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1 Introduction

Recently, there has been a significant revival of interest in the role of the Volkov-Akulov

goldstino [1, 2] in spontaneous breaking local supersymmetry and generating a positive con-

tribution to the cosmological constant in supergravity [3–8] (see [9] for the latest review and

developments).1 In these and related papers the construction is based on the constrained

(nilpotent) superfield description of the Volkov-Akulov goldstino [14–20] (see [21, 22] for

1Let us note that a super-Higgs effect via coupling the Volkov-Akulov goldstino to a simple supergravity

multiplet (and to a vector gauge field) was first considered by Volkov and Soroka as early as in 1973 [10, 11].

The idea was to gauge Poincaré supersymmetry which was non-linearly realized in the Volkov-Akulov action,

thus coupling the latter to gravity and the Rarita-Schwinger field. The Volkov-Soroka construction contained

all the ingredients of the N = 1, D = 4 supergravity action, including a cosmological term and a mass term

for the gravitino, but the relative coefficients between the different terms of the action were arbitrary. As

we will show in section 3, in the unitary gauge in which goldstino vanishes, and upon a re-scaling of the

gravitino field the Volkov-Soroka action takes the same form as the ‘de Sitter supergravity’ action. When

the cosmological constant and the gravitino mass is put to zero the Volkov-Soroka action reduces to the

N = 1, D = 4 supergravity action of [12, 13].
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the study of the general relation between linear and non-linear realizations of supersym-

metry and [15, 23–25] for the extension of these methods to describe spontaneously broken

supergravities in superspace). The nilpotent nature of the goldstino supermultiplet, in

which the scalar fields are not elementary but composed from goldstino bilinears, has been

proved important for building cosmological and inflationary models in the framework of

supergravity and string theory [26–30].

On the other hand, metastable de Sitter vacua may arise in string theory via the KKLT

construction [31] involving anti-D3-branes which also break supersymmetry à la Volkov-

Akulov [32–34]. Anti-D-branes are just D-branes but with opposite Ramond-Ramond

charges. So they usually completely break the supersymmetry preserved by a string com-

pactification. In ten-dimensional supergravity regime, the dynamics of (anti) D-branes is

described by a superspace DBI-like action [35–38], which is manifestly invariant under lo-

cal ten-dimensional supersymmetry. Hence, provided the supersymmetry breaking scales

are low enough, the contribution of anti-D-branes to the four-dimensional effective theory

should be naturally given by a four-dimensional superspace Green-Schwarz DBI-like action

of the original Volkov-Akulov type [39, 40] coupled to a superspace action describing the

bulk supergravity degrees of freedom. This description would provide a natural alternative

to the approach using nilpotent superfields and would establish a more direct link with

string theory constructions involving anti-D-branes as studied e.g. in [28, 34, 41, 42].

In this paper we consider a minimal possible realization of such a four-dimensional

theory, namely a space-filling 3-brane carrying the Volkov-Akulov goldstino and coupled

to a minimal N = 1, D = 4 off-shell supergravity multiplet (including auxiliary fields)

formulated in curved superspace [43]. The system is described by the superfield action

having a suggestive geometric form of the sum of three different volumes:

S =
3

4κ2

∫

d8zBerE +
m

2κ2

(
∫

d6ζL E + c.c.

)

+ f2

∫

d4ξ detE
(

z(ξ)
)

. (1.1)

The first term corresponds to the standard pure supergravity action: κ2 is the gravitational

constant, zM = (xm, θµ, θ̄ν̇) are coordinates of the N = 1 D = 4 superspace, whose

curved geometry is described by the supervielbein EA = dzMEA
M (z) containing the fields

of the minimal off-shell supergravity multiplet [43–46] and BerE is the usual Berezenian

superspace measure (see [47, 48] for the detailed description of the superspace formulation).

The second term gives rise to the anti-de-Sitter cosmological term and the corresponding

mass (m) term for the gravitino field. Here E is the volume measure of the chiral subspace

ζML = (xmL ,Θµ).

The third term in (1.1) provides the full non-linear contribution of the space-filling

3-brane to the action. It couples to supergravity via its embedding

ξi 7→ zM (ξ) =
(

xm(ξ), θµ(ξ), θ̄µ̇(ξ)
)

(1.2)

in the bulk superspace, where ξi (i = 0, 1, 2, 3) are the brane worldvolume coordinates.

detE
(

z(ξ)
)

denotes the determinant of Ea
i

(

z(ξ)
)

≡ ∂iz
MEa

M

(

z(ξ)
)

, which is the pullback of

the vector supervielbein Ea(z) = dzMEa
M (z) on the 3-brane worldvolume. f2 is the 3-brane

tension which gives a positive contribution to the cosmological constant and determines

– 2 –
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the supersymmetry breaking scale.2 The two scales, m and f , determine the value of the

cosmological constant Λ = f2− 3m2

κ2 , which can be positive, hence allowing for the existence

of de Sitter vacua in this theory. For this reason the theory under consideration was dubbed

de Sitter supergravity [4]. The action (1.1) thus provides its geometric formulation which

is directly related to the 3-brane realization of the Volkov-Akulov theory.

In order to highlight the conceptual distinction between this approach and the ones

using constrained superfields, let us note that the 3-brane action is invariant under worldvol-

ume diffeomorphisms ξi → ξ′i(ξ). This has the important consequence that the embedding

field xm(ξ), which could be regarded as a bosonic ‘superpartner’ of the fermionic embedding

field θµ(ξ), carries only pure gauge degrees of freedom which can be eliminated without any

need of imposing a nilpotency constraint. The connection with the Volkov-Akulov theory

then becomes manifest if we gauge-fix the worldvolume diffeomorphisms by imposing the

static gauge xm(ξ) = δmi ξi, i.e. by identifying the worldvolume coordinates with those of

the four-dimensional bulk space-time, leaving only the Volkov-Akulov goldstino θµ(x) as

the physical worldvolume field. Indeed, in the flat space limit this term of the action (1.1)

reduces to the original Volkov-Akulov action [1, 2].

Note that the 3-brane action does not have a Wess-Zumino term (simply because it

does not exist in the minimal model under consideration) and does not possess kappa-

symmetry, which are intrinsic ingredients of the 1/2 BPS superbranes preserving, at least

locally, half of bulk supersymmetry.3 Hence, in our case the wholeN = 1 bulk supersymme-

try is spontaneously broken. In other words, the action (1.1) is manifestly invariant under

the superdiffeomorphisms δzM (z) which incorporate the local supersymmetry transforma-

tions. Under such superdiffeomorphisms the embedding coordinates zM (ξ) must transform

accordingly, zM (ξ) → zM (ξ) + δzM
(

z(ξ)
)

, hence leading to the presence of the goldstino

which (upon imposing the static gauge) transforms under supersymmetry in a non-linear

way. This provides a simple low-energy realization of the same supersymmetry breaking

mechanism generated by introducing anti-D-branes in string compactifications.

In the rest of the paper we will study the component field structure of the action (1.1).

As we will see, the interaction of the goldstino fields with the supergravity multiplet is

encoded in the 3-brane action via the dependence of the (pull-back of) the vector super-

vielbein Ea(x, θ, θ̄) on the supergravity fields whose explicit form to all orders in ϑ we will

derive in section 2.2. In particular, the coupling of the 3-brane to a complex scalar auxiliary

field of the “old minimal” supergravity produces a solution (in terms of the goldstino) of

the nilpotency constraint on a chiral scalar curvature superfield R(z) similar to that used

in [3, 26] to construct nilpotent supergravity models. We will then compare our action with

the form of the dS supergravity action constructed with the use of the nilpotent goldstino

superfield [4, 5], and with the Volkov-Soroka model [10, 11].

2The coefficient in front of the 3-brane action should be positive for the θ(ξ)-field kinetic term to have

a correct sign.
3The interaction of minimal Einstein supergravity with N = 1, D = 4 BPS branes (massless superpar-

ticle, superstring and supermembrane) was studied in [49–51].
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2 Component form of the N = 1 supergravity action coupled to the

3-brane

The main result of this paper is the derivation of the component form of the action (1.1). It

is obtained by integrating the first two terms of (1.1) over the Grassmann-odd coordinates

and fixing the static-gauge xm(ξ) = δmi ξi on the 3-brane, as described in the Introduc-

tion. We thus get the following action4 (see appendices A and B for our notation and

conventions):

S = SSG + SVA with

SSG =
1

2κ2

∫

d4x e

[

R(ω̂)− 4e−1εmnkl(∇̂nψkσlψ̄m + ψmσn∇̂kψ̄l)

− 4m(ψ̄aσabψ̄
b + ψaσabψ

b) +
3

32
GaG

a +
3

8
(4m+R)(4m+ R̄)− 6m2

]

SVA = f2

∫

d4x detE
(

x, θ(x), θ̄(x)
)

. (2.1)

SSG gives the standard pure N = 1 AdS supergravity: e = det eam(x), where eam(x) is the

space-time vielbein, ψα
m(x) and ψ̄α̇

m(x) are the Weyl-spinor gravitino field and its complex

conjugate, the covariant derivative ∇̂ = d− ω̂ is defined in appendix B — see eqs. (B.13)–

(B.16) — and R(ω̂) is the curvature scalar associated with ω̂. If in (2.1) the connection

ω̂ab gets substituted with its expression in terms of the ordinary spin connection ωab and

gravitino bilinears, the action exhibits quartic gravitino terms. Finally, Ga, R and R̄ = (R)∗

are the old minimal supergravity auxiliary fields. When m = 0, SSG reduces to the old

minimal off-shell supergravity action derived in [44, 45].

On the other hand, the coupling of the Volkov-Akulov goldstino to the supergrav-

ity fields is encoded in SVA, in which detE denotes the determinant of the worldvolume

pullback of the bulk vector supervielbein

E
a
m

(

x, θ(x), θ̄(x)
)

=

Ea
m

(

x, θ(x), θ̄(x)
)

+ ∂mθα(x)Ea
α

(

x, θ(x), θ̄(x)
)

+ ∂mθ̄α̇(x)Ea
α̇

(

x, θ(x), θ̄(x)
)

. (2.2)

Here θα(x) and θ̄α̇(x) are the components of the Volkov-Akulov goldstino and the com-

plicated non-linear structure of SVA is encoded in the θ-expansion of Ea
m

(

x, θ(x), θ̄(x)
)

.

Its explicit form will be discussed in detail in section 2.2, but we anticipate some of its

implications.

In the action (2.1) the auxiliary fields R and Ga can be expressed in terms of the

physical fields by solving their equations of motion

R = −4m−
16κ2f2

3

(

δEa
m

δR̄
E
m
a

)

detE

e
+

16κ2f2

3e
∂n

(

δ detE

δ(∂nR̄)

)

, (2.3a)

Gb = −
32κ2f2

3

(

δEa
m

δGb
E
m
a

)

detE

e
+

32κ2f2

3e
∂n

(

δ detE

δ(∂nGb)

)

(2.3b)

4To bring the normalization of the fermionic kinetic and mass terms in this action to a canonical form

one should re-scale the gravitino and the goldstino fields as follows ψ → 1
2
ψ, θ → 1

f
θ and θ̄ → 1

f
θ̄.
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where Em
a is inverse of Ea

m. As we will see, the auxiliary fields appear in Ea(x, θ, θ̄) starting

from the second order at most in quadratic combinations and may only appear linearly

under the space-time derivative at the fourth order in θ, θ̄. So (2.3) are algebraic linear

equations for R and Ga, and are thus exactly solvable. In other words, the auxiliary fields

can be integrated out in (2.1) by the standard Gaussian integration.

The bulk supergravity action SSG is invariant under the following local supersymmetry

transformations of the supergravity fields with parameter ǫα(x), see e.g. [47, 48]:

δeam = 2i(ǫσaψ̄m − ψmσaǭ) ,

δψm = ∇̂ǫ+
i

8
R̄(ǭσ̃m)α +

i

16

(

3Gmǫα − (ǫσaσ̃m)αGa
)

,

δψ̄m = ∇̂ǭ+
i

8
R̄(σ̃mǫ)α̇ −

i

16

(

3Gmǭα̇ − (σ̃mσaǭ)
α̇Ga

)

,

δR = −
16

3
∇̂mψnσ

mnǫ− 2iǫσaψ̄
aR− iǫψaG

a,

δR̄ = −
16

3
ǭσ̃mn∇̂mψ̄n + 2iψaσaǭ R̄+ iψ̄aǭ G

a,

δGa = −
40i

3e
emaε

mnkl(∇̂nψkσlǭ− ǫσl∇̂nψ̄k)−
32

3
e[ma (∇̂mψnσ

n]ǭ+ ǫσn]∇̂mψ̄n)

+ iGa(ψbσ
bǭ− ǫσbψ̄b) +

i

2
ǫabcd(ψ

bσcǭ+ εσbψ̄c)Gd − 2iRψ̄aǭ+ 2iR̄ǫψa .

(2.4)

On the other hand, SVA is invariant under the combined action of (2.4) and the following

supersymmetry variations of the goldstino

δθα(x) = −ǫα
(

x, θ(x), θ̄(x)
)

+ ǫm
(

x, θ(x), θ̄(x)
)

∂mθα(x) , (2.5)

where the term with the derivatives of θ(x) appears in (2.5) because of a contribution of

a worldvolume diffeomorphism required to preserve the static gauge xm(ξ) = δmi ξi. The

form of ǫα(x, θ, θ̄) and ǫm(x, θ, θ̄) is determined from the requirement of the preservation

of the Wess-Zumino gauge with the use of the procedure explained in appendix D. To the

second order in θ, θ̄ we thus get

δθα = −ǫα − i(θσmǭ− ǫσmθ̄)
[

ψα
m +∇mθα − i(θσnψ̄m − ψmσnθ̄)(ψα

n +∇mθα)
]

+
1

16
(θσaǭ− ǫσaθ̄)

[

2θαGa + (θσab)
αGb + 2(θ̄σ̃a)

αR
]

+ . . . ,
(2.6)

which explicitly shows that θα(x) is a goldstino field which gets shifted and non-linearly

transformed under supersymmetry, implying the spontaneous breaking of the latter.

In the rest of this section we discuss in more detail the derivation and the structure of

this action.

2.1 N = 1, D = 4 AdS supergravity action

Let us start with a brief review of a derivation of the action SSG in (2.1). This corresponds

to the bulk superspace contribution to (1.1):

SSG =
3

4κ2

∫

d8zBerE +
m

2κ2

(
∫

d6ζL E + c.c.

)

. (2.7)

– 5 –
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It is well known (see e.g. [47]) that in order to express (2.7) in terms of the component

fields of the minimal off-shell supergravity one must use the supergravity constraints (see

appendix B) and impose the Wess-Zumino gauge, which fixes part of the superdiffeomor-

phisms so that what remains is local supersymmetry and four-dimensional diffeomorphisms.

The Wess-Zumino gauge can be written in the form

ιϑE
A(z) := ϑµ̂Eµ̂

A(z) = ϑµ̂δµ̂
A, ιϑΩ

ab(z) := ϑµ̂Ωµ̂
ab(z) = 0 , (2.8)

where we have introduced the 4-component fermionic coordinates ϑµ̂ = (θµ, θ̄µ̇) and

Ωab(z) = dzMΩM
ab(z) is a Lorentz-algebra valued spin connection superform.5 Note

that in the Wess-Zumino gauge the indices of curved superspace fermionic coordinates

µ̂ = (µ, µ̇) get converted into the SL(2, C) spinor indices (α, α̇) which we sometimes collect

in 4-valued α̂.

The fields of minimal N = 1 supergravity are the lowest (θ = θ̄ = 0) components of

the supervielbein and of the superfields R(z), R̄(z) and Ga(z) appearing in the expressions

for the superspace torsion and curvature (see appendix B)

eam(x) = Ea
m(x, 0) , ψα

m(x) = Eα
m(x, 0) , ψ̄α̇

m(x) = Ēα̇
m(x, 0) ,

R(x) = R(x, 0) , R̄(x) = R̄(x, 0) , Ga(x) = Ga(x, 0) .
(2.9)

Notice that we denote the auxiliary fields R(x), R̄(x) and Ga(x) with the same letters as

their superfield counterparts.

Due to our choice of the torsion constraint, see eq. (B.2a), the conventional supergravity

connection ω̂ab(x) is related to the lowest component of Ωm
ab as follows

ω̂ab
m := ωab

m + 2i(ψ[aσb]ψ̄m + ψmσ[aψ̄b] + ψ[aσmψ̄b]) = Ωm
ab|0 +

1

8
emcε

abcdGd|0 , (2.10)

where ωab
m (x) is the standard (torsion-less) spin connection expressed in terms of the vielbein

eam(x) and |0 := |θ=0 stands for the lowest component of the superfields such as Ωab and

Gd. In what follows, to make expressions shorter, we will use the connection ω̂ab.

In the Wess-Zumino gauge the chiral measure E has the following form

E = e

[

1 + 2iΘα(σaψ̄
a)α +ΘΘ

(

3

4
R̄− 2ψ̄aσabψ̄

b

)]

, (2.11)

where Θ is a ‘new Grassmann coordinate’ defined in [47] and references therein.6

5The complete set of gauge fixing conditions of the Wess-Zumino gauge in the form of equations (2.8)

can be found in [52, 53] as well as in easier accessible [49].
6Θ variable is defined [47] as a function of θ and other superspace coordinates (x and θ̄) by the re-

quirement that the coefficients in the decomposition of the covariantly chiral superfield (D̄α̇Φ = 0) are

given by the leading components of the covariant Grassmann derivatives DαΦ|0 and − 1
2
DαDαΦ|0, namely,

Φ = Φ|0+Θα(DΦ|0)+
1
2
ΘΘ(− 1

2
DαDαΦ|0). Then the chiral measure contains the standard Berezin integra-

tion with respect to Θ,
∫
d6ζL . . . =

∫
d4x ∂

∂Θ1

∂

∂Θ2 = 1
2

∫
d4xǫαβ ∂

∂Θα
∂

∂Θβ . Notice that the volume of chiral

superspace can be also written with the use of the complete superspace measure
∫
d6ζLE = 2

∫
d8z BerE

R
,

but with the R superfield in the denominator.

– 6 –
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So, integrating (2.7) over the fermionic coordinates we get the component field action

SSG appearing in (2.1). If the complete action were just given by SSG, one could integrate-

out the auxiliary fields by substituting into SSG the solution of the associated equations of

motion

Ga = 0 , R = R̄ = −4m. (2.12)

This produces the N = 1 supergravity action with negative cosmological constant Λ =

−3m2

κ2 and gravitino mass m constructed in [54]

SAdS =
1

2κ2

∫

d4x e
[

R(ω̂)− 4e−1εmnkl(∇̂nψkσlψ̄m + ψmσn∇̂kψ̄l)

− 4m(ψ̄aσabψ̄
b + ψaσabψ

b)− 6m2
]

.

(2.13)

In the next subsection we will discuss how this conclusion is modified by the presence of

the 3-brane.

2.2 Coupling the 3-brane to supergravity

When we consider the coupling of supergravity to the 3-brane as in (1.1), the 3-brane

back-reacts, i.e. contributes to the supergravity equations of motion and, in particular, to

those of the auxiliary fields modifying them. Therefore, we cannot use the solutions (2.12)

anymore and we should find their modification due to the presence of the 3-brane.

As already mentioned, after fixing the worldvolume diffeomorphism invariance by im-

posing the static gauge xm(ξ) = δmi ξi, the interaction of the Volkov-Akulov goldstino with

the supergravity multiplet is encoded in the 3-brane action

SVA = f2

∫

d4x detEa
m

(

x, θ(x), θ̄(x)
)

(2.14)

via a complicated dependence of the supervielbein Ea(x, θ, θ̄) on the supergravity com-

ponent fields. To get the explicit form of this dependence we should expand Ea(x, θ, θ̄)

in powers of θ and θ̄. The series stops at the fifth order in the fermions (including dθα

and dθ̄α̇).

To compute the θ-expansion of EA(x, θ, θ̄) in the Wess-Zumino gauge (2.8) we use the

following well known procedure.7 Let us again use the four-component fermionic coordi-

nates ϑµ̂ = (θµ, θ̄µ̇) introduced in the previous section. We can then rescale them, ϑ → tϑ,

and define the t-rescaled supervielbein

EA(t) := EA(x, tϑ) = dxmEA
m(x, tϑ) + tdϑα̂Eα̂

A(x, tϑ)

= EA
(0) + tEA

(1) + t2EA
(2) + t3EA

(3) + t4EA
(4) + t5EA

(5) ,
(2.15)

where EA
(n) (with n = 0, . . . , 5) stands for the term of order ϑn in EA(x, ϑ) when t = 1.

This trick allows us to identify the different components of the ϑ-expansion of EA by

finding (2.15) order by order in t.

7Alternatively, one might adapt to our case the general expressions given in [55] (see appendix E).

Another alternative procedure to arrive at recurrent relations, described in [49] (going back to [52] and [53]),

uses the operator ϑα̂∂α̂ = ϑα̂Dα̂ instead of d
dt

applied to superfields with ϑ 7→ tϑ.

– 7 –
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To this end, first of all we observe that, taking into account the Wess-Zumino

gauge (2.8), we have (see appendix B for a summary of the superspace geometry needed

in the following)

d

dt
EA(t) = DιϑE

A(t) + ιϑT
A(t) , (2.16a)

d

dt
Ωab(t) = ιϑR

ab(t) . (2.16b)

Hence taking into account the supergravity constraints we get a system of equations which

can be solved order by order in t

d

dt
Ea = ιθT

A = 2iθσaĒ − 2iEσaθ̄ , (2.17a)

d

dt
Eα = Dθα + ιθT

α = Dθα +
i

8
Ec
[

(θσcσ̃d)
αGd + θ̄β̇σ̃

β̇α
c R

]

, (2.17b)

d

dt
Eα̇ = Dθ̄α̇ + ιθT

α̇ = Dθ̄α̇ −
i

8
Ec
[

(σ̃dσcθ̄)
α̇Gd + σ̃α̇β

c θβR̄
]

, (2.17c)

d

dt
Ωαβ = −E(αθβ)R̄−

i

8
Ec
(

σ̃γ̇(α
c θβ)D̄γ̇R̄− (θσcσ̃d)

(αDβ)Gd + (σcθ̄)γW
αβγ
)

, (2.17d)

where we are implicitly using t-rescaled superfields.

For our purposes, we are interested in computing the explicit form of the vector super-

vielbein Ea(x, θ, θ̄). Eq. (2.17a) allows us to express Ea(x, θ, θ̄) in terms of the ϑ-expansion

of the fermionic vielbeins Eα and Ēα̇, namely,

Ea = ea + Ea
(1) + Ea

(2) + Ea
(3) + Ea

(4) + Ea
(5)

= dxmeam − 2

[

i

(

ψ +
1

2
E(1) +

1

3
E(2) +

1

4
E(3) +

1

5
E(4)

)

σaθ̄ + c.c.

]

.
(2.18)

On the other hand, one can use (2.17b) and (2.17c) to identify the first term in the ϑ-

expansion of the spinorial supervielbein:

Eα = ψα+Eα
(1) = ψα+∇̂θα+

i

16
eb
[

2θαGb+(θσ[bσ̃c])
αGc

]

+
i

8
eb(θ̄σ̃b)

αR+O(ϑ2) . (2.19)

By plugging (2.19) back into (2.18) we can immediately read off the explicit expansion of

Ea up to the second order in ϑ:

Ea = ea + 2iθσaψ̄ − 2iψσaθ̄ + iθσa∇̂θ̄ − i∇̂θσaθ̄

+
1

4
ebGbθσ

aθ̄ −
1

4
e[aGb]θσbθ̄ +

1

8
ea (θθR̄+ θ̄θ̄R) +O(ϑ3) .

(2.20)

Note that when the auxiliary fields are put to zero, the terms entering the second order

expansions (2.19) and (2.20) coincide with the supervielbeins first constructed in [10] (see

section 3).
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One can then iterate the above procedure to identify the higher order terms. At the

third order we obtain

Ea
(3) = ebθ̄θ̄

[

−
i

6
θσaψ̄bR−

i

6
θψbG

a −
i

6
θσaσ̃cψbG

c

+
i

3
θσaT̄b +

i

6
θσbT̄

a −
i

12
θσa

bσcT̄
c −

2

9
ηad(θσ[d

cTb]c)

−
2

9

(

ηacθTcb +
i

2
ηbeε

aecdθTcd

)]

+ c.c. ,

(2.21)

where we have introduced8

ψα
ab := 2ema enb ∇̂[mψα

n] (2.22a)

Tab
α := Tab

α|0 = ψα
ab −

i

8
(ψ[aσb]σ̃

c)αGc −
i

8
ψ[a

αGb] −
i

4
(ψ̄[aσ̃b])

αR (2.22b)

T̄ a
α̇ := εabcdTbc

ασdαα̇ = εabcdψbc
ασdαα̇ +

1

2
(ψ̄bσ̃

ab)α̇R+
i

8
εabcd(ψbσc)α̇Gd +

1

2
(ψcσ

[c)α̇G
a] .

(2.22c)

The forth and fifth order contributions to the ϑ-expansion of Ea are

Ea
(4) = −

i

2
E(3)σ

aθ̄ +
i

2
θσaĒ(3)

=
i

24
θθ ∇̂θσaθ̄ R̄−

i

24
θ̄θ̄(∇̂θγ θγG

a + ∇̂θσcσ̃aθ Gc)

−
i

24
θ̄θ̄ θσa∇̂θ̄ R+

i

24
θθ(∇̂θ̄γ̇ θ̄

γ̇ Ga + ∇̂θ̄σ̃cσaθ̄ Gc)

+ θθ θ̄θ̄ ea
[

1

384
(DDR+ D̄D̄R̄)|0 +

1

192
GcG

c −
1

96
RR̄

]

(2.23a)

+ θθ θ̄θ̄ eb
[

1

768
(4ηacηbd + 6δ[b

aδd]
c)(σ̃c)

α̇α
[

D̄α̇,Dα

]

Gd|0

+
1

64
εabcdD

cGd|0 −
5

192
GbG

a +
i

12
ψαDαG

a|0 −
i

12
ψ̄b

α̇ D̄α̇G
a|0

−
i

64
(ψ̄bσ̃

aσc)α̇ D̄
α̇Gc|0 −

i

64
(ψbσ

aσ̃c)
αDαG

c|0

]

,

Ea
(5) =

i

6
θθ θ̄θ̄

[(

T ab +
i

2
εabcdTcd

)

σbdθ̄ − c.c.

]

, (2.23b)

where Dα̇ is the spinorial covariant derivative defined in appendix B and the expressions

for the derivatives of R and G, like DG|0, DDG|0, DDR|0 etc., in terms of space-time fields

are given in appendix C.

It is important to note that the auxiliary fields enter Ea starting from the second

order in ϑ. More precisely, the contribution of the auxiliary fields to Ea
(2) is linear, while in

8Note that the R-term and a part of contributions proportional to Ga of (2.22b) do not enter the

expression in the last line of (2.21) so that instead of (2.22b) one can substitute there a shorter expression

Tab
α 7→ ψα

ab −
3i
8
ψ[a

αGb]. Note also that when for the pure supergravity the equations of motion for the

auxiliary fields are solved as in (2.12), T̄ a
α̇ (x) is proportional to the gravitino field equations.
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higher order terms of Ea they appear at most quadratically. Furthermore, there are only

linear terms in space-time derivatives of the auxiliary fields and they appear only at the

quartic order. This means that in the 3-brane action (2.14) the auxiliary fields appear only

linearly or quadratically and without derivatives (modulo integration by parts). As such,

when the 3-brane action is coupled to the supergravity action SSG in (2.1), one can still

explicitly solve the equations of motion of the auxiliary fields (2.3a) and (2.3b) modified

by the presence of the goldstino fields.

2.3 Action to the second order in goldstino

Using the results of the previous subsection, one can straightforwardly write down the

complete explicit expression of the 3-brane action SVA. However, in order to capture its

main physical implications, we can just focus on the terms of this action which are linear

and quadratic in the goldstino fields:

SVA = f2

∫

d4x e

[

1 + 2i(θσaψ̄a − ψaσ
aθ̄) + i(θσa∇̂aθ̄ − ∇̂aθσ

aθ̄)−
1

8
Gaθσ

aθ̄

+
1

2
(θθR̄+ θ̄θ̄R) + θ̄θ̄ψaσ

abψb + θθψ̄aσ̃
abψ̄b − 8iεabcdθσaθ̄ ψbσcψ̄d

]

+ . . .

(2.24)

Upon substituting (2.24) into (2.1) and varying the latter with respect to R̄ and Ga we

find the following solutions of the auxiliary field equations (2.3a) and (2.3b):

R = −4m−
8κ2f2

3
θ2 + . . . , Ga =

4κ2f2

3
θσaθ̄ + . . . . (2.25)

Substituting these solutions back into the action (2.1) we get

S =
1

2κ2

∫

d4x e
[

R(ω̂)− 4e−1εmnkl(∇̂nψkσlψ̄m + ψmσn∇̂kψ̄l)− 4m(ψ̄aσabψ̄
b + ψaσabψ

b)
]

+

∫

d4x e

{(

f2−
3m2

κ2

)

+f2
[

2i(θσaψ̄a− ψaσ
aθ̄) + i(θσa∇̂aθ̄ −∇̂aθσ

aθ̄)− 2m(θ2+ θ̄2)
]

+ f2
[

θ̄θ̄ψaσ
abψb + θθψ̄aσ̃

abψ̄b − 8iεabcdθσaθ̄ ψbσcψ̄d

]

−
3κ2f4

2
θ2θ̄2

}

+ . . . .

(2.26)

Modulo our conventions (see footnote 4), (2.26) coincides with the action of [4, 5] truncated

to the second order in the goldstino.9

One can fix the local supersymmetry by imposing the unitary gauge in which the

goldstino vanishes:

θ(x) = 0 . (2.27)

In this gauge, the action (2.26) drastically simplifies:

S =
1

2κ2

∫

e
[

R(ω̂)− 4e−1εmnkl(∇̂nψkσlψ̄m + ψmσn∇̂kψ̄l)

− 4m(ψ̄aσabψ̄
b + ψaσabψ

b) + (2κ2f2 − 6m2)
]

.

(2.28)

9In the Lagrangian (2.26) we also included the term − 3κ2f4

2
θ2θ̄2 which is the only quartic ϑ-term with

constant coefficient (the same as in [4, 5]), while the other quartic terms will contain supergravity fields.
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Notice that, in the unitary gauge, the higher order contributions which we have omitted

in (2.26) vanish and then (2.28) provides the complete gauge-fixed action. Hence, in this

gauge the effect of the Volkov-Akulov 3-brane is reduced to a positive contribution to the

value of the cosmological constant

Λ = f2 −
3m2

κ2
(2.29)

which can thus be positive and may give rise to a de Sitter vacuum as in [4, 5].

We expect that at higher orders in θ(x), θ̄(x) the form of our action will differ from that

of [4, 5] and similar constructions based on the nilpotent goldstino superfield in the same

way as the original rigid-supersymmetry Volkov-Akulov action differs from its ‘constrained

superfield’ counterparts [14–18, 21–23]. To find the precise correspondence between the

two formulations one should generalize the non-linear field redefinitions relating different

forms of the Volkov-Akulov Lagrangian found in [56, 57].

2.4 Emergence of constrained superfields

Let us now demonstrate how a constraint on the chiral scalar superfield R(z) = R(x, θ, θ̄)

entering the supergravity torsion and curvature arises in this formulation as a consequence

of its equation of motion. The expression (2.25) for the complex scalar R(x) to the second

order in θ, θ̄ is

R(x) + 4m = −
8κ2f2

3
θ2(x) (1 + . . . ) , (2.30)

which implies that R(x) is nilpotent, i.e. (R(x) + 4m)2=0. Since R(x) is the lowest com-

ponent of the chiral superfield R(z), eq. (2.30) may be regarded as part of the solution to

a nilpotency constraint involving the entire superfield R(z) similar to that used in [3, 26]

to construct ‘nilpotent supergravity’ models. This constrained was also derived in [7] as

an equation of motion of supergravity coupled to the nilpotent chiral superfield. As we

will now show, this constraint is automatically solved by the superfield R(z) obeying its

equation of motion also in our formulation.

Different ways to obtain superfield supergravity equations from superspace action by

varying constrained supervielbeins were described in [43, 48, 49, 58] and references therein.

With the use of the procedure of [49] we get

R(z) + 4m =
16κ2f2

3
J (z) , (2.31)

where

J (z) =
(

D̄D̄ −R(z)
)

P(z) , P(z) =

∫

d4ξ
detE

(

z(ξ)
)

BerE
(

z(ξ)
) δ8

(

z − z(ξ)
)

, (2.32)

and

δ8(z) :=
1

4
θ2 θ̄2 δ4(x) (2.33)

is the superspace δ function obeying
∫

d8z δ8(z)h(z) = h(0). Notice that D̄D̄ −R(z) is the

chiral projector, i.e.

D̄α̇

(

D̄D̄ −R(z)
)

P(z) ≡ 0 . (2.34)
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Therefore, the right hand side of (2.31) is chiral, as it should be, because R(z) is a chiral

superfield.

Fixing the Wess-Zumino and the static gauge one finds that

J (z) = −
1

2

(

θ − θ(x)
)2
(1 + . . . ) ⇒ J (z)2 = 0 . (2.35)

Then, due to equation (2.31) we get

(

R(z) + 4m
)2

= 0 . (2.36)

The form of this constraint is the same as one obtained in [7] and is similar to that used

in [3] for the construction of nilpotent supergravity

(

R(z)− λ
)2

= 0 .

However, the difference is that the parameter λ, which triggers supersymmetry breaking

in the model of [3], is (a priori) not related to the gravitino “AdS mass” m.

3 A comment on the Volkov-Soroka supergravity action

In 1973 Volkov and Soroka [10, 11] coupled the Volkov-Akulov model to a simple super-

gravity multiplet consisting of the graviton and gravitino, and to a vector gauge field. We

will now briefly sketch their construction omitting the coupling to the vector fields (for a

more detailed review see [59]) and show that in the unitary gauge the Volkov-Soroka action

is the same as the one considered above.

The Volkov-Soroka model was based on a general approach to the construction of phe-

nomenological Lagrangians with non-linearly realized symmetries [60–62] and consisted in

gauging the super-Poincaré group by introducing corresponding gauge fields eam(x), ψα
m(x),

ψ̄α̇
m(x) and the Lorentz-algebra valued connection ω̃ab

m (x) considered to be independent

fields as in the first-order formalism to gravity and supergravity. The local supersymmetry

transformations of eam(x), ψα
m(x) and ψ̄α̇

m(x) which can be deciphered from [10, 11] have

the same form as in (2.4) with the auxiliary fields set to zero,

δeam = 2i(ǫσaψ̄m − ψmσaǭ) ,

δψm = ∇̃mǫ , δψ̄m = ∇̃ǭ ,
(3.1)

but with the covariant derivative ∇̃ = d− ω̃ containing the independent connection ω̃m(x).

In the Volkov-Soroka construction ω̃m(x) is invariant under supersymmetry transforma-

tions.

The Volkov-Soroka procedure of gauging the super-Poincaré group was essentially

based on the idea to use the goldstino as a Stueckelberg-like field whose variation

δϑ = −ǫ(x) compensates the local supersymmetry transformations of the graviton and

the gravitino together with a Stueckelberg-like field Xa(x) to compensate local Poincaré

translations in the tangent space. The latter can be gauge-fixed to zero thus reducing the
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action of the Poincaré group in the tangent space to local Lorentz rotations. Superinvariant

one-forms constructed in this way (compare with (2.19) and (2.20))

ψ̃ = ψ + ∇̃θ ,
¯̃
ψ = ψ̄ + ∇̃θ̄ ,

ẽa(x) = ea(x) + 2iθσaψ̄ − 2iψσaθ̄ + iθσa∇̃θ̄ − i∇̃θσaθ̄
(3.2)

were used to construct an invariant action

SVS=
1

2κ2

∫

d4x ẽ

[

R(ω̃)−
4c

ẽ
εmnkl(∇̃nψ̃kσl

¯̃
ψm+ψ̃mσn∇̃k

¯̃
ψl)−4m(

¯̃
ψaσab

¯̃
ψb+ψ̃aσabψ̃

b)+λ

]

.

(3.3)

Note that in this action the coefficients c, m and λ are arbitrary.

Now, we can use the original supersymmetry transformations to put the goldstino field

in this Lagrangian to zero, absorb the constant c in the re-scaled gravitino field (ψ → c−
1
2ψ),

redefine λ = 2κ2
(

f2 − 3m2

κ2

)

and finally substitute the solution of the ω̃ field equation back

in to the action (3.3).10 The result is the gauge-fixed action (2.28).

Back to 1973, when constructing their supergravity action Volkov and Soroka were,

probably, too much concentrated on the local supersymmetry breaking associated with

the shift of the goldstino and the corresponding super-Higgs effect, so they did not pose

the question whether (for a suitable choice of the parameters) their action can still be

supersymmetric even when the goldstino field is gauge fixed to zero.

4 Discussion and outlook

We have derived the minimal model describing the spontaneous breaking of pure N = 1,

D = 4 supergravity induced by a space-filling 3-brane which carries the Volkov-Akulov

goldstino on its worldvolume and provides a tunable constant contribution to the cosmo-

logical constant which can be made positive. To the quadratic order in goldstino, the

action coincides with previous constructions using constrained goldstino superfields [4, 5].

We have also shown that this action is equivalent to the Volkov-Soroka model [10, 11] in

the unitary gauge in which goldstino vanishes.

This model is very naturally formulated in superspace and is based on the fact that the

Volkov-Akulov goldstini can be associated with the fluctuations of branes along Grassmann-

odd directions in superspace. In this framework the model can be directly generalized to

describe manifestly supersymmetric coupling of the Volkov-Akulov goldstino to more com-

plicated supergravity-matter systems. For instance, one can consider a supergravity inter-

acting with chiral scalar and vector supermultiplets described, respectively, by superfields

Φ(z) and V (z). These fields can couple to the 3-brane via their pull-back to the brane

worldvolume. A straightforward generalization of action (1.1) for such a system is

S =
3

4κ2

∫

d8zBerE e−
κ2

3
K(Φ̄ eV , eV Φ) +

m

2κ2

(
∫

d6ζL E
[

W (Φ) + tr g(Φ)Wα
Wα

]

+ c.c.

)

+ f2

∫

d4ξ det
[

E
(

z(ξ)
)]

FΦ,Φ̄,V (ξ) , (4.1)

10It is important that in this construction ω̃ is a priori an independent field. Otherwise the re-scaling of

the gravitino would not be possible.

– 13 –



J
H
E
P
0
2
(
2
0
1
6
)
0
8
0

where FΦ,Φ̄,V (ξ) ≡ F
[

Φ
(

z(ξ)
)

, Φ̄
(

z(ξ)
)

, V
(

z(ξ)
)]

is a real gauge-invariant function of the

pull-backs of bulk superfields and their derivatives, while the first two terms describe the

standard coupling of supergravity to matter fields with a Kähler potential K, a superpo-

tential W and a complexified gauge coupling g(Φ). When reduced to the component field

action, eq. (4.1) should produce an alternative description of matter coupled supergravity

with constrained superfields considered e.g. in [5, 7, 9, 63–65].

This framework allows to construct quite general Lagrangians which should provide, in

a more direct way, low-energy effective field theories for string compactifications with anti-

brane induced supersymmetry breaking. For instance, in KKLT-like scenarios, one may

start from a generalization of (4.1) including additional worldvolume fields ϕ(ξ), Ai(ξ)

etc. and match the brane term in (4.1) with what one obtains by dimensional reduction

of the action of a probe anti-D3-brane sitting on an orientifold. In particular, the low-

energy 3-brane tension f2 would be proportional to e4A0TD3, where TD3 is the microscopic

anti-D3-brane tension and eA0 is the warp-factor of the ten-dimensional solution at the

position of the probe anti-D3-brane. As emphasized in [31], in order to get a sufficiently

small effective 3-brane tension and make the low-energy effective field theory trustable,

eA0 must be strongly suppressed compared to the everage value of the warping along the

compactification space.

Notice that such an approach to match the four-dimensional effective theory with the

KKLT-like microscopic configuration would be based on the assumption that the action of a

probe anti-brane captures the relevant physical information to derive the appropriate four-

dimensional effective theory describing the fully back-reacted configuration. In the recent

years, starting with [66], the validity of such constructions has been under discussion, see

e.g. [67, 68] for a recent review of this problem and references therein for more details.

The supersymmetric models that can be constructed with the use of the back-reacting

Volkov-Akulov brane considered in this paper may be useful for tackling this issue from

the perspective of the four-dimensional low-energy effective theory.
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A Notation and conventions

We use the two-component Weyl-spinor formalism with the relativistic Pauli matrices

σa
βα̇ = ǫβαǫα̇β̇σ̃

aβ̇α obeying

σaσ̃b = ηab +
i

2
εabcdσcσ̃d , σ̃aσb = ηab −

i

2
εabcdσ̃cσd , (A.1)

where ηab = diag(1,−1,−1,−1) is the Minkowski metric and εabcd is the totally antisym-

metric tensor with ε0123 = 1 = −ε0123. We rise and lower the spinorial indices θα = εαβθ
β

and θα = εαβθβ with the use of εαβ = −εβα = −εαβ obeying εαβε
βγ = δ

γ
α.

The indices are contracted as follows

ǫσaψ̄ := ǫασa
αβ̇

ψ̄β̇ , ψ̄σ̃aǫ := ψ̄β̇σ̃
aβ̇αǫα ,

θθ = θαθα =
1

2
εαβθ

αθβ θ̄θ̄ = θ̄α̇θ̄
α̇ = −

1

2
εα̇β̇ θ̄

α̇θ̄β̇ , θθ = (θ̄θ̄)∗.
(A.2)

The antisymmetrized products of the Pauli matrices

σab
β
α = σ[aσ̃b]

β
α :=

1

2
(σaσ̃b − σbσ̃a)β

α, σ̃abα̇
β̇ = σ̃[aσb]α̇

β̇

are, respectively, imaginary-self-dual and imaginary-anti-self-dual,

σab =
i

2
εabcdσcd , σ̃ab = −

i

2
εabcdσ̃cd .

Some other useful properties are:

σabσc + σcσ̃ab = −2iεabcdσ
d, σ̃abσ̃c + σ̃cσab = 2iεabcdσ̃

d. (A.3a)

σabσc − σcσ̃ab = 4σ[aηb]c , σ̃abσ̃c − σ̃cσab = 4σ̃[aηb]c , (A.3b)

σbσ̃aσc − σcσ̃aσb = 2iεabcdσ
d, σ̃bσaσ̃c − σ̃cσaσ̃b = −2iεabcdσ̃

d. (A.3c)

B N = 1, D = 4 supergravity constraints

The constraints on the torsion (the differentials act from the right)

DEA = dEA − EB ∧ ΩB
A = TA (B.1)

are

T a = −2iσa
αα̇E

α ∧ Ēα̇ −
1

8
Eb ∧ EcεabcdG

d, (B.2a)

Tα =
i

8
Ec ∧ Eβ(σcσ̃d)β

αGd −
i

8
Ec ∧ Ēβ̇εαβσcββ̇R+

1

2
Ec ∧ Eb Tbc

α, (B.2b)

T α̇ =
i

8
Ec ∧ Eβεα̇β̇σcββ̇R̄−

i

8
Ec ∧ Ēβ̇(σ̃dσc)

α̇
β̇ G

d +
1

2
Ec ∧ Eb Tbc

α̇. (B.2c)

In these expressions Ga(z) and R(z) =
(

R̄(z)
)∗

are so-called main off-shell superfields of

N = 1 D = 4 supergravity, which obey a number of relations including

DαR̄ = 0 , D̄α̇R = 0 , (B.3a)

D̄α̇Gaσ
a
αα̇ = −DαR , DαGaσ

a
αα̇ = −D̄α̇R̄ . (B.3b)
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If we collectively denote the fermionic coordinates by ϑµ̂ = (θµ, θ̄µ̇), the lowest ϑ = 0

components of these superfields are the auxiliary fields of minimal supergravity multiplet,

which we will denote by the same symbol, Ga(x) ≡ Ga(z)|ϑ=0, R(x) ≡ R(z)|ϑ=0.

Notice that our covariant derivatives are defined from the following decomposition of

the covariant differential

D = EaDa + EαDα + Ēα̇D̄α̇ . (B.4)

Since complex conjugation interchange the order of fermionic entities, this implies

(D̄α̇)
∗ = −Dα . (B.5)

The complete set of the main superfields also includes the symmetric spin-tensor

Wαβγ := 4σ̃ab(αβTab
γ) and its complex conjugate W̄ α̇β̇γ̇ = −4σ̃ab(α̇β̇Tab

γ̇) which are chiral

D̄α̇W
αβγ = 0 , DαW̄

α̇β̇γ̇ = 0 , (B.6)

and obey the relations

DγW
αβγ = D̄γ̇D

(αGβ)γ̇ , D̄γ̇W̄
α̇β̇γ̇ = DγD̄

(α̇|Gγ|β̇). (B.7)

The symmetric part of the non-vanishing Grassmann covariant derivative of Wαβγ produces

the superfield generalization of the irreducible (spin-tensor) components of the Weyl tensor

Cαβγδ := C(αβγδ) =
1

16
σab(αβσ

cd
γδ)Rcd

ab (B.8)

and its c.c.,

D(αWβγδ) = −16Cαβγδ , D(α̇W̄β̇γ̇δ̇) = −16C̄α̇β̇γ̇δ̇ . (B.9)

The superfield curvature is defined in terms of the main superfields as follows

Rab = dΩab − Ωac ∧ Ωc
b =

1

2
Rαβ(σaσ̃b)αβ −

1

2
Rα̇β̇(σ̃aσb)α̇β̇ (B.10)

and

Rαβ = dΩαβ − Ωαγ ∧ Ωγ
β

=
1

4
Rab(σaσ̃b)

αβ

= −
1

2
Eα ∧ EβR̄−

i

8
Ec ∧ E(ασ̃γ̇β)

c D̄γ̇R̄+
i

8
Ec ∧ Eγ(σcσ̃d)γ

(βDα)Gd

−
i

8
Ec ∧ Ēβ̇σcγβ̇W

αβγ +
1

2
Ed ∧ EcRcd

αβ .

(B.11)

The form of the curvature is obtained by solving the Bianchi identities

DTA + EB∧RB
A = 0 . (B.12)

Note that in the chosen form of the torsion constraint (B.2a) containing non-zero

T c
bc components, the lowest component of the superfield connection ΩA

B is related to the

conventional supergravity spin connection

ω̂ab
m := ωab

m + 2i(ψ[aσb]ψ̄m + ψmσ[aψ̄b] + ψ[aσmψ̄b]) (B.13)
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as follows

Ωab
m |0 = ω̂ab

m −
1

8
emcε

abcdGd|0

Ωmα
β |0 = ω̂mα

β −
1

32
emcε

abcd(σaσ̃b)α
βGd|0 = ω̂mα

β(x) +
i

16
eam (σ[aσ̃b])α

βGb|0 .
(B.14)

So, e.g. for an arbitrary spinor superfield Wα

DmWα|0 = ∇̂mWα|0 +
1

32
emcε

abcd(Wσaσ̃b)Gd|0

= ∇̂mWα|0 −
i

16
eam(Wσ[aσ̃b])G

b|0

(B.15)

where

∇̂Wα|0 = dWα(x, 0)−W β(x, 0)ω̂β
α (B.16)

is a conventional covariant derivative acting on the component supergravity fields.

C Lowest components of superfields R, R̄ and G
a in terms of space-time

fields

One of the characteristic properties of the Wess-Zumino gauge is that, with the help of the

supergravity constraints and their Bianchi identities, higher components of superfields can

be written as lowest components of the fermionic covariant derivatives of these superfields.

In particular, the first terms in the ϑ decomposition of the superfields R, R̄ and Ga , which

we need to solve equations (2.17a)–(2.17c) for Ea, are

R(0) = R(x) , R(1) = θα(DαR)|0 = −θασa
αβ̇

(D̄β̇Ga)|0 , (C.1a)

R(2) = −
1

4
θθDαDαR|0 +

1

2
θαθ̄α̇D̄α̇DαR|0 , (C.1b)

Ga
(0) = Ga(x) , Ga

(1) = θαDαG
a|0 + θ̄α̇D̄α̇G

a|0 , (C.1c)

Ga
(2) = −

1

4
θθDαDαG

a|0 −
1

4
θ̄θ̄ D̄α̇D̄

α̇Ga|0 +
1

2
θαθ̄α̇

[

D̄α̇,Dα

]

Ga|0 , (C.1d)

Wαβγ |0 = 4σab(αβTab
γ)|0 , W

αβγ

(1) = θδ DδW
αβγ |0 . (C.1e)

These expressions still cannot be used straightforwardly. First of all one should decompose

covariant derivatives of the superfields on irreducible parts and identify them.

The fermionic derivatives of the main off-shell superfields are expressed by

D̄α̇G
a|0 = 4i

[

T a
α̇ −

1

3
(T bσ̃aσb)α̇

]

, DαR|0 =
4i

3
σaαα̇T

α̇a (C.2)

through the superfield generalization of the fermionic equation of supergravity (see (2.22c))

T a
α̇ (x) = εabcdTbc

α(x)σdαα̇ (C.3)

where recall that

Tab
α(x) := Tab

α|0 = ψα
ab(x)−

1

8
(ψ[aσb]σ̃

c)αGc(x)−
i

8
ψ[a

αGb](x)−
i

4
(ψ̄[aσ̃b])α̇R(x) (C.4)
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is the lowest component of the fermionic superspace torsion and

ψα
ab(x) = 2ema enb ∇̂[mψα

n] . (C.5)

The second term in (C.1b) is expressed through the bosonic derivative of the lowest com-

ponent of the chiral superfield R as

D̄α̇DαR|0 = {D̄α̇,Dα}R|0 = 2iDαα̇R|0 = −2iσa
αα̇(e

m
a ∂mR− ψβ

aDβR|0) . (C.6)

Furthermore, using the consequences of the supergravity constraints we obtain, in partic-

ular, that

Wαβγ |0 = 4σab(αβTab
γ) = 4σab(αβψab

γ) −
3i

2
σab(αβψγ)

a Gb (C.7)

and

DαW
βγδ = −16Cα

βγδ −
3i

2
δα

(βσ
γδ)
ab DaGb, (C.8)

where the lowest component of (C.8) is expressed in terms of the irreducible part of the

Weyl tensor superfield (B.8)

Cαβγδ|0 =
1

16
σab(αβσ

cd
γδ)e

m
c endRmn

ab +
i

8
(σcψ̄c)(αWβγδ)|0 −

1

4
R̄ψa(ασ

ab
βγψδ)b

−
i

16
ψa(α(σ

aσ̃b)βγDδ)Gb|0 +
1

8
ψa(ασ

ab
βγ(σ

cψ̄b)δ)Gc|0

(C.9)

and

D[aGb]|0 = e[a
m∇̂mGb]|0 − ψ[a

αDαGb]|0 − ψ̄[a
α̇Dα̇Gb]|0 . (C.10)

To obtain a more explicit expression in terms of space-time fields, DαGa|0 and Wβγδ|0
should be specified with the use of (C.2) and (C.7).

Some expressions for the second Grassmann derivatives of Ga and R are also useful.

Using (B.3b) and (B.3a), after some algebra with covariant derivatives we find

DαDαGa = 4iDaR̄+
3

2
R̄Ga , D̄α̇D̄

α̇Ga = −4iDaR+
3

2
RGa , (C.11)

so that DαDαGa|0 and D̄α̇D̄α̇Ga|0 can be calculated using (C.6). Next, using

D̄(α̇|D(αGβ)|β̇) = σ̃cd
α̇β̇σabαβR̂cd

ab (C.12)

and equation (B.3b) we find that

D̄α̇DαGββ̇ = σ̃cd
α̇β̇σabαβRcd

ab − iǫα̇β̇σ
ab
αβ

γ̇D[aGb] +
1

4
ǫαβǫα̇β̇D̄D̄R̄ . (C.13)

To obtain the final expression for the lowest component D̄α̇DαGββ̇|0 in terms of spacetime

fields we have to take into account that

Rmn
ab|0 = Rmn

ab +
1

4
εabcdec[m∇̂n]Gd −

i

2
εabcdψ[m|σcψ̄|n]Gd +

3

32
e[amebnG

c]Gc . (C.14)
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Finally,

DαDαR|0 = −
16κ2

3e
LSG + 3RR̄− 2iema ∇̂mGa + 8Rψ̄aψ̄

a − 4Gaψ
bσbψ̄

a

+ 8εabcd(ψbcσdψ̄a − 8ψaσdψ̄bc)−
16

3
εabcdψbcσdσ̃aσf ψ̄

f ,

(C.15)

where LSG is the component field Lagrangian for minimal N = 1, D = 4 supergravity with

zero cosmological constant

2κ2

e
LSG = R(ω̂)− 4e−1εmnkl(∇̂nψkσlψ̄m + ψmσn∇̂kψ̄l) +

3

8
RR̄+

3

32
GaG

a. (C.16)

D Supersymmetry transformations preserving the Wess-Zumino gauge

The parameters εM (x, θ, θ̄) = zM−z′M and Lab(z) of the infinitesimal superdiffeomorphism

and local Lorentz transformations E′A(z′) = EA(z) − EB(z)LB
A(z) which preserve the

Wess-Zumino gauge (2.8) should obey the following system of equations

ϑα̂∂α̂(ιǫE
A) + ϑα̂ιǫE

BTBα̂
A + ϑβ̂(L

β̂
α̂ + ιǫΩβ̂

α̂)δα̂
A = 0 ,

ϑρ̂∂ρ̂(L
ab + ιǫw

ab) + ϑρ̂ιǫE
BRBρ̂

ab = 0 ,
(D.1)

where remember that ϑµ̂ = (θµ, θ̄µ̇). Equivalently, as we did for finding the θ-expansion of

the supervielbein, one can perform the re-scaling ϑ 7→ tϑ and write (D.1) as an equation

for derivative in t,

d

dt
ιǫE

A(t) = −ϑα̂ιǫE
B(t)TBα̂

A(t)− ϑβ̂L̃
β̂
α̂(t)δAα̂ ,

d

dt
L̃ab(t) = −ϑρ̂ιǫE

B(t)RBρ̂
ab(t) ,

(D.2)

where L̃ab := (Lab + ιǫΩ
ab). It is easy to see that these equations do not fix the lowest

component of the superfield parameters, i.e.

ιǫE
a|0 = ǫm(x)eam(x) =: ǫa(x) , ιǫE

α|0 = ǫα(x) + ǫa(x)ψα
a (x) , (D.3)

and L̃αβ |0 = Lαβ(x)+ ǫa(x)Ωαβ
a (x, 0) remains free and correspond to the gauge symmetries

of spacetime formulation of supergravity. In particular, ǫα(x) can be identified as the

parameter of local spacetime supersymmetry.

To obtain the local supersymmetry transformation of the goldstino,

δϑµ̂(x) = −ǫµ̂
(

x, ϑ(x)
)

− δǫx
m∂mϑµ̂ = −ǫµ̂

(

x, ϑ(x)
)

+ ǫm
(

x, ϑ(x)
)

∂mϑµ̂ (D.4)

we need to know the expressions for higher order terms in the decomposition of the super-

field parameter ǫα̂(x, ϑ) in the superspace Grassmann coordinates. These can be found by

solving eqs. (D.2) for ιǫE
A := ǫNEA

N and then finding ǫN (z) using the inverse of EA
N . To

this end we should know the explicit form of the ϑ-decomposition of the supervielbein in

the WZ gauge. Below we will present the expansion of ǫα̂(x, θ, θ̄) up to the second order

in θ, θ̄.

– 19 –



J
H
E
P
0
2
(
2
0
1
6
)
0
8
0

With our choice of the supergravity constraints, eqs. (D.2) take the form

d

dt
ιǫE

a = 2i(θσaιǫĒ − ιǫEσaθ̄) , (D.5a)

d

dt
ιǫE

α =
i

8
ιǫE

c
[

(θσcσ̃d)
αGd + θ̄β̇σ̃

β̇α
c R

]

− θβL̃β
α, (D.5b)

d

dt
ιǫE

α̇ = −
i

8
ιǫE

c
[

(σ̃dσcθ̄)
α̇Gd + σ̃cα̇βθβR̄

]

− θ̄β̇L̃β̇
α̇. (D.5c)

d

dt
L̃αβ = −ιǫE

(αθβ)R̄−
i

8
ιǫE

c
[

σ̃γ̇(α
c θβ)D̄γ̇R̄− (θσcσ̃d)

(αDβ)Gd + (σcθ̄)γW
αβγ
]

. (D.5d)

To find the supersymmetry transformation with the independent parameter ǫα̂ it is enough

to solve (D.5a)–(D.5d) with ǫa(x) = 0 = L̃ab(x)

ιǫE
a|0(x) = 0 , ιǫE

α|0(x) = ǫα(x) , L̃αβ |0 = Lαβ(x) = 0 . (D.6)

It is easy to find the solution up to the third order in θ

ιǫE
a = 2i(θσaǭ− ǫσaθ̄) +

i

12
θθ θ̄α̇

[

− (σ̃aǫ)α̇R̄+ 4ǭα̇Ga + 2(σ̃abǭ)α̇Gb

]

−
i

12
θ̄θ̄ θα

[

(σaǭ)αR+ 4ǫαG
a + 2(σabǫ)αGb

]

+O(ϑ4) ,

(D.7)

which requires the knowledge of ιǫE
α to the second order in θ

ιǫE
α = ǫα −

1

4
θθ
(

(ǭσ̃a)αGa + 3ǫαR̄
)

−
1

4
ǫα θ̄θ̄ R

+
1

4
θα θ̄ǭ R+

1

4
θǫ (θ̄σ̃a)αGa +O(ϑ3) ,

(D.8)

whose derivation, in its turn, requires to know L̃αβ up to the first order

L̃αβ(x) = θ(αǫβ)R̄(x) . (D.9)

To find the expressions for ǫM (x, θ, θ̄) one can first calculate the inverse supervielbein

matrices, which up to the first order in the fermionic coordinates have the following form

Em
a = ema + iψaσ

mθ̄ − iθσmψ̄a +O(ϑ2) ,

Eµ
a δ

α
µ = −ψα

a + θβω̂β
α − 2i(ψaσ

bθ̄ − iθσbψ̄a)ψ
α
b

−
i

16

[

2θαGa + (θσaσ̃b)
αGd

]

−
i

16
(θ̄σ̃a)

αR+O(ϑ2) ,

Em
α = i(σmθ̄)α +O(ϑ2) , Eα̇

m = i(θσm)α̇ +O(ϑ2) ,

Eα
ν = δα

ν +O(ϑ2) .

(D.10)

However, a significantly more economic way is to write

ιǫE
A := ιǫE

A
(0)+ιǫE

A
(1)+ιǫE

A
(2)+ . . . =

(

ǫM(0)+ǫM(1)+ǫM(2)+ . . .
)(

E A
(0)M+E A

(1)M+E A
(2)M+ . . .

)

.

Then, by comparing the ϑ-orders (n) of the left and the right hand side one obtains the

expressions for ǫM(1), . . . ǫ
M
(4).
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In this way after some algebra we find that the WZ gauge is preserved by the superdif-

feomorphisms with parameters

ǫα(z) = ǫα + i(θσmǭ− ǫσmθ̄)
[

ψα
m − θβω̂mβ

α + i(ψmσnθ̄ − θσnψ̄m)ψα
n

]

−
1

16
(θσmǭ− ǫσmθ̄)

[

2θαGm + (θσmn)
αGn + 2(θ̄σ̃a)

αR(x)
]

+O(ϑ3) ,

ǫm(z) = −i(θσmǭ− ǫσmθ̄)(δn
m − iθσmψ̄n + iψnσ

mθ̄) +O(ϑ3) ,

(D.11)

which at the linear order in θ simulate the rigid supersymmetry transformations of the flat

superspace.

Equations (D.11) allow one to determine the supersymmetry transformation of the

goldstino, eqs. (2.6), and of the bosonic coordinates

δθα = −ǫα − i(θσmǭ− ǫσmθ̄)
[

ψα
m +∇mθα − i[θσnψ̄m − ψmσnθ̄)(ψα

n +∇nθ
α)
]

+
1

16
[θσaǭ− ǫσaθ̄)

(

2θαGa + (θσab)
αGb + 2(θ̄σ̃a)

αR
]

+O(ϑ3) , (D.12a)

δxm = i(θσnǭ− ǫσnθ̄)(δn
m − iθσmψ̄n + iψnσ

mθ̄) +O(ϑ3) . (D.12b)

With some more efforts one can determine the form of the supersymmetry transformations

to all orders in ϑ.

E The decomposition of the supervielbeins in the Majorana spinor rep-

resentation

For completeness, we give the generic form of the expansion of the supervielbeins EA(x, ϑ)

in series of the Majorana spinor coordinates ϑα̂ = (θα, θ̄α̇) in the Wess-Zumino gauge

obtained by adopting the same approach used in [55].

The gamma-matrices are constructed with the Pauli matrices in a conventional way

γa α̂
β̂

=

(

0 iσa
αβ̇

iσ̃aβ̇α 0

)

(E.1)

and the spinor indices are lowered by the charge conjugation matrix

C
α̂β̂

=

(

εαβ 0

0 εα̇β̇

)

. (E.2)

The torsion constraints are now chosen to have no T a
bc component and have the follow-

ing form

T a =
1

2
E ∧ γaE ,

T α̂ = Eβ̂ ∧ EcT
cβ̂

α̂ +
1

2
Eb ∧ EcT α̂

cb

(E.3)

where

16T
aβ̂

α̂ = (γaγbγ5)β̂
α̂Gb + (γ5)β̂

α̂Gb +
(

γa(1 + γ5)
)

β̂
α̂R+

(

γa(1− γ5)
)

β̂
α̂R̄ .
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The superspace 2-form curvature obeys the following constraints

Rab = Eα̂ ∧ (Eγ[aTb])α̂ + Ec ∧

(

EγcTab −
3

2
Eγ[aTbc]

)

+
1

2
Ec ∧ EdRdc,ab . (E.4)

Using the form of the constraints (E.3)–(E.4) and their Bianchi identities (B.12) one

gets the following ϑ-expansion of the supervielbeins

Eα̂ = ψα̂ + Eα̂
(1) + Eα̂

(2) + Eα̂
(3) + Eα̂

(4) + Eα̂
(5) , (E.5)

Ea = ea +

(

ψα̂ +
1

2
Eα̂

(1) +
1

3
Eα̂

(2) +
1

4
Eα̂

(3) +
1

5
Eα̂

(4)

)

γa
α̂β̂

ϑβ̂, (E.6)

with,

Eα̂
(n) =

1

n!

(

∇̂ϑγ̂ V(n−1)
α̂
γ̂ +Σα̂

(n)

)

(E.7)

and

V(n−1)
α̂
γ̂ = ϑβ̂1 . . . ϑβ̂n−1V α̂

[β̂1...β̂n−1]γ̂
(x) , Σα̂

(n) = ϑβ̂1 . . . ϑβ̂nΣα̂

[β̂1...β̂n]
(x) . (E.8)

Hence, proceeding along the lines of [55], we obtain

Eα̂
(1) = ∇̂ϑγ̂V(0)

α̂
γ̂ +Σα̂

(1) = ∇̂ϑα̂ + ϑβ̂ec(x)T α̂

cβ̂
,

2Eα̂
(2) = ∇̂ϑγ̂V(1)

α̂
γ̂ +Σα̂

(2) = ϑβ̂ϑγ̂
(

ecH α̂

cγ̂β̂
− ψδ̂Kα̂

δ̂γ̂β̂

)

,

3!Eα̂
(3) = ∇̂ϑγ̂V(2)

α̂
γ̂ +Σα̂

(3) = ∇̂ϑδ̂ϑβ̂ϑγ̂Kα̂

δ̂γ̂β̂

+ ϑβ̂ϑγ̂ϑδ̂
(

ecT σ̂

cδ̂
Kα̂

σ̂γ̂β̂
+ ecD

δ̂
H α̂

cγ̂β̂
− ψσ̂

(

γb
σ̂δ̂
H α̂

bγ̂β̂
+D

δ̂
Kα̂

σ̂γ̂β̂

)

)

,

4!Eα̂
(4) = ∇̂ϑγ̂V(3)

α̂
γ̂ +Σα̂

(4) = ∇̂ϑτ̂ϑβ̂ϑγ̂ϑδ̂
(

2D
δ̂
Kα̂

τ̂ γ̂β̂
+ γc

δ̂τ̂
H α̂

cγ̂β̂

)

+ ϑβ̂ϑγ̂ϑδ̂ϑτ̂
[

ecT σ̂
cτ̂

(

2D
δ̂
Kα̂

σ̂γ̂β̂
+ γc

δ̂σ̂
H α̂

cγ̂β̂

)

+ ec
(

Dτ̂Dδ̂
H α̂

cγ̂β̂
+H σ̂

cτ̂ δ̂
Kα̂

σ̂γ̂β̂

)

+ ψσ̂
(

Dτ̂Dδ̂
Kα̂

σ̂γ̂β̂
+ 2γcσ̂τ̂Dδ̂

H α̂

cγ̂β̂
−K

ρ̂

σ̂τ̂ δ̂
Kα̂

ρ̂γ̂β̂

)

]

,

where H and K are expressed in terms of components of the curvature and torsion as

follows

H α̂

cγ̂β̂
= R

c[γ̂β̂]
α̂ +D[γ̂T

α

β̂]c
, Kα̂

δ̂γ̂β̂
= R

δ̂[γ̂β̂]
α̂ + γc

δ̂[γ̂
Tα

β̂]c
. (E.9)
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