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ABSTRACT

Metabolic disorders in early lactation have nega-
tive effects on dairy cow health and farm profitability. 
One method for monitoring the metabolic status of 
cows is metabolic profiling, which uses associations 
between the concentrations of several metabolites in 
serum and the presence of metabolic disorders. In this 
cross-sectional study, we investigated the use of mid-
infrared (MIR) spectroscopy of milk for predicting the 
concentrations of these metabolites in serum. Between 
July and October 2017, serum samples were taken from 
773 early-lactation Holstein Friesian cows located on 4 
farms in the Gippsland region of southeastern Victo-
ria, Australia, on the same day as milk recording. The 
concentrations in sera of β-hydroxybutyrate (BHB), 
fatty acids, urea, Ca, Mg, albumin, and globulins 
were measured by a commercial diagnostic labora-
tory. Optimal concentration ranges for each of the 7 
metabolites were obtained from the literature. Animals 
were classified as being either affected or unaffected 
with metabolic disturbances based on these ranges. 
Milk samples were analyzed by MIR spectroscopy. The 
relationships between serum metabolite concentrations 
and MIR spectra were investigated using partial least 
squares regression. Partial least squares discriminant 
analyses (PLS-DA) were used to classify animals as be-
ing affected or not affected with metabolic disorders. 
Calibration equations were constructed using data 
from a randomly selected subset of cows (n = 579). 
Data from the remaining cows (n = 194) were used 
for validation. The coefficient of determination (R2) 
of serum BHB, fatty acids, and urea predictions were 
0.48, 0.61, and 0.90, respectively. Predictions of Ca, 
Mg, albumin, and globulin concentrations were poor 
(0.06 ≤ R2 ≤ 0.17). The PLS-DA models could predict 
elevated fatty acid and urea concentrations with an ac-

curacy of approximately 77 and 94%, respectively. A 
second independent validation data set was assembled 
in March 2018, comprising blood and milk samples 
taken from 105 autumn-calving cows of various breeds. 
The accuracies of BHB and fatty acid predictions were 
similar to those obtained using the first validation data 
set. The PLS-DA results were difficult to interpret due 
to the low prevalence of metabolic disorders in the data 
set. Our results demonstrate that MIR spectroscopy of 
milk shows promise for predicting the concentration of 
BHB, fatty acids, and urea in serum; however, more 
data are needed to improve prediction accuracies.
Key words: mid-infrared spectral prediction, metabolic 
profile, ketosis, energy balance

INTRODUCTION

Metabolic disorders in early lactation have signifi-
cant negative effects on dairy cow health and welfare 
as well as farm profitability (Suthar et al., 2013; McArt 
et al., 2015). The most commonly described metabolic 
disorders are ketosis, hypocalcemia, and hypomagne-
semia. Subclinical metabolic disorders, which are not 
associated with obvious clinical signs, are of particular 
interest due to their relatively high prevalence and 
significant effects on animal welfare and performance 
(Macrae et al., 2006; McArt et al., 2012; Suthar et al., 
2013). Identification of subclinical disorders can also 
allow for timely management interventions to prevent 
the development of clinical disease.

One way of monitoring the metabolic health and nu-
tritional status of dairy cows is serum metabolic profile 
testing, which employs well-established epidemiological 
associations between the concentrations of several me-
tabolites in serum and the presence of both subclinical 
and clinical metabolic disorders (Payne et al., 1970; 
Ospina et al., 2010a). The metabolites evaluated in 
metabolic profile testing vary, but often include BHB 
and fatty acids as indicators of energy balance, albumin 
and BUN as indicators of protein status, globulins as an 
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indicator of chronic inflammatory disease, and Ca and 
Mg as indicators of macromineral status (Whitaker, 
2004; Anderson, 2009). Epidemiological studies have 
demonstrated that elevated concentrations of BHB 
and fatty acids in early lactation are associated with 
an increased risk of subsequent negative health events 
and reduced production (Ospina et al., 2010b; Chapinal 
et al., 2012; Sordillo and Raphael, 2013). Blood urea 
nitrogen concentration is of increasing interest, as it (1) 
gives an indication of RDP intake and the ratio of RDP 
to energy in the ration, and (2) has been demonstrated 
to be a useful indicator of an animal’s nitrogen utiliza-
tion efficiency and excretion (Kohn et al., 2005; Kume 
et al., 2008).

Critical concentration thresholds are used to define 
the optimum concentration range for of each metabolite 
employed in a metabolic profile test. Concentrations 
falling outside this range are associated with detri-
mental downstream health and production outcomes 
(Ospina et al., 2010b). Herd prevalence thresholds are 
similarly defined as the proportion of animals with 
metabolite concentrations outside the optimum range, 
above which detrimental herd-level health and produc-
tion outcomes are seen (Ospina et al., 2010b; Chapinal 
et al., 2012). The aim of metabolic profiling is therefore 
not necessarily to identify individual sick animals, but 
to gain objective information on the nutritional status 
and metabolic health of a herd by estimating the preva-
lence of metabolic disorders.

Despite the advantages of metabolic profile testing, 
blood testing animals on a regular basis is invasive, 
logistically challenging, and costly. Given the ready 
availability of milk, its use as a biofluid to monitor the 
health and nutritional status of dairy cows has been 
widely investigated (Hamann and Krömker, 1997). In 
early lactation a milk fat-to-protein ratio of greater than 
1.4 (Schcolnik, 2016) and 2.0 (Toni et al., 2011) have 
been described as indicators of negative energy bal-
ance and subclinical ketosis, respectively, and changes 
in milk fat-to-lactose and milk fat-to-protein ratios in 
early lactation have been suggested as early indicators 
of disease (Paudyal et al., 2016). Milk urea nitrogen is 
routinely used by nutritionists to monitor and optimize 
protein nutrition (Jonker et al., 2002; Nousiainen et al., 
2004). More recently, mid-infrared (MIR) spectroscopy 
of milk has shown promise for assessing more complex 
animal health traits (Gengler et al., 2016). Several au-
thors have demonstrated that MIR spectral data can be 
used to screen for subclinical ketosis through identifica-
tion of ketone bodies in milk (de Roos et al., 2007; van 
Knegsel et al., 2010; Grelet et al., 2016) and to estimate 
energy balance in early lactation (McParland et al., 
2011). Attempts have also been made to estimate the 
concentration of serum biomarkers of energy balance 

using milk MIR spectra (Gelé et al., 2015; Belay et al., 
2017a; Pralle et al., 2018).

The aim of our study was to determine if MIR 
spectral data, obtained from routine milk recording 
in commercial dairy herds, could be used to predict 
the concentration of metabolites routinely employed in 
serum metabolic profiling, with sufficient accuracy to 
provide useful information on the metabolic health of 
early-lactation dairy cows. We also aimed to assess the 
robustness of MIR prediction equations by validating 
our results with data collected from a herd managed 
under a different production system and in a different 
season. If sufficiently accurate, milk MIR predictions 
of serum biomarkers may help to improve the health, 
welfare, and productivity dairy cattle by (1) allowing 
early identification of metabolic disease and (2) provid-
ing high throughput and cost-effective phenotypes for 
genetic evaluation of complex animal health traits.

MATERIALS AND METHODS

All procedures were conducted in accordance with 
the Australian Code of Practice for the Care and Use 
of Animals for Scientific Purposes (National Health and 
Medical Research Council, 2013). Approval to proceed 
was obtained from the Agricultural Research and Ex-
tension Animal Ethics Committee (Department of Eco-
nomic Development, Jobs, Transport and Resources, 
Attwood, Victoria, Australia).

Sample Collection

Data Set 1. A single blood sample was taken from 
773 spring-calving Holstein-Friesian cows in early lac-
tation (between 5 and 49 DIM) on the same day as 
milk recording, between July and October 2017. The 
cows were located on 4 farms (farms A, B, C, and D) 
in the Gippsland region of southeastern Australia. All 
4 farms operated a seasonal calving system, with the 
majority of cows calving in a short period of time to 
align the peak nutritional demands of the herd with 
maximal pasture availability. The farms implemented 
a feeding system reliant on grazed pasture plus other 
forages, with more than 1 t of a cereal grain per cow per 
year fed in the parlor at milking time. Two of the farms 
(farms C and D) operated rotary milking platforms, 
which allowed blood samples to be collected during 
milking. Samples were taken immediately after milking 
on the other 2 farms. Samples were collected after the 
morning milking on farm A, after the afternoon milking 
on farm B, and during the afternoon milking on farms 
C and D.

Blood was collected from the coccygeal vein into 
10-mL serum clot activator vacutainer tubes (Becton 
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Dickinson, Franklin Lakes, NJ). Samples were allowed 
to clot for a minimum of 1 h at room temperature be-
fore centrifugation at 1,200 × g for 10 min at 18°C. All 
samples were processed within 6 h of collection. Serum 
samples were refrigerated at 4°C then transported on 
ice to Regional Laboratory Services (Benalla, Victo-
ria, Australia) within 24 h of collection. Samples were 
analyzed for concentrations of BHB, fatty acids, BUN, 
total Ca, Mg, total protein, and albumin using a Kone 
20 XT clinical chemistry analyzer (Thermo Fisher 
Scientific, Waltham, MA), with reagents supplied by 
Randox Laboratories (Crumlin, UK) for fatty acids, 
BUN, Ca, and Mg, and Regional Laboratory Services 
(Benalla, Victoria, Australia) for BHB, albumin, and 
total protein. Globulin concentrations were calculated 
as total protein concentration minus albumin concen-
tration. Milk samples were collected as part of routine 
milk recording by the Herd Improvement Co-Operative 
Australia (Maffra, Victoria, Australia). Samples were 
preserved with SomaGlo (proprietary formulation, 
Bentley Instruments, Chaska, MN) and analyzed fresh 
using MIR spectroscopy (Bentley Instruments NexGen 
FTS Combi) by TasHerd Pty Ltd. (Hadspen, Tasma-
nia, Australia).

Farm E Independent Validation Data Set. To 
test the robustness of MIR-prediction equations, a 
second independent validation data set was assembled 
in March 2018. This data set comprised a further 105 
blood and milk samples taken from cows of different 
breeds, managed under a different production system, 
and calving in a different season (autumn as opposed to 
spring). The farm was located in the Gippsland region 
of southeastern Australia, and the herd consisted of 
Jersey, Australian Red, Holstein-Friesian, and crossbred 
cows. Cows were fed a diet consisting of grazed chicory, 
a ration of pasture silage, cottonseed and canola meal, 
and a wheat-barley grain mix fed in the parlor at milk-
ing time. Blood samples were collected immediately 
after the afternoon milking. Blood and milk samples 
were analyzed using the same protocols described for 
data set 1.

Statistical Analysis

Effect of Week of Lactation, Parity and Farm 
on Metabolite Concentrations. Fixed effects mod-
els were constructed to evaluate the effect of weeks in 
milk, parity, and farm, on the concentrations of each 
metabolite:

	 yijkl = μ + WIMi + Pj + Fk + eijkl,	 [1]

where y is the metabolite concentration (BHB, fatty 
acids, Ca, Mg, urea, albumin, and globulin), µ is the 
mean, WIM is weeks in milk (from 1 to 8), P is parity 
(primiparous vs. multiparous), F is the effect of farm, 
and e is the random error term. Phenotypic correla-
tions between metabolite concentrations were investi-
gated by calculating the Pearson correlations between 
the residuals of each model.

Optimum metabolite concentration ranges were de-
fined based on thresholds obtained from the literature 
and are shown in Table 1. Each metabolite concentra-
tion for every animal was classified as being either 
within or outside the defined optimum range, thus 
converting each continuous metabolite concentration 
variable into a binary trait. The prevalence of each 
metabolic disorder was then calculated as the percent-
age of animals that had a metabolite concentration 
outside the optimum range.

MIR Predictions. All MIR spectral data analy-
sis was performed with Matlab R2017a (MathWorks, 
Natick, MA) utilizing the PLS Toolbox (Eigenvector 
Research, Manson, WA).

Preprocessing of Metabolite Concentrations. 
The distributions of serum metabolite concentrations 
were visually assessed for normality using frequency 
histograms. The fatty acid and BHB concentration 
distributions were both skewed, with lower values 
over-represented; this type of distribution leads to de-
creased accuracy in predicting high values in partial 
least squares (PLS) regression (Grelet et al., 2016), so 
a logarithmic (10) transformation was applied to BHB 

Table 1. Upper and lower concentration thresholds for serum metabolites used for metabolic profile analyses

Metabolite   Reference

Optimum concentration of serum metabolites

Lower threshold Upper threshold

BHB (mmol/L) McArt et al., 2012; Compton et al., 2015 — 1.2
Fatty acids (mmol/L) Ospina et al., 2010a — 0.7
Ca (mmol/L) DeGaris and Lean, 2008 2.0 —
Mg (mmol/L) Anderson, 2009 0.62 —
Urea (mmol/L) Butler et al., 1996; Macrae et al., 2006 1.7 6.78
Albumin (g/L) Whitaker, 2004 30 —
Globulin (g/L) Whitaker, 2004 — 50
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concentrations and a square root transformation was 
applied to fatty acid concentrations (Figure 1).

Preprocessing of Spectra. The MIR spectra were 
expressed in absorbance, with 899 spectral points be-
tween 649 and 3,998 cm−1. Preliminary analysis of the 
spectral data was conducted using principal component 
analysis. No outliers were identified in the data set. 
Spectral regions associated with the O–H bending and 
stretching regions of water were excluded (Afseth et 
al., 2010; Belay et al., 2017a). This left 538 spectral 
wavelengths between 928 and 1,596 as well as 1,693 and 
3,025 cm−1 for the subsequent chemometric analysis. 
The MIR spectra were preprocessed with Savitzky–Go-
lay second derivative transformation and smoothing, 
removal, of linear trend and autoscaling (Eigenvector, 
2018).

Calibration and Validation. The relationships be-
tween blood metabolite concentrations and milk MIR 
spectra were investigated using PLS regression analysis. 
Partial least squares discriminant analysis (PLS-DA) 
was used to classify animals as being either affected 
or not affected with a metabolic disorder based on the 
aforementioned binary metabolic profile classifications.

Calibration equations were constructed using a ran-
domly allocated subset of data set 1, which consisted 

of serum metabolic profile results and MIR spectral 
data from 579 animals (hereafter referred to as the 
calibration data set). These calibration equations were 
used for all subsequent analyses. The data from the 
remaining 194 animals from data set 1 were used for 
external validation (hereafter referred to as the random 
validation data set). The calibration and random vali-
dation data sets were designed to have a representative 
number of samples from each farm and parity category 
(primiparous or multiparous) and were balanced for 
DIM.

The number of latent variables (LV) included in 
each calibration model was based on maximizing the 
percentage of variance captured while minimizing the 
root mean square error of cross-validation (RMSECV). 
The optimum number of LV was determined for each 
calibration model by examining a plot of RMSECV as a 
function of number of LV.

Each calibration model was assessed for over-fitting 
using a permutation test with 50 iterations. Permutation 
testing of regression models involved randomly reorder-
ing the y block, and nominally assigning an incorrect 
y value to each vector of x values (Eigenvector, 2018). 
For example, with our data this involved randomly 
assigning an incorrect serum metabolite concentration 

Figure 1. (a) Frequency distribution of untransformed serum BHB concentrations, (b) serum BHB concentrations following Log10 transfor-
mation, (c) untransformed serum fatty acids, and (d) serum fatty acid concentrations following square root transformation.
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(the y value) to an MIR absorbance spectrum (a vector 
within the x block). The model was then rerun using 
the original parameters, but with the randomly aligned 
data. This process was repeated 50 times and the re-
sults obtained using the randomly assorted data were 
compared with the results of the correctly aligned data. 
A Wilcoxon signed-rank test was then used to assess 
the probability that the original model was significantly 
different from those built using the randomly assorted 
data (Eigenvector, 2018). A P-value of less than 0.05 
indicated that the original model was significantly dif-
ferent to the random models and was therefore unlikely 
to be over-fitted.

Validation was performed in 3 ways. (1) Cross-vali-
dation was performed on the calibration data set (n = 
579) using a venetian blinds method (which splits the 
data into 20 subsets and performs cross-validation on 
2 samples per subset). (2) External validation was car-
ried out using the random external validation data set 
(n = 194) and (3) external validation was done using 
the farm E independent validation data set (n = 105).

The accuracy of PLS models was assessed using the 
coefficient of determination (R2) and the root mean 
square error (RMSE). The accuracy of PLS-DA mod-
els was assessed by calculating the sensitivity, specific-
ity, classification error (CE), and the area under the 
receiver operator curve (AUC).

RESULTS

Descriptive Statistics

Details of the animals included in the analysis are 
summarized in Table 2. Of the 878 animals included in 
the analysis, 36% (315 cows) were from farm A. The 
remaining 563 animals were evenly distributed between 

the remaining 4 farms. Of the animals sampled, 78% 
(682 cows) were in the first 30 d of lactation, which is 
the period of highest risk for development of metabolic 
disorders (LeBlanc et al., 2006). The overall percentage 
of primiparous animals in the data set was 23%, with a 
range of approximately 12 to 33% between farms.

The identity of the farm had a significant effect (P 
< 0.05) on the concentration of all metabolites. The 
number of weeks after a cow had calved had a signifi-
cant effect on BHB, fatty acid, BUN, magnesium, and 
globulin concentrations. Parity had a significant effect 
on the concentration of all metabolites except those of 
fatty acids and albumin.

Descriptive statistics for the concentrations of each 
metabolite measured are summarized in Table 3. The 
distribution of metabolite concentrations in the calibra-
tion and random validation data sets were very similar; 
however, we found considerable differences in the distri-
butions of fatty acid and urea concentrations between 
the calibration data set and the farm E independent 
validation data set.

Corrected mean metabolite concentrations for each 
7-d period are shown in Figure 2. Both BHB and fatty 
acid concentrations were highest immediately postcalv-
ing and decreased over time. The concentrations of the 
remaining 5 metabolites exhibited an increasing trend 
over the 7-wk period. Calcium, urea, and albumin con-
centrations peaked at wk 7 postcalving, and globulin 
concentrations peaked at wk 5 postcalving. Magnesium 
concentrations peaked at wk 3 postcalving, then pla-
teaued.

The number and percentages of animals with me-
tabolite concentrations outside optimal ranges are 
shown in Table 4. A total of 56% (489 cows) had 1 
or more metabolites outside optimal ranges. Aber-
rant protein concentrations were the most prevalent 

Table 2. Number of cows with metabolic profiles and milk mid-infrared spectral data by farm and by data set, including stage of lactation (DIM 
means and ranges) and percentage of animals in their first lactation

Data No. of cows % Primiparous

DIM

Mean Minimum Maximum

Data set 1
  Farm A 315 27 18.3 5 49
  Farm B 132 27 20.6 5 39
  Farm C 147 12 21.2 5 39
  Farm D 179 18 29.4 6 52
Calibration and random validation data sets
  Calibration 579 22 21.6 5 49
  Random validation 194 23 22.4 5 48
Total
  Data set 1 subtotal 773 22 21.8 5 49
Independent validation data set
  Farm E 105 33 29.5 11 46
All data
  Total 878 23 22.7 5 49



1752 LUKE ET AL.

Journal of Dairy Science Vol. 102 No. 2, 2019

disorder observed, with 39% (339 cows) having either 
elevated serum urea (31%) or globulin (3%) concentra-
tions or low albumin (8%) concentrations. Less than 
2% of animals had serum urea concentration below 
the optimal range (<1.7 mmol/L), and this disorder 
is not discussed beyond this point. A total of 23% of 
animals (205 cows) had 1 or more energy metabolites 
outside of optimal ranges. Less than 2% (15 cows) 
had BHB concentrations greater than 1.2 mmol/L, 
with a peak incidence of 20% (2/10) at 35 DIM. A 
total of 22% (199 cows) had fatty acids concentra-
tions greater than 0.7 mmol/L, with a peak incidence 
of 67% (18/27) at 8 DIM. Of the 15 hyperketonemic 
cows, 6 did not have a concurrent elevation in fatty 
acids concentrations. The prevalence of hypocalcemia 
and hypomagnesemia were less than 2 (15 cows) and 
1% (6 cows), respectively.

Phenotypic correlations between serum metabolite 
concentrations, corrected for fixed effects outlined in 
model 1, are shown in Table 5. Significant (P < 0.01) 
positive correlations were observed between BHB and 
fatty acids (0.32), Ca and albumin (0.39), Mg and 
albumin (0.34), urea and Mg (0.1), and urea and al-
bumin (0.26). Significant negative correlations were 
noted between BHB and Ca (−0.10), fatty acids and 
Ca (−0.22), fatty acids and urea (−0.12), fatty acids 
and globulins (−0.09), Ca and globulins (−0.11), Mg 
and globulins (−0.21), urea and globulins (−0.16), and 
albumin and globulins (−0.41).

MIR Calibration and Validation

The R2 and RMSE of PLS regression models investi-
gating the relationships between blood metabolite con-

centrations and MIR spectra from milk samples are 
shown in Table 6. The R2 of cross-validation RCV

2( ) and 

random validation RRV
2( ) for serum BHB predictions 

were 0.53 and 0.48, respectively. Predictions of serum 
fatty acids concentration were slightly more accurate, 
with an RCV

2  of 0.56 and an RRV
2  of 0.61. The RMSECV 

and RMSE of random validation (RMSERV) of BHB 
and fatty acids predictions were 0.11 and 0.12, and 0.15 
and 0.14, respectively. The most promising results were 
for predictions of serum urea concentration, which had 
RCV

2  and RRV
2  of 0.90, RMSECV of 0.75, and RMSERV of 

0.82. The accuracy of models predicting serum Ca, Mg, 
and globulin concentrations were poor, with RCV

2  and 
RRV

2  values less than 0.15. The model predicting serum 
albumin concentration performed slightly better, with 
RCV

2  of 0.23 and RRV
2  of 0.17.

The accuracies of prediction models when applied to 
the farm E independent validation data set (reported 
as RIV

2  and RMSEIV) are also reported in Table 6. The 
RIV

2  of BHB and fatty acids predictions were similar to 
the RCV

2 , at 0.60 and 0.45, respectively. The RMSEIV of 
BHB and fatty acids predictions were 0.11 and 0.14, 
respectively, both very close to the respective RMSERV 
and RMSECV values. The RIV

2  for prediction of serum 
urea concentration however was only 0.35, which was 
considerably lower than the RRV

2  (0.90). The RMSEIV of 
urea prediction was 1.53 mmol/L, almost double the 
RMSERV (0.82 mmol/L). The models predicting serum 
albumin, globulin, Ca, and Mg concentrations all per-
formed extremely poorly when applied to the indepen-
dent validation data set, with RIV

2  values between 0.00 
and 0.03.

Table 3. Mean and SD (in parentheses) of metabolite concentrations for each farm, the calibration data set, and the random validation and 
independent farm E validation data sets

Data N1

Metabolite

BHB Fatty acids Ca Mg Urea Albumin Globulin

Data set 1
  Farm A 315 0.56 (0.22) 0.75 (0.33) 2.33 (0.15) 0.98 (0.11) 5.72 (1.37) 33.59 (2.23) 39.14 (5.28)
  Farm B 132 0.49 (0.19) 0.31 (0.21) 2.32 (0.12) 0.96 (0.12) 4.94 (1.52) 35.13 (2.05) 37.07 (6.22)
  Farm C 147 0.37 (0.16) 0.51 (0.29) 2.37 (0.16) 0.99 (0.10) 2.77 (0.74) 32.40 (2.13) 40.49 (5.63)
  Farm D 179 0.66 (0.24) 0.26 (0.14) 2.33 (0.13) 1.02 (0.10) 9.00 (1.23) 32.69 (2.41) 40.00 (6.44)
Randomly assigned calibration 
  and validation data sets
  Calibration 579 0.53 (0.21) 0.51 (0.34) 2.33 (0.14) 0.99 (0.11) 5.80 (2.40) 33.37 (2.42) 39.33 (6.03)
  Validation 194 0.54 (0.29) 0.53 (0.34) 2.34 (0.14) 0.98 (0.11) 5.75 (2.50) 33.55 (2.34) 38.98 (5.48)
Total
  Data set 1 subtotal 773 0.53 (0.23) 0.51 (0.34) 2.34 (0.14) 0.98 (0.11) 5.79 (2.43) 33.42 (2.40) 39.24 (5.89)
Independent validation data set
  Farm E 105 0.56 (0.26) 0.29 (0.26) 2.43 (0.13) 1.10 (0.10) 3.75 (0.78) 34.60 (2.30) 37.18 (4.87)
All data
  Total 878 0.54 (0.23) 0.49 (0.34) 2.35 (0.14) 1.00 (0.12) 5.54 (2.38) 33.56 (2.42) 39.00 (5.81)
1Number of cows in the data set.
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The results of PLS-DA models, where affected 
and unaffected groups were defined using previously 
described metabolic profile thresholds, are shown in 
Table 7. Models for the prediction of elevated BHB 
and globulin concentrations, as well as low Ca, Mg, 
and albumin concentrations, were deemed to be over-
fitted and therefore not significant (P > 0.05) based 
on pairwise Wilcoxon signed rank permutation testing. 
Models for the prediction of elevated fatty acids and 
urea concentrations, however, were highly significant 

(P < 0.001). The sensitivity and specificity for the 
prediction of elevated fatty acids concentrations when 
applied to the random validation data set were 73 and 
81%, respectively, and the CE was 23% and the AUC 
was 0.87. The MIR predicted prevalence of elevated 
serum fatty acids concentrations was 35%. The sen-
sitivity and specificity of the prediction of elevated 
urea concentrations in the random validation data set 
were 90 and 98%, respectively, and the CE was 6% 
and the AUC was 0.98. The MIR-predicted prevalence 

Figure 2. Estimated marginal means (±SEM) of serum metabolite concentrations for each 7-d period, corrected for farm identification and 
parity.
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of elevated serum urea concentrations in the random 
validation data set was 33%.

The accuracy of PLS-DA models, when validated us-
ing the farm E independent data set, are also shown in 
Table 7. The sensitivity and specificity for the predic-
tion of elevated fatty acid concentrations were 25 and 
90%, respectively, and the CE was 42% and the AUC 
was 0.82. The MIR-predicted prevalence of elevated 
fatty acids in this data set was 11%. The sensitivity 
and specificity of independent validation for the predic-
tion of elevated urea concentrations were 100 and 89%, 
respectively, and the CE was 6%. The AUC could not 
be calculated, as no positive results (serum urea con-
centration >6.8 mmol/L) were recorded. The predicted 
prevalence of elevated urea concentrations was 11%.

DISCUSSION

Serum concentrations of BHB, fatty acids, Ca, Mg, 
urea, albumin, and globulin, as measured by colorimet-
ric methods, are routinely used to assess the metabolic 
health of dairy cows. Although some studies have inves-
tigated the use of MIR spectroscopy of milk to predict 
serum BHB and fatty acids concentrations, to the best 

of our knowledge this is the first study to investigate 
the use of MIR spectral data to predict serum con-
centrations of all the above metabolites. We believe 
this is also the first reported use of PLS-DA models 
to classify animals as being either affected or not af-
fected with metabolic disorders directly from MIR 
spectra. Our results indicate that MIR spectral data 
may be a useful predictor of serum BHB, fatty acids, 
and urea concentrations, but not Ca, Mg, albumin, or 
globulin concentrations. The performance of both PLS 
and PLS-DA models were affected by the distribution 
of the calibration and validation data sets, and larger 
and more diverse data sets are required to improve the 
accuracy of predictions.

Prevalence of Metabolic Disorders

No recent studies have investigated the epidemiology 
of metabolic disorders in the Australian dairy herd; 
thus, all concentration thresholds used in ou study are 
based on work undertaken in New Zealand, Europe, 
and the United States. It should be noted that our 
study was not intended as an epidemiological investiga-
tion, and prevalence data are presented principally to 

Table 4. The number and percentage (in parentheses) of animals with serum metabolite concentrations outside optimum ranges for each farm, 
the calibration data set, and the random validation and independent farm E validation data sets

Data N1

Metabolite

BHB Fatty acids Ca Mg Urea Albumin Globulin

Data set 1
  Farm A 315 8 (3) 162 (51) 4 (1) 3 (1) 78 (25) 24 (8) 9 (3)
  Farm B 132 1 (1) 5 (4) 4 (3) 2 (2) 18 (14) 2 (2) 4 (3)
  Farm C 147 1 (1) 27 (18) 1 (1) 1 (1) 0 22 (15) 7 (5)
  Farm D 179 3 (2) 1 (1) 4 (2) 0 175 (98) 21 (12) 8 (4)
Randomly assorted calibration and  
  validation data sets
  Calibration 579 8 (1) 139 (24) 11 (2) 3 (1) 202 (35) 54 (9) 24 (4)
  Validation 194 5 (3) 56 (29) 2 (1) 3 (2) 69 (36) 15 (8) 4 (2)
Data set 1 subtotal 773 13 (2) 195 (25) 13 (2) 6 (1) 271 (36) 69 (9) 28 (8)
Independent external validation data set
  Farm E 105 2 (2) 4 (4) 2 (2) 0 0 4 (4) 1 (1)
All data
  Total 878 15 (2) 199 (23) 15 (2) 6 (1) 271 (31) 73 (8) 29 (3)
1Number of cows in the data set.

Table 5. Pearson correlations between serum metabolite concentrations, corrected for weeks in milk, farm 
identification, and parity

Item Fatty acids Ca Mg Urea Albumin Globulin

BHB 0.32* −0.10* −0.03 0.07 −0.02 −0.07
Fatty acids   −0.22* −0.06 −0.12* 0.01 −0.09*
Ca     0.08 0.08 0.39* −0.11*
Mg       0.1* 0.34* −0.21*
Urea         0.26* −0.16*
Albumin           −0.41*

*P < 0.01.
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illustrate the data used to develop and validate PLS-
DA models.

The prevalence of hyperketonemia in our data set was 
2% (15 cows), which is considerably lower than values 
reported in studies undertaken in New Zealand, Europe, 
and North America (McArt et al., 2012; Compton et 
al., 2014; Suthar et al., 2013). The low prevalence may 
have been because only approximately 4% of animals 
(34 cows) in our data set were in the first week of lacta-
tion, which McArt et al. (2012), demonstrated to be 
the period of highest hyperketonemia incidence. This 
was an unavoidable consequence of our study design, 
which involved convenience sampling on the day of rou-
tine milk recording in commercial herds. Furthermore, 
farmers with seasonal calving herds are often reluctant 
to record milk in early lactation, as it is generally a 
busy time of year. The timing of sampling, during or 

immediately after concentrate feeding, may also have 
affected our results, as BHB concentrations are known 
to vary over time, when access to feed is not constant, 
and to peak 4 to 5 h after feeding (Oetzel, 2004). All 5 
farms were well-managed and implemented good tran-
sition cow management practices, which are known to 
minimize the incidence of ketosis. The prevalence of 
elevated fatty acid concentrations was 23% (199 cows), 
with a peak incidence of 67% (18/27) at 6 d after calv-
ing. This was consistent with the results of Ospina et 
al. (2010b), who found that 65% of herds sampled had 
greater than 15% prevalence of elevated fatty acid con-
centration (>0.70 mmol/L) in cows between 3 and 14 
DIM. Elevated fatty acid concentrations are arguably 
more significant than elevated BHB concentrations, 
as fatty acid concentrations have been demonstrated 
to be more stable over time than BHB concentrations 

Table 6. Results of partial least square regression models for the prediction of serum metabolite concentrations using milk mid-infrared spectra

Metabolite P-value1
No.  

of LV2

Cross-validation3  
(n = 579)

 

Random validation4  
(n = 194)

 

Farm E validation5  
(n = 105)

RCV
2 RMSECV RRV

2 RMSERV RIV
2 RMSEIV

BHB <0.001 6 0.53 0.11   0.48 0.12   0.60 0.11
Fatty acids <0.001 8 0.56 0.15   0.61 0.14   0.45 0.14
Urea <0.001 20 0.90 0.75   0.90 0.82   0.35 1.53
Calcium <0.001 4 0.08 0.14   0.12 0.13   0.03 0.18
Magnesium <0.001 5 0.06 0.11   0.08 0.10   0.01 0.17
Albumin <0.001 5 0.23 2.14   0.17 2.18   0.02 2.40
Globulin <0.001 3 0.12 5.67   0.06 5.42   0.00 5.57
1P-value for pairwise Wilcoxon signed rank test.
2Number of latent variables (LV) included in the model.
3RCV

2  = coefficient of determination of cross-validation; RMSECV = root mean square error of cross-validation.
4RRV

2  = coefficient of determination of random external validation; RMSERV = root mean square error of random external validation.
5RIV

2  = coefficient of determination of independent validation; RMSEIV = root mean square error of independent validation.

Table 7. Results of partial least square discriminant analysis models for the classification of serum metabolite concentrations based on metabolic 
profile thresholds using milk mid-infrared spectra

Metabolite P-value1 LV2

Cross-validation 
(n = 579)

 

Random validation 
(n = 194)

 

Independent validation 
 (n = 105)

Sens3 Spec4 CE5 AUC6 Sens Spec CE AUC Sens Spec CE AUC

BHB >0.05 4 1.00 0.94 0.03 0.97   0.40 0.93 0.33 0.92   1.00 0.83 0.03 0.99
Fatty acids <0.001 5 0.82 0.75 0.22 0.85   0.73 0.81 0.23 0.87   0.25 0.90 0.42 0.82
Urea <0.001 20 0.81 0.91 0.15 0.94   0.90 0.98 0.06 0.98   1.00 0.89 0.06 —
Calcium >0.05 2 0.36 0.72 0.46 0.61   0.00 0.76 0.62 0.51   1.00 0.06 0.47 0.75
Magnesium >0.05 2 0.33 0.93 0.37 0.61   0.00 0.91 0.55 0.54   1.00 0.95 0.02 —
Albumin >0.05 3 0.67 0.67 0.33 0.73   0.53 0.64 0.41 0.59   0.25 0.99 0.38 0.85
Globulin >0.05 5 0.46 0.73 0.41 0.63   0.75 0.76 0.24 0.87   1.00 0.42 0.29 0.99
1P-value for pairwise Wilcoxon signed rank test.
2Number of latent variables (LV) included in the model.
3Sensitivity.
4Specificity.
5Classification error.
6Area under the receiver operator characteristic curve.
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(Eicher et al., 1999) and have a higher association with 
subsequent adverse health events (Ospina et al., 2010a; 
Sordillo and Raphael, 2013).

A considerable percentage of animals sampled 
(31%) had serum urea concentrations greater than 6.8 
mmol/L, whereas less than 2% had a urea concentra-
tion less than 1.7 mmol/L. These results are consistent 
with animals grazing rapidly growing forage with high 
levels of RDP (Macrae et al., 2006). Urea concentra-
tions in serum can be used to monitor RDP intake and 
the ratio of RDP to energy in the ration (Roseler et 
al., 1993; Macrae et al., 2006). Low blood urea concen-
trations can indicate insufficient RDP intake, whereas 
high serum urea concentrations can indicate excessive 
RDP intake, often in the form of high protein pasture. 
Both insufficient and excessive RDP intake are known 
to limit milk production, the former due to reduced 
rumen microbial protein synthesis and the latter due to 
the significant metabolic cost of removing and detoxi-
fying excess nitrogenous by-products from the rumen 
(Waghorn and Wolff, 1984; Ulyatt, 1997). Elevated 
serum urea concentrations before AI have also been 
suggested to have a negative effect on reproductive per-
formance (Raboisson et al., 2017). Several studies have 
used serum urea concentrations to predict nitrogen ef-
ficiency and urinary nitrogen excretion in cattle (Kohn 
et al., 2005; Kume et al., 2008), which is becoming an 
environmental concern for the global dairy industry.

Our results indicate that metabolic disorders are 
prevalent in the Australian dairy herd, but further stud-
ies are required to better understand the epidemiology 
of early-lactation metabolic disorders. Further work is 
also required to determine appropriate serum metabolic 
profile concentration thresholds and herd-level thresh-
olds for Australia’s diverse dairy production systems.

PLS Regression Models for Predicting Serum 
Metabolite Concentrations

The accuracy of our MIR prediction model for serum 
BHB was moderate (0.48 ≤ R2 ≤ 0.60), which was bet-
ter than those reported by Belay et al. (2017a) and 
similar to those reported by Smith et al. (2016) and 
Pralle et al. (2018). The moderate accuracy may have 
been in part due to the low prevalence of elevated se-
rum BHB concentrations in our data set. The skewed 
distribution of the data likely resulted in lower predic-
tion accuracy of higher BHB concentrations. Despite 
this, the RIV

2  was higher than the RCV
2  and the RRV

2 , 
suggesting that the model may be a useful indicator of 
ketosis risk when applied to independent data. This 
finding was supported by fact that the RMSE of all 3 
validation methods were similar (0.11–0.12 mmol/L). 

The reported accuracies of MIR predictions of milk 
ketone bodies are considerably higher than the accura-
cies of MIR serum BHB predictions (de Roos et al., 
2007; Grelet et al., 2016); however, serum BHB is con-
sidered to be a superior biomarker of ketosis (Duffield 
et al., 1997; Denis-Robichaud et al., 2014). Whether a 
less-accurate predictor of the gold standard biomarker 
is superior to a higher accuracy predictor of a less-
valuable biomarker requires further investigation. This 
discussion is further complicated by the fact that, argu-
ably, no true gold standard tests exist for many of the 
animal health traits being investigated (Krogh et al., 
2011).

Serum fatty acid concentrations are routinely used to 
quantify the degree of fat mobilization, and therefore 
the magnitude of negative energy balance in early lac-
tation (Ospina et al., 2010a). Few studies, however, 
have investigated the use of MIR of milk for predicting 
serum fatty acid concentrations. The RRV

2  of our fatty 
acids prediction was 0.61, which is similar to the result 
of Smith et al. (2016), who reported a correlation coef-
ficient of 0.80 (R2 = 0.64) between measured serum 
fatty acid concentration and MIR-predicted fatty acids 
concentration. McParland et al. (2011) were able to 
predict computed energy balance with reasonable ac-
curacy (R2 = 0.56), but they noted that their predic-
tion equations were not robust when applied to data 
obtained from cows managed differently to the animals 
in the reference population (McParland et al., 2012). 
Similarly, the accuracy of our fatty acids prediction was 
lower when applied to the independent farm E valida-
tion data set (R2 = 0.45), but may still be a useful in-
dicator of energy balance.

Mid-infrared is routinely used to predict MUN con-
centrations (Gengler et al., 2016) with good accuracy. 
Serum and milk urea concentrations are linearly cor-
related (Moore and Varga, 1996), so it follows that the 
MIR prediction of serum urea concentration had the 
highest coefficient of determination of all the metabolite 
models we tested. The accuracy of the urea prediction 
model, when applied to data from farm E, was consid-
erably lower than when applied to the random external 
validation data. This may have been due to differences 
in the distribution of urea concentrations between the 
farm E independent data set and the reference popula-
tion data set (see Table 3), as the range of data is 
known to have a significant effect on the R2 of PLS 
regression models (Davies and Fearn., 2006). Further 
validation with larger, more varied data sets is required 
to better understand these results.The MIR predictions 
of serum urea may be accurate enough to be a useful 
indicator of the protein nutrition of a herd. Large-scale 
predictions of serum urea concentrations could also be 
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used to identify variation in nitrogen efficiency and 
excretion between individuals. This could be exploited 
in breeding programs to lower the environmental im-
pact of dairy cattle and could also be considered as a 
way to increase the accuracy of genomic predictions of 
feed efficiency due to the high energy cost of removing 
excess nitrogenous by-products from the rumen. The 
MIR predictions of serum urea concentration could also 
help manage the nitrogen output of the global dairy 
industry, which is becoming an increasingly important 
environmental issue.

Mid-infrared spectroscopy has been used successfully 
to quantify the concentration of several milk proteins, 
including casein, αS1-CN, whey protein, and β-LG, with 
reasonable accuracy (De Marchi et al., 2009; Bonfatti 
et al., 2011; McDermott et al., 2016); however, MIR 
predictions of serum albumin and globulin concentra-
tions in our study were extremely poor. Similarly, MIR 
spectral data has been used to estimate the Ca and P 
concentration of milk with reasonable accuracy (Tof-
fanin et al., 2015); however, its ability to predict serum 
Ca and Mg concentrations was poor. Studies have 
demonstrated that animals suffering from subclinical 
hypocalcemia showed significant changes in their serum 
proteome (Wang et al., 2016; Fan et al., 2017). Given 
that changes in serum albumin and globulin concentra-
tions could not be identified with milk MIR spectra, it 
follows that changes in serum proteome associated with 
hypocalcemia are also not detectable using milk MIR 
spectral analysis. This may suggest that changes in 
serum protein concentrations are not reflected in milk 
composition, or that a significant delay occurs between 
changes in serum metabolome and subsequent changes 
in milk composition. It should also be noted that we 
found considerably less variation in the concentrations 
of these metabolites (see Table 2) compared with the 
concentrations of BHB, fatty acids, and urea. As dis-
cussed previously, the distribution of data is known to 
have a significant effect on the accuracy of calibration 
models. Our results highlight the need for further work 
to investigate the relationships between the proteomes 
and metabolomes of serum and milk.

Several authors have observed that many milk MIR 
predictions of animal health traits are not sufficiently 
accurate to provide useful information on the health 
status of individual animals (de Roos et al., 2007; van 
der Drift et al., 2012; Grelet et al., 2016). These predic-
tions may, however, be considered accurate enough to 
employ in genomic evaluations, as described by Bastin 
et al. (2016) and Bonfatti et al. (2017). The accuracy of 
our MIR prediction of serum BHB was better than that 
of Belay et al. (2017b), who used MIR predictions of 
serum BHB to investigate the genetic parameters of ke-
tosis and the genetic relationships between serum BHB 

concentration and milk production traits. Similarly, our 
MIR prediction of serum fatty acids concentration had 
comparable accuracy to the MIR prediction of energy 
balance reported by McParland et al. (2015), who 
found favorable correlations between MIR-predicted 
and measured energy balance. As well as forming the 
basis of new traits, Pryce et al. (2016) suggested that 
MIR-predicted traits could be included in multitrait 
models to improve the accuracy of existing genomic 
predictions, but exactly how accurate such MIR predic-
tions need to be to provide useful phenotypic informa-
tion requires further investigation.

PLS-DA for Classifying Animals Based on Metabolic 
Profile Testing Thresholds

The aim of metabolic profile testing is to gain objec-
tive information on the nutritional status and metabolic 
health of a herd by estimating the prevalence of certain 
metabolic disorders. This requires a diagnostic test 
that can classify animals as being either affected or not 
affected with metabolic disorders with reasonable accu-
racy. The PLS-DA models are routinely used in chemo-
metric studies to classify samples based on multivariate 
data. It follows, therefore, that these models may be 
useful for identifying cows with metabolic disorders 
based on their milk MIR spectra. Several authors have 
converted MIR predictions of continuous traits, such as 
BHB concentration, into binary traits based on meta-
bolic profile thresholds (Gelé et al., 2015; Pralle et al., 
2018). As far as we know, ours is the first report using 
PLS-DA models to classify animals directly using milk 
MIR spectral data. Given the poor accuracy of MIR 
predictions of serum Ca, Mg, albumin, and globulin 
concentrations, only BHB, fatty acids, and urea PLS-
DA models will be discussed beyond this point.

Cows that experience a serum fatty acid concentra-
tion greater than 0.7 mmol/L in the immediate postpar-
tum period are more likely to develop clinical ketosis, 
metritis, or a displaced abomasum, and are more likely 
to be culled early than cows with normal fatty acid 
concentrations (McArt et al., 2013). At herd level, sev-
eral authors have demonstrated that an increase in the 
prevalence of cows with elevated postpartum fatty acid 
concentrations is associated with reduced milk produc-
tion and poorer fertility (Ospina et al., 2010a; Chapinal 
et al., 2012; McArt et al., 2013). The same authors 
demonstrated similar results for elevated postpartum 
BHB concentrations. When applied to the random 
validation data set, our PLS-DA model was able to 
predict elevated serum fatty acid concentrations (>0.7 
mmol/L) with a sensitivity of 73% and a specificity of 
81%. Our findings are reasonably consistent with those 
of Gelé et al. (2015), who used a combination of BHB 
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and fatty acid concentrations to identify animals at risk 
of subclinical ketosis with a sensitivity of 81% and a 
specificity of 69%. The true prevalence of elevated fatty 
acid concentrations in our data set was 29% (95% CI = 
22.5–35.2). The MIR-predicted prevalence of elevated 
serum fatty acid concentrations was 35%, within the 
95% confidence interval of the true prevalence. When 
applied to the farm E validation set, the sensitivity of 
our fatty acids prediction decreased significantly to only 
25%. The MIR-predicted prevalence of elevated fatty 
acid concentrations in this data set was 11%, which 
was significantly higher than the true prevalence of 4% 
(95% CI = 0.1–7.5). This highlights the need for larger 
and more diverse calibration data sets to improve the 
accuracy of predictions before they can be used for on-
farm management purposes.

Butler et al. (1996) reported that animals with a 
plasma urea concentration of greater than 6.8 mmol/L 
had lower pregnancy rates than animals with normal 
plasma urea concentrations. Similarly, Raboisson et al. 
(2017) showed a 43% lower odds of pregnancy when 
serum urea concentrations were above 7 mmol/L, espe-
cially before AI. This may be highly relevant for the 
largely pasture-based Australian dairy industry, as 
most cows are mated in late spring at a time when they 
are grazing pasture high in RDP. When applied to the 
random validation data set, PLS-DA models could 
identify animals with elevated serum urea concentra-
tions with good sensitivity (90%) and specificity (98%). 
The predicted prevalence of elevated urea concentra-
tions was 33%, close to the true prevalence of 36% (95% 
CI = 28.8–42.3). When applied to the independent 
farm E validation data set, the sensitivity of the urea 
prediction increased to 100% and the specificity de-
creased to 89%. We believe these results are misleading 
and are artifacts of the independent validation data set 
being (1) relatively small, (2) having a different distri-
bution and narrower range than the calibration data 
set, and (3) containing no positive results (urea concen-
trations >6.8 mmol/L). Given that the RIV

2  of the PLS 
prediction of serum urea concentration was consider-
ably lower than the RRV

2   (0.35 and 0.90, respectively), 
we would expect the accuracy of PLS-DA predictions 
to be similarly lower. The MIR-predicted prevalence of 
elevated urea concentrations was 11%, significantly 
higher than the true prevalence of 0%. This is further 
evidence that a larger, more varied calibration data set 
is required to improve the accuracy of predictions.

The results of our PLS-DA model to predict elevated 
serum BHB concentrations were not significant (P > 
0.05) based on pairwise Wilcoxon rank testing of per-
muted samples. This was likely due to the low number 
of hyperketonemic samples in the data set. Lowering 

the threshold of BHB concentration to 1.0 mmol/L in-
creased the statistical significance of the model. Given 
that the accuracy of BHB and fatty acids PLS models 
were similar, we would expect that the addition of more 
hyperketonemic samples to our data set will yield a 
statistically significant PLS-DA model for estimating 
the prevalence of subclinical ketosis.

If their accuracy can be improved, PLS-DA predic-
tions offer a potentially useful tool to monitor the 
prevalence of elevated serum fatty acids, BHB, and 
urea concentrations. This could provide dairy produc-
ers with a valuable early warning tool that would allow 
them to address dietary imbalances, and thereby opti-
mize animal health, production, and fertility.

CONCLUSIONS

We assessed the accuracy of MIR spectroscopy, per-
formed as part of routine milk recording, for predicting 
the metabolic health and nutritional status of early-lac-
tation dairy cows. We found that MIR spectroscopy of 
milk provided a potentially useful prediction of energy 
balance by reasonable estimation of serum BHB and 
fatty acid concentrations. The accuracy of MIR predic-
tion of serum urea concentration was good when the 
validation data set had a similar range and distribution 
to the calibration data set. However, when the model 
was applied to an independent data set taken from 
cows of differing breeds that were managed differently, 
the accuracy of the prediction dropped significantly. 
The accuracy of MIR predictions of serum Ca, Mg, 
albumin, and globulin concentrations were poor. Our 
results demonstrate that MIR PLS-DA models may be 
a useful tool for estimating the prevalence of metabolic 
disorders in early lactation, but more data are required 
to improve the accuracy of prediction equations. The 
MIR PLS models offer potential for large-scale pheno-
typing that can be employed in breeding programs to 
breed more resilient animals with smaller environmen-
tal footprints. We aim to improve the accuracy of our 
prediction models by sampling more animals, particu-
larly in the first 2 wk of lactation, thereby increasing 
the size and variation of our data set.
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