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SUMMARY

Communication between organelles plays key roles
in cell biology. In particular, physical and functional
coupling of the endoplasmic reticulum (ER) andmito-
chondria is crucial for regulation of various physio-
logical and pathophysiological processes. Here, we
demonstrate that Presenilin 2 (PS2), mutations in
which underlie familial Alzheimer’s disease (FAD),
promotes ER-mitochondria coupling only in the pres-
ence of mitofusin 2 (Mfn2). PS2 is not necessary for
the antagonistic effect ofMfn2 on organelle coupling,
although its abundance can tune it. The two proteins
physically interact, whereas their homologues Mfn1
and PS1 are dispensable for this interplay. Moreover,
PS2 mutants associated with FAD are more effective
than the wild-type form in modulating ER-mitochon-
dria tethering because their binding to Mfn2 in mito-
chondria-associated membranes is favored. We
propose a revised model for ER-mitochondria inter-
action to account for these findings and discuss
possible implications for FAD pathogenesis.

INTRODUCTION

The communication between intracellular organelles and their

functional interplay at specific membrane contact sites have

acquired a marked importance in biological research. In partic-

ular, a continuous privileged relationship exists between the

endoplasmic reticulum (ER) and mitochondria, which is essen-

tial for several cell functions, such as lipid metabolism (Bionda

et al., 2004; Rusiñol et al., 1994; Vance, 1990), modulation of

Ca2+ signaling (Contreras et al., 2010; Pizzo et al., 2012), mito-

chondrial activity (Cárdenas et al., 2010; Glancy and Balaban,

2012) and shaping (Friedman et al., 2011; Korobova et al.,

2013), autophagy (Hamasaki et al., 2013; Westermann, 2010),

and cell survival and death (Bravo et al., 2011; Cárdenas

et al., 2010; Contreras et al., 2010; see also Hayashi et al.,
2226 Cell Reports 15, 2226–2238, June 7, 2016 ª 2016 The Author(s
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2009; Marchi et al., 2014; Rowland and Voeltz, 2012; and

Vance, 2014 for recent reviews).

Several proteins are believed to be involved in linking these

two organelles. In yeast, the ERMES complex physically tethers

ER and mitochondria membranes, and its absence results in the

dysfunctional phospholipid biosynthesis (Kornmann et al., 2009).

Mammalian homologs of the ERMES complex have not been

identified yet, but a similar function has been attributed to

mitofusin 2 (Mfn2), a mitochondrial and ER membrane protein

involved inmitochondrial fusion (Hoppins et al., 2007). According

to this view, Mfn2, at the level of the specific ER membrane

domains called mitochondria-associated membranes (MAMs),

makes homotypic interactions with mitochondrial Mfn2, as well

as hetero-complexes engaging its homolog Mfn1 on mitochon-

dria (de Brito and Scorrano, 2008). This model has been chal-

lenged, however, by a quantitative electron microscopy (EM)

analysis, showing that, in Mfn2�/� cells compared to wild-type

(WT), there is an increase (and not a decrease) in the number

of close contacts between the two organelles (Cosson et al.,

2012). Moreover, we (Filadi et al., 2015) and others (Li et al.,

2015; Wang et al., 2015) have presented multiple biochemical,

morphological, functional, and genetic data demonstrating that

Mfn2 acts as a tethering antagonist that prevents excessive

and potentially toxic proximity between the two organelles. In

mammalian cells, many proteins localize atMAMs and physically

interact with specific molecular partners (see Marchi et al., 2014,

andRaturi and Simmen, 2013, for reviews), but it remains unclear

whether these proteins are components of a single tether struc-

ture or whether they exist in separate complexes, not all directly

involved in the formation of ER-mitochondria physical bridges.

The two ubiquitous proteins presenilin 1 and 2 (PS1 and PS2),

whose mutations are causally linked to familial Alzheimer’s dis-

ease (FAD), also are enriched in MAMs (Area-Gomez et al.,

2009). PSs are essential components of the g-secretase com-

plex responsible for the production of b-amyloid (Ab) peptides,

which eventually accumulate into cerebral amyloid plaques

characterizing the disease (Goedert and Spillantini, 2006). The

g-secretase activity has been found in MAMs, leading to a local-

ized Ab production that could affect ER and mitochondrial func-

tions (Schreiner et al., 2015). Moreover, at the same intracellular
).
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location, we have described a different role for PS2 that is inde-

pendent from its g-secretase activity: PS2, but not PS1, modu-

lates ER-mitochondria tethering and Ca2+ crosstalk between

these organelles, with FAD-linked PS2 mutants more potent

than their WT counterpart in this function (Zampese et al., 2011).

Here we show that the PS2-favoring ER-mitochondria teth-

ering effect depends on Mfn2: in particular, PS2 is able to

increase ER-mitochondria juxtaposition, whereas its depletion

decreases this coupling, only in the presence of Mfn2. In

contrast, Mfn2 antagonizes ER-mitochondria tethering even in

the absence of PS2, although this effect is tuned by PS2 abun-

dance. Notably, the two proteins physically interact and their

homologs Mfn1 and PS1 are not engaged in this interplay.

Finally, we show that FAD-linked PS2mutants aremore enriched

in MAMs than the WT form and, thus, their binding to Mfn2 is

favored, resulting in a more potent modulation of ER-mitochon-

dria tethering. These effects are present not only in PS2-over-

expressing cells but also in human FAD fibroblasts that are

heterozygotes for the PS2-N141I mutation. These findings lead

to a revised model for ER-mitochondria tethering, revealing an

essential role for PS2 in cell physiology and suggesting an addi-

tional molecular mechanism through which FAD-PS2 mutations

can lead to the pathology of AD.

RESULTS

PS2 Needs Mfn2, but Not Mfn1, to Regulate
ER-Mitochondria Tethering
PS2, either WT or FAD mutant, is highly expressed at ER mem-

branes (Figure S1A), although its distribution is not homogeneous

and tends to form clusters, frequently corresponding to points in

which ER contacts mitochondria (white arrows, Figure S1A).

Interestingly, Pearson’s co-localization coefficient revealed a

tendency of FAD-PS2 mutant to better co-localize with mito-

chondria compared to WT protein (Figure S1B). Since one of

the major master regulators of ER-mitochondria tethering is

Mfn2 (de Brito and Scorrano, 2008), we investigated whether

the mechanism by which PS2 modulates ER-mitochondria

coupling (Kipanyula et al., 2012; Zampese et al., 2011) requires

the presence and/or the co-operation of Mfn2. This latter protein

has been suggested to play a key role in ER-mitochondria juxta-

position, although contrasting results on its role have been re-

ported. In particular, we and others (Cosson et al., 2012; Filadi

et al., 2015; Li et al., 2015; Wang et al., 2015) have demonstrated

thatMfn2 exerts a negative, and not a positive (deBrito andScor-

rano, 2008), effect on the coupling between these organelles.

ER-mitochondria contacts were evaluated by confocal micro-

scopy in mouse embryonic fibroblasts (MEFs), WT or knockout
Figure 1. PS2 Needs Mfn2 to Exert Its ER-Mitochondria Tethering Effe

(A and B) ER-mitochondria interactions in WT (A) and Mfn2�/� (B) MEFs upon c

microscopy. Scale bar, 10 mm. Here and in the following figures, highlighted b

mitochondria vicinity (white pixels) in the different conditions. Co-localization ind

entire single confocal images, are shown (right) for each condition. Mean ± SEM

(C and D) Representative (of at least five experiments) western blots of WT, Mfn2

(E and F) ER-mitochondria interactions in Mfn-DKOMEFs were quantified (E) for t

confocal images (F) of cells co-expressing mt-RFP and ER-GFP, imaged in three

perimeter profiles, and yellow pixels represent the points in which mitochondrial
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(KO) for Mfn2 (Mfn2�/�), co-transfected with the FAD-PS2-

T122R mutant (a PS2 mutant with particularly strong effects on

Ca2+ homeostasis and ER-mitochondria tethering [Zampese

et al., 2011; Zatti et al., 2006]), a mitochondria-targeted red

fluorescent protein (RFP) (mt-RFP), and an ER-targeted GFP

(ER-GFP; Figures 1A and 1B, left, and 1C). Multiple co-locali-

zation analyses (Manders’, Pearson’s correlation coefficients,

and coefficient R that determines the extent of mitochondrial

perimeter in contact with the ER [Filadi et al., 2015]; see also

the Experimental Procedures) revealed a significant increase in

ER-mitochondria co-localization upon FAD-PS2-T122R expres-

sion in WT, but not in Mfn2�/�, MEFs (Figures 1A and 1B, right).

The lack of the PS2-dependent potentiation of ER-mitochondria

coupling in Mfn2�/� MEFs is not due to clonal adaptation,

because it also was observed in MEFs deficient in both Mfn1

and Mfn2 (Mfn-double knockout [DKO] MEFs; Figures 1D and

1E). The ability of PS2 to potentiate ER-mitochondria coupling

was rescued only when Mfn2 was jointly re-expressed in Mfn-

DKO MEFs (Figure 1E). In these cells the extent of ER-mito-

chondria interaction was significantly decreased when Mfn2

was re-expressed alone (as it has been demonstrated previously

[Filadi et al., 2015]), but recovered upon Mfn2 and FAD-PS2

co-expression (Figures 1E and 1F). In these latter experiments,

in which Mfn2 re-expression induces marked changes in mito-

chondrial morphology, only the perimeter coefficient (R) was

calculated (see the Experimental Procedures). Indeed, as previ-

ously reported (Filadi et al., 2015), classical Manders’ and Pear-

son’s co-localization coefficients are useful tools whenever no

marked changes in ER/mitochondria morphology occur (as in

the case of PS2 expression); on the contrary, in the presence

of gross organelle morphology alterations (such as upon Mfn2

ablation/expression), they are prone to artifacts.

The above data were confirmed by quantitative EM analysis.

PS2overexpression increasedER-mitochondria tethering, visual-

ized by EM as an increase in close contacts between the two

organelles (distance % 15 nm), only in WT and not in Mfn2�/�

MEFs (Figure 2). Given the reported existence of different types

of ER-mitochondria contacts (Csordás et al., 2006; Filadi et al.,

2015),medial- (20–40nm) and long- (50–100nm) distance regions

of apposition between ER and mitochondria also were analyzed.

We found that, in WTMEFs, the first type of contacts are particu-

larly rare (<7% of mitochondria display a contact with the ER in

this range of distance, data not shown), while long-distance re-

gionsaremore frequent andusuallymoreextended than theclose

contacts (mean lengths were 250 and 100 nm, respectively), but

they were not modified by PS2 overexpression (Table S1).

BecauseMfn2�/� MEFs have more ER-mitochondria juxtapo-

sitions than WT MEFs (as we previously reported [Filadi et al.,
ct

o-expression of mt-RFP, ER-GFP, and PS2-T122R, as revealed by confocal

oxes show cellular zones at higher magnification to better visualize the ER-

exes, Pearson’s, Manders’, and the perimeter coefficient R, calculated from

; n = 24–40 cells, imaged in three independent experiments.
�/� (C), and Mfn-DKO (D) MEFs, transfected as indicated, are shown.

he indicated conditions by the coefficient R (mean ± SEM; n = 12–21 cells) from

independent experiments. Red pixels correspond to the whole mitochondrial

perimeter is in contact with the ER. Scale bar, 10 mm. Linked to Figure S1.



Figure 2. PS2-T122R Expression Increases ER-Mitochondria Close

Contacts Only in the Presence of Mfn2

(A and B) Representative EM images of WT (A) and Mfn2�/� (B) MEFs, ex-

pressing, or not (control), PS2-T122R (n = 3 independent experiments for each

condition). Scale bar, 0.5 mm. (A) Several close appositions (distance%15 nm,

red arrowheads) are visible between ER cisternae and mitochondria (m) in

control WT MEFs and, more frequently, in PS2-T122R-expressing cells. (B) In

Mfn2�/� MEFs, PS2-T122R expression does not increase the number of close

appositions. In these cells, ER membranes appear swollen. N, nucleus.

(C) Bars represent the average number of close contacts/mitochondrion (left)

and the average percentage of mitochondria with close contacts/cell (right)

observed in WT and Mfn2�/� MEFs expressing, or not, PS2-T122R (mean ±

SEM; n = 20–30 cells in three independent experiments).
2015] and confirm here; see coefficient R in Figures 1A, 1B, and

2C), we reasoned that the ER-mitochondria tethering effect of

PS2 could not be observed inMfn2�/�MEFs because the extent

of contacts that could be formed was somehow saturated. To

address this point, endogenous PS2 was silenced by specific

small interfering RNA (siRNA): whereas WT MEFs showed

decreased ER-mitochondria appositions (as previously shown

in other cell lines [Zampese et al., 2011]; Figure S2A), no effect
was observed inMfn2�/� MEFs (Figure S2B). Together these re-

sults demonstrate that PS2 needs Mfn2, not Mfn1, to modulate

ER-mitochondria tethering.

The Antagonistic Effect of Mfn2 on ER-Mitochondria
Tethering Is Modulated by PS2 Expression Levels
To investigate whether PS2 is needed for Mfn2-dependent ef-

fects on ER-mitochondrial tethering, the knockdown approach

was used, because Mfn2 overexpression in WT cells induces

marked mitochondria aggregation (Filadi et al., 2015) that even-

tually leads to mitochondrial dysfunction and cell death (Huang

et al., 2007; Rojo et al., 2002; Santel and Fuller, 2001). Mfn2

silencing increased ER-mitochondria apposition in MEFs defi-

cient in both PS1 and PS2 (PS-DKO [Brunello et al., 2009];

Figures S2D and S2E), as it did in WT cells (Filadi et al., 2015),

indicating that Mfn2 can inhibit coupling between these organ-

elles in the absence of PS2. However, quantitative EM revealed

that PS2 abundance can tune the Mfn2 activity as a tethering

inhibitor: Mfn2 silencing induced an increase in the number of

close contacts between ER andmitochondria in WTMEFs (Filadi

et al., 2015), but not in PS2-overexpressing MEFs (Figure S2C).

Moreover, inMfn2�/� MEFs, the antagonistic effect on ER-mito-

chondria tethering of Mfn2 re-expression (previously shown in

Filadi et al., 2015) was dampened by the concomitant expres-

sion of PS2-T122R (Figure S2F), further suggesting that the

two proteins may impinge on the same pathway that modulates

organelles’ tethering.

The ability of PS2 tomodulate ER-mitochondria tethering does

not rely on regulation of Mfn2 protein expression and stability.

Indeed, Figure S2G shows that Mfn2 turnover is not altered by

PS2 expression: upon protein synthesis inhibition, the amount

of Mfn2 over time was not significantly different in control and

PS2-T122R-expressing cells.

PS2 Modulates ER-Mitochondria Ca2+ Crosstalk Only in
the Presence of Mfn2
Conditions that increase ER-mitochondria apposition also

should favor Ca2+ transfer between the organelles, a process

that largely depends on the formation of Ca2+ hotspots on the

outer mitochondrial membrane (OMM) (Csordás et al., 2010;

Giacomello et al., 2010). In WT MEFs expressing cytosolic

(cyt-Aeq) or mitochondria-targeted aequorin (mit-Aeq), as Ca2+

probes, and PS2-T122R (Figures 3A and 3C), the amplitude of

cytosolic Ca2+ peaks in response to stimulation with ATP, an

IP3-generating agonist, is reduced compared to controls (Fig-

ures 3A, inset, and 3C, left), as previously shown (Brunello

et al., 2009; Zatti et al., 2006). However, as reported before

(Zampese et al., 2011), when the amplitude of cytosolic Ca2+

peaks of controls is reduced by a pre-depletion protocol (see

the Experimental Procedures) to match that of the FAD-PS2-

expressing cells, the mitochondrial Ca2+ peaks of the latter cells

are substantially increased (Figure 3A, red traces) compared

to those of pre-depleted controls (Figures 3A, blue traces, and

3C, right).

The potentiating PS2-T122R-mediated effect on ER-mito-

chondria Ca2+ transfer was maintained even when a different

experimental protocol to reduce the ER Ca2+ content of controls

was employed (Figures S3B and S3C; see the Experimental
Cell Reports 15, 2226–2238, June 7, 2016 2229



Figure 3. PS2 Modulates ER-Mitochondria Ca2+ Crosstalk Only in the Presence of Mfn2

Different MEFs (as indicated in each panel) were analyzed for cytosolic Ca2+ ([Ca2+]cyt) and mitochondrial Ca2+ ([Ca2+]mit) changes by cyt-Aeq and mit-Aeq,

respectively. Pre-depleted control cells were pre-incubated in a Ca2+-free, EGTA-containing medium for a fixed period of time so that they released similar

amounts of cytosolic Ca2+ as PS2-overexpressing cells.

(A and B) Representative cytosolic (inset) and mitochondrial Ca2+ traces in control (black), pre-depleted control (blue), and PS2-T122R-overexpressing (red) WT

(A) or Mfn2�/� (B) MEFs, bathed in Ca2+-free, EGTA-containing medium and challenged with ATP (where indicated by the arrow), are shown.

(C and D and F–H). Bars represent mean [Ca2+]cyt (left) and [Ca2+]mit (right) peaks upon ATP stimulation in the different conditions (mean ± SEM; n = 3–13

independent experiments per condition).

(E) Representative (n = 3 for each condition) western blot of WT and Mfn2�/� MEFs, transfected as indicated, is shown. Linked to Figures S2 and S3.
Procedures). Importantly, a similar ER Ca2+ content was present

in both PS2-T122R-expressing and pre-depleted control cells

(verified by measuring ATP-induced cytosolic Ca2+ release after

cell treatment with FCCP, thus blocking the possible buffering

effect due to mitochondrial Ca2+ uptake) (Figure S3A). Moreover,

neither Ca2+ influx through the plasma membrane (Figures S3D

and S3E) nor ionomycin-induced ER Ca2+ release (which does

not depend on the physiologically relevant ER channels; Figures

S3F and S3G) elicited significantly different mitochondrial Ca2+

peaks between PS2-T122R-expressing and control cells. Thus,

PS2-T122R expression does not affect the capacity and affinity

of the mitochondrial Ca2+ uptake machinery (as previously

demonstrated by Zampese et al., 2011) and the PS2-mediated

strengthening of ER-mitochondria Ca2+ transfer is specifically

due to an increased physical interaction between the two

organelles.

In contrast, FAD-PS2 expression in Mfn2�/� MEFs reduced

the ATP-induced cytosolic Ca2+ peaks (Figures 3B, inset, and

3D, left), as in WTMEFs, but did not potentiate the mitochondrial

Ca2+ peaks (Figures 3B and 3D, right). Similar results were ob-

tained expressing another FAD-PS2 mutant (N141I), which was

effective in WT MEFs and other cells (Zampese et al., 2011),

but not in Mfn2�/� MEFs (Figures S4A–S4C) and in MEFs defi-

cient for both Mfn1 and Mfn2 (Mfn-DKO MEFs) expressing

PS2-T122R (Figure S4D). The lack of effect of PS2-T122R on

mitochondrial Ca2+ uptake in Mfn-DKO MEFs was reversed by

Mfn2 re-expression (Figure S4E). In addition, ATP induced an in-

crease in the mitochondrial Ca2+ peak in Mfn-DKO MEFs when

PS2 was co-expressed with two Mfn2 mutants that were tar-
2230 Cell Reports 15, 2226–2238, June 7, 2016
geted to either the surface of mitochondria (Mfn2ActA) or the

ER (Mfn2IYFFT) (de Brito and Scorrano, 2008) (Figure S4F), but

not when PS2 was co-expressed only with mitochondria-tar-

geted Mfn2 (Figure S4G) or ER-targeted Mfn2 (Figure S4H).

Similar results were obtained with Mfn2�/� MEFs expressing

PS2-T122R and, respectively, only the mitochondria-targeted

Mfn2 (Figure S4I) or the ER-targetedMfn2 (Figure S4J). These re-

sults indicate that PS2 needs Mfn2, both in cis and in trans, to

exert its modulation on ER-mitochondria functional coupling

and that endogenous Mfn1 is dispensable. Indeed, Mfn1�/�

MEFs expressing PS2-T122R showed increased mitochondrial

Ca2+ peaks compared to pre-depleted controls (Figure S4K).

Note that the lack of PS2 effect on mitochondrial Ca2+ uptake

in Mfn2�/� MEFs (Figure 3D) was not due to the morphological

alterations of mitochondria induced by Mfn2 ablation, because

Mfn1�/� MEFs showed an even more pronounced organelle

fragmentation (Figure S4L). The PS2-dependent modulation of

ER-mitochondria coupling also is independent of other MAM-

associated proteins, such as DRP1 (Friedman et al., 2011; Fig-

ure S4M) or VDAC (Szabadkai et al., 2006; see below and

Figure S6E).

We have demonstrated previously that endogenous PS2 also

plays a constitutive role in modulating ER-mitochondria interplay

(Zampese et al., 2011). Knockdown of endogenous PS2 (Fig-

ure 3E) by siRNA did not affect ER-mitochondria Ca2+ crosstalk

in Mfn2�/� MEFs (Figure 3F) but decreased it in WT MEFs (Fig-

ure 3G). This result, in agreement with the morphological data

(Figures S2A and S2B), indicates that endogenous PS2 also con-

tributes to ER-mitochondrial juxtaposition, but only whenMfn2 is



Figure 4. Selective Binding of PS2 and Mfn2

(A–G) Mfn2�/� MEFs co-expressing Myc-Mfn2

and PS2 (WT or T122R) (A), Myc-Mfn2 and

PS2-D374-448 (B), Myc-PS2 WT and Mfn2 (C),

V5-PS1-A246E and Mfn2 (D), PS1 WT and

Myc-Mfn2 (E), and Myc-PS2 WT and either

Mfn2IYFFT (ER-Mfn2) or Mfn2ActA (mt-Mfn2) (F)

or both Mfn2 forms (G) were lysed and immu-

noprecipitated with different specific antibodies

(anti-Myc or anti-V5, as indicated in each

panel) or with irrelevant IgG, as a negative con-

trol (IgG CTRL�). Representative western blots

of precipitates (IP) and total lysates (input) pro-

bed with specific antibodies for the indicated

proteins are shown (n R 3 independent experi-

ments per condition). (A) Bars on right represent

the amounts of coIP PS2, either WT or T122R,

normalized to those of the corresponding IP

Mfn2. (B–G) At the bottom of each panel, the

percentages of the specific coIP protein (B, PS2

D374–448; C, D, F, and G, Mfn2; (E, PS1),

compared to its input, are reported (see the

Supplemental Experimental Procedures). ND,

not detectable. Linked to Figure S4.
also present. Indeed, when Mfn2 was re-expressed in Mfn2�/�

MEFs (Figure 3E), PS2 silencing decreased ER-mitochondria

Ca2+ transfer (Figure 3H). By a reciprocal approach, in MEFs

deficient in both PS1 and PS2 (PS-DKO), Mfn2 knockdown did

not affect cytosolic Ca2+ peaks but increased mitochondrial

Ca2+ peaks compared to controls (Figure S5A, in agreement

with the morphological data on ER-mitochondria physical teth-

ering [Figure S2E]), as previously described in different cell lines

(Filadi et al., 2015).

PS2 and Mfn2, but Not Their Homologs PS1 and Mfn1,
Physically Interact
Immunoprecipitation (IP) assays in Mfn2�/� MEFs (and in SH-

SY5Y cells; Figure S5B) expressing a Myc-tagged form of Mfn2

and either WT or mutated (T122R) PS2 (Figure 4A, left) indicated

that Myc-Mfn2 co-immunoprecipitates with the full-length form

of PS2 (and with higher efficiency in the presence of the mutated

PS2-T122R form compared to the WT counterpart; Figure 4A,

right). At lower molecular weights, a faint band corresponding to

theC-terminal fragment of PS2 (which originates after PSmatura-

tion and incorporation into the g-secretase complex [Haass and

DeStrooper, 1999]), alsowas revealed,whereas thePS2N-termi-

nal fragment (Haass and De Strooper, 1999) was never detected

(Figure S5B). Moreover, Myc-Mfn2 still co-immunoprecipitated a

truncated form of PS2 (PS2-D374–448; Figure 4B), lacking the

final part of its C terminus (Figure S5C), thus restricting the

Mfn2-interacting domain of PS2 to its large cytosolic loop.

BecausePS2-D374–448 contains also the loss-of-functionmuta-

tionD366A, the ability of PS2 to bindMfn2 is independent from its

enzymatic activity (as demonstrated for other Ca2+-related PS2

functions [Brunello et al., 2009; Zampese et al., 2011]).

By a reciprocal approach, in Mfn2�/� MEFs co-expressing

Mfn2 and Myc-PS2, IP of Myc-PS2 pulled down Mfn2, but not
another abundant OMM protein, Tom20 (Figure 4C). Moreover,

the PS2 homolog PS1, which has been suggested to contribute

to ER-mitochondria tethering in a fashion similar to PS2 (Area-

Gomez et al., 2012), did not interact with Mfn2 in our assay.

In Mfn2�/� MEFs overexpressing a tagged PS1 (V5-PS1), either

WT or FAD-PS1-A246E, and Myc-Mfn2, anti-V5 (Figure 4D) or

anti-Myc (Figure 4E) co-immunoprecipitations (coIPs) did not

pull downMfn2 or PS1, respectively. Moreover, inWT orMfn2�/�

MEFs co-expressing Mfn1 and PS2, PS2 did not immunoprecip-

itate Mfn1 (Figure S5D). Finally, the capability of endogenous

PS2 and Mfn2 to physically interact was confirmed by IP exper-

iments in crude mitochondrial fractions from mouse brain (see

below and Figure 6C). Because PS2 is an integral ER membrane

protein that is enriched in MAMs (Area-Gomez et al., 2009) and

Mfn2 also is present in this location (de Brito and Scorrano,

2008), the two proteins could interact both in cis and/or in trans.

IPs inMfn2�/� MEFs expressing Myc-PS2 WT and the two Mfn2

mutants that are targeted to either the OMM (Mfn2ActA) or to

ER membranes (Mfn2IYFFT) (de Brito and Scorrano, 2008)

showed that PS2 pulls down either proteins separately (Fig-

ure 4F), or together, when the three proteins were co-expressed

(Figure 4G).

The two proteins interact also in living cells: fluorescence re-

covery after photobleaching (FRAP) (Reits and Neefjes, 2001)

experiments showed that the mobility within ER membranes

of PS2 (but not of PS1) is modulated by Mfn2. Figure 5 shows

representative confocal images of a Mfn2�/� MEF expressing

CFP-PS2 (with a clear reticular ER pattern) before (Figure 5A)

and after photobleaching (Figures 5B and 5C) and repre-

sentative FRAP traces (Figures 5D–5F) of Mfn2�/� MEFs ex-

pressing CFP-PS1WT, CFP-PS2WT, or CFP-PS2-T122R alone

or together with Mfn2. While Mfn2 co-expression did not affect

fluorescence recovery of CFP-PS1WT (Figure 5D), in contrast it
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Figure 5. PS2, but Not PS1, Shows a

Reduced Mobile Fraction upon Mfn2

Expression

(A–C) Representative confocal images show a

Mfn2�/� MEF expressing CFP-PS2 before (A) and

after (B and C) photobleaching in the drawn region

of interest (ROI). Scale bar, 10 mm.

(D–F) Representative FRAP traces of CFP-

PS1WT- (D), CFP-PS2WT- (E), or CFP-PS2-

T122R- (F) expressing Mfn2�/� MEFs, with

(continuous trace) or without (dotted trace) co-

expression of Mfn2. Traces show fluorescence in-

tensities before and after photobleaching for the

indicated time. Fluorescence values were normal-

ized to prebleached ones and plotted over time.

(G–I) Bars represent mean values of the mobile

fraction of the indicated fluorescent protein (R) in

the presence or absence of WT Mfn2 (G and H)

or ER/mt-targeted Mfn2 (I). In (H), PS2 (WT or

T122R) was co-expressed with the chimeric fluo-

rescent protein GFP-sec61b. Mean ± SEM; n =

14–34 cells per condition, imaged in four inde-

pendent experiments.
significantly reduced that of CFP-PS2WT (Figure 5E) or CFP-

PS2-T122R (Figure 5F), with the greatest reduction for the latter.

Accordingly, the mobile fraction (R) of fluorescent PS2, but not

that of PS1, was reduced by Mfn2 co-expression, with PS2-

T122R being the most affected (Figure 5G). FRAP analysis of

cells expressing the chimeric ER protein GFP-sec61b (Shibata

et al., 2008) and PS2 (WT or T122R), with or without Mfn2, indi-

cated no significant difference in GFP-sec61b mobile fraction

(Figure 5H), suggesting that the PS2-Mfn2 interaction does

not alter ER membranes and its global membrane protein

mobility. Moreover, the expression of one of the two Mfn2 mu-

tants targeted to either the OMM (Mfn2ActA) or to ER mem-

branes (Mfn2IYFFT) (de Brito and Scorrano, 2008), together

with CFP-PS2-T122R (conditions that do not affect ER-mito-

chondria coupling; Figures S4G–S4J; Filadi et al., 2015) modi-

fied the mobility of CFP-PS2-T122R to a similar extent (Figure 5I)

as that induced by WT Mfn2 (Figure 5G). For all the different

conditions tested, the diffusion constant D (see the Experi-

mental Procedures) also was calculated but it was unchanged

(Table S2).

Altogether these findings exclude a possible PS2 mobility

interference due to differential organelles’ apposition, and they

suggest that the observed reduction in PS2 mobile fraction in

the presence of Mfn2 is due to their physical interaction.
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FAD-PS2 Accumulates in MAMs,
Favoring Its Binding to Mfn2
ER-mitochondria contacts are thought

to occur in MAMs. To verify whether the

different ER-mitochondria tethering effi-

cacy of WT and FAD-PS2 could depend

on their differential MAM localization, we

used brain homogenates from WT and

FAD-PS2 transgenic (Tg) mice (carrying

the PS2 mutation N141I [Kipanyula et al.,

2012]). PS2 was present both in the
generic ER/microsome fraction as well as in MAMs (Figure 6A).

PS2 appeared to be present in similar amounts in MAMs and mi-

crosomes of WT mice, but it was enriched 2.2-fold in MAMs of

FAD-PS2 Tg mice compared to total ERmembranes (Figure 6B).

In addition, Mfn2 immunoprecipitates from crude mitochondrial

fractions of Tg mice brains contained more PS2 than those

from WT mice (Figures 6C and 6D). This further suggests that

the PS2mutant is more enriched than theWT form in the fraction

of ER membranes that contaminates crude mitochondria (ER-

MAMs; visible also from the input lanes of Figure 6C), and thus

its binding to Mfn2 is favored.

ER-mitochondria tethering is likely not assured by a single

type of tether, and, if one structure is ablated, a compensatory

increase of anothermay occur. The IP3R/GRP75/VDAC complex

has been suggested to contribute to ER-mitochondria coupling

(Szabadkai et al., 2006). Thus, another way through which PS2

increases ER-mitochondria tethering could be by promoting

IP3R/GRP75/VDAC complex formation. However, the expres-

sion levels of the three proteins in MEF cells were not affected

by PS2-T122R expression or Mfn2 ablation (Figures S6A and

S6B). Moreover, GRP75 and VDAC1 levels in the MAM fractions

of PS2-N141I Tg mice brains were comparable to those of WT

mice (Figure 6E). Furthermore, PS2-T122R expression in WT

MEFs or Mfn2 ablation slightly reduced the IP3R3-mediated



Figure 6. PS2 and Mfn2 Are Enriched in

Brain MAMs of FAD-PS2N141I Tg Mice

(A) Representative western blot of the indicated

proteins in brain subcellular fractions (35 mg/lane)

from WT and FAD-PS2-N141I Tg mice is shown

(n = 4 western blots of three independent prepa-

rations). Tot. lysate, total brain homogenates;

ER/micr., microsomes; MAM, mitochondria-asso-

ciated membranes; Mito, pure mitochondria.

Markers for subcellular fractions are as follows:

STIM1 and CRT (ER), GRP75 and VDAC1 (MAM/

mitochondria), and COX-IV (mitochondria).

(B) Bars represent relative fold increase, compared

to total brain homogenates, of PS2 abundance in

ER and MAM fractions of WT and PS2-N141I Tg

mice (mean ± SEM; n = 4 independent experi-

ments).

(C) Representative (n = 4) western blot of crude

mitochondrial fractions from brains of WT and

FAD-PS2-N141I Tg mice immunoprecipitated with

Mfn2-specific antibodies, or with irrelevant IgG as

a negative control (IgG CTRL�). Precipitated (IP)

and total crudemitochondrial fractions (input) were

probed with PS2-specific antibodies.

(D) Bars represent relative fold increase, compared

to WT, of PS2 abundance co-precipitated with

Mfn2 in crude mitochondrial fractions from brain of

PS2-N141I Tg mice, in experiments as in (C) (mean

± SEM; n = 4 independent experiments from three

independent preparations).

(E) Bars represent relative fold increase, compared

to WT, of GRP75 (left) or VDAC1 (right) abundance

in total lysate or MAM fraction obtained from FAD-

PS2-N141I Tg mice brains, as in (A) (mean ± SEM;

n = 4). Linked to Figure S5.
GRP75 coIP (Figures S6C and S6D), suggesting that neither PS2

expression nor Mfn2 ablation increased IP3R3-GRP75 interac-

tion. Finally, in MEF cells KO for VDAC 1 and 3 (VDAC1/3�/�

MEFs [Chiara et al., 2008]), the functional potentiating effect of

PS2-T122R on ER-mitochondria Ca2+ transfer was still observed

(Figure S6E), further suggesting a marginal role for the IP3R/

GRP75/VDAC complex in the PS2 effect here investigated.

Human FAD-PS2 Fibroblasts Show Increased
ER-Mitochondria Tethering and Ca2+ Crosstalk
It could be argued that the present findings and those obtained

in previous works (Kipanyula et al., 2012; Zampese et al.,

2011) have been obtained mainly in PS2-overexpressing cells.

To address this criticism, Ca2+ responses were analyzed in

human fibroblasts from a FAD patient carrying the PS2-N141I
Cell
mutation and a healthy control (matched

for age and sex) expressing cytosolic or

mitochondria-targeted aequorin (typical

experiment shown in Figure 7A). Upon

stimulation with the IP3-generating

agonist bradykinin, FAD-PS2 fibroblasts

showed reduced cytosolic and mito-

chondrial Ca2+ peaks compared to con-

trols. When the amplitude of cytosolic

Ca2+ peaks in control fibroblasts was
reduced to match that of FAD-PS2 fibroblasts, the mitochon-

drial Ca2+ peaks in the latter were larger than those of pre-

depleted controls (Figure 7B). As shown in other cell types

(Zampese et al., 2011), the increased mitochondrial Ca2+ peaks

were not due to a direct effect of FAD-PS2 on the mitochondrial

Ca2+ uptake machinery, because control and FAD-PS2 fibro-

blasts showed comparable [Ca2+]m increases upon permeabi-

lization and perfusion with different intracellular-like media at

fixed Ca2+ concentrations (Figure 7C). Similar results were ob-

tained measuring cytosolic and mitochondrial Ca2+ peaks in

single cells by two GFP-based Ca2+ indicators (Figure 7D):

the mitochondrial 4mtD1cpv and the nuclear H2BD1cpv (as a

surrogate to monitor cytosolic Ca2+ [Giacomello et al., 2010;

Zampese et al., 2011]). For increases in nuclear Ca2+ in the

same range (0.2–0.55 nucDR/R0), the mitochondrial responses
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Figure 7. FAD-PS2 Human Fibroblasts

Show Increased ER-Mitochondria Coupling

(A) Representative cytosolic (inset) and mitochon-

drial Ca2+ traces in control (black), pre-depleted

control (blue), and FAD-PS2-N141I (red) fibro-

blasts, bathed in Ca2+-free, EGTA-containing

medium and challenged with 100 nM BK (where

indicated by the arrow), are shown.

(B) Bars representmean [Ca2+]cyt (left) and [Ca2+]mit

(right) peaks upon stimulation in the different

conditions (mean ± SEM; n = 4–14 independent

experiments).

(C) Bars represent mean [Ca2+]mit peaks in control

and FAD-PS2-N141I fibroblasts expressing mit-

Aeq upon cell permeabilization and perfusion

with the indicated [CaCl2] (see the Experimental

Procedures; mean ± SEM; n = 4 independent ex-

periments).

(D) [Ca2+]mit and nuclear Ca2+ ([Ca2+]nuc) peaks in

single control and FAD fibroblasts, as revealed by

specific cameleon Ca2+ probes. Fibroblasts co-

expressing H2BD1cpv and 4mtD1cpv (inset) were

stimulated as described in (A). The increase in

[Ca2+]mit (mitochondrial DR/R0) is plotted as a

function of the corresponding increase in [Ca2+]nuc
(nuclear DR/R0) in the same cell. Each symbol

represents one cell; cells were imaged in three

independent experiments.

(E) Plot of the ratio between mitochondrial and

nuclear peak values is shown, measured as

described in (D) within the nuclear 0.2–0.55 DR/R0

interval in control and FAD-PS2 fibroblasts (n = 21

FAD cells and 15 control cells imaged in three in-

dependent experiments; mean ± SEM).

(F) Representative confocal images of control

and FAD-PS2-N141I fibroblasts co-expressing

mt-RFP and ER-GFP. White pixels indicates ER-

mitochondria co-localization. Scale bar, 10 mm.

(G) Overlapping surface area (OSA) or perim-

eter coefficient (R) quantification is shown,

calculated from single confocal images as in

(F), for mt-RFP/ER-GFP (left and middle) or

TOM20/CRT immunofluorescence (right) (mean ±

SEM; n = 44–63 fibroblasts expressing mt-RFP/

ER-GFP, imaged in four independent experi-

ments; n = 23–28 cells stained by immunofluo-

rescence, imaged in three independent experi-

ments).

(H) Bars represent co-localization indexes (Pear-

son’s and Manders’), calculated from entire single

confocal images as in (F), for control and FAD-

PS2-N141I fibroblasts (mean ± SEM).

(I) Representative (n = 3 for each condition) west-

ern blot of protein lysates from control and FAD-

PS2-N141I fibroblasts is shown, transfected as

indicated and probed with specific antibodies for

the indicated proteins.

(J) Plot of the ratio between mitochondrial and

nuclear Ca2+ peak values is shown, upon BK

stimulation, measured as described in (E) in

control and FAD-PS2 fibroblasts transfected with

scramble (scr-siRNA) or Mfn2-specific (Mfn2-

siRNA) siRNAs (n = 12–16 cells for each condi-

tions imaged in three independent experiments;

mean ± SEM).

(K) Perimeter coefficient (R) quantification is shown, calculated from single confocal images as in (F), for mt-RFP/ER-GFP in control and FAD-PS2 fibroblasts

transfected as in (J) (mean ± SEM; n = 15–21 cells for each condition, imaged in three independent experiments).
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of FAD-PS2 fibroblasts were significantly larger than those of

control fibroblasts (Figure 7E).

As in FAD-PS2-overexpressing cells (Zampese et al., 2011)

and neurons from FAD-PS2 Tg mice (Kipanyula et al., 2012),

in human FAD-PS2 fibroblasts expressing a mt-RFP and

an ER-GFP (Figure 7F), different co-localization coefficients

(see the Experimental Procedures) were significantly increased

compared to controls (Figures 7G, left, and 7H), indicating closer

interactions between mitochondria and ER that could account

for the different efficacy of ER-mitochondria Ca2+ crosstalk.

Similar results were obtained measuring the signal co-localiza-

tion of two immunolabelled endogenous markers, the ER protein

calreticulin and the mitochondrial protein Tom20 (Figure 7G,

right).

Importantly, also in human FAD-PS2 fibroblasts, the rein-

forcing effect on ER-mitochondria coupling depends on the

presence of Mfn2: upon Mfn2 knockdown by specific siRNA

(Figure 7I), the potentiating effect of FAD-PS2-N141I mutant on

Ca2+ transfer between ER and mitochondria (Figure 7J), as well

as on their physical apposition (Figure 7K), was dampened,

and no significant difference between control and FAD-PS2-

N141I fibroblasts was observed.

DISCUSSION

The correct organization and the dynamic interactions between

ER and mitochondria, and especially their Ca2+ crosstalk, coor-

dinate and modulate key aspects of cell physiology, death, and

survival (Contreras et al., 2010; de Brito and Scorrano, 2010;

Filadi et al., 2012). We have described that PS2, but not PS1,

is able to modulate ER-mitochondria coupling (Zampese et al.,

2011), although the molecular mechanism of this phenomenon

has not been clarified yet. By crossed genetic complementation

and ablation experiments, we here show that, in order to modu-

late ER-mitochondria coupling, PS2 requires the expression of

Mfn2. Functional and biochemical evidence indicates that PS2

(WT and FAD), by interacting, likely via its big cytosolic loop,

with Mfn2 at both sides of MAM domains, induces an increase

of ER-mitochondria vicinity and favors their Ca2+ transfer. In

contrast, PS1 and Mfn1 (as well as other mitochondria-associ-

ated proteins, such as DRP1 and VDAC) are not involved in

this interplay of molecules/organelles.

Although PS2 and Mfn2 work in tandem to modulate ER-mito-

chondria coupling, for other cellular functions, the two proteins

are independent. The previously described PS2 effect on ER

Ca2+ content (Brunello et al., 2009; Giacomello et al., 2005; Zatti

et al., 2004, 2006), for example, is Mfn2 independent, and it is

more strongly affected when PS2 is not engaged in Mfn2 bind-

ing, such as in Mfn2�/� MEFs. Along the same line, the Mfn-

mediated effect onmitochondria fusion (Chen et al., 2003) seems

to be PS2 independent. Thus, both proteins show distinct and

multiple roles, some similar to those exerted also by their homo-

log proteins (PS1 and Mfn1, respectively) and others completely

divergent.

Our findings shed insight into the key issue of ER-mitochon-

dria connection and the mechanism of their juxtaposition.

Although the molecular composition of the tethering structures

in mammals remains elusive, the present data provide important
information. In addition to the demonstration that Mfn2 does not

play a positive role in the formation of tethering complexes, as

the close apposition between the two organelles is conserved,

and actually increased, upon Mfn2 ablation/depletion (Cosson

et al., 2012; Filadi et al., 2015; Li et al., 2015; Wang et al.,

2015), we show that the PS2 ability to enforce organelles’

coupling is strictly Mfn2 dependent, whereas the protein works

independently of the IP3R/GRP75/VDAC complex. On the con-

trary, Mfn2 is able to exert its inhibitory activity on tethering

even in the absence of PS2, although the abundance of the latter

modulates this outcome.

Based on these experimental data, we propose a revised

model for ER-mitochondria juxtaposition, in which increased

tethering between the two organelles is caused either by Mfn2

depletion or by its binding to PS2 (or potentially other proteins

capable of physically interacting withMfn2) that, by sequestering

it both in cis and in trans, removes Mfn2 inhibition at both OMM

and ER membranes and allows the different molecular compo-

nents to assemble and build the functional tether (Figure S7).

Notably, our data indicate that the simultaneous presence of

Mfn2 on both ER and mitochondria is necessary to impair ER-

mitochondria juxtaposition, suggesting that the proper assembly

of tether structures can be efficiently inhibited only when both ER

and mitochondrial components are blocked by Mfn2. Whether

PS2 is also one of the molecules forming the tether complex or

if it works as a pure bait for the stumbling block Mfn2 remains

to be investigated; however, our FRAP data suggest this latter

explanation to be the most likely. Indeed, the mobility of CFP-

PS2 in living cells is equally altered by the presence of WT

Mfn2 (which decreases ER-mitochondria tethering) or its forms

individually expressed only on the ER or mitochondria mem-

branes (which are not able to modify organelles’ tethering),

thus suggesting that PS2 likely binds only to Mfn2 and not to

tether structures.

In addition to the above-described role, PS2, when mutated,

is responsible for FAD. We here demonstrate that, in human

fibroblasts bearing the PS2-N141I mutation, ER-mitochondria

coupling is increased compared to controls. From the mecha-

nistic point of view, the most important finding is that this feature

is similarly affected by FAD-PS2, both quantitatively and qualita-

tively, in transiently or stably overexpressing AD models (Kipa-

nyula et al., 2012; Zampese et al., 2011) and in cells from an

FAD patient.

Concerning the molecular mechanism through which FAD-

linked PS2 mutants are more efficient than their WT counterpart

at modulating ER-mitochondria coupling, our results indicate

that both WT and FAD-PS2 bind to Mfn2 and need its presence

to increase the tethering. However, while IP and FRAP experi-

ments exclude a possible interaction with PS1, our data show

that FAD-PS2 mutants are more enriched in MAMs than the

WT form, bind more Mfn2 by interacting with it both in cis and

in trans, and thus form more PS2-Mfn2 complexes. These latter

are critical for releasing the stumbling block exerted by Mfn2

on different molecular components, facilitating the formation of

ER-mitochondria tether structures (Figure S7).

The mechanism by which FAD mutants preferentially localize

inMAMswithin ERmembranes, compared to theWT form,might

be multiple, such as PS2 conformation (full-length or processed
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form), differential post-translational protein modifications (for

example, palmitoylation or ubiquitination, as shown for other

MAM proteins [Lynes et al., 2012; Sugiura et al., 2013]), or inter-

actions with other anchor molecules. Additional investigation is

required to clarify this point.

Froma functional point of view, the increasedER-mitochondria

coupling induced by FAD-PS2 expression could have different

and important consequences. For example, the strengthened

organelles’ Ca2+ crosstalk, under certain conditions and over

long periods of time, may alter bioenergetics functions and/or

increase mitochondria-dependent cell death (Contreras et al.,

2010; Pizzo et al., 2012). Moreover, ER-mitochondria interplay

can influence mitochondrial network shaping and dynamics

(Friedman et al., 2011; Korobova et al., 2013), as well as neuronal

organelle transport (Chang et al., 2011; MacAskill and Kittler,

2010). Indeed, an alteration in MAM composition (Hedskog

et al., 2013) and a variety of mitochondrial dysfunctions, such

as unbalanced fission and fusion (Wang et al., 2009), metabolic

defects (Swerdlow et al., 2010), or altered organelle distribution

in neurons (Su et al., 2010), have been described in AD, as well

as in normal brain aging (Lin and Beal, 2006; Toescu and Verkh-

ratsky, 2004).

Thus, in the case of AD-linked PS2 mutants, ER-mitochondria

interplay and organelles’ alterationsmay represent a direct effect

of the mutated protein, and, accordingly, these forms of FAD

may be included, together with Parkinson’s disease (Haelterman

et al., 2014), amyotrophic lateral sclerosis (Stoica et al., 2014),

and Huntington’s disease (Chakraborty et al., 2014), in the

long list of neurological disorders withmodified ER-mitochondria

connections and primary mitochondrial dysfunctions (Calı̀ et al.,

2012; Celsi et al., 2009).

EXPERIMENTAL PROCEDURES

Animal Handling and Care

The transgenic mouse line PS2.30H (expressing PS2-N141I) was kindly

donated by Dr. L. Ozmen (F. Hoffmann-La Roche). It has the background strain

of C57BL/6 mice, which was used as a WT control and was purchased from

Charles River. All procedures were carried out in strict adherence to the Italian

regulations on animal protection and care and with the explicit approval of the

local veterinary authority (CEASA no. 56880).

Cell Culture, Plasmids, and Transfection

Different cell types (human fibroblasts, MEFs, and SH-SY5Y) were grown and

transfected with the indicated plasmids, as detailed in the Supplemental

Experimental Procedures.

Confocal Analysis and FRAP Experiments

Cells expressing different fluorescent proteins were imaged with a Leica SP5

confocal system (DM IRE2). Co-localization and FRAP analysis were per-

formed as detailed in the Supplemental Experimental Procedures.

EM Analysis

Conventional EM was carried out as described in the Supplemental Experi-

mental Procedures using a Fei Tecnai 12 BioTwin Spirit transmission electron

microscope.

Ca2+ Measurements and Fluorescence Imaging

MEFs and human fibroblasts expressing either aequorin Ca2+ probes or Ca2+

fluorescent probes (H2BD1cpv, 4mtD1cpv, and ERD4) were analyzed as pre-

viously described (Zampese et al., 2011) and detailed in the Supplemental

Experimental Procedures.
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Subcellular Fractionation, Preparation of Protein Extracts, IP Assay,

and Western Blot Analysis

For subcellular fractionation, mouse brains from adult C57B6/J WT or FAD-

PS2-N141I Tg mice (Kipanyula et al., 2012) were homogenized using a Teflon

pestle. The different fractions were obtained from the homogenate essentially

as detailed in the Supplemental Experimental Procedures.

For conventional western blot analysis, 35 mg protein extracts prepared as

described in the Supplemental Experimental Procedures were loaded onto

polyacrylamide gels (10%–12%) and immunoblotted with specific antibodies.

For IP, cellswere harvested andsolubilized inmodified radio-immunoprecip-

itation assay (RIPA) buffer (see the Supplemental Experimental Procedures),

and 300 mg protein extracts were incubated with the indicated antibodies

on a rocker platform at 4�C as detailed in the Supplemental Experimental

Procedures.

Materials

All the materials were purchased from Sigma-Aldrich, except ionomycin

(Calbiochem) and restriction/modification enzymes (New England Biolabs).

Statistical Analysis

All data are representative of at least three different experiments. Data

were analyzed with Origin 7.5 SR5 (OriginLab) and ImageJ (NIH). Numerical

values presented throughout the text refer to mean ± SEM (n = number of

independent experiments or cells; *p < 0.05, **p < 0.01, and ***p < 0.001,

unpaired Student’s t test for normally distributed data or Wilcoxon rank-

sum test).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2016.05.013.
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