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Even with sustained use of antiretroviral therapy (ART), HIV-infected individuals have an
increased risk of systemic comorbid conditions and oral pathologies, including
opportunistic infections, oral mucosal inflammation, and gingival and periodontal
diseases. The immune-mediated mechanisms that drive this increased risk, in the
context of sustained viral suppression, are unclear. HIV infection, even when controlled,
alters microbial communities contributing to a chronic low-grade inflammatory state that
underlies these non-HIV co-morbidities. The higher prevalence of dental caries, and
mucosal and periodontal inflammation reported in HIV-infected individuals on ART is often
associated with differentially abundant oral microbial communities, possibly leading to a
heightened susceptibility to inflammation. This mini-review highlights current gaps in
knowledge regarding the microbe-mediated oral mucosal immunity with HIV infection
while discussing opportunities for future research investigations and implementation of
novel approaches to elucidate these gaps. Interventions targeting both inflammation and
microbial diversity are needed to mitigate oral inflammation-related comorbidities,
particularly in HIV-infected individuals. More broadly, additional research is needed to
bolster general models of microbiome-mediated chronic immune activation and aid the
development of precise microbiota-targeted interventions to reverse or mitigate
adverse outcomes.
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INTRODUCTION

The impact of HIV infection on the immune system results in a high incidence of opportunistic
infections, cancers, and various end-organ manifestations (1), in ways that go well beyond the direct
effects of infection on target cells. Rapid loss of CD4+ T cells in the gut mucosa results in loss of
barrier integrity, with translocation of microbial products, including lipopolysaccharides (LPS) (2),
to the systemic circulation. Such products induce high levels of inflammation, which fuels further
org September 2021 | Volume 12 | Article 6766691
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HIV replication, and infers damage on end organs (2–6). While
this vicious circle has been documented in great detail in the gut
mucosa both in humans and in pathogenic models of SIV
infections in macaques (2), much less is known about the oral
mucosa, despite the occurrence of oral opportunistic infections,
cancers, and other oral manifestations of HIV infection. While
antiretroviral therapy (ART) partially restores CD4+ T-cell
counts, and can suppress HIV viremia at undetectable levels,
residual inflammation and disease manifestations continue to be
observed in persons living with HIV (PLWH), including oral
symptoms. The complex interplay between HIV and the immune
system has also important effects on the microbiome, in the gut
and orally, which itself may contribute to pathogenesis. Here, we
review what is known about this interplay, what knowledge is
lacking, and potential interventions and amelioration strategies.

Key interactions between microbiota and immune system
have been reported in infectious diseases, autoimmune
conditions, and cancer (7). Most of the existing research has,
however, been focused on the gut, providing evidence of an
altered gut microbiome in association with several diseases. In
contrast, little is known about oral mucosal immunity and
microbiota, particularly in PLWH. The prevalence of non-
communicable diseases, including caries (8–17), mucosal
inflammation (18), gingivitis (18–20), periodontal disease
(21–23), and oral mucosal inflammation in general (24, 25), is
higher in PLWH than in uninfected individuals, suggesting a
heightened susceptibility to multifactorial chronic inflammation
that would compromise the integrity of tooth-supporting tissues.
The disruption of host–microbe homeostasis in oral epithelial
tissues contributes to disease progression of gingival and
periodontal diseases. This disruption is marked by a shift in the
composition of the polymicrobial oral community to a dysbiotic
and often pathogenic community, which fuels hyperactivation of
the immune system and inflammatory conditions. The oral
mucosa directly links oral bacteria to the bone through the
teeth. The oral microbiome is complex involving several niches
in the oral cavity including the saliva, tongue, supragingival and
subgingival plaque, gingiva-crevicular fluid, buccal cavity, and
soft (mucosal) and hard tissues. Bacteria colonizing these distinct
niches are known to play a role in systemic inflammation and
periodontitis, but the process by which this occurs is not known
(26). The increased risk of periodontal disease in HIV-infected
adults (22) and growing evidence of increased gingival
inflammation in HIV-infected children (9, 19, 27–30) are likely
driven by an altered or weakened immune response to oral
commensals and pathogens.
IMPACT OF HIV INFECTION ON THE
INTESTINAL MUCOSA

HIV infection is characterized by disruption of the intestinal
immune barrier and microbial translocation of microbial
products leading to immune hyperactivation (31). When HIV
is transmitted via the gut mucosa, CD4+ T cells are lost in a short
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time span (2, 32). Among them, the IL-17 producing subset that
is known as Th17 is selectively infected and depleted (2–6). IL-17
exerts its activity on epithelial cells, which express its receptor,
eliciting several effects: 1) expression antimicrobial peptides
(AMPs), including ß-defensins, S100A8/9, and lipocalin; 2)
expression of cytokines and chemokines (to IL-6, G- and GM-
CSF, and IL-8), which induce inflammation and activate
neutrophils; and 3) tissue repair (33–35). Thus, IL-17
production, often in concomitance with IL-22, is a key
contributor to tissue homeostasis and response to infection
(36). If produced excessively, it can drive inflammation (37),
but defects in production (or blockade with antibodies in
therapy) lead to loss of mucosal integrity (34, 38). Loss of
mucosal integrity results in microbial translocation, with
bacterial products inducing a strong inflammatory response.
Parallel observations have been made in non-human primate
models infected with pathogenic SIV, while non-pathogenic SIV
does not cause loss of Th17 cells and associated events (2–4,
39–41).

Besides Th17 cells, other subsets of resident lymphocytes are
required for the maintenance of mucosal homeostasis (42, 43).
Among them, mucosal associated invariant T (MAIT) cells are
significantly decreased or dysfunctional in PLWH, and ART only
enables partial recovery of these subsets (44–51).

MAIT cells are a subset of innate-like T cells known to have
broad and potent antimicrobial activity in response to microbial
metabolites of vitamin B2 (52–54) and innate cytokines (IL-12
and IL-18) (55). Since these stimuli are reportedly elevated
following microbial translocation (56), microbial translocation
is hypothesized to directly contribute to the loss of circulating
MAIT cells by causing hyperactivation and exhaustion (57, 58).
Increased proliferation of MAIT cells (measured by Ki67) was
reported in macaques after infection with SIV or SHIV (51, 59).
While no MAIT depletion was observed in infected pigtail
macaques (59), decreased MAIT frequencies in peripheral
blood, mesenteric lymph nodes, and BAL of SIV-infected
rhesus macaques appeared to be caused by increased cell
turnover and were not the result of caspase 3-mediated
apoptosis (51). Factors impairing the maintenance of IL-17
secretion are also thought to contribute to the depletion of
MAIT cells and other IL-17-producing subsets in HIV chronic
infection (51).

Therefore, even early in HIV infection, mucosal immunity is
dramatically upended. Both physical and chemical barriers (such
as AMPs) are decreased. This upheaval is reflected also in the
composition of the microbiome, with dysbiosis, which itself
becomes a factor that might contribute to driving high levels of
inflammation. Inflammation, besides damaging organs and
systems, also drives HIV replication, establishing a vicious
circle of inflammation/damage/HIV replication (2–6, 39–41).
While early adoption of ART preserves to some degree mucosal
integrity, residual inflammation is observed even in PLWH
undergoing therapy (60–62).

While the rapid disappearance of gut Th17 cells in PLWH
is not clearly attributed to preferential HIV infection (2, 63, 64),
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it is very likely that microbial dysbiosis contributes significantly
to Th17 and MAIT cell perturbation. In fact, several components
of the intestinal microbiota influence cell-mediated immune
response and gut dysbiosis is known to alter the homeostasis
of intestinal MAIT and Th17 cells (43, 65–67). In HIV-infected
macaques, gut dysbiosis resulted in an altered Th17 profile even
in peripheral blood (68). Several studies suggest that PLWH have
a dysbiotic gut microbiome with enrichment of Proteobacteria,
Prevotella, Erysipelotrichaceae, and several pathobionts, and
depletion of bacteria such as Lactobacillales, Bacteriodes, and
short chain fatty acid (SCFA) producers, particularly in viremic
subjects (69, 70). However, the composition of the microbiome
of some ART-treated subjects was relatively similar to HIV
uninfected controls in some other studies (71–76). The
dysbiosis correlated with plasma levels of the inflammatory
cytokine IL-6, and with activation of the kynurenine pathway,
a known marker of disease progression (75). In particular, a
study of a group of subjects with long-term ART controlled
HIV infection showed gut microbiome dysbiosis with decreased
levels of beneficial butyrate-producing taxa; the dysbiosis was
associated with high levels of inflammation. Further, the gut
microbiome of the PLWH was enriched in Fusobacteria,
Lactobacillus, and Bifidobacteriales, which are typically
associated with oral microbiome, possibly suggesting a loss of
compartmentalization. Levels of Prevotella, although not
differentially present in PLWH, negatively correlated with
CD4+ T-cell counts (77). Dysbiosis could also be an outcome
of Th17 cell depletion in the context of HIV infection. AMPs,
which are produced when IL-17 binds to receptors on epithelial
cells, are a key component of innate immunity on mucosa.
They contribute to mucosal integrity, having co-evolved with
mucosal microbiome, protecting the host against pathogenic
infections (78, 79). Therefore, decreased production of IL-17
due to HIV infection is predicted to result in impaired
production of AMP, loss of mucosal integrity, and dysbiosis.
ORAL MICROBIOME IN HIV

While growing evidence suggests that in the ART era, PLWH
continue to experience oral inflammation-associated and/or
immunodeficiency-related infections (80), few studies in
comparison to the gut studies have comprehensively
characterized the oral microbiota in the context of HIV
exposure, infection, and treatment (26, 81–91). PLWH have
increased levels of oral mucosal inflammatory markers (92, 93),
as compared to HIV-uninfected subjects, suggesting likely
changes in the oral bacterial composition. Similar to the gut,
evidence suggests HIV infection impacts the composition of the
oral microbiome with differentially abundant taxa when
compared to uninfected populations; however, findings to date
are varied and inconsistent. Some studies found no significant
taxonomic differences (94–96), while others have reported
differentially abundant taxa (81, 83–85, 87, 89, 91, 97). For the
lingual microbiome, potentially pathogenic Veillonella,
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Prevotella, Megasphaera, and Campylobacter were enriched,
while Streptococcus sp. were depleted (82). Streptococcus
mutans, Lactobacillus, Candida, Haemophilus parahaemolyticus,
Actinomyces, Neisseria subflava (91), and Corynebacterium
diphtheriae (91) species were reported to be more abundant in
saliva of PLWH individuals (82, 95, 98, 99). Several studies have
observed a lower proportion of Streptococcus mitis in saliva of
PLWH compared to the uninfected (91, 95, 98). A study on HIV-
infected women found that in the infected group, the microbiome
had higher representation of Prevotella melaninogenica and
Rothia mucilaginosa (88). When compared to the perinatally
exposed but uninfected, subgingival plaque of HIV-infected
youth differed in abundance of disease-associated taxa (85).
While some studies showed differences in microbiome
compositions based on CD4 counts, the impact on other
immune status markers was not evaluated (86, 88, 89).

Although ART has been implicated as the driver of these
observed differences in the oral microbiome (87, 100), it is
increasingly hard to isolate the direct impact of HIV with
widespread availability of highly active ART. While data from
a number of studies suggest a bidirectional relationship between
pre-exposure prophylaxis (PrEP) and ART-specific regimens,
and the vaginal and intestinal microbiota (101–103), little
information is available with respect to the oral microbiome. A
recent study (103) suggests that ART, especially non-reverse
transcriptase inhibitors (NRTIs), have considerably more impact
on microbiota composition and diversity in the gut, leading to
dysbiosis, than in the oral cavity.

Patients with oral co-infections displayed lower abundance of
Veilonella parvula (81, 82), while ART was associated with
higher levels of Neisseria and Haemophilus. Recent 16S
analyses a strong relationship between salivary microbiota and
CD4 T cells in HIV-infected children, specifically a distinct oral
microbial community with HIV infection and low CD4 counts
(91). The abundance of Streptococcus and Lactobacillus
correlated positively with CD4 counts, and negatively with
viremia, suggesting an underlying protective effect of these taxa
(88). However, a study of alpha microbial diversity that
compared salivary and fecal microbiome in PLWH reported
microbiome changes associated with ART only in the fecal
microbiome (103). These inconsistencies highlight the need to
standardize sample collection protocols, sample type (i.e.,
mucosal swab, saliva, supra- or subgingival plaque) or other
experimental variables that may have biased the results (103).
Aging is another important factor that was associated with
increased intra-sample microbiome diversity regardless of HIV
status (94). Several host factors including genetics and immune
status play important roles in the colonization of pathogenic
bacteria and consequently contribute to disease outcomes (86),
and need to be considered when addressing this question.
Further, the impact of several other confounding factors
(including age, sex, dentition, oral hygiene, periodontal disease,
sex, salivary flow, body mass index, diet, cigarette smoking,
antibiotic use, and the type and site of specimen collection) is
an important point of consideration for future studies.
September 2021 | Volume 12 | Article 676669

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Coker et al. Microbe-Mediated Interactions with Immunity
While phylogenetic approaches such as 16S sequencing are
able to identify taxa that are unculturable within an ecological
framework, species/strain resolution is often poor and their
functional roles can only be inferred. Similarly, 16S studies do
not assess the composition of the mycobiome, that may interact
with, and influence, the microbiome (104). Results of a study that
assessed mycobiome and microbiome in smokers and non-
smokers. The study reported lower alpha diversity of the
mycobiome in HIV-infected smokers than HIV-infected non-
smokers, while richness of the microbiome in HIV-infected
smokers was less than that of uninfected smokers, suggesting
complex interactions between mycobiome and microbiome in
different health conditions (83). Whole genome metagenomics
allow for detailed investigations into oral microbial community
diversity (both intra- and inter-sample), composition and
function, yet there are few available studies regarding the
relationship between the function of the oral microbiota and
HIV. Therefore, additional studies are needed to clarify this
complexity. The synergistic impact of fungal involvement,
including Candidiasis, on the mucosa plays an important role
in mucosal immunity. This is particularly important as
candidiasis was one of the most common HIV-associated oral
lesions prior to HAART initiation and was often pathognomonic
for disease progression. Colonization of C. albicans and
C. dubliniensis are the most prominent taxa observed in high
abundance in saliva of HIV infected individuals. While incidence
of oral candidiasis typically declines after HAART initiation,
recent evidence suggests that the impact of HIV/HAART on the
mycobiome is modest but not more considerable than other
factors such as sex (105).

There is a dearth of studies focused on the gene expression and
metabolic function of the oral bacterial communities with HIV
infection. This is critical as recent evidence suggests significant
functional redundancy such that even if communities differ in
abundance, there is an inherent stability in ecologic function.
Bacteria of the oral microbiome release metabolites—lipids,
nucleic acids, polyuronic acids, proteins, and extracellular
polymeric substances and microbial production that serve
several functions. Worthy of note is the production of SCFA
and tryptophan. SCFA are immunomodulatory products that
have several effects on the oral epithelial barrier, and could
represent the link between the bacterial communities and the
immune system. Butyrate is a SCFA notorious in the oral
environment for its deleterious impact on the gingiva and
periodontium. Some potential mechanisms by which butyrate
elicits their effects include cell apoptosis and upregulation of
proinflammatory cytokines and modulation of the proteins in
intercellular junctions (106, 107). The activation of the
tryptophan metabolism pathway by the enzyme indoleamine
2,3 dioxygenase (IDO), which is expressed in macrophages and
dendritic cells, produces kynurenine and other metabolites,
which have immunomodulatory effects. The kynurenine/
tryptophan ratio (KTR) is considered a surrogate marker of
IDO activity, and is associated with immune activation (75,
108–114). Increased KTR have been consistently reported in
PLWH (75, 108–114).
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IMPACT OF HIV ON ORAL
MUCOSAL IMMUNITY

A predominant portion (~80%) of the oral cavity consists of
oral mucosal surfaces, therefore presenting an extensive area
for microbial attachment (115). Several research studies
have reported mucosal immune cell dysfunction and its
interaction with the oral microbiome, in the context of
various chronic inflammatory diseases (116, 117). However, to
our knowledge, none has comprehensively evaluated the
contribution of the oral microbiota to mucosal immune
perturbation in PLWH. Our understanding of the impact of
HIV on the distribution and function of immune cells in the oral
mucosa, the mechanism(s) for chronic oral inflammation and its
role in increasing the risk for oral diseases, is limited. While there
is growing evidence of a higher prevalence of oral disease in
PLWH (24, 25), it is unclear how HIV, even in the context of
suppressed viral replication, heightens susceptibility to oral
mucosal inflammation.

Secretory immunoglobulin A (SIgA) antibodies in saliva are
considered the first line of defense against pathogens present in
the oral cavity. SIgA and other salivary antimicrobial systems
also act against periodontopathic and cariogenic consortia by
limiting adherence of pathogens and pathobionts to the mucosa
(118, 119). These oral pathogens include the main cariogenic
agent—Streptococcus mutans. SIgA plays an important role
in the homeostasis of the oral microbiota as focus of much
research in the last two decades has been on the development
of a caries vaccine to stimulate induction of IgA responses
in saliva (120, 121). In HIV+ individuals, dysregulation of
CD4 T-follicular helper cell function greatly limits/impairs Ig
class switching in subepithelial B cells, which results in a
significant reduction of IgG and SIgA in mucosal fluids (122,
123). This decline may contribute to a perturbed composition of
mucosal microbiome and to the compromise of mucosal
barrier integrity.

As mentioned above, HIV infection disproportionately
affects Th17 cells (2, 6, 124) (Figure 1). Human b defensin 2
(hBD2) is not detectable in the oral mucosa of PLWH but is
robustly expressed in HIV-uninfected controls (125). This
defensin is of particular interest because it binds to CCR6,
a shared chemokine receptor expressed on Th17 and MAIT
cells (126). We also reported that hBD2 selectively protects
CCR6+ CD4 T cells from infection (127, 128). Therefore, AMP
could be at the center of the mechanism underlying the effects of
HIV infection on Th17 cells resulting in loss of mucosal integrity
and dysbiosis. Oral epithelial barrier function and mucosal
immunity clearly depends on interactions between commensal
microbiota and pathogens with toll-like receptors on epithelial
cells (129).

As observed in the gut, the expression of AMPs is lower in oral
mucosa of HIV-infected individuals undergoing ART, as
compared to HIV-seronegative controls (125). AMPs have been
shown to promote targeted killing of specific pathogenic taxa
(130), so with decreased levels, the immune system is further
compromised. This state of impaired innate immunity could
September 2021 | Volume 12 | Article 676669
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increase the risk of oral mucosal pathologies such as gingival and
periodontal inflammation. Microbial changes observed after ART
administration include decrease in salivary Aggregatibacter,
Prevotella, and Haemophilus which could in turn drive
pathogenesis or facilitate colonization of taxa that have been
implicated in periodontal disease (Porphyromonas, Prevotella
melaninogenica, Rothia mucilaginosa and Fusobacterium in
saliva, and Rothia dentocariosa, Fusobacterium, Streptococcus,
and Prevotella in plaque) (87, 103). As a keystone pathogen,
P. gingivalis impairs host immune responses and represents
a necessary but not sufficient microbe for development of
periodontitis. These taxa should be considered in the pursuit
of developing treatments to minimize HIV-associated
periodontal disease.

Studies focused on identifying early immunology and
microbiota differences that could lead PLWH to an increased
susceptibility to chronic inflammatory conditions are needed.
This data is highly relevant to human health, addressing the role
of the oral microbiota on immune cell response. By targeting
AMPs and specific immune cells, which are known drivers of
immunomodulation with established relevance and therapeutic
potential, there would be an improved understanding of how the
oral microbiota influences immune pathology, informing novel
interventions for a wide range of oral diseases including mucosal
infections and cancer.
Frontiers in Immunology | www.frontiersin.org 5
FUTURE INVESTIGATIONS AND
THERAPEUTIC APPROACHES

Our understanding of the interaction between oral microbiota
and oral mucosal immune cells is still evolving. Significant gaps
remain with respect to mechanisms of influence by microbiota
on immune homoeostasis, and vice versa. Given the bidirectional
relationship between oral microbiota and mucosal immunity
(97), understanding the functions of microbes involved in
influencing immune compartments, their physio-pathologic
consequences, and contribution to oral disease pathology is
essential to inform preventive and therapeutic approaches.
This complex relationship demonstrates a clear need for
continued investigation in both animal and human studies.
Investigating the interplay between immune cell subsets and
bacterial communities would inform strategies to improve and
facilitate mucosal homeostasis.

Studies aimed at identifying early immunological and
microbial features with the potential to increase the risk of
chronic inflammatory conditions in PLWH are needed. In
particular, understanding the interplay between oral
microbiota and mucosal immunity may identify targets with
therapeutic potential, thus informing novel interventions for a
wide range of oral diseases, including mucosal infections and
cancer. While there is evidence of SIgA in the oral mucosa with
FIGURE 1 | Potential immune perturbation affecting the oral mucosa in HIV-infected individuals/ PLWH. In healthy, uninfected individuals (left panel), Th17 cells,
MAIT cells, and neutrophils contribute to mucosal homeostasis by producing various soluble factors involved in mucosal integrity. Th17 and MAIT cells secrete IL-17,
a cytokine with antifungal and antibacterial function, which also acts on epithelial cells to induce secretion of antimicrobial peptides called human b defensins 1–3
(HBDs). Among them, HBD2 binds the receptor CCR6, expressed by Th17 and MAIT cells, with potential cytoprotective effects. Th17 cells also produce IL-22,
important for tissue repair, while neutrophils are responsible for the secretion of another class of antimicrobial peptides, the human a defensins or human neutrophil
peptides (HNPs). The antimicrobial peptides contribute to the homeostasis of the mucosal microbiome, promoting oral colonization of advantageous bacterial
species. In PLWH (right panel), a large number of Th17 cells in the gut mucosa are lost due to active infection. The number of MAIT cells also declines in peripheral
blood, possibly due to activation induced cell death. A decline in Th17 and MAIT cells may occur to some extent in the oral mucosa, leading to decreased levels of
IL-17, IL-22, and HBDs. This imbalance may contribute to increased inflammation and perturbed microbiome in the oral mucosa (dysbiosis), increasing the risk of
oral disease. The effects of antiretroviral therapy (cART) on oral inflammation and dysbiosis are unclear.
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HIV, its unique molecular properties and interactions with
pathogens and microbial metabolites should be incorporated in
further investigations of the oral mucosal immunity (131). The
specific impact of HIV on oral mucosal immunity has significant
implications for specific sub-groups and risk populations such at
sero-discordant couples, men who have sex with men (MSM),
the aging, and growing children and adolescents.

Given the gaps in knowledge, characterizing features and
functions of the oral microbiota associated with HIV infection
would bring us closer to understanding the interplay between the
oral microbiota and oral mucosal immunity. Multi-dimensional
and multi-parametric approaches are needed to investigate
microbe-mediated interactions as well as identify the microbial
properties and immune parameters key for oral mucosal
homeostasis. Such approaches will provide insight into how
the oral microbiota could be used to mitigate immune
perturbation in HIV.

Probiotic approaches to prevent oral diseases have been in
previously spotlighted. An example in caries disease treatment is
the displacement of native S. mutans strains with S. mutans
strains engineered to have low pathogenicity (132, 133). While
the results support the efficacy of these strains as anti-caries
probiotics, further studies in humans are required. Future high-
quality randomized controlled clinical trials that demonstrate the
efficacy of probiotics (134, 135), antimicrobial agents and
procedures on oral immune functions, will expand the current
paradigm focused on intestinal bacteria by comprehensively
studying microbe-mediated immune cell responses relative to
oral bacteria. Understanding how the interaction between
immune system and microbiota contributes to co-morbidities
would provide additional targets for intervention and drive the
success of future clinical trials. Research focused on bolstering
general models of microbiome-mediated chronic immune
activation and aiding the development of precise microbiota-
targeted interventions to reverse chronic inflammation are
needed. Cytological experiments and metagenome and
transcriptome analyses will further characterize the biological
processes and the molecular changes of specific oral bacteria.
Results from future research studies are likely to inform
preventive and therapeutic interventions. Interventions
targeting both inflammation and microbial diversity are needed
Frontiers in Immunology | www.frontiersin.org 6
to reduce the risk of oral inflammation-related comorbidities,
particularly in PLWH (84), high-risk populations such as MSM,
and even more critical in developmental phases in children
where appropriate immune training and maturation has far-
reaching complications (136).
CONCLUSION AND PERSPECTIVES

In this review, we have discussed the current status of research on
gut microbiome and HIV and reviewed recent advances in our
understanding of the interaction between the oral microbiota
and mucosal immune system in PLWH. Many studies of the oral
microbiota suggest that individual or singular pathogens are not
observed as differentially abundant in classic oral diseases such as
caries or periodontitis. Perturbations among relatively less-
abundant microbes appear to drive dysbiosis. Review of studies
highlight an altered pathological status of the microbial
communities and the immune systems even with ART.
However, much work is required for a clearer understanding
of the mechanisms of interaction between oral bacteria and
specific T-cell subsets and their function. Therefore, in the
future, it is important to focus our attention on the how to
approach therapeutically dysbiosis, and/or its metabolic/
inflammatory consequences, to ameliorate oral symptoms and
standard of living of PLWH.
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