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The chemical Langevin equation and the associated chemical Fokker-Planck equation are well-
known continuous approximations of the discrete stochastic evolution of reaction networks. In this
work, we show that these approximations suffer from a physical inconsistency, namely, the presence
of nonphysical probability currents at the thermal equilibrium even for closed and fully detailed-
balanced kinetic schemes. An illustration is given for a model case. Published by AIP Publishing.
https://doi.org/10.1063/1.5016158

I. INTRODUCTION

Under isothermal conditions and rapid re-distribution of
molecules in the available space of fixed volume, chemical
reactions involving small numbers of molecules in homoge-
neous fluid phases are consensually modeled as a Markov
process, in which the system’s state is specified by the num-
ber of molecules of each species. In such a framework, the
chemical master equation (CME)1–3 and Gillespie’s stochastic
simulation algorithm (SSA)4 provide the exact description of
the evolution in terms of probabilistic expectations and gen-
eration of trajectories, respectively. Unfortunately, the CME
is analytically hardly tractable apart from simple cases, and
even its numerical solution becomes rapidly unfeasible as the
number of reactant molecules increases. In parallel, simula-
tions via SSA become lengthy again in the limit of large num-
bers of molecules and/or in the presence of a large time scale
separation between the reaction channels (stiffness); moreover,
a very large ensemble of trajectories should be simulated to
achieve accurate statistics. To circumvent these issues, one
looks for approximate but reliable simplifications of the exact
evolution law.

One popular approximate evolution machinery of stochas-
tic reaction networks is the so-called chemical Langevin equa-
tion (CLE), introduced by Gillespie in Ref. 5 and compared
with the previous approaches of van Kampen6 and Kurtz.7–9

In the CLE context, the evolution of the system is described
in a coarse-grained fashion on the time variable. This implies
turning from integer numbers of molecules (in the following
denoted by nj for the j th species) to their continuous real-
valued extension (the ηj in the following). The CLE, which
will be reviewed and commented in Sec. II, has the form of a
Langevin-like Itô stochastic differential equation for the evolu-
tion of the configuration η [see Eq. (9)]. The chemical Fokker
Planck equation (CFPE) is the corresponding partial-derivative
differential equation which rules the evolution of the probabil-
ity density in theη-space starting from a given initial condition.

a)Author to whom correspondence should be addressed: diego.frezzato@
unipd.it

In short, the approximate CLE replaces the exact SSA route,
whereas the approximate CFPE replaces the exact CME.

The strength of the CLE consists of dealing with continu-
ous dynamical variables and allowing for rapid simulation of
single trajectories. In this respect, the CLE is greatly employed
in biochemical contexts, for example as in transcriptional reg-
ulation,10 provided that one can switch from the exact SSA
to the CLE coarse-grained picture.11 In addition, the CLE is
the suitable intermediate step to bridge stochastic kinetics and
macroscopic mass-action rate equations; such a link can be
established in the thermodynamic limit in which both the num-
bers of reactant molecules and the volume increase at fixed
volumetric concentrations.12 We also mention some recent
advancements in the adaptation of the computational singular
perturbation methodology to achieve dimensional reduction
for prototype models of stochastic differential equations;13

further development of that strategy, with application to the
CLE, could lead to set up the machinery for disentangling slow
and fast modes of evolution for stochastic chemical networks at
the mesoscale between low numbers of molecules and the ther-
modynamic limit. In parallel, the potential utility of the CFPE
consists in the possibility, at least in principle, of detecting
directly the slow eigenmodes of evolution (and related rates)
of a reaction network. For example, modern strategies like Dif-
fusion Maps14 might be suitable for constructing the slowest
evolution modes even in relatively high-dimensional reaction
networks.

Besides these points of strength, the crucial question is:
How safely can we rely on the CLE and CFPE as physi-
cally consistent shortcuts of the SSA and CME? It is not
only a matter of having good approximations of the exact
solution on quantitative grounds but also, and more impor-
tantly, to check if the CLE and CFPE are at least devoid of
nonphysical drawbacks (or, if present, to what extent they
may be serious). Regarding the numerical consistency, it is
known that the statistical properties of the ensemble of tra-
jectories simulated by means of the CLE are fully consis-
tent with the CME/SSA only for networks of unimolecular
reactions; otherwise, the consistency is guaranteed only up
to the first- and second-order moments of the distribution.15
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The accuracy of the multivariate CLE and CFPE has been
addressed, for instance, in Ref. 16. Previous inspections on
model reaction networks reducible to one-dimensional sys-
tems featuring bi-stability17–19 revealed that the CFPE fails
in reproducing the probability density on the long time scale.
About the physical consistency, Horowitz recently showed20

that the CLE is consistent with the thermodynamics (in the
sense that the rate of entropy production along the trajecto-
ries matches the heat flux between the system and the thermal
bath) only when the system is close to equilibrium. The global
picture is that these continuous approximations of CME/SSA
suffer from subtle inconsistencies whose quantitative man-
ifestation cannot be easily assessed without a case-by-case
analysis.

In this paper, we focus on a physical inconsistency that
emerges from the analysis of the CFPE. Namely, we shall see
that nonphysical probability currents may be generally present
at equilibrium even for closed and detailed-balanced reaction
networks. In practice, this means that a stationary distribution
is attained in the long time scale, but a directed circulation (on
average) in the configurational space would still be present.
This clearly goes against the condition of thermal equilib-
rium. It must be stressed from the beginning that such an issue
regards both the CLE and CFPE. In fact, the CLE and the CFPE
are fully consistent with each other in the sense that, at the
given boundary conditions in the η-space, they have the same
statistics.

The paper is structured as follows. In Sec. II we specify
the physical context and give the essentials about the chemical
master equation approach. Section III presents the chemical
Langevin equation and the associated Fokker-Planck equation,
with special emphasis on their limits of applicability. In Sec. IV
we address the nonphysical probability currents that emerge in
the chemical Fokker-Planck context, and in Sec. V we illustrate
such an issue for a model kinetic scheme. Section VI is devoted
to conclusions.

Mathematical notation. Throughout the paper, vectors and
matrices will be indicated with bold style. Vectors are implic-
itly intended as column-vectors. The superscript “T” denotes
the transposed array. The symbol “⊗” stands for the dyadic
product between two vectors: a ⊗ b is the matrix with elements
[a ⊗ b]ij = aibj.

II. PHYSICAL CONTEXT AND THE CHEMICAL
MASTER EQUATION

Let us consider a network of M elementary reactions
(labeled by the index m) involving N chemical species (labeled
by the index j). Let ν(m)

Rj
and ν(m)

Pj
be the stoichiometric coeffi-

cients of the species j as reactant and product, respectively, in
the reaction m. The system’s configuration is specified by the
array n whose non-negative integer entries (n1, n2, . . ., nN ) are
the numbers of molecules of each species. Finally, the set n0

specifies the initial configuration.
The dynamics corresponds to stochastic transitions among

all possible configurations which are accessible from n0 due to
the moves allowed by the stoichiometry of the reaction chan-
nels. In this work, we consider closed networks (neither pure
source nor sink processes) composed of reversible reactions.

This implies that the number of molecules remains strictly
positive for each species, and that the number of achievable
configurations is finite. In addition, a number of a priori con-
straints implies that some linear combinations of the molecular
numbers are conserved: that is, there exists a constant matrix
S of dimension d × N with d < N such that

S n(t) ≡ S n0 = c (1)

at any time, where c is a constant vector. By introducing the
N-dimensional arrays νm with entries

(νm)j = ν
(m)
Pj
− ν(m)

Rj
, (2)

the condition in Eq. (1) corresponds to

S νm = 0 for each m. (3)

The full array n is thus redundant since the accessible config-
urations lie on a (N � d)-dimensional hyperplane in the full
space. A subset ñ of dimension (N � d) suffices to specify the
network’s state.

In the context defined above, the quantity of interest is
the probability p(n, t) to find the network in the configuration
n at time t; p(n, t) is normalized as

∑
np(n, t) = 1 at any

time. The initial condition is p(n, 0) =
∏

j δnj ,n0
j
, where n0

j

are the components of n0 and δ stands for the Kronecker’s
delta-function.

The evolution of p(n, t) is specified by the chemical master
equation (CME) given below. The CME is built by accounting
for both the processes that lead to the realization of the state n
from other states and the processes that take off from it,1–3

∂p(n, t)
∂t

=

M∑
m=1

[
am(n − νm)p(n − νm, t) − am(n)p(n, t)

]
. (4)

The state-dependent factors am(n) are the so-called “propen-
sity functions”; the quantity am(n)δt is the probability that,
if the system is presently in the state n, the mth reaction
takes place in the subsequent time-interval δt. The general
form of a propensity function is am(n) = cmf m(n), where
the function f m(n) and the proportionality coefficient cm

with the physical dimension of inverse-of-time are deduced
from the molecularity of the elementary reaction on the
basis of combinatorial arguments, and from the matching
with the deterministic mass-action rate equation when the
numbers of reactant molecules are large. In particular, only
first- and second-order reactions are of practical relevance.
For unimolecular reactions A → Products, the propensity
function reads auni(n) = cuni nA, where cuni ≡ kuni is the
kinetic constant in the deterministic limit. For bimolecu-
lar reactions of homo-molecular kind, 2A → Products, one
has abim,1(n) = cbim,1nA(nA � 1)/2 with cbim,1 = 2kbim,1V�1,
while for bimolecular reactions of hetero-molecular kind,
A + B → Products, one has abim,2(n) = cbim,2nAnB with
cbim,2 = kbim,2V�1 (kbim,1 and kbim,2 are the kinetic con-
stants in the deterministic limit and V is the available
volume).

The single-trajectory counterpart of the CME is Gille-
spie’s stochastic simulation algorithm (SSA)4 which generates
trajectories whose statistical ensemble is exactly consistent
with the CME.
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Apart from simple cases, solving the CME is a quite
hard task. The most natural way is to convert Eq. (4) into
a set of linear ordinary differential equations21 and solve
them by means of strategies that are able to contrast the
rapid growth of dimension as the number of accessible con-
figurations increases; among these strategies, we mention
the “finite state projection” method22,23 and its technical
variants.24 Concerning the SSA counterpart, the problem
is that the advancement of the reaction network becomes
slow when the number of reactant molecules is large and/or
in the presence of a large spread in the magnitude of the
cm rate coefficients (stiffness). Because of these criticali-
ties, efficient approximations of the SSA/CME are demanded
when treating stiff reaction networks and/or large numbers of
molecules (but not large enough to adopt the deterministic rate
equations).

III. THE CHEMICAL LANGEVIN AND
FOKKER-PLANCK EQUATIONS

In this section we introduce the chemical Langevin equa-
tion (CLE) and the associated chemical Fokker-Planck equa-
tion (CFPE). It is well known that the CFPE can be derived
directly by truncating the Kramers-Moyal expansion of the
CME (written in terms of variables η) at the second-order
derivatives; see, for example, Sec. 7.5 of Gardiner’s book1 and
Ref. 16 on the same topic. On the other hand, as indicated by
Gillespie,5 that form of CFPE is exactly the Fokker-Planck
equation whose drift and diffusion terms are parametrized
by the CLE. In such a way, the CFPE is supported by
the clear physical assumptions that underlie the CLE (see
below), rather than deriving from a mere mathematical trun-
cation of the Kramers-Moyal. This is the perspective adopted
here.

Before proceeding further, we make a clarification con-
cerning the connection between integer numbers of molecules
and their continuous extension to real values. Let I be the
domain of configurations n which are accessible from the
initial condition. Then, let D be the domain in RN which
“fills” and “completes” I in the following sense: by denot-
ing with cell(n) the hyper-cube nj � 1/2 ≤ ηj < nj + 1/2,
we say that η ∈ D if there exists a unique n ∈ I such that
η ∈ cell(n). The domain D is the union of all cell(n) for
n ∈ I.

A. The CLE

Following Gillespie, the CLE is derived directly from the
physical assumptions underlying the CME and SSA. We men-
tion an interesting alternative approach15 in which the CLE
emerges as one among several allowed parametric stochas-
tic differential equations, all ensuring the matching of the
first- and second-order moments of the molecular popula-
tions with those produced by the CME. However, in Gille-
spie’s derivation, such a subjective freedom is absent and
the CLE is the stochastic differential equation mimicking
(it being an approximation) the true evolution of a reaction
network.

In order to derive the CLE, two assumptions are required.
The first one, termed the “tau-leap condition,” consists in

assuming that all propensity functions am(η) do not change
appreciably in a certain time interval∆t sufficiently short. This
allows one to adopt the tau-leaping propagation formula in
which several reactions can occur, even several times, in that
interval. The number of events of each mth reaction is drawn
from the Poisson distribution with mean am(η)∆t. The sec-
ond assumption consists in having the possibility to choose
∆t sufficiently long so that the first assumption still holds but
am(η)∆t � 1 for all reactions. This allows one to approximate
the Poisson distributions by Gaussian distributions with mean
and variance both equal to am(η)∆t.

As a whole, the CLE is applicable if it is possible to choose
∆t such that

∆tmin(η) ≤ ∆t ≤ ∆tmax(η), (5)

where we take

∆tmin(η) =
γ

minm{am(η)}
(6)

with γ � 1 subjectively chosen (γ = 3 is considered to be suf-
ficient by us), and where ∆tmax(η) is an estimate of the largest
value of the propagation time-step which can be employed in
the tau-leaping strategy (for example, one can adopt the effi-
cient τ-selection procedure presented in Ref. 25, as in Sec. V).
The applicability of the CLE is thus limited to the regions of
the η-space where

∆tmin(η)
∆tmax(η)

≤ 1. (7)

The condition in Eq. (7) is usually fulfilled for sufficiently
large numbers of reactant molecules so that the rate of reactive
events is large [∆tmin(η) is small], but even the occurrence of a
large number of reactions does not sensibly affect the value of
the propensity functions [hence ∆tmax(η) can be longer than
∆tmin(η)].

Gillespie showed that if ∆t can be fixed according to
Eq. (5) for the current state η, then the following propagation
route is accurate:5

η(t + ∆t) ' η(t) + ∆t
∑

m

νmam(η(t))

+
∑

m

νm

√
am(η(t))∆t Nm(0, 1), (8)

where Nm(0, 1) are random numbers drawn from independent
Standard Normal Distributions (zero mean and unit variance).
Equation (8) is the CLE in the form of explicit advancement
of the system’s state. In the form of Itô stochastic differential
equation following from Eq. (8), the CLE reads

dη
dt
'

∑
m

νmam(η) +
∑

m

νm

√
am(η) ξm, (9)

where ξm stands for the mth component of the M-dimensional
Gaussian white noise.26 In adopting Eq. (9), caution must be
taken since “dt” is a “macroscopic infinitesimal” (Gillespie’s
terminology5) bounded according to Eq. (5).

As stressed by Gillespie and co-workers,5,25 the propa-
gation via CLE should be halted, in favor of the exact SSA,
as soon as the two requirements for the CLE validity are no
more fulfilled. Moreover, the evolution scheme of Eq. (8)
may give rise to a problem when η(t) is a point close to
the faces of the positive orthant and the amplitude of the
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propagation step is large enough to bring η(t + ∆t) out of
the orthant so that for one or more species the number of
molecules would become negative. In our opinion, a formal
way to incorporate a physical boundary into the CLE scheme
is still lacking and ad hoc solutions have been proposed to
date. An alternative is to accept the occurrence of negative
concentrations [and hence of possible imaginary factors mul-
tiplying the white noise terms in Eq. (8)] and check that the
statistical properties of the ensemble of trajectories are, how-
ever, compatible with the CME statistics.27 On the other hand,
when the number of molecules of a reactant species is close to
zero, one falls outside the region of applicability of the CLE
itself.

Note that Eqs. (8) and (9) fulfill the mass-conservation
constraints discussed in Sec. II. In fact, by multiplying both
members of these equations by the matrix S and consid-
ering Eq. (3), it follows d[Sη(t)]/dt = 0 which implies
Sη(t) = Sη(0) = c. This means that a reduced (N � d)-
dimensional array η̃(t) suffices to describe the system’s state
once the matrix S is known and the array c is given. By intro-
ducing a (N � d) × N matrix R which selects the independent
variables via η̃(t) = Rη(t), a reduced form of Eqs. (8) and (9)
is readily obtained; for example, Eq. (9) turns into

dη̃
dt
'

∑
m

Rνmãm(η̃) +
∑

m

Rνm

√
ãm(η̃) ξm, (10)

where ãm(η̃) ≡ am(η)|η=η(η̃,c) in which η(η̃, c) denotes the full
set of variables retrieved from the reduced one.

B. The CFPE

The CLE allows the parametrization of the corresponding
chemical Fokker-Planck equation (CFPE) for the evolution of
the probability density ρ(η, t) normalized as ∫ dη ρ(η, t) = 1.
The link between the probability density ρ(η, t) and the prob-
ability p(n, t) can be set, on intuitive grounds, to be ∫ cell(n)dη
ρ(η, t) = p(n, t).

The CFPE takes the form

∂ρ(η, t)
∂t

= −Γ̂ρ(η, t) (11)

with the evolution operator

Γ̂ =
∂

∂η

T

v(η) −
1
2

∑
i,j

∂2

∂ηi∂ηj
Bij(η), (12)

in which the drift vector v(η) = lim∆t→0{〈∆η(∆t)〉/∆t} and
the diffusion matrix B(η) = lim∆t→0{〈∆η(∆t) ⊗ ∆η(∆t)〉/∆t}
are determined by using Eq. (8) for the displacement ∆η(∆t),
and by considering the statistical properties of the distributions
Nm(0, 1) to evaluate the averages.28 The resulting expressions,
according to Gillespie,5 are

v(η) =
∑

m

νmam(η) (13)

and
B(η) =

∑
m

[νm ⊗ νm]am(η). (14)

Such a matching ensures that the solution of Eq. (11) yields
a probability density in accord with the one obtainable
from the statistical analysis of the ensemble of trajectories

generated by means of Eq. (8) (under the application
of the same boundary conditions). We remark again that
Eqs. (11)–(14) agree with the CFPE that can be obtained
directly from the Kramers-Moyal expansion of the CME up to
the second-order terms.1

It is readily seen that B(η) is a N ×N (symmetric) positive
semidefinite matrix since uT B(η)u ≥ 0 for any vector u in the
N-dimensional space. In fact, uT B(η)u =

∑
m(uTνm)2am(η) is

always non-negative and null only for vectors orthogonal to the
hyperplane individuated by the mass-conservation constraints
(uTνm = 0 for all m). This implies that the probability spread
(diffusion) out of such hyperplane is automatically prohibited
by the structure of the CFPE itself. On the other hand, for an
easier handling of the CFPE, it may be preferred to get rid a
priori of these extra dimensions by adopting the reduced CFPE
for the essential variables η̃. The reduced equation is analogous
to Eq. (11) with (12), but with derivatives taken with respect
to the components of η̃, drift vector ṽ(η̃) =

∑
m Rνmãm(η̃),

and diffusion matrix B̃(η̃) =
∑

m[(Rνm) ⊗ (Rνm)]ãm(η̃). The
diffusion matrix now results to be positive definite. The fact
that the eigenvalues of B̃(η̃) are strictly real and positive for any
η̃ ensures that the stationary state is reached in the long time
scale.

Although it does not emerge formally in the derivations
of the CFPE, “impenetrable boundaries” should be applied at
the faces of the positive orthant or, in the reduced formulation
in terms of the variables η̃, at the intersections between the
hyperplane determined by the mass-conservation constraints
and the faces of the positive orthant. The need for such reflect-
ing boundaries, on which the orthogonal component of the
probability current must vanish (see the discussion in the
following), is related with the need to keep η(t) inside the pos-
itive orthant when the trajectories are simulated by means of
the CLE. We stress that, contrary to other kinds of stochas-
tic dynamics like conformational fluctuations in molecular
systems where the boundaries are “natural” and imposed by
the energetics, or like diffusive motions in restricted geome-
tries where the boundaries are physical impenetrable bar-
riers externally imposed, here the boundaries are inherent
in the dynamics of the system that cannot reach nonphysi-
cal configurations by means of finite moves determined by
the stoichiometry. To our knowledge, the behavior at the
boundaries for the CFPE has not been addressed properly
yet.

IV. NONPHYSICAL PROBABILITY CURRENTS
AT EQUILIBRIUM

In the typical diffusion equations (i.e., Fokker-Planck
equations in the Smoluchowski form1) encountered in the
physics of overdamped fluctuating systems at thermal equilib-
rium, the diffusion matrix is tuned in a way that an equilibrium
state devoid of probability currents is attained in the long time
scale. Here, on the contrary, both the drift vector and the dif-
fusion matrix given in Eqs. (13) and (14) are determined by
the stochastic evolution law of the reaction network under the
approximations at the basis of the CLE. This implies that dif-
fusion and drift might be generally unbalanced in the sense
that the vanishing of the probability currents at equilibrium
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may not be guaranteed. This is the crucial issue investigated
in what follows.

Let us consider the reduced CFPE once the mass-conser-
vation constraints are enforced as described in Sec. III A. The
independent variables are η̃1, η̃2, . . . , η̃i′ , . . . , η̃N−d , collected
in the array η̃; in what follows, the indexes with the prime will
label such variables. The reduced CFPE can be written in the
form

∂ρ(η̃, t)
∂t

= −
∂

∂η̃

T

J(η̃, t), (15)

where J(η̃, t) is the probability current vector whose compo-
nents are

Ji′(η̃, t) = ṽi′(η̃)ρ(η̃, t) −
1
2

∑
j′

∂[B̃i′j′(η̃)ρ(η̃, t)]

∂η̃j′
. (16)

The probability current vector is such that, given an oriented
surface δΩ+ in the η̃-space, the flux ∫δΩ+

dσ(η̃) ŝ(η̃)T J(η̃, t)
gives the rate of probability transfer through that surface [in
the integral, dσ(η̃) is the area of a surface element centered in
η̃ and ŝ(η̃) is the unit vector normal to such oriented surface
element].

Let us assume that a unique stationary state is reached
in the long time scale, with limt→∞ p(n, t) = pss(n); corre-
spondingly, limt→∞ ρ(η̃, t) = ρss(η̃). By elaborating Eq. (16)
it follows

Jss(η̃) = [ṽ(η̃) − b̃(η̃)]ρss(η̃) −
1
2

B̃(η̃)
∂ρss(η̃)
∂η̃

, (17)

where Jss(η̃) = limt→∞ J(η̃, t) and b̃(η̃) is the column vector
with components

b̃i′(η̃) =
1
2

∑
j′

∂B̃i′j′(η̃)

∂η̃j′
. (18)

The specific topology of Jss(η̃) depends on the features of the
reaction network which, in all generality, may lack detailed-
balance.

Let us now focus on a closed network of reversible and
detailed-balanced reactions.29 The detailed-balance condition
is here referred to the reaction network in the thermody-
namic limit, and it consists in having the same rate for each
forward/backward pair of elementary processes. In such a
condition, the stationary point in the concentration space cor-
responds to the point of thermodynamic equilibrium. When
the same network is brought down to the stochastic context,
the corresponding CME yields a stationary state which corre-
sponds to the thermal equilibrium. Thus, pss(n) ≡ peq(n) and
ρss(η̃) ≡ ρeq(η̃). In such a situation, physics imposes that
all components of the probability current must be zero, i.e.,
Jss(η̃) ≡ Jeq(η̃) = 0; otherwise, there would be a directed (on
average) motion in the η̃-space for free. By introducing the
scalar field

Φ(η̃) = − ln ρeq(η̃) (19)

and considering that the positive definite matrix B̃(η̃) is invert-
ible, the required vanishing of the right-hand side of Eq. (17)
implies

∂Φ(η̃)
∂η̃

= Ψ(η̃), (20)

where for the sake of compactness we have introduced the new
vector

Ψ(η̃) = 2B̃(η̃)
−1 [

b̃(η̃) − ṽ(η̃)
]
. (21)

Equation (20) with (21) is known as the “potential equation”1

and constitutes the mathematical requirement to have a station-
ary state with null currents: if there exists a scalar field Φ(η̃)
such that its gradient generates identically the vector Ψ(η̃),
then Jeq(η̃) = 0 can be fulfilled; on the contrary, the dynamics
of the system would be such that (as an artifact) the probability
current at equilibrium would be non-null.

Since Eq. (20) states that Ψ(η̃) must be a conservative
vector field, a way to check this property is to verify if the
following condition holds identically:

∂Ψi′(η̃)
∂η̃j′

=
∂Ψj′(η̃)

∂η̃i′
for all i′, j′. (22)

An alternative route is to verify if the path integrals of
Ψ(η̃) between any two points A and B arbitrarily chosen are
independent of the path. Explicitly, the required condition is∫ 1

0
ds γ̂(η̃γ(s))TΨ(η̃)|η̃=η̃γ (s) = const (23)

for any curve γ connecting A with B [here, 0 ≤ s ≤ 1 is a
progression variable, η̃γ(s) is the corresponding point on the
curve in the η̃-space, and γ̂(η̃γ(s)) is the tangent versor to the
curve in that point].

If the violation of Eq. (22) or Eq. (23) were recognized
even by a single check, and even for a single closed and
detailed-balanced reaction network, then one would conclude
that the CFPE (and the CLE as well) is inconsistent with the
condition that at thermal equilibrium the probability current
must be identically null. In Sec. V we show, for a simple
case, that Eqs. (22) and (23) are indeed violated. However,
there may be cases in which the current at equilibrium is
unequivocally null. This is certainly the case when the array
η̃ reduces to a single variable η̃, so that the potential equation
Eq. (20) is fulfilled since Φ(η̃) can be determined by inte-
gration: Φ(η̃) = ∫

η̃ dη̃ ′Ψ(η̃ ′). For example, this happens for
the dimerization A
 B discussed in Ref. 30, where the con-
servation constraint nA + nB = c allows one to use the sole
variable η̃ ≡ ηA to specify the composition of the system.
Going to higher dimensions, however, a potential Φ(η̃) that
fulfills Eq. (20) cannot be found in all generality.

V. ILLUSTRATIVE EXAMPLE AND REMARKS

To show that the physical inconsistency addressed in
Sec. IV occurs in practice, we adopt the simple kinetic scheme

2X
1
�
-1

X + Y

X + Y
2
�
-2

Z

Z
3
�
-3

2X,

where the numbers attached to the arrows label the reaction
channels. Such a network is closed, reversible in all the reac-
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tion channels, and connected (meaning that each configuration
of reactants is directly connected with the others). In addition,
we choose the following values for the rate coefficients cm

that enter the propensity functions as expressed in Sec. II:
c1 = 2, c

�1 = 3, c2 = 2, c
�2 = 500, c3 = 75, and c

�3 = 0.2. These
values are meant to be given in some units of inverse-of-time
that are immaterial in this context. By turning to the corre-
sponding kinetic constants, one has that k1k2k3 = k

�1k
�2k

�3;
hence, the reaction network is also detailed-balanced as dis-
cussed in Sec. IV. This implies that the system reaches a
stationary state of equilibrium. The components of n and η
are, respectively, nX, nY, nZ and ηX, ηY, ηZ. The network owns
the conservation constraint nX + nY + 2nZ = const; the value of
such a constant was set to 2 × 104 in the present calculations.
Such a constraint allows us to take only the species X and Y
as independent; in particular, the components of the reduced
set η̃ are η̃1 = ηX and η̃2 = ηY.

Panel (a) of Fig. 1 shows five trajectories simulated with
the standard SSA. The panel also shows the triangular intersec-
tion between the hyperplane corresponding to the conservation
constraint and the faces of the positive orthant. Note that, on
such a scale, the erratic character of the trajectories is hardly
detectable. The fluctuations are evident in panel (b), where one
of the trajectories is shown on a smaller scale in the reduced
space of the species X and Y. The equilibrium distribution

FIG. 1. (a) Five trajectories for the model reaction network simulated by
means of the standard SSA method (see the text for details). The trajecto-
ries lie on the hyperplane corresponding to the mass conservation constraint
nX + nY + 2nZ = 2× 104; the intersections of such a plane with the faces of the
positive orthant are indicated by the red lines. (b) Equilibrium distribution in
the reduced space of the species X and Y. The distribution has been obtained
from 106 trajectories generated with the standard SSA method. The trajectory
displayed is the one indicated by the arrow in (a).

peq(n) is here presented in color-scale. To construct the dis-
tribution, 106 trajectories were generated by means of the
standard SSA. All trajectories were initiated from a state close
to the equilibrium point of the deterministic rate equations for
unitary volume of the sample; this ensures a good statistics for
the configurations mostly visited at the thermal equilibrium.
Each simulation was stopped at the time 0.02. By collect-
ing the final states, the equilibrium distribution was obtained
by a histogram construction. A convergence check was made
by verifying that the distribution is indistinguishable from
the one generated by collecting the final states at the shorter
time 0.01.

As stated in Sec. III A, the CLE is strictly applicable only
in the configurational region where Eq. (7) holds. To iden-
tify such a region in the reduced η̃-space, we computed the
ratio ∆tmin(η̃)/∆tmax(η̃) in the domain with 1 < ηX < 104 and
1 < ηY < 104. For each state η̃, ∆tmin(η̃) was calculated
according to Eq. (6) with γ = 3. For ∆tmax(η̃) we followed
the optimized tau-leaping procedure illustrated in Ref. 25 (see
Sec. II C 1 along with Sec. IV A therein) and adopted the same
computational parameters employed in that work.31 With these
criteria, the filled area in Fig. 2 represents the points for which
∆tmin(η̃)/∆tmax(η̃) ≤ 1. It can be seen that such a region cov-
ers a limited portion of the explored η̃-space. Notably, such
a portion encloses the cloud of states typically visited by the
equilibrium fluctuations. This tells us that the CLE is suitable
for simulating the thermal fluctuations of this specific reactive
system with the adopted parametrization. We stress that, how-
ever, this is not a general situation since the cloud of typically
visited states might fall outside the region of applicability of
the CLE. Note that other criteria to fix ∆tmin(η̃) and ∆tmax(η̃)
would have led to a somehow different outcome; however, our
purpose here is mainly to remark that the CLE has a limited
region of applicability.

Let us now turn to the main issue, that is, showing that the
vector fieldΨ(η̃) in Eq. (21) is not a conservative field, imply-
ing that the vanishing of the probability current at equilibrium
cannot be exactly satisfied in the whole accessible η̃-space. For
a given state η̃, the vectorΨ(η̃) was obtained via Eq. (21) with

FIG. 2. The filled area corresponds to the domain of applicability of the
CLE for the model reaction network under the constraint ηX + ηY + 2ηZ
= 2 × 104 (see the text for details). The pairs of points (A, B), (A′, B′), and
(A′′, B′′) are the chosen edge points to compute path integrals along the dis-
played connecting paths (three paths per each pair of points). The values of
the integrals are reported in Table I.
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b̃(η̃) from Eq. (18); the derivatives required in Eq. (18) and
the matrix inversion in Eq. (21) were performed analytically.
First, it is found that the equivalence Eq. (22) is violated. To
see this, we considered the factor

R(η̃) =

∂ΨX(η̃)
∂ηY

−
∂ΨY(η̃)
∂ηX

�����
∂ΨX(η̃)
∂ηY

�����
+

�����
∂ΨY(η̃)
∂ηX

�����

(24)

as a function of the system’s state (the derivatives are here
computed by means of finite differences). By construction,
such a factor is bounded between �1 and 1, and Eq. (22)
would be satisfied only if R were identically null. In the
present case, it is found that R has a marked variation in
the explored domain, as shown by the contour plot in Fig. 3.
This means that Eq. (22) is violated and hence the vector
field Ψ(η̃) is not conservative. Second, we can arrive at the
same conclusion by noting that Eq. (23) is also violated. In
Fig. 2 are shown the pairs of edge points adopted to com-
pute different path integrals according to Eq. (23).32 For each
pair, three connecting paths are chosen: an upper two-segment
path, a straight diagonal path, and a lower two-segment path,
as indicated in the figure. The numerical results are pre-
sented in Table I. It can be seen that, for all the chosen pairs
of edge points, the three integrals are different from each
other.

As a whole, the numerical investigations have shown
that Ψ(η̃) is not a conservative field for this simple case
model. Having detected such a fact for a single case implies
that this is a concrete issue concerning the CFPE/CLE in all
generality.

It might be the case, however, that the non-null spurious
probability current has no marked signatures on the solution of
the CFPE and on the statistics of the CLE trajectories. In this
regard, it is worth noting that the percentage spread between
the three path integrals for A → B is much smaller than that
for A′ → B′, despite the fact that the distance between the
edge points is the same in the two cases. Comparing the two
situations, we note that A and B closely surround the cloud

FIG. 3. State dependence of the parameter R, defined in Eq. (24), for the
model reaction network under the constraint ηX + ηY + 2ηZ = 2 × 104 (see
the text for details). Note that R is close to zero in the region corresponding
to the most visited configurations at the thermal equilibrium [compare with
(b) of Fig. 1].

TABLE I. Values of the path integrals for the edge points shown in Fig. 2.
For each pair of points, the first value refers to the upper two-segment path, the
second value refers to the diagonal path, and the third value refers to the lower
two-segment path. The spread is intended as relative percentage dispersion of
the extreme values with respect to the average of the three values.

Value of the path integral Spread

4.246
0.6%A→ B 4.229

4.222

349.258
6.4%A

′

→ B
′

362.724
372.258

274.781
2.2%A

′′

→ B
′′

273.510
268.661

of states mostly visited by the fluctuations at equilibrium [see
panel (b) of Fig. 1]; we also note that in such a region the
factor R in Fig. 3 is nearly zero. As a whole, one might pro-
visionally conclude, at least for this simple reaction network
with the adopted parameters, that Ψ(η̃) is “almost conserva-
tive” inside the region of states typically visited at thermal
equilibrium. Conversely, Ψ(η̃) is manifestly non-conservative
far from the equilibrium cloud; on the other hand, here ρeq(η̃)
is nearly flat and low in magnitude. By considering that ρeq(η̃)
and its gradient enter the expression of Jeq(η̃) [see Eq. (17)], it
is reasonable to expect a small probability current far from the
typical equilibrium configurations. As a whole, Jeq(η̃) could
be small everywhere in the η̃-space. A quantitative valida-
tion of such a statement should be made case by case, but
the analysis is hampered by the fact that peq(n) (generally
hardly accessible) and its smooth interpolation ρeq(η̃) would
be required.

VI. CONCLUSIONS

In this work we reviewed the chemical Langevin equa-
tion (CLE) and the associated chemical Fokker-Planck equa-
tion (CFPE) as approximate continuous formulations of the
stochastic chemical kinetics. In doing that, we focused on a
physical inconsistency, namely, the possible presence of non-
physical probability currents at equilibrium even for closed
and fully detailed-balanced networks of elementary reactions.
The analysis of the case model reported in Sec. V supports the
concreteness of such an issue.

As pointed out at the end of Sec. IV, such an issue may
manifest only in multidimensional cases. Previously detailed
analyses of the CFPE were focused on chemical networks
reducible to one-dimensional problems17–19,30 for which the
nonphysical currents are absent. Other studies on multidimen-
sional systems mostly regarded the accuracy of the CLE/CFPE,
with respect to the CME, in terms of mean concentrations and
variance of the fluctuations about the mean.16 Although all
inspections on the CLE/CFPE explore different facets of the
same problem, to the best of our knowledge the issue of non-
physical probability flow at equilibrium was not inspected so
far.
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We emphasize once again that the presence of nonphysi-
cal probability currents regards both the CLE and CFPE, since
they are fully consistent with each other. However, the use of
the CLE in the production of a stochastic trajectory can be
locally suspended (switching to the exact SSA propagation),
while the CFPE, be it a partial-derivative equation for the evo-
lution of the probability density field on the global scale, has
to be solved without the possibility to impose a delimitation a
priori of the configurational space. Thus, such a “flexibility”
of the CLE might allow one, through a suitable algorithmic
implementation, to produce an ensemble of trajectories for
which the impact of the nonphysical currents is attenuated. On
the contrary, the solution of the CFPE should be taken with
caution. At any rate, the solution of the CFPE is quite demand-
ing, both in terms of computational cost (especially when the
number of independent species is just above a few units) and
in terms of difficulty of enforcing reflecting conditions at the
boundaries. For this reason, the CFPE appears to us more as a
formal construction to be further inspected rather than a prac-
tical tool for describing the dynamics of stochastic reaction
networks.
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