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Abstract

In this paper we prove a conjecture by P.-L. Lions on maximal regularity of Lq-type for periodic
solutions to −∆u + |Du|γ = f in Rd , under the (sharp) assumption q > d γ−1

γ .
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1 Introduction
We address here the so-called problem of maximal Lq-regularity for equations of the form

−∆u(x) + |Du(x) |γ = f (x) in Rd, (1)

where γ > 1, f : Rd → R is 1-periodic (i.e. f (x + z) = f (x) for all x ∈ Rd , z ∈ Zd), d ≥ 1; that is,

for all M > 0, there exists K > 0 (possibly depending on M, γ, q, d) such that

−∆u + |Du|γ = f in Rd, ‖ f ‖Lq (Q) ≤ M =⇒ ‖∆u‖Lq (Q) + |Du|γLq (Q) ≤ K,
(M)

Q being the d-dimensional unit cube (−1/2, 1/2)d . This regularity problem has been proposed by P.-L.
Lions in a series of seminars and lectures (e.g. [31, 32]), where he conjectured its general validity under
the assumption

q > d
γ − 1
γ

( and q > 1 ). (A)

Some special cases have been addressed in these seminars, but the general problem has remained so far
unsolved, to the best of our knowledge. We present here a proof of (M) + (A), under the sole restriction
q > 2 (which is always realized when γ > d/(d − 2)).

Equations of the form (1) are prototypes of semilinear uniformly elliptic equations with superlinear
growth in the gradient, and arise for example in ergodic stochastic control [4] and in the theory of growth
of surfaces [25]. The study of regularity of their solutions has received recently a renewed interest in
the theory of Mean Field Games [11, 28]. There is a vast literature on such equations and more general
quasilinear problems. While the existence of classical (or strong) solutions has been firstly investigated
(see for example [3, 26, 29, 38]), the attention has been later on largely focused on the existence (and
uniqueness) of solutions u ∈ W1,γ (Q) satisfying (1) in the weak or generalized sense (typically with
Dirichlet boundary conditions). See, for example, [1, 6, 8, 9, 10, 14, 18, 22, 35] and more recent works
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[2, 7, 16, 17]. It has been observed that due to the superlinear nature of the problem, its (weak) solvability
requires f ∈ Lq , where

q ≥ d
γ − 1
γ

.

Such condition has been improved in the finer scale of Lorentz-Morrey spaces, and end-point situations
typically require additional smallness assumptions [19, 23]. It is worth observing that many results in the
literature cover the case 1 < γ ≤ 2, that is when the gradient term has at most natural growth. General
results in the full range γ > 1, based on methods from nonlinear potential theory, appeared quite recently
in [34, 36, 37].

Roughly speaking, properties (M)+(A) say that if f belongs to a sufficiently small Lebesgue space, then
solutions should enjoy much better regularity than W1,γ, namely be in W1,qγ (Q) (and even in W2,q (Q),
by standard Calderón-Zygmund theory). Still, additional gradient regularity is typically achieved via
methods that require much stronger hypotheses on the summability of f , being based on the classical or
weak maximum principle: viscosity theory indeed requires f to be bounded [24], while the Aleksandrov-
Bakel’man-Pucci estimate needs f ∈ Ld , as in [33]. The situation is even worse when γ > 2, as one
observes that general weak solutions are just Hölder continuous [15], so one has to select u in a suitable
class.

Here, we look at solutions to (1) that can be approximated by classical ones. Therefore, we will prove
(M) in the form of an a priori estimate. It is known that in such a form, (M) cannot be expected in general
if

1 < q ≤ d
γ − 1
γ

,

as described in Remark 3.1. On the other hand, P.-L. Lions indicated that (M)+(A) can be obtained in
some particular cases. First, when γ = 2, the so-called Hopf-Cole transformation v = e−u reduces (1) to
a linear elliptic equation, and one has the result employing (maximal) elliptic regularity and the Harnack
inequality. Special cases d = 1 and γ < d/(d − 1) can be also treated. As a final suggestion, an integral
version of the Bernstein method [30] could be implemented to prove (M) when q is close enough to d
(see also [27], and [5] for further refinements of this technique), but the full regime (A) seems to be out
of range using these sole arguments.

The Bernstein method is the starting point of our work. It consists in shifting the attention from the
equation (1) for u to the equation for a suitable function of |Du|2, i.e. w = g(|Du|2); if g is properly
chosen, the equation for w enjoys a strong degree of coercivity with respect to w itself, which stems from
uniform ellipticity and the coercivity of the gradient term in (1). By a delicate combination of these two
regularising effects, it is possible to produce a crucial estimate on superlevel sets of |Du|, i.e.

[∫
{ |Du | ≥k }

(
|Du| − k

)γq] d−2
d

≤ ω
(��{|Du| ≥ k}��

)
+

∫
{ |Du | ≥k }

(
|Du| − k

)γq
(2)

for any k ≥ 0, where ω(t) → 0 as t → 0. This inequality again reflects the superlinear nature of the
problem, being the exponents in the two sides unbalanced. Nevertheless, it is possible to control on
‖|Du|γ ‖Lq as follows: (2) guarantees that

∫
{ |Du | ≥k }

(
|Du| − k

)γq
is either belonging to a neighborhood

of zero, or to an unbounded interval (for k large enough, but independent of ‖|Du|γ ‖Lq ). By the fact that
k 7→

∫
{ |Du | ≥k }

(
|Du| − k

)γq
is continuous and vanishes as k → ∞, the second case can be ruled out, and

boundedness of
∫
{ |Du | ≥k }

(
|Du| − k

)γq
can be then recovered up to k = 0. This second key step has been

inspired by an interesting argument that appeared in [20] (see also [21]), where W1,2 estimates of (powers
of) u are obtained arguing similarly on superlevel sets of |u|.

Our result reads as follows.
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Theorem 1.1. Let f ∈ C1(Q), d ≥ 3, γ > 1 and

q > d
γ − 1
γ

, q > 2.

For all M > 0, there exists K = K (M, γ, q, d) > 0 such that if u ∈ C3(Q) is a classical solution to (1) and

‖ f ‖Lq (Q) + ‖Du‖L1 (Q) ≤ M,

then
‖∆u‖Lq (Q) + |Du|γLq (Q) ≤ K .

We stress that our approach is not perturbative, in the sense that the gradient term is not treated as a
perturbation of a uniformly elliptic operator (which would be natural under the growth condition γ < 2),
nor vice-versa. It applies also to equations that have the gradient term with reversed sign (since there
are no sign constraints on f , just reverse u 7→ −u), and to solutions in a strong sense (Remark 3.3). As
far as periodicity is concerned, it is common in applications to ergodic control and Mean Field Games.
The study of (M) in cases where u satisfies boundary conditions, or a local version of the estimate, will
be matter of future work. We also conjecture that (M) holds in the limiting case q = d γ−1

γ under an
additional smallness assumption on M , which controls the norm of ‖ f ‖q . This would be coherent with
known results on the existence of weak solutions. Nevertheless, it does not seem evident how to adapt our
proof to cover this end-point case.

Finally, our technique does not apply to the parabolic counterpart of (M). In this direction, some
results based on rather different duality methods developed in [12] to get Lipschitz regularity, has been
obtained in [13].

Acknowledgements. The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la
Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di AltaMatematica (INdAM). This
work has been partially supported by the Fondazione CaRiPaRo Project “Nonlinear Partial Differential
Equations: Asymptotic Problems and Mean-Field Games".

2 Proof of the main theorem
∂i , D, D2 will denote the partial derivative in the i-th direction, the gradient, and the Hessian operator
respectively. For the sake of brevity, we will often drop the x-dependance of u, Du, ..., and the d-
dimensional Lebsesgue measure dx under the integral sign. (x)+ = max{x, 0} will denote the positive
part of x, and for any p > 1, p′ = p/(p − 1). For any measurable and 1-periodic set Ω ⊆ Rd , |Ω| will be
the Lebesgue measure of its representative set, i.e. |Ω| =

∫
Ω∩Q

dx.
This section is devoted to the proof of Theorem 1.1, which will be based on the following lemma.

Lemma 2.1. There exists δ ∈ (0, 1) (depending on γ, q, d) and ω : [0,+∞) → [0,+∞) (depending on
M, γ, q, d) such that

lim
t→0

ω(t) = 0,

and for all k ≥ 1,(∫
Q

((
(1 + |Du|2)

1+δ
2 − k

)+) qγ
1+δ

) d−2
d

≤ ω
(
|{1+|Du|2 > k

2
1+δ }|

)
+

∫
Q

((
(1 + |Du|2)

1+δ
2 − k

)+) qγ
1+δ

. (3)
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We postpone the proof of the lemma, and show first how (3) yields the conclusion of Theorem 1.1.

Setting Yk :=
∫
Q

((
(1 + |Du|2)

1+δ
2 − k

)+) qγ
1+δ

, then (3) reads

Y
d−2
d

k
≤ Yk + ω

(
|{1 + |Du|2 > k

2
1+δ }|

)
for all k ≥ 1. (4)

Note that the function F : Z 7−→ Z
d−2
d − Z has a unique maximizer Z∗ =

(
d−2
d

) d
2 whose corresponding

value is F (Z∗) = F∗ > 0 (which depends on d only). For any 0 ≤ ω < F∗ the equation

F (Z ) = ω

has two roots 0 < Z−(ω) < Z∗ < Z+(ω). Since limt→0 ω(t) = 0, pick t∗ = t∗(M, γ, p, d) such that
ω(t) < F∗ for all t < t∗. By Chebyshev’s inequality,√

k
2

1+δ − 1 >
‖Du‖L1 (Q)

t∗
=⇒ |{1 + |Du|2 > k

2
1+δ }| < t∗,

hence (4) yields the alternative

∀k >
(
‖Du‖L1 (Q)

t∗
+ 1

) 1+δ
2

=: k∗, Yk < Z∗ or Yk > Z∗.

Since u ∈ C3(Q), the function k 7−→ Yk is continuous and tends to zero as k → ∞ (it eventually vanishes
for k large). Hence we deduce that

∀k > k∗, Yk < Z∗,

and finally

|Du|γ
1+δ
γ

Lq (Q) =
|Du|1+δL γq

1+δ (Q)
≤ 

(
(1 + |Du|2)

1+δ
2 − k∗

)+
+ k∗L γq

1+δ (Q)
≤ (Z∗)

1+δ
γq + k∗.

The estimate on ‖∆u‖Lp (Q) is then straightforward.

Having proven Theorem 1.1, we now come back to the main estimate (3).

Proof of Lemma 2.1. Let w(x) := g(|Du(x) |2), where g(s) = gδ (s) = 2
1+δ (1 + s)

1+δ
2 , δ ∈ (0, 1) to be

chosen later. Note that, for any δ ∈ (0, 1), g enjoys the following properties: for all s ≥ 0,

g′(s)s
1
2 ≤ (1 + s)

δ
2 , (5)

g′(s) + 2sg′′(s) ≥ δg′(s). (6)

Note also that

g′( |Du(x) |2) = (1 + |Du(x) |2)
δ−1

2 =

(
δ + 1

2
w

) δ−1
1+δ

(g, g′, g′′ below will be always evaluated at |Du(x) |2).
Define wk = (w − k)+ ∈ W1,∞(Q) and set Ωk := {w > k}. We now use ϕ = ϕ( j) = −2∂j (g′ ∂ju w

β
k

),
j = 1, . . . , d and β > 1 to be chosen later as test functions in the Hamilton-Jacobi equation. First,
integrating by parts and substituting ∂iw = 2g′Du · D∂iu,∑

j

∫
Q

Du · Dϕ = −2
∑
i, j

∫
Q

∂iu · ∂j
(
∂i (g′∂ju w

β
k

)
)
= 2

∑
i, j

∫
Q

∂i ju ∂i (g′∂ju w
β
k

) =

4
∫
Q

g′′
∑
j

(Du · D∂ju)2w
β
k
+ 2

∫
Q

|D2u|2g′wβ
k
+ β

∫
Q

w
β−1
k

Dwk · Dw.
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Moreover, again integrating by parts,

−2
∑
j

∫
Q

|Du|γ∂j (g′∂ju w
β
k

) = γ
∑
j

∫
Q

w
β
k
|Du|γ−2Du · D∂ju 2g′ ∂ju w

β
k
= γ

∫
Q

|Du|γ−2Du · Dw w
β
k
.

Noting that wβ−1
k

Dw = w
β−1
k

Dwk on Q, we end up with

β

∫
Q

w
β−1
k
|Dwk |

2 +

∫
Q

(
4g′′

∑
j

(Du · D∂ju)2 + 2g′ |D2u|2
)
w
β
k
+ γ

∫
Q

|Du|γ−2Du · Dwk w
β
k

= −2
∫
Q

f div(g′Du w
β
k

). (7)

Note also that in (7) integrating on Q and on Ωk is the same, by the fact that wk vanishes on Q \ Ωk . We
use first Cauchy-Schwarz inequality, the equation (1) and the inequality (a − b)2 ≥ a2

2 − 2b2 for every
a, b ∈ R to get

|D2u|2 ≥
1
d

(∆u)2 ≥
1

2d
|Du|2γ −

2
d

f 2 .

Moreover, again by Cauchy-Schwarz inequality (be careful about g′′ < 0) and (6),

g′ |D2u|2 + 2g′′
∑
j

(Du · D∂ju)2 ≥ (g′ + 2|Du|2g′′) |D2u|2 ≥ δg′ |D2u|2 .

The above inequalities then yield

2g′ |D2u|2 + 4g′′
∑
j

(Du · D∂ju)2 ≥ δg′ |D2u|2 +
δ

2d
|Du|2γg′ −

2δ
d

f 2g′.

Note that for γ > 1 it holds

(1 + |Du|2)γ ≤ 2γ−1(1 + |Du|2γ), so |Du|2γ ≥
(1 + |Du|2)γ

2γ−1 − 1

and hence, we are allowed to conclude

δ

2d
|Du|2γg′ ≥

δ

2γd
(1 + |Du|2)γg′ −

δ

2d
g′ =

δ

2γd
(1 + |Du|2)γ+

δ−1
2 −

δ

2d
g′ .

This gives, going back to (7) and substituting (1 + |Du|2)
1
2 =

(
δ+1

2 w
) 1

1+δ ,

β

∫
Ωk

w
β−1
k
|Dwk |

2 + δ

∫
Ωk

g′w
β
k
|D2u|2 + c1

∫
Ωk

w
2γ+δ−1

1+δ w
β
k
≤

δ

2d

∫
Ωk

(1 + 4 f 2)g′wβ
k
− 2

∫
Ωk

f∆u g′wβ
k
− 4

∫
Ωk

f g′′Du · (D2u Du)wβ
k

− 2β
∫
Ωk

f g′Du · Dwkw
β−1
k
− γ

∫
Ωk

|Du|γ−2Du · Dwk w
β
k
, (8)

where c1 = c1(δ, d, γ) > 0.
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We now estimate the five terms on the right hand side of the previous inequality. The first three
terms are somehow similar: using Cauchy-Schwarz inequality and that 2sg′′ ≤ g′, we have for some
c2 = c2(δ, d) > 0 that

δ

2d

∫
Ωk

(1 + 4 f 2)g′wβ
k
− 2

∫
Ωk

f∆u g′wβ
k
− 4

∫
Ωk

f g′′Du · (D2u Du)wβ
k
≤

δ

2d

∫
Ωk

(1 + 4 f 2)g′wβ
k
+ (2d + 2)

∫
Ωk

| f | |D2u|g′wβ
k
≤

δ

∫
Ωk

|D2u|2g′wβ
k
+ c2

∫
Ωk

(1 + f 2)w
δ−1
1+δ w

β
k
. (9)

At this stage, we make some choices for the coefficients. Recalling that d
γ′ < q, we take

p =
2
d

d
γ′
+

d − 2
d

q, and β =
1

1 + δ
[γ(p − 2) + 1 − δ]. (10)

Note that d
γ′ < p < q. Assuming that p > 2 (which is always true when γ > d

d−2 , otherwise see the
remark at the end of the proof), we have β > 1 whenever δ is close enough to zero. Moreover,

2γ + δ − 1
1 + δ

=
δ − 1
1 + δ

p
p − 2

+ β
2

p − 2
, (11)

(β + 1)
d

d − 2
=

γq
1 + δ

. (12)

Therefore, we apply Hölder’s inequality (with conjugate exponents p/2 and p/(p − 2)) and Young’s
inequality, and then wk ≤ w together with (11) to obtain

c2

∫
Ωk

(1 + f 2)w
δ−1
1+δ w

β
k
≤ c2

(∫
Ωk

(1 + f 2)
p
2

) 2
p

(∫
Ωk

w
δ−1
1+δ

p
p−2 w

β
p

p−2
k

)1− 2
p

≤ c3

∫
Ωk

(1 + | f |)p +
c1
3

∫
Ωk

w
δ−1
1+δ

p
p−2 w

β 2
p−2

k
w
β
k

≤ c3

∫
Ωk

(1 + | f |)p +
c1
3

∫
Ωk

w
δ−1
1+δ

p
p−2+β

2
p−2 w

β
k

≤ c3

∫
Ωk

(1 + | f |)p +
c1
3

∫
Ωk

w
2γ+δ−1

1+δ w
β
k
,

where c3 = c3(δ, d, γ, p) > 0. Plugging the previous inequality into (9) yields

δ

2d

∫
Ωk

(1 + f 2)g′wβ
k
− 2

∫
Ωk

f∆u g′wβ
k
− 4

∫
Ωk

f g′′Du · (D2u Du)wβ
k
≤

δ

∫
Ωk

|D2u|2g′wβ
k
+ c3

∫
Ωk

(1 + | f |)p +
c1
3

∫
Ωk

w
2γ+δ−1

1+δ w
β
k
. (13)

The fourth term in (8) is a bit more delicate, we proceed as follows. Use first that s
1
2 g′(s) ≤ (1+ s)

δ
2 ,
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Hölder’s and Young’s inequality to get

2β
∫
Ωk

f g′Du · Dwkw
β−1
k
≤ 2β

∫
Ωk

| f |(1 + |Du|2)
δ
2 |Dwk |w

β−1
k
≤

2β
(∫
Ωk

w
β−1
k
|Dwk |

2
) 1

2
(∫
Ωk

| f |q
) 1

q
(∫
Ωk

(1 + |Du|2)
δ
2

pq
q−p

) q−p
pq

(∫
Ωk

w
(β−1) p

p−2
k

) p−2
2p

≤

β

3

∫
Ωk

w
β−1
k
|Dwk |

2 +
c1
3

∫
Ωk

w
(β−1) p

p−2
k

+ c4

(∫
Ωk

| f |q
) p

q
(∫
Ωk

(1 + |Du|2)
δ
2

pq
q−p

) q−p
q

,

where c4 = c4(δ, d, γ, β) > 0. Since k ≥ 1, we have w ≥ 1 on Ωk . Hence, recalling also (11),∫
Ωk

w
(β−1) p

p−2
k

=

∫
Ωk

w
β 2

p−2−
p

p−2
k

w
β
k
≤

∫
Ωk

wβ
2

p−2−
p

p−2 w
β
k
≤

∫
Ωk

wβ
2

p−2−
1−δ
1+δ

p
p−2 w

β
k
=

∫
Ωk

w
2γ+δ−1

1+δ w
β
k
,

so

2β
∫
Ωk

f g′Du · Dwkw
β−1
k
≤

β

3

∫
Ωk

w
β−1
k
|Dwk |

2 +
c1
3

∫
Ωk

w
2γ+δ−1

1+δ w
β
k
+ c4‖ f ‖p

Lq (Q)

(∫
Ωk

(1 + |Du|2)
δ
2

pq
q−p

) q−p
q

. (14)

We now focus on the fifth term in (8). By Young’s inequality,

−γ

∫
Ωk

|Du|γ−2Du · Dwk w
β
k
≤

3γ2

4β

∫
Ωk

|Du|2γ−2 w
β+1
k
+
β

3

∫
Ωk

|Dwk |
2 w

β−1
k

. (15)

Furthermore, letting

η =
2γ + δ − 1

1 + δ
,

(
so that β + η =

pγ
1 + δ

)
we get (it holds s

1
2 ≤ g

1
1+δ )∫

Ωk

|Du|2γ−2 w
β+1
k
≤

∫
Ωk

w
2γ−2
1+δ w

β+1
k
=

∫
Ωk

wη−1w
β/η′

k
w
β/η+1
k

≤

(∫
Ωk

wηw
β
k

) 1
η′

(∫
Ωk

w
β+η
k

) 1
η

.

Plugging the previous inequality into (15) and using again Young’s inequality leads to

−γ

∫
Ωk

|Du|γ−2Du · Dwk w
β
k
≤

c1
3

∫
Ωk

w
2γ+δ−1

1+δ w
β
k
+ c5

∫
Ωk

w
pγ

1+δ
k
+
β

3

∫
Ωk

|Dwk |
2 w

β−1
k

. (16)

for some c5 = c5(δ, d, γ, p) > 0.

Plug now (13), (14) and (16) into (8) to obtain

β

3

∫
Ωk

w
β−1
k
|Dwk |

2 ≤ c3

∫
Ωk

(1 + | f |)p + c4‖ f ‖p
Lq (Q)

(∫
Ωk

(1 + |Du|2)
δ
2

pq
q−p

) q−p
q

+ c5

∫
Ωk

w
pγ

1+δ
k

. (17)

Sobolev’s inequality related to the continuous embedding of W1,2(Q) into L
2d
d−2 (Q) reads (for c6 =

c6(d, δ, γ, p))
β

3

∫
Q

w
β−1
k
|Dwk |

2 ≥ c6

(∫
Q

w
(β+1) d

d−2
k

) d−2
d

−
β

3

∫
Q

w
β+1
k

,
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hence

c6

(∫
Ωk

w
(β+1) d

d−2
k

) d−2
d

≤

c3

∫
Ωk

(1 + | f |)p + c4‖ f ‖p
Lq (Q)

(∫
Ωk

(1 + |Du|2)
δ
2

pq
q−p

) q−p
q

+ c5

∫
Ωk

w
pγ

1+δ
k
+
β

3

∫
Ωk

w
β+1
k

.

We finally choose δ > 0 small enough so that δ pq
q−p < 1. Recall that p < q, so using repeatedly Hölder’s

and Young’s inequalities we obtain

c3

∫
Ωk

(1 + | f |)p ≤ c3‖1 + | f |‖pLq (Q) |Ωk |
q−p
q ,

c4‖ f ‖p
Lq (Q)

(∫
Ωk

(1 + |Du|2)
δ
2

pq
q−p

) q−p
q

≤ c4‖ f ‖p
Lq (Q)


√

1 + |Du|2
δp

L1 (Q)
|Ωk |

(1−δ pq
q−p ) q−p

q ,

c5

∫
Ωk

w
pγ

1+δ
k
≤

c6
2

∫
Ωk

w
qγ
1+δ
k
+ c7 |Ωk |,

β

3

∫
Ωk

w
β+1
k
≤

c6
2

∫
Ωk

w
(β+1) d

d−2
k

+ c8 |Ωk |.

Recalling that (β + 1) d
d−2 =

qγ
1+δ and ‖ f ‖Lq (Q) + ‖Du‖L1 (Q) ≤ M , we obtain

(∫
Q

w
qγ
1+δ
k

) d−2
d

≤

∫
Q

w
qγ
1+δ
k
+

c3
c6
‖1 + | f |‖p

Lq (Q) |Ωk |
q−p
q +

c4
c6
‖ f ‖p

Lq (Q)

√

1 + |Du|2
δp

L1 (Q)
|Ωk |

(
1−δ pq

q−p

)
q−p
p +

c7 + c8
c6

|Ωk | ≤∫
Q

w
qγ
1+δ
k

+
c3
c6

(1 + M)p |Ωk |
q−p
q +

c4
c6

Mp (1 + M)δp |Ωk |

(
1−δ pq

q−p

)
q−p
p +

c7 + c8
c6

|Ωk |︸                                                                                           ︷︷                                                                                           ︸
=: ω( |Ωk |)

Replacing wk by its definition provides the assertion (up to an additional constant in front of ω).
If the choice of p in (10) does not satisfy p > 2, just pick p̃ so that p < p̃ < q and p̃ > 2, and proceed

in the same way. Then, (12) becomes

(β + 1)
d

d − 2
>

γq
1 + δ

, (18)

so it suffices to apply once again Hölder’s and Young’s inequalities to get the same assertion (with an
additional term in ω).

�

3 Further remarks
Remark 3.1. General failure of (M) when q ≤ d γ−1

γ . In the critical case q = d γ−1
γ one may consider the

family of functions vε defined as follows, for ε ∈ (0, 1]: let χ ∈ C∞0
(
(1,+∞)

)
be a non-negative cutoff

function, χ ≡ 1 on [2,+∞), and vε (x) = vε (|x |), where

vε (r) = c
∫ 1/2

r

s−
1
γ−1 χ

( s
ε

)
ds, |c |γ = −

(
d − 1 −

1
γ − 1

)
c.

8



Then, on B1/2 := {|x | < 1/2},

−∆vε + |Dvε |
γ =

c
ε
|x |−

1
γ−1 χ′(ε−1 |x |) + |c|γ

(
χγ (ε−1 |x |) − χ(ε−1 |x |)

)
|x |−

γ
γ−1 =: fε (x),

and vε = 0 on ∂B1/2. Therefore, there exists M > 0, depending on c, d, γ, χ only, such that

‖ fε ‖
L
d
γ−1
γ (B1/2)

= M for all ε ∈ (0, 1/4], but |Du|γ
L
d
γ−1
γ (B1/2)

→ ∞ as ε → 0.

Note that the example is meaningful only if γ > d
d−1 , that is when d γ−1

γ > 1. Note also that though vε
is not periodic, being smooth on B1/2 and vanishing on ∂B1/2, it is straightforward to produce similar
examples in the periodic setting. Finally, different choices of the truncation χ( |x |) = χε (|x |) lead to
counterexamples in the regime q < d γ−1

γ .
Note however that existence of weak solutions to the viscous Hamilton-Jacobi equation (1) can be

obtained when f ∈ Lq (Q) and q = d γ−1
γ (at least for the Dirichlet problem), provided that ‖ f ‖Lq is small,

see e.g. [18, 20]. Therefore, we do not exclude that (M) holds even when q = d γ−1
γ , under extra smallness

assumptions on ‖ f ‖Lq .
Remark 3.2. d = 1, 2. Theorem 1.1 is stated in dimension d ≥ 3, but the proof for d = 1, 2 follows
identical lines. As it usually happens, the point is that in the latter case W1,2(Q) is continuously embedded
into Lp (Q) for all finite p ≥ 1, and not only into L

2d
d−2 (Q).

Remark 3.3. Less regularity of u. Theorem 1.1 holds more in general for (strong) solutions u ∈
W2,q ∩ W1,γq (Q) of the equation. Indeed, consider a sequence ψε of standard compactly supported
regularizing kernels, and observe that uε = u?ψε satisfies

−∆uε + |Duε |γ = f ?ψε + |Duε |γ − |Du|γ ?ψε .

For 0 < ε ≤ ε0
‖ f ?ψε + |Duε |γ − |Du|γ ?ψε ‖Lq (Q) + ‖Duε ‖L1 (Q) ≤ M + 1,

so applying Theorem 1.1 to uε and passing to the limit ε → 0 yields

‖∆u‖Lq (Q) + |Du|γLq (Q) ≤ K (M + 1, γ, q, d).

More generally, Theorem 1.1 continues to hold for solutions that can be obtained as limits of smooth
approximations.
Remark 3.4. More general Hamiltonians. Theorem 1.1 can be easily generalized tomore general equations
of the form

−∆u + H (Du) = f , (19)

where H : Rd → R satisfies, e.g.

���H (r) − c1 |r |γ
��� ≤ c2 for all r ∈ Rd ,

for some c1, c2 ∈ R and γ > 1. Indeed, any u solving (19) also solves

−∆u + c1 |Du|γ = f + fH, fH = c1 |Du|γ − H (Du).

Since ‖ f + fH ‖Lq (Q) ≤ ‖ f ‖Lq (Q) + c2, and c2 does not depend on u, it suffices to apply Theorem 1.1
(which is easily proven to hold for any c1 ∈ R) with f + fH .
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