense process (S̄, ω̄0, ω̄, ȳ0, ȳ, ν̄) given by Eqs. 55 and 56
is still a (feasible) minimizer for the extended problem (54). However, as it is easy to
check, now the nondegeneracy condition (CNa) is met, but none of the conditions (CQn)b,
(TQn)b, (CQn)f , and (TQn)f is satisfied.

From Theorem 2.1 there exist a set of multipliers (p0, p, π, λ, μ) and functions (m0,m)

with π = 0, since ∇vΨ ≡ 0 and ν̄(2) = 1 < 2. Also, m0 ≡ 0 as the state constraint
does not depend on time, μ([0, 2]) = μ([0, 1]), and m(s) ∈ ∂>

x h(ȳ(0)) μ-a.e. yields
m(s) = (1, 0, 0) μ-a.e. in [0, 1]. By the adjoint equation it follows that the path (p0, p) =
(p0, p1, p2, p3) ≡ (p̄0, p̄1, p̄2, p̄3) is constant. From the transversality conditions

(p0, p1, p2, p3)(0) ∈ R × NT 1
0
(1, 0, 0),

−(q0, q1, q2, q3)(2) ∈ λ{(0,−1, 0, 0)} + R × NT 2
0
(0, 0, 0),

(57)

where q0 ≡ p̄0, and q(s) = (p̄1 +μ([0, 1]), p̄2, p̄3) for all s ∈]1, 2], we derive that p̄0 ∈ R,
p̄1 ≥ 0, p̄2 = p̄3 = 0, q1(2) = p̄1 + μ([0, 1]) = λ − α1 with α1 ≥ 0. The maximality
condition implies the relations

p̄0χ[0,1](s) = 0, −q1(s)χ]1,2](s) = 0, (58)

from which we deduce that p̄0 = 0 and p̄1 + μ([0, 1]) = λ − α1 = 0. Hence, recalling
that p̄1 ≥ 0, we get p̄1 = μ([0, 1]) = 0, λ = α1 ≥ 0. So, the strengthened non-
triviality condition ‖p‖L∞ + μ([0, 2]) + λ �= 0 implies that λ �= 0 and this shows that
(S̄, ω̄0, ω̄, ȳ0, ȳ, ν̄) is a normal extremal. Consequently, there is no infimum gap for the
‘normality test’ established in Theorem 4.1.

However, normality itself is only a sufficient condition to avoid the gap (even for systems
with drift, f ).

Example 5.3 Let us consider the problem in Example 5.2 where we only modify the initial-
point target T 1

0 , replacing it with T 1
0 := {(1, 0, 0)}. Then the extended sense process
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(S̄, ω̄0, ω̄, ȳ0, ȳ, ν̄) introduced in Example 5.1 is obviously still admissible and minimiz-
ing, but it is easy to see that the set of degenerate multipliers (p0, p, λ, μ) with p0 = p2 =
p3 = 0, p1 = −1, μ = δ{0}, and λ = 0 meets all the conditions of Theorem 2.1. So,
(S̄, ω̄0, ω̄, ȳ0, ȳ, ν̄) is an abnormal extremal. But there is no gap, because, for any n ∈ N,
the strict sense process (S̄, ω0

n, ωn, y
0
n, yn, νn), where

S̄ = 2, (ω0
n, ωn) =

(

1 − 1

n
,− 1

n
, 0

)

χ[0,1] +
(

1

n
,−1 + 1

n
, 0

)

χ]1,2] ,

and (y0
n, yn, νn) is the corresponding trajectory of the control system in Eq. 54 with initial

condition (y0, y, ν)(0) = (0, 1, 0, 0, 0), is feasible and minimizing for the original problem,
since it has cost equal to zero.

Appendix

Proof of Theorem 4.2 Thanks to Remark 4.6, when (CQn)b is in force the proof of Theo-
rem 4.2 is analogous to the proof of [25, Th. 4.2], while under assumption (CQn)f it requires
some adaptation. For this reason, we limit ourselves to give the proof in the last case.

By standard truncation and mollification arguments, we can assume h Lipschitz contin-
uous, with Lipschitz constant L > 0, and f , g1, . . . , gm, and their limiting subdifferentials
in (t, x), L∞-bounded by some constant M̃ > 0. Set M := (1 + m)M̃ .

By assumption, the local minimizer (S̄, ω̄0, ω̄, ᾱ, ȳ0, ȳ, ν̄) has a set of multipliers
(p0, p, π, λ, μ) and some functions (m0,m) such that the conditions (i)-(vi) of Theorem 2.1
hold true, and verifying the strengthened non-triviality condition (34). Let us first assume
that ȳ0(S̄) > ȳ0(0) and suppose by contradiction that

q(0) = 0, λ = 0. (59)

Set

s̄ := sup{s ∈ [0, S̄] : μ(]0, s]) = 0}.
Observe that s̄ < S̄. Indeed, if not, μ(]0, S̄]) = 0. But in this case q(s) = p(s) +
μ({0})m(0), so that it is absolutely continuous and by the adjoint equation with initial con-
dition q(0) = 0 it follows that q ≡ 0. Precisely, by known properties of the convex hull of
the limiting subdifferential of locally Lipschitz continuous functions (see e.g. [35, Ch. 6]),
we have

|q(s)| ≤
∫ s

0

∣
∣
∣
∣
dq

ds
(s)

∣
∣
∣
∣ ds ≤ M

∫ s

0
|q(s)| ds,

which implies that q ≡ 0 by Gronwall’s Lemma. Since λ = 0 by Eq. 59, this is in contradic-
tion with the first relation in Eq. 34. When ȳ0(S̄) = ȳ0(0) and we assume by contradiction
that

q0(0) = 0, q(0) = 0, λ = 0, (60)

the value s̄ defined as above is still strictly smaller than S̄, since otherwise μ(]0, S̄]) = 0, so
that (q0, q) ≡ 0, again by the adjoint equation. In view of Eq. 60, this yields contradiction
with the second relation in Eq. 34. Obviously, (ȳ0(s̄), ȳ(s̄)) ∈ ∂Ω .

From now on, the proof is the same for both cases. Introduce

(z0, z)(s) := (p0(s) + m0(0)μ({0}), p(s) + m(0)μ({0})) ,
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so that, for any s ∈ [0, S̄[,

(q0(s), q(s)) =
(

p0(s) +
∫

[0,s[
m0(σ )μ(dσ) , p(s) +

∫

[0,s[
m(σ)μ(dσ)

)

=
(

z0(s) +
∫

]0,s[
m0(σ )μ(dσ) , z(s) +

∫

]0,s[
m(σ)μ(dσ)

)

.

(61)

By the adjoint equation, (z0, z) verifies
⎧
⎨

⎩

−
(

dz0

ds
,
dz

ds

)

(s) ∈ co ∂t,x{q(s) · F̄ (s)} = co ∂t,x

{

z(s) · F̄ (s) +
∫

]0,s[
m(σ)μ(dσ) · F̄ (s)

}

z(0) = 0, (and z0(0) = 0, if ȳ0(S̄) = ȳ0(0)).
(62)

Since the integral on the right hand side is identically zero in ]0, s̄[, arguing as above we
derive that z(s) = 0 and therefore q(s) = 0 for all s ∈ [0, s̄[, by continuity. Moreover,
Gronwall’s Lemma implies that |z(s)| ≤ C μ([s̄, s[) for all s ∈ [s̄, S̄[, for some C > 0, so
that

|q(s)| ≤ |z(s)| + Lμ([s̄, s[) ≤ (C + L)μ([s̄, s[) ∀s ∈ [s̄, S̄[. (63)

As a consequence of Eq. 61, for every s ∈ [s̄, S̄] one gets q(s) = z(s) + ∫

[s̄,s[ m(σ)μ(dσ),
and Eqs. 62 and 63 imply

∣
∣
∣
∣q(s) −

∫

[s̄,s[
m(σ)μ(dσ)

∣
∣
∣
∣ ≤ M

∫ s

s̄

|q(σ )| dσ ≤ C̄ μ([s̄, s[)(s − s̄), (64)

where C̄ := M(L + C). In view of (CQn)′f in Remark 4.4, there exist ε, δ > 0 and a mea-

surable control (ω̃, α̂) : [0, S̄] → (C ∩ ∂B)×A, verifying for all (ξ0, ξ) ∈ ∂∗h(ȳ0(s), ȳ(s))

with s ∈]s̄, s̄ + ε[∩[0, S̄]:
ξ ·

(
F((ȳ0, ȳ, ω̂0, ω̂, α̂)(s′)) − F̄ (s′)

)
> δ, for a.e. s′ ∈ Γ (s̄, ε), (65)

where (ω̂0(s), ω̂(s), α̂(s)) := (
ω̄0(s), (1 − ω̄0(s))ω̃(s), α̂(s)

)
for a.e. s ∈ [0, S̄]. Observe

that, being ω̂0 ≡ ω̄0, one has |ω̂| = 1 − ω̄0 = |ω̄| a.e. As observed in Remark 4.6,
�(Γ (s̄, ε)) is > 0 for any ε > 0 sufficiently small. Moreover, Eq. 65 is valid for any
(ξ0, ξ) ∈ ∂Ch(ȳ0(s), ȳ(s)), so that it is true, in particular, for (ξ0, ξ) ∈ ∂>h(ȳ0(s), ȳ(s)).
On the other hand, by the maximization condition (11) of Theorem 2.1, it follows that, for
a.e. s ∈]s̄, s̄ + ε[∩[0, S̄],

q0(s)
(
ω̂0(s) − ω̄0(s)

) + π(|ω̂(s)| − |ω̄(s)|) + q(s)
[
F((ȳ0, ȳ, ω̂0, ω̂, α̂)(s)) − F̄ (s)

]

= q(s)
[
F((ȳ0, ȳ, ω̂0, ω̂, α̂)(s)) − F̄ (s)

] ≤ 0.
(66)

Putting together Eqs. 64, 65, and 66 we get the desired contradiction. Indeed, for ε > 0
small enough, for any s′ ∈ Γ (s̄, ε), one has

0 ≥ q(s′)
[
F((ȳ0, ȳ, ω̂0, ω̂, α̂)(s′)) − F̄ (s′)

]

=
(
q(s′) − ∫

[s̄,s′[ m(σ)μ(dσ) + ∫

[s̄,s′[ m(σ)μ(dσ)
) [

F((ȳ0, ȳ, ω̂0, ω̂, α̂)(s′)) − F̄ (s′)
]

≥ ∫

[s̄,s′[ m(σ)
[
F((ȳ0, ȳ, ω̂0, ω̂, α̂)(s′)) − F̄ (s′)

]
μ(dσ) − 2MC̄ μ([s̄, s′[)(s′ − s̄)

≥ μ([s̄, s′[) [δ − 2M C̄ (s′ − s̄)
]

> 0

for ε > 0 sufficiently small. This concludes the proof.

Proof of Proposition 4.3 The proof follows the same lines of the proof of [25, Prop. 4.1],
where however only condition (TQn)b for an implicit state constraint Ω ⊆ R

n is consid-
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ered. Let us prove (i). Assume by contradiction λ = 0. Then the transversality condition
(10) implies that

(−q0(S̄),−q(S̄)) = (ζt2 , ζx2) ∈ proj(t2,x2)
NT0(ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)),

where (ζt2 , ζx2) �= (0, 0) and, in particular, ζx2 �= 0 if ȳ0(S̄) > ȳ0(0) by Eq. 42. By
hypothesis (TQn)b, there is some ε > 0 such that (ȳ0(s), ȳ(s)) ∈ Int(Ω) for all s ∈ [S̄ −
ε, S̄[. Hence μ([S̄ − ε, S̄[) = 0, so that, for any s ∈]S̄ − ε, S̄[, (q0, q) is continuous at s and

(q0(s), q(s)) =
(
p0(s) +

∫

[0,S̄−ε]
m0(r)μ(dr) , p(s) +

∫

[0,S̄−ε]
m(r)μ(dr)

)
.

Set (q0(S̄
−), q(S̄−)) := lims→S̄−(q0(s), q(s)) = (p0, p)(S̄) + ∫

[0,S̄−ε](m0,m)(r)μ(dr).
We get

(q0(S̄
−), q(S̄−)) =

(
q0(S̄) − m0(S̄)μ({S̄}) , q(S̄) − m(S̄)μ({S̄})

)
= (−ζ̃t2 , −ζ̃x2),

where (ζ̃t2 , ζ̃x2) :=
(
ζt2 + μ({S̄})m0(S̄), ζx2 + μ({S̄})m(S̄)

)
. Thus, in particular, the pair

(ζ̃t2 , ζ̃x2) verifies

(ζ̃t2 , ζ̃x2) ∈ proj(t2,x2)
NT0(ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) + [0, +∞[·∂>h(ȳ0(S̄), ȳ(S̄)). (67)

The continuity of (q0, q) on ]S̄ − ε, S̄[ also implies that the equality (11) in the Maximum
Principle is verified for all s ∈]S̄ − ε, S̄[. Hence, passing to the limit in it as s tends to S̄−,
we obtain

(
ζ̃x2 · f (ȳ0(S̄), ȳ(S̄), a) + ζ̃t2

)
ω0 + ζ̃x2 ·

m∑

j=i

gj (ȳ
0(S̄), ȳ(S̄))ωj − π |ω| ≥ 0. (68)

Suppose first that condition (a) in (TQn)b is satisfied. Then, from Eq. 45 we deduce that
(ζ̃t2 , ζ̃x2) �= (0, 0) and choosing ω = 0 in Eq. 68 we obtain a contradiction to Eq. 46.

If instead condition (b) in (TQn)b is valid, π = 0 and Eq. 42 implies that ζx2 �= 0. In
view of Eq. 67 and hypothesis (47), this yields ζ̃x2 �= 0. At this point, we get a contradiction
to Eq. 48 by choosing ω0 = 0 in Eq. 68. The proof of (ii) is very similar, hence we omit
it.
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