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Abstract We propose a nonparametric test for the significance of a mode, with the
aim of evaluating whether a region of relatively high observed density reflects the
actual presence of a mode in the true distribution underlying a set of data. The
method leverages on Morse theory to characterize the local properties of the modes
and the gradient. This allows the definition of an asymptotic test, based on the con-
cept of gradient ascent paths and relying on resampling methods, to approximate
the distribution of the test statistic under the null hypothesis. The performances of
the proposed test statistic and the control of the Type-I error are shown via multiple
simulation studies.
Abstract Al fine di valutare se una regione ad alta densità osservata riflette la pre-
senza di una moda nella reale distribuzione sottostante i dati, in questo lavoro si
propone un test di verifica della significatività di una moda. La procedura proposta
sfrutta la teoria Morse per caratterizzare le proprietà locali delle mode e del gradi-
ente di una funzione di densità. In questo modo, è possibile definire una procedura
asintotica basata sull’ascesa del gradiente e che sfrutta una tecnica di ricampiona-
mento per approssimare la distribuzione della statistica test sotto l’ipotesi nulla. Il
comportamento del test è valutato rispetto alla probabilità di commettere un errore
di I-tipo via simulazione.
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1 Introduction

Inference on the modes of a distribution has been historically overlooked with re-
spect to other common location measures such as mean and median. In fact, espe-
cially when data exhibit non-Gaussian features as skewness or heavy tails, or some
unlabeled heterogeneity occurring in the form of multimodal structures, modes rep-
resent useful tools to summarize distributions. Additionally, their understanding
may represent a fundamental step to aid deciding how to subsequently approach
the analysis the most fruitfully.

A first, well established, branch of literature on this topic addresses the prob-
lem of building statistical tests or confidence bounds on the true number of modes
[see, for a review, ?, and reference therein]. Alternatively, one may be interested in
evaluating the position, rather than the number of modes, to understand whether the
regions of relatively high observed density reflect the actual clustering of data in
subpopulations; similarly, the observation of somewhat clumped data in the tails of
an empirical distribution may induce to wonder if they are real or just a spurious
effect of sample variability. These problems can be formalized in the - relatively
neglected and fairly complicated - aim of testing the significance of a mode. The
few contributions in this direction mostly rely on the study of density features like
the gradient or the curvature. See ?, ? and more recently ?. Consistently with this
latter aim, we propose an asymptotic test to evaluate if a specific point is a true mode
of the - unknown - probability density function underlying an observed set of data.
The procedure borrows some tools from both the theory and the operational means
addressing the modal formulation of the clustering problem and it is here applied
by following a nonparametric approach. Specifically, we leverage on Morse theory
to characterize the local properties of the modes, viewed as local maxima of a func-
tion, and their gradient. This formalization allows us to approximate the bootstrap
distribution of a mode estimator based on the gradient ascent paths of the density,
and used to define an asymptotically chi-squared test statistic.

After framing the problem in the context of Morse theory (Section 2), in the
following we illustrate the test and its underlying rationale (Section 3), and show its
behaviour with respect to the probability of type-I error via some simulations.

2 Modes as critical points of the density

While intuitively clear, the problem of testing mode significance is firstly defini-
tional. The concept of mode itself is, indeed, ambiguous, as for example the Uniform
distribution can be regarded to as both unimodal or without modes. To overcome this
problem and formalize our framework without any elusiveness, we shall restrict the
analysis to smooth distributions, and exclude non-standard ones as, for example,
functions with plateaux. For our purpose, we resort to the framework provided by
Morse Theory, a branch of differential topology which draws the relationship be-
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tween the stationary points of a smooth real-valued functions on a manifold, and the
global topology of the manifold. See ? for an introduction.

Given a continuous random variable X , with probability density function f :
Rd → R, we then assume that f is a Morse function, i.e. a function having non-
degenerate critical points. For any x ∈ Rd it is possible to define the integral curve
of the negative density gradient −∇ f , as the path νx : R 7→ Rd such that{

ν ′x(t) =−∇ f (νx(t))
νx(0) = x.

With that in mind, we identify the set of the local maxima, or modes, of f as

Θ = {x ∈ Rd : lim
t→∞

νx(t) = x},

i.e. the set of points whose integral curve is degenerate at νx(0).
A standard result in Morse theory is that there is a unique gradient ascent path

starting at a point that eventually arrives at one of the modes (except for a set of
measure 0). Hence, the set of integral curves of the negative gradient allows us to
define a partition of Rd in “domains of attraction” of each mode, to be intended as
the sets of points for which νx(t) converges to that mode:

D(θ) = {x ∈ Rd : lim
t→∞

νx(t) = θ ∈Θ}.

The problem of finding the integral curve νx(·) and its limit limt→∞ νx(t), can be
approximated by the iterative schemex(0) = x,

x(s+1) = x(s)+A
∇ f (x(s))

f (x(s))
,

(1)

where A is a d× d positive definite matrix chosen to guarantee the convergence.
Operationally, the function f is unknown, and mode estimation is then performed
by plugging in (1) a suitable estimate of both f and its gradient, built from a a sample
X = (X1, . . . ,Xn) of i.i.d realizations of X , so that the recurrence in (1) becomes

x(s+1) = x(s)+A
∇̂ f (x(s);X )

f̂ (x(s);X )
. (2)

The convergence properties of this gradient-ascent algorithm have been studied in
? and ?. A possible choice is to estimate the density and its gradient with a kernel
estimator, leading to a particularly convenient iteration scheme known as the mean-
shift [see ?, Ch. 6, for a more detailed derivation]. In the next Section, we will use
these properties to define a test statistic for the modes of a density function.
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3 Methodology

In the lack of information about the true modal structure of f , testing the significance
of a mode recasts to defining the system of hypotheses

H0 : θ0 ∈Θ vs H1 : θ0 /∈Θ , (3)

for some θ0 ∈ Rd . While apparently composite, the null hypothesis is fact a simple
one, as the - yet unknown - partition of Rd in the set {D(θ)}θ∈Θ allows us to intend
H0 as “θ0 is the mode of the domain D(θ) where it belongs”.

Building on the sample X , we first obtain an estimate f̂ (·;X ) and ∇̂ f (·;X )
of the density function and its gradient. For the subsequent developments, we con-
sider a nonparametric kernel density estimator, which has been proven to provide
consistent estimates of f under some regularity conditions on the function and the
selected amount of smoothing [see, e.g. ?]. In fact, other methods for density estima-
tion - not necessarily nonparametric - with good general properties and producing
differentiable estimates can be used.

To test (3) we then build an estimate θ̂ of the mode. This is obtained as the
convergence point of the iteration scheme (2), with x(0) = θ0, and represents the
mode of f̂ associated with the domain D(θ) to which θ0 belongs. Afterwards, we
obtain an approximation of the distribution of θ̂ under the null hypothesis. Here
we propose to approximate such distribution with a resampling procedure, such as
bootstrap or subsampling [?], together with the iteration scheme in (2). In particular,
let X ∗ be a resampled version of the original data X . With the obtained sample,
using the initial condition x(0) = θ̂ , we compute

θ
∗ = θ̂ +A

∇̂ f (θ̂ ;X ∗)

f̂ (θ̂ ;X ∗)
.

Here we consider A = αId , with 0 < α < 1, to guarantee the convergence. The
underlying rationale is that, under the null hypothesis, since θ̂ → θ0 and ∇̂ f → ∇ f ,
we expect ∇̂ f (θ̂ ;X ∗) to be close to zero. Hence, by iterating the process B times,
we obtain a set {θ ∗1 , . . . ,θ ∗B} of realizations from the bootstrap distribution of θ̂

under H0. With that in mind, we define

µ̂ =
1
B

B

∑
b=1

θ
∗
b and Σ̂ =

1
B

B

∑
b=1

(θ ∗b − µ̂)2.

From the multivariate central limit theorem [?] it follows that under the null hypoth-
esis
√

n(µ̂−θ0)∼̇N (0, Σ̂). We can therefore define a test statistic

T = (µ̂−θ0)
>

Σ̂
−1(µ̂−θ0)

·∼ χ
2
d ,

and reject H0 for large values of T .
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Fig. 1 In the first row, two dimensional standard Gaussian. On the second row, the Gaussian mix-
ture. The left panels show the resampled distribution of the modes, with the black dot correspond-
ing to θ0. The right panels show the control of the Type-I error for two different sample sizes,
n = 1000 and n = 5000.

4 Empirical study

To check the control of the Type-I error probability of the proposed test statistic,
we have conducted a simulation study. For brevity, we report here the results of two
bivariate settings of different complexity only, illustrated in the left panels of Figure
1, and referred to the mode of a standard Gaussian distribution and the most promi-
nent mode of a balanced mixture of two Gaussian distributions with even variance
components.

In both cases we generated 500 samples of size n = 1000 and n = 5000, and we
compared the p-value curves vs increasing values of Type-I error probabilities.

In the first scenario, where the distribution is unimodal and isotropic, the test
shows very good performances and the control of the Type-I error is almost perfect,
even with a smaller sample size. Although this case is fairly simple, it is nonetheless
informative on the behaviour of the proposed test in a benchmark setting. In the
second, more complex, scenario, we focused on the right-most mode. As clear in
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Figure 1, the region of interest is highly anisotropic in the vertical direction, with
very steep gradients in the horizontal direction. In this case the true distribution of
the mode might have a smaller variability in the horizontal direction with respect to
the resampled distribution, thus leading to a more conservative test.

The proposed test shows fairly good performances and control of the Type-I error
in both scenarios. Moreover, due to the small number of iterations in the gradient
procedure, it is computationally efficient even in higher dimensions and with larger
sample sizes. Future research will focus on a more thorough analysis on the control
of the Type-I error and the power of the test in more complicated scenarios. It would
also be of interest to better understand the theoretical and asymptotic properties of
the proposed procedure.


