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Centered Partition Processes: Informative
Priors for Clustering (with Discussion)

Sally Paganin∗, Amy H. Herring†, Andrew F. Olshan‡, David B. Dunson§, and
The National Birth Defects Prevention Study

Abstract. There is a very rich literature proposing Bayesian approaches for clus-
tering starting with a prior probability distribution on partitions. Most approaches
assume exchangeability, leading to simple representations in terms of Exchange-
able Partition Probability Functions (EPPF). Gibbs-type priors encompass a
broad class of such cases, including Dirichlet and Pitman-Yor processes. Even
though there have been some proposals to relax the exchangeability assumption,
allowing covariate-dependence and partial exchangeability, limited consideration
has been given on how to include concrete prior knowledge on the partition. For
example, we are motivated by an epidemiological application, in which we wish to
cluster birth defects into groups and we have prior knowledge of an initial cluster-
ing provided by experts. As a general approach for including such prior knowledge,
we propose a Centered Partition (CP) process that modifies the EPPF to favor
partitions close to an initial one. Some properties of the CP prior are described,
a general algorithm for posterior computation is developed, and we illustrate the
methodology through simulation examples and an application to the motivating
epidemiology study of birth defects.

Keywords: Bayesian clustering, Bayesian nonparametrics, centered process,
Dirichlet Process, exchangeable probability partition function, mixture model,
product partition model.

1 Introduction

Clustering is one of the canonical data analysis goals in statistics. There are two main
strategies that have been used for clustering; namely, distance and model-based clus-
tering. Distance-based methods leverage upon a distance metric between data points,
and do not in general require a generative probability model of the data. Model-based
methods rely on discrete mixture models, which model the data in different clusters as
arising from kernels having different parameter values. The majority of the model-based
literature uses maximum likelihood estimation, commonly relying on the EM algorithm.
Bayesian approaches that aim to approximate a full posterior distribution on the clus-
ters have advantages in terms of uncertainty quantification, while also having the ability
to incorporate prior information.
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Although this article is motivated by providing a broad new class of methods for im-
proving clustering performance in practice, we were initially motivated by a particular
application involving birth defects epidemiology. In this context, there are N = 26 dif-
ferent birth defects, which we can index using i ∈ {1, . . . , N}, and for each defect i there
is an highly variable number of observations. We are interested in clustering these birth
defects into mechanistic groups, which may be useful, for example, in that birth defects
in the same group may have similar coefficients in logistic regression analysis relating
different exposures to risk of developing the defect. Investigators have provided us with
an initial partition c0 of the defects {1, . . . , N} into groups. It is appealing to combine
this prior knowledge with information in the data from a grouped logistic regression
to produce a posterior distribution on clusters, which characterizes uncertainty. The
motivating question of this article is how to do this, with the resulting method ideally
having broader impact to other types of centering of priors for clustering; for example,
we may want to center the prior based on information on the number of clusters or
cluster sizes.

With these goals in mind, we start by reviewing the relevant literature on clustering
priors. Most of these methods assume exchangeability, which means that the prior prob-
ability of a partition c of {1, . . . , N} into clusters depends only on the number of clusters
and the cluster sizes; the indices on the clusters play no role. Under the exchangeability
assumption, one can define what is referred to in the literature as an Exchangeable
Partition Probability Function (EPPF) (Pitman, 1995). This EPPF provides a prior
distribution on the random partition c. One direction to obtain a specific form for the
EPPF is to start with a nonparametric Bayesian discrete mixture model with a prior
for the mixing measure P , and then marginalize over this prior to obtain an induced
prior on partitions. Standard choices for P , such as the Dirichlet (Ferguson, 1973) and
Pitman-Yor process (Pitman and Yor, 1997), lead to relatively simple analytic forms for
the EPPF. There has been some recent literature studying extensions to broad classes
of Gibbs-type processes (Gnedin and Pitman, 2006; De Blasi et al., 2015), mostly fo-
cused on improving flexibility while maintaining the ability to predict the number of
new clusters in a future sample of data.

There is also a rich literature on relaxing exchangeability in various ways. Most of
the emphasis has been on the case in which a vector of features xi is available for index i,
motivating feature-dependent random partitions models. Building on the stick-breaking
representation of the DP (Sethuraman, 1994), MacEachern (1999, 2000) proposed a
class of fixed weight dependent DP (DDP) priors. Applications of this DDP framework
have been employed in ANOVA modeling (De Iorio et al., 2004), spatial data analysis
(Gelfand et al., 2005), time series (Caron et al., 2006) and functional data analysis
applications (Petrone et al., 2009; Scarpa and Dunson, 2009) among many others, with
some theoretical properties highlighted in Barrientos et al. (2012).

However such fixed weight DDPs lack flexibility in feature-dependent clustering, as
noted in MacEachern (2000). This has motivated alternative formulations which allow
the mixing weights to change with the features, with some examples including the order-
based dependent Dirichlet process (Griffin and Steel, 2006), kernel- (Dunson and Park,
2008), and probit- (Rodriguez and Dunson, 2011) stick breaking processes.
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Alternative approaches build on random partition models (RPMs), working directly
with the probability distribution p(c) on the partition c of indices {1, . . . , N} into clus-
ters. Particular attention has been given to the class of product partition models (PPMs)
(Barry and Hartigan, 1992; Hartigan, 1990) where p(c) can be factorized into a prod-
uct of cluster-dependent functions, known as cohesion functions. A common strategy
modifies the cohesion function to allow feature-dependence; refer, for examples, to Park
and Dunson (2010), Müller et al. (2011), Blei and Frazier (2011), Dahl et al. (2017) and
Smith and Allenby (2019).

Our focus is fundamentally different. In particular, we do not have features xi on
indices i but have access to an informed prior guess c0 for the partition c; other than
this information it is plausible to rely on exchangeable priors. To address this problem,
we propose a general strategy to modify a baseline EPPF to include centering on c0. In
particular, our proposed Centered Partition (CP) process defines the partition prior as
proportional to an EPPF multiplied by an exponential factor that depends on a distance
function d(c, c0), measuring how far c is from c0. The proposed framework should be
broadly useful in including extra information into EPPFs, which tend to face issues in
lacking incorporation of real prior information from applications.

The paper is organized as follows. Section 2 introduces concepts and notation related
to Bayesian nonparametric clustering. In Section 3 we illustrate the general CP pro-
cess formulation and describe an approach to posterior computation relying on Markov
chain Monte Carlo (MCMC). Section 4 proposes a general strategy for prior calibration
building on a targeted Monte Carlo procedure. Simulation studies and application to the
motivating birth defects epidemiology study are provided in Section 5, with technical
details included in Paganin et al. (2020).

2 Clustering and Bayesian Models

This section introduces some concepts related to the representation of the clustering
space from a combinatorial perspective, which will be useful to define the Centered
Partition process, along with an introduction to Bayesian nonparametric clustering
models.

2.1 Set Partitions

Let c be a generic clustering of indices [N ] = {1, . . . , N}. It can be either represented
as a vector of indices {c1, . . . , cN}, with ci ∈ {1, . . . ,K} for i = 1, . . . , N and ci = cj
when i and j belong to the same cluster, or as a collection of disjoint subsets (blocks)
{B1, B2, . . . , BK} where Bk contains all the indices of data points in the k-th cluster and
K is the number of clusters in the sample of size N . From a mathematical perspective
c = {B1, . . . , BK} is a combinatorial object known as set partition of [N ]. The collection
of all possible set partitions of [N ], denoted with ΠN , is known as the partition lattice.
We refer to Stanley (1997) and Davey and Priestley (2002) for an introduction to lattice
theory, and to Meilă (2007) and Wade and Ghahramani (2018) for a review of the
concepts from a more statistical perspective.
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According to Knuth in Wilson and Watkins (2013), set partitions seem to have been
studied first in Japan around A.D. 1500, due to a popular game in the upper class society
known as genji-ko; five unknown incense sticks were burned and players were asked to
identify which of the scents were the same, and which were different. Soon diagrams
were developed to model all the 52 outcomes, which corresponds to all the possible set
partitions of N = 5 elements. First results focused on enumerating the elements of the
space. For example, for a fixed number of blocks K, the number of ways to assign N
elements to K groups is described by the Stirling number of the second kind

SN,K =
1

K!

K∑
j=0

(−1)j
(
K

j

)
(K − j)N ,

while the Bell number BN =
∑N

K=1 SN,K describes the number of all possible set
partitions of N elements.

Interest progressively shifted towards characterizing the structure of the space of
partitions using the notion of partial order. Consider ΠN endowed with the set contain-
ment relation ≤, meaning that for c = {B1, . . . , BK}, c′ = {B′

1, . . . , B
′
K′} belonging to

ΠN , c ≤ c′ if for all i = 1, . . . ,K,Bi ⊆ B′
j for some j ∈ {1, . . . ,K ′}. Then the space

(ΠN ,≤) is a partially ordered set (poset), which satisfies the following properties:

1. Reflexivity: for every c ∈ ΠN , c ≤ c,

2. Antisymmetry: if c ≤ c′ and c′ ≤ c then c = c′,

3. Transitivity: if c ≤ c′ and c′ ≤ c′′, then c ≤ c′′.

Moreover, for any c, c′ ∈ ΠN , it is said that c is covered (or refined) by c′ if c ≤ c′

and there is no c′′ such that c < c′′ < c′. Such a relation is indicated by c ≺ c′. This
covering relation allows one to represent the space of partitions using a Hasse diagram,
in which the elements of ΠN correspond to nodes in a graph and a line is drawn from
c to c′ when c ≺ c′; there is a connection from a partition c to another one when the
second can be obtained by splitting or merging one of the blocks in c. See Figure 1
for an example of the Hasse diagram of Π4. Conventionally, the partition with just one
cluster is represented at the top of the diagram and denoted as 1, while the partition
having every observation in its own cluster is at the bottom and indicated with 0.

This representation of the set partitions space ΠN as a partially ordered set provides
a useful framework to characterize its elements. As already mentioned, two partitions
connected in the Hasse diagram can be obtained from one another by means of a single
operation of split or merge; a sequence of connections is a path, linking the two extreme
partitions 0 and 1. A path starting from 0 connects partitions with an increasing rank,
which is related to the number of blocks through r(c) = N − |c|. Set partitions with
the same rank may differ in terms of their configuration Λ(c), the sequence of block
cardinalities {|B1|, . . . , |BK |}, which corresponds to another combinatorial object known
as an integer partition of N . In combinatorics, an integer partition is defined as the
multiset of positive integers {λ1 . . . λK}, listed in decreasing order by convention, such
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{1, 2, 3, 4}

{4}{1, 2, 3}{3}{1, 2, 4}{2}{1, 3, 4}{1}{2, 3, 4} {1, 2}{3, 4} {1, 3}{2, 4} {1, 4}{2, 3}

{1}{2}{3, 4} {1}{3}{2, 4} {1}{4}{2, 3} {2}{3}{1, 4} {2}{4}{1, 3} {3}{4}{1, 2}

{1}{2}{3}{4}

Figure 1: Hasse diagram for the lattice of set partitions of 4 elements. A line is drawn
when two partitions have a covering relation. For example {1}{2, 3, 4} is connected
with 3 partitions obtained by splitting the block {2, 3, 4} in every possible way, and
with partition 1, obtained by merging the two clusters.

that
∑K

i=1 λi = N . Also the associated space of all possible integer partitions IN is a
partially ordered set, making the definition of configuration a poset mapping Λ(·) : c ∈
ΠN → λ ∈ IN .

Finally, the space ΠN is a lattice, based on the fact that every pair of elements
has a greatest lower bound (g.l.b.) and a least upper bound (l.u.b.) indicated with the
“meet” ∧ and the “join” ∨ operators, i.e. c ∧ c′ = g.l.b.(c, c′) and c ∨ c′ = l.u.b.(c, c′)
and equality holds under a permutation of the cluster labels. An element c ∈ ΠN is
an upper bound for a subset S ⊆ ΠN if s ≤ c for all s ∈ S, and it is the least upper
bound for a subset S ⊆ ΠN if c is an upper bound for S and c ≤ c′ for all upper
bounds c′ of S. The lower bound and the greatest lower bound are defined similarly,
and the definition applies also to the elements of the space IN . Consider, as an example,
c = {1}{2, 3, 4} and c′ = {3}{1, 2, 4}; their greatest lower bound is c∧c′ = {1}{3}{2, 4}
while the lowest upper bound is c ∨ c′ = {1, 2, 3, 4}. Considering the Hasse diagram in
Figure 1 the g.l.b. and l.u.b. are the two partitions which reach both c and c′ through
the shortest path, respectively from below and from above.

2.2 Bayesian Mixture Models

From a statistical perspective, set partitions are key elements in a Bayesian mixture
model framework. The main underlying assumption is that observations y1, . . . , yN are
independent conditional on the partition c, and their joint probability density can be
expressed as

p(y|c,θ) =
K∏

k=1

∏
i∈Bk

p(yi|θk) =
K∏

k=1

p(yk|θk), (2.1)

with θ = (θ1, . . . , θK) a vector of unknown parameters indexing the distribution of
observations yk = {yi}i∈Bk

for each cluster k = 1, . . . ,K. In a Bayesian formulation, a
prior distribution is assigned to each possible partition c, leading to a posterior of the
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Random probability measure Parameters p(c) =

Dirichlet process (α) αK

(α)N

∏K
j=1(λj − 1)!

Pitman-Yor process (α, σ)
∏K−1

j=1 (α+jσ)

(α+1)(N−1)

∏K
j=1(1− σ)(λj−1)

Symmetric Dirichlet (κ, γ) κ!
(κ−K)!

∏K
j=1

Γ(γ/κ+λj)
Γ(γ/κ)

Table 1: Exchangeable Partition Probability Function for Dirichlet, Pitman-Yor pro-
cesses and Symmetric Dirichlet distribution; λj = |Bj | is the cardinality of the clusters
composing the partition, while (x)r = x(x+1) · · · (x+r−1) denotes the rising factorial.

form

p(c|y,θ) ∝ p(c)

K∏
k=1

p(yk|θk). (2.2)

Hence the set partition c is conceived as a random object and elicitation of its prior
distribution is a critical issue in Bayesian modeling.

The first distribution one may use, in the absence of prior information, is the uniform
distribution, which gives the same probability to every partition with p(c) = 1/BN ; how-
ever, even for small values of N the Bell number BN is very large, making computation
of the posterior intractable even for simple choices of the likelihood. This motivated the
definition of alternative prior distributions based on different concepts of uniformity,
with the Jensen and Liu (2008) prior favoring uniform placement of new observations in
one of the existing clusters, and Casella et al. (2014) proposing a hierarchical uniform
prior, which gives equal probability to set partitions having the same configuration.

Usual Bayesian nonparametric procedures build instead on discrete nonparametric
priors, i.e. priors that have discrete realization almost surely. Dirichlet and Pitman-Yor
processes are well known to have this property, as does the broader class of Gibbs-
type priors. Any discrete random probability measure p̃ can induce an exchangeable
random partition. Due to the discreteness of the process, p̃ induces a partition of the
observations y1, . . . , yN which can be characterized via an Exchangeable Probability
Partition Function. For both Dirichlet and Pitman-Yor processes, the EPPF is available
in closed form as reported in Table 1 along with the case of the finite mixture model
with κ components and a symmetric Dirichlet prior with parameters (γ/κ, . . . , γ/κ).
Notice that λj = |Bj | is the cardinality of the clusters composing the partition, while
notation (x)r is for the rising factorial x(x+ 1) · · · (x+ r − 1).

There is a strong connection with the exchangeable random partitions induced by
Gibbs-type priors and product partition models. A product partition model assumes
that the prior probability for the partition c has the following form

p(c = {B1, . . . , BK}) ∝
K∏
j=1

ρ(Bj), (2.3)

with ρ(·) known as the cohesion function. The underlying assumption is that the prior
distribution for the set partition c can be factorized as the product of functions that
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depend only on the blocks composing it. Such a definition, in conjunction with formula-
tion (2.1) for the data likelihood, guarantees the property that the posterior distribution
for c is still in the class of product partition models.

Distributions in Table 1 are all characterized by a cohesion function that depends on
the blocks through their cardinality. Although the parameters can control the expected
number of clusters, this assumption is too strict in many applied contexts in which prior
information is available about the grouping. In particular, the same probability is given
to partitions with the same configuration but having a totally different composition.

3 Centered Partition Processes

Our focus is on incorporating structured knowledge about clustering of the finite set
of indices [N ] = {1, . . . , N} in the prior distribution within a Bayesian mixture model
framework. We consider as a first source of information a given potential clustering, but
our approach can also accommodate prior information on summary statistics such as
the number of clusters and cluster sizes.

3.1 General Formulation

Assume that a potential clustering c0 is given and we wish to include this information
in the prior distribution. To address this problem, we propose a general strategy to
modify a baseline EPPF to shrink towards c0. In particular, our proposed CP process
defines the prior on set partitions as proportional to a baseline EPPF multiplied by a
penalization term of the type

p(c|c0, ψ) ∝ p0(c)e
−ψd(c,c0), (3.1)

with ψ > 0 a penalization parameter, d(c, c0) a suitable distance measuring how far c
is from c0 and p0(c) indicates a baseline EPPF, that may depend on some parameters
that are not of interest at the moment. For ψ → 0, p(c|c0, ψ) corresponds to the baseline
EPPF p0(c), while for ψ → ∞, p(c = c0|c0, ψ) → 1.

Note that d(c, c0) takes a finite number of discrete values Δ = {δ0, . . . , δL}, with L
depending on c0 and on the distance d(·, ·). We can define sets of partitions having the
same fixed distance from c0 as

sl(c0) = {c ∈ ΠN : d(c, c0) = δl}, l = 0, 1, . . . , L. (3.2)

Hence, for δ0 = 0, s0(c0) denotes the set of partitions equal to the base one, meaning
that they differ from c0 only by a permutation of the cluster labels. Then s1(c0) denotes
the set of partitions with minimum distance δ1 from c0, s2(c0) the set of partitions with
the second minimum distance δ2 from c0 and so on. The introduced exponential term
penalizes equally partitions in the same set sl(c0) for a given δl, but the resulting
probabilities may differ depending on the chosen baseline EPPF.



308 Centered Partition Processes

3.2 Choices of Distance Function

The proposed CP process modifies a baseline EPPF to include a distance-based pe-
nalization term, which aims to shrink the prior distribution towards a prior partition
guess. The choice of distance plays a key role in determining the behavior of the prior
distribution. A variety of different distances and indices have been employed in cluster-
ing procedures and comparisons. We consider in this paper the Variation of Information
(VI), obtained axiomatically in Meilă (2007) using information theory, and shown to
nicely characterize neighborhoods of a given partition by Wade and Ghahramani (2018).
The Variation of Information is based on the Shannon entropy H(·), and can be com-
puted as

VI(c, c′) = −H(c)−H(c0) + 2H(c ∧ c0)

=
K∑
j=1

λj

N
log

(
λj

N

)
+

K′∑
l=1

λ′
l

N
log

(
λ′
l

N

)
− 2

K∑
j=1

K′∑
l=1

λ∧
jl

N
log

(
λ∧
jl

N

)
,

where log denotes log base 2, and λ∧
jl the size of blocks of the intersection c ∧ c′ and

hence the number of indices in block j under partition c and block l under c′. Notice
that VI ranges from 0 to log2(N). Although normalized versions have been proposed
(Vinh et al., 2010), some desirable properties are lost under normalization. We refer to
Meilă (2007) and Wade and Ghahramani (2018) for additional properties and empirical
evaluations.

An alternative definition of the VI can be derived from lattice theory, exploiting the
concepts provided in Section 2.1. We refer to Monjardet (1981) for general theory about
metrics on lattices and ordered sets, and Rossi (2015) for a more recent review focused
on set partitions. In general, a distance between two different partitions c, c′ ∈ ΠN

can be defined by means of the Hasse diagram via the minimum weighted path, which
corresponds to the shortest path length when edges are equally weighted. Instead, when
edges depend on the entropy function through w(c, c′) = |H(c)−H(c′)|, the minimum
weighted path between two partitions is the Variation of Information. Notice that two
partitions are connected when in a covering relation, then c ∧ c′ is either equal to c or
c′ and V I(c, c′) = w(c, c′). The minimum weight w(c, c′) corresponds to 2/N which is
attained when two singleton clusters are merged, or conversely, a cluster consisting of
two points is split (see Meilă, 2007).

3.3 Effect of the Prior Penalization

We first consider the important special case in which the baseline EPPF is p0(c) =
1/BN and the CP process reduces to p(c|c0, ψ) ∝ exp{−ψd(c, c0)} with equation (3.1)
simplifying to

p(c|c0, ψ) =
e−ψδl∑L

u=0 |su(c0)|e−ψδu
, for c ∈ sl(c0), l = 0, 1, . . . , L, (3.3)

where |·| indicates the cardinality and sl(c0) is defined in (3.2). ConsideringN = 5, there
are 52 possible set partitions; Figure 2 shows the prior probabilities assigned to partitions
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Figure 2: Prior probabilities of the 52 set partitions of N = 5 elements for the CP
process with uniform base EPPF. In each graph the CP process is centered on a different
partition c0 highlighted in blue. The cumulative probabilities across different values of
the penalization parameter ψ are joined to form the curves, while the probability of a
given partition corresponds to the area between the curves.

under the CP process for different values of ψ ∈ (0, 3) with ψ = 0 corresponding to

the uniform prior. Notice that base partitions with the same configuration (e.g. for

c0 = {1, 2}{3, 4, 5} all the partitions with blocks sizes {3, 2}), will behave in the same

way, with the same probabilities assigned to partitions different in composition. Non-

zero values of ψ increase the prior probability of partitions c that are relatively close to

the chosen c0. However, the effect is not uniform but depends on the structure of both

c and c0.
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For example, consider the inflation that occurs in the blue region as ψ increases from
0 to 3. When c0 has 2 blocks (Figure 2a) versus 4 (Figure 2d) there is a bigger increase.
This is because the space of set partitions ΠN is not “uniform”, since given a fixed con-
figuration there is a heterogeneous number of partitions. Expressing λ = {λ1, . . . , λK}
as (1f1 , 2f2 , . . . , NfN ), with the notation indicating that there are fi elements of λ equal
to i, the number of set partitions with configuration λ is

N !∏K
j=1 λj !

∏N
i=1 fi!

.

For example, for {221} = 1122304050, the number of corresponding set partitions is 15,
while there are 10 set partitions of type {311} = 1220314050.

While the uniform distribution gives the same probability to each partition in the
space, the EPPF induced by Gibbs-type priors distinguishes between different configu-
rations, but not among partitions with the same configuration. We focus on the Dirichlet
process case, being the most popular process employed in applications. Under the DP,
the induced EPPF p0(c) ∝ αK

∏K
j=1 Γ(λj) is a function of the configuration Λ(c), which

is one of {λ1, . . . ,λM} since the possible configurations are finite and correspond to the

number of integer partitions. Letting g(Λ(c)) = αK
∏K

j=1 Γ(λj), the formulation in (3.1)
can be written as

p(c|c0, ψ) =
g(λm)e−ψδl∑L

u=0

∑M
v=1 nuvg(λv)e−ψδu

, for c ∈ slm(c0), (3.4)

where slm(c0) = {c ∈ ΠN : d(c, c0) = δl,Λ(c) = λm}, the set of partitions with
distance δl from c0 and configuration λm for l = 0, 1, . . . , L and m = 1, . . . ,M , with
nlm indicating the cardinality. The factorization (3.4) applies for the family of Gibbs-
type priors in general, with different expressions of g(Λ(c)).

In Figure 3 we consider the prior distribution induced by the CP process when
the baseline EPPF p0(c) comes from a Dirichlet process with concentration parameter
α = 1, considering the same base partitions and values for ψ as in Figure 2. For the
same values of the parameter ψ, the behavior of the CP process changes significantly
due to the effect of the base prior. In particular, in the top left panel the CP process is
centered on c0 = {1, 2, 3, 4, 5}, the partition with only one cluster, which is a priori the
most likely one for ψ = 0. In general, for small values of ψ the clustering process will
most closely resemble that for a DP. As ψ increases, the DP prior probabilities decrease
for partitions far from c0 while increase for partitions close to c0.

Finally we investigate in Figures 4–5 what happens to the prior partition probabili-
ties of the CP process, when the baseline EPPF comes from a Pitman-Yor process. To
allow comparison with the DP case, we choose the strength parameter α such that the
a priori expected number of clusters matches the one under the DP case, log(5) ≈ 1.6.
Choosing values of σ = (0.25, 0.75) leads to values of the strength parameter α equal
to (−0.004,−0.691) respectively. It can be noticed that for the smaller value of the
discount parameter σ = 0.25 (Figure 4) the graphs resemble more the ones related to
the DP process, while for σ = 0.75 the prior probability mass concentrates more on
partitions with number of clusters close to the expected one.
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Figure 3: Prior probabilities of the 52 set partitions of N = 5 elements for the CP
process with Dirichlet process of α = 1 base EPPF. In each graph the CP process is
centered on a different partition c0 highlighted in blue. The cumulative probabilities
across different values of the penalization parameter ψ are joined to form the curves,
while the probability of a given partition corresponds to the area between the curves.

3.4 Posterior Computation Under Gibbs-Type Priors

Certain MCMC algorithms for Bayesian nonparametric mixture models can be easily

modified for posterior computation in CP process models. In particular, we adapt the so-
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Figure 4: Prior probabilities of the 52 set partitions of N = 5 elements for the CP
process with Pitman-Yor process base EPPF with σ = 0.25 and α ≈ −0.004, such that
the expected number of clusters equal to log(5) ≈ 1.6. In each graph the CP process
is centered on a different partition c0 highlighted in blue. The cumulative probabilities
across different values of the penalization parameter ψ are joined to form the curves,
while the probability of a given partition corresponds to the area between the curves.

Figure 5: Prior probabilities of the 52 set partitions of N = 5 elements for the CP
process with Pitman-Yor process base EPPF with σ = 0.75 and α ≈ −0.691, such that
the expected number of clusters equal to log(5) ≈ 1.6. In each graph the CP process
is centered on a different partition c0 highlighted in blue. The cumulative probabilities
across different values of the penalization parameter ψ are joined to form the curves,
while the probability of a given partition corresponds to the area between the curves.
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Random probability measure Parameters p(ci = k|c−i) ∝

Dirichlet process (α)

{
λ−i
k

α+N−1 k = 1, . . . ,K−

α
α+N−1 k = K− + 1

Pitman-Yor process (α, σ)

{
λ−i
k −σ

α+N−1 k = 1, . . . ,K−

α+σK−

α+N−1 k = K− + 1

Symmetric Dirichlet (κ, γ)
λ−i
k +γ/κ

α+N−1 k = 1, . . . , κ

Table 2: Conditional prior distribution for ci given c−i under different choices of the
EPPF. With K− we denote the total number of clusters after removing the ith obser-
vation while λ−i

k is the corresponding size of cluster k.

called “marginal algorithms” developed for Dirichlet and Pitman-Yor processes. These
methods are called marginal since the mixing measure P is integrated out of the model
and the predictive distribution is used within a MCMC sampler. In the following, we
recall Algorithm 2 in Neal (2000) and illustrate how it can be adapted to sample from
the CP process posterior. We refer to Neal (2000) and references therein for an overview
and discussion of methods for both conjugate and nonconjugate cases, and to Fall and
Barat (2014) for adaptation to Pitman-Yor processes.

Let c be represented as an N -dimensional vector of indices {c1, . . . , cN} encoding
cluster allocation and let θk be the set of parameters currently associated to cluster k.
The prior predictive distribution for a single ci conditionally on c−i = {c1, . . . , ci−1,
ci+1, . . . , cN} is exploited to perform the Gibbs sampling step allocating observations to
either a new cluster or one of the existing ones. Algorithm 2 in Neal (2000) updates each
ci sequentially for i = 1, . . . , N via a reseating procedure, according to the conditional
posterior distribution

p(ci = k|c−i,θ, yi) ∝
{

p(ci = k|c−i)p(yi|θk) k = 1, . . . ,K−

p(ci = k|c−i)
∫
p(yi|θ)dG0(θ) k = K− + 1,

(3.5)

with K− the number of clusters after removing observation i. The conditional distribu-
tion p(ci = k|c−i) is reported in Table 2 for different choices of the prior EPPF. Notice
that, for the case of finite Dirichlet prior, the update consists only in the first line of
equation (3.5), since the number of classes is fixed. For Dirichlet and Pitman-Yor pro-
cesses, when observation i is associated to a new cluster, a new value for θ is sampled
from its posterior distribution based on the base measure G0 and the observation yi.
This approach is straightforward when we can compute the integral

∫
p(yi|θ)dG0(θ), as

will generally be the case when G0 is a conjugate prior.

Considering the proposed CP process, the conditional distribution for ci given c−i

can still be computed, but it depends both on the base prior and the penalization term
accounting for the distance between the base partition c0 and the one obtained by
assigning the observation i to either one of the existing classes k ∈ {1, . . . ,K−} or a
new one. Hence, the step in equation (3.5) can be easily adapted by substituting the



314 Centered Partition Processes

conditional distribution for p(ci = k|c−i) with

p(ci = k|c−i, c0, ψ) ∝ p0(ci = k|c−i) exp{−ψd(c, c0)} k = 1, . . . ,K−,K− + 1,

with c = {c−i ∪ {ci = k}} the current state of the clustering and p0(ci = k|c−i) one of
the conditional distributions in Table 2. Additional steps on the implementation using
the variation of information as a distance are given in the Supplementary Material
(Algorithm 2).

Extension to the non-conjugate context can be similarly handled exploiting Algo-
rithm 8 in Neal (2000) based on auxiliary parameters, which avoids the computation
of the integral

∫
p(yi|θ)dG0(θ). The only difference is that, when ci is updated, m

temporary auxiliary variables are introduced to represent possible values of compo-
nents parameters that are not associated with any other observations. Such variables
are simply sampled from the base measure G0, with the probabilities of a new clus-
ter in Table 2 changing into (α/m)/(α + N − 1) for the Dirichlet process and to
[(α+ σK−)/m]/(α+N − 1) for the Pitman-Yor process, for k = K− +1, . . . ,K− +m.

4 Prior Calibration

As the number of observations N increases, the number of partitions explodes, and
higher values of ψ are needed to place non-negligible prior probability in small to mod-
erate neighborhoods around c0. The prior concentration around c0 depends on three
main factors: i) N through BN , i.e. the cardinality of the space of set partitions, ii)
the baseline EPPF p0(c) and iii) where c0 is located in the space. We hence propose a
general method to evaluate the prior behavior under different settings, while suggesting
how to choose the parameter ψ.

One may evaluate the prior distribution for different values of ψ and check its be-
havior using graphs such as those in Section 3.3, but they become difficult to interpret
as the space of partitions grows. We propose to evaluate the probability distribution
of the distances δ = d(c, c0) from the known partition c0. The probability assigned to
different distances by the prior is

p(δ = δl) =
∑

c∈ΠN

p(c)I {d(c, c0) = δl)} =
∑

c∈sl(c0)

p(c) l = 0, . . . , L,

with I(·) the indicator function and sl(c0) denoting the set of partitions distance δl
from c0, as defined in (3.2). Considering the uniform distribution on set partitions, then
p(δ = δl) = |sl(c0)|/BN , the proportion of partitions distance δl from c0. Under the
general definition of the CP process, the resulting distribution becomes

p(δ = δl) =
∑

c∈sl(c0)

p0(c)e
−ψδl∑L

u=0

∑
c∗∈su(c0)

p0(c∗)e−ψδu
l = 0, . . . , L, (4.1)

with the case of Gibbs-type EPPF corresponding to

p(δ = δl) =

∑M
m=1 nlmg(λm)e−ψδl∑L

u=0

∑M
v=1 nuvg(λv)e−ψδu

, l = 0, . . . , L. (4.2)
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Notice that the uniform EPPF case is recovered when g(λm) = 1 for m = 1, . . . ,M , so

that
∑M

m=1 nlm = nl. Hence the probability in (4.1) simplifies to

p(δ = δl) =
nle

−ψδl∑L
u=0 nue−ψδu

l = 0, . . . , L. (4.3)

In general, since distances are naturally ordered, the corresponding cumulative distri-
bution function can be simply defined as F (δ) =

∑
δl≤δ p(δl) for δ ∈ {δ0, . . . , δL} and

used to assess how much mass is placed in different size neighborhoods around c0 under
different values of ψ. Hence we can choose ψ to place a specified probability q (e.g.
q = 0.9) on partitions within a specified distance δ∗ from c0. This would correspond to
calibrating ψ so that F (δ∗) ≈ q, with F (δ∗) ≥ q. In other words, partitions generated
from the prior would have at least probability q of being within distance δ∗ from c0.

The main problem is in computing the probabilities in equations (4.2)–(4.3), which
depend on all the set partitions in the space. In fact, one needs to count all the partitions
having distance δl for l = 0, . . . , L when the base EPPF is uniform, while taking account
of configurations in the case of the Gibbs-type priors. Even if there are quite efficient
algorithms to list all the possible set partitions of N (see Knuth, 2005; Nijenhuis and
Wilf, 2014), it becomes computationally infeasible due to the extremely rapid growth
of the space; for example from N = 12 to 13, the number of set partitions grows from
B12 = 4, 213, 597 to B13 = 27, 644, 437.

Given that our motivating application involves a relatively small number of birth
defects, we propose to directly approximate the prior probabilities assigned to different
distances from c0. We focus on obtaining estimates of distance values and related counts,
which are the sufficient quantities to compute (4.2)–(4.3) under different values of ψ. We
propose a strategy based on a targeted Monte Carlo procedure which augments uniform
sampling on the space of set partitions with a deterministic local search using the Hasse
diagram to compute counts for small values of the distance. Although the procedure is
generalizable to higher dimensions, the computational burden grows significantly with
larger numbers of objects to cluster. Alternative computational directions are considered
further in the Discussion.

4.1 Deterministic Local Search

Poset theory provides a nice representation of the space of set partitions by means of
the Hasse diagram illustrated in Section 2.1, along with suitable definition of metrics.
A known partition c0 can be characterized in terms of number of blocks K0 and config-
uration Λ(c0). These elements allow one to locate c0 in the Hasse diagram, and hence
explore connected partitions by means of split and merge operations on the clusters
in c0.

As an illustrative example, consider the Hasse diagram of Π4 in Figure 6 and c0 =
{1}{2, 3, 4}, having 2 clusters and configuration Λ(c0) = {31}. Let N1(c0) denote the
sets of partitions directly connected with c0, i.e. partitions covering c0 and those covered
by c0. In general, a partition c0 with K0 clusters is covered by

(
K0

2

)
partitions and covers
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Figure 6: Illustration of results from the local search algorithm based on the Hasse
diagram of Π4 starting from c0 = {1}{2,3,4}. Partitions are colored according the
exploration order following a dark-light gradient. Notice that after 3 iterations the space
is entirely explored.

∑K0

j=1 2
λj−1 − 1. In the example, N1(c0) contains {1, 2, 3, 4} obtained from c0 with a

merge operation on the two clusters, and all the partitions obtained by splitting the
cluster {2, 3, 4} in any possible way. The idea underlying the proposed local search,
consists in exploiting the Hasse diagram representation to find all the partitions in
increasing distance neighborhoods of c0. One can list partitions at T connections from
c0 starting from N1(c0) by recursively applying split and merge operations on the set
of partitions explored at each step. Potentially, with enough operations one can reach
all the set partitions, since the space is finite with lower and upper bounds.

In practice, the space is too huge to be explored entirely, and a truncation is needed.
From the example in Figure 6, N1(c0) contains 3 partitions with distance 0.69 from c0
and one with distance 1.19. Although N2(c0) may contain partitions closer to c0 than
this last, the definition of distance in Section 3.2 guarantees that there are no other par-
titions with distance from c0 less than 0.69. Since the VI is the minimum weighted path
between two partitions, all the partitions reached at the second exploration step add
a nonzero weight to distance computation. This consideration extends to an arbitrary
number of explorations T , with δL∗ = min{d(c∗, c0)}c∗∈NT (c0) being the upper bound
on the distance value. By discarding all partitions with distance greater that δL∗ , one
can compute exactly the counts in equations (4.2)–(4.3) related to distances δ0, . . . , δL∗ .
Notice that 2/N is the minimum distance between two different partitions, and 2T/N
is a general lower bound on the distances from c0 that can be reached in T iterations.

4.2 Monte Carlo Approximation

We pair the local exploration with a Monte Carlo procedure to estimate the counts and
distances greater that δL∗ , in order to obtain a more refined representation of the prior
distance probabilities. Sampling uniformly from the space of partitions is not in general
a trivial problem, but a nice strategy has been proposed in Stam (1983), in which the
probability of a partition with K clusters is used to sample partitions via an urn model.
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Derivation of the algorithm starts from the Dobiński formula (Dobiński, 1877) for the
Bell numbers

BN = e−1
∞∑
k=1

kN

k!
, (4.4)

which from a probabilistic perspective corresponds to the N -th moment of the Poisson
distribution with expected value equal to 1. Then a probability distribution for the
number of clusters K ∈ {1, 2, 3, . . .} of a set partition can be defined as

P (K = k) = e−1 kN

BNk!
, (4.5)

which is a well defined law thanks to (4.4). To simulate a uniform law over ΠN , Stam
(1983)’s algorithm first generates the number of clusters K according to (4.5) and,
conditionally on the sampled value, it allocates observations to the clusters according
a discrete uniform distribution over {1, . . . ,K}. We refer to Stam (1983) and Pitman
(1997) (Proposition 2, Corollary 3) for derivations and proof of the validity of the
algorithm.

We adapt the uniform sampling to account for the values already computed by
rejecting all the partitions with distance less that δL∗ , restricting the space to{
ΠN \ {Nt(c0)}Tt=0

}
. In practice, few samples are discarded since the probability to

sample one such partition corresponds to |{Nt(c0)}Tt=0|/BN , which is negligible for small
values of exploration steps T that are generally used in the local search. A sample of
partitions c(1), . . . , c(R), can be used to provide an estimate of the counts. Let R∗ de-
note the number of accepted partitions and B∗ = BN − |{Nt(c0)}Tt=0| be the number of
partitions in the restricted space. Conditionally on the observed values of distances in
the sample, δ̂(L∗+1), . . . , δ̂L′ , an estimate of the number of partitions with distance δ̂l to
use in the uniform EPPF case is

n̂l = B∗ 1

R∗

R∗∑
r=1

I
{
d(c(r), c0) = δ̂l

}
, (4.6)

obtained by multiplying the proportions of partitions in the sample by the total known
number of partitions. For the Gibbs-type EPPF case one needs also to account for the
configurations λ1, . . . ,λM in a given orbital of the distance; hence, the estimates are

n̂lm = B∗ 1

R∗

R∗∑
r=1

I
{
d(c(r), c0) = δ̂l

}
I

{
Λ(c(r)) = λm

}
. (4.7)

Pairing these estimates with the counts obtained via the local search, one can evaluate
the distributions in equations (4.2)–(4.3) for different values of ψ. The entire procedure
is summarized in Algorithm 1 of the Supplementary Material. Although it requires a
considerable number of steps, the procedure can be performed one single time providing
information for different choices of ψ and EPPFs. Moreover the local search can be
implemented in parallel to reduce computational costs.
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Figure 7: Estimate of the cumulative prior probabilities assigned to different distances
from c0 for N = 12 and c0 with configuration {3, 3, 3, 3}, under the CP process with
uniform prior on the left and Dirichlet Process on the right. Black dots correspond
to the base prior with no penalization, while dots from bottom-to-top correspond to
increasing values of ψ ∈ {5, 10, 15, 20}. Tables report the minimum distance values such
that F (δ) ≥ 0.9.

We consider an example for N = 12 and c0 with configuration {3, 3, 3, 3}. Figure 7
shows the resulting cumulative probability estimates of the CP process under uniform
and DP(α = 1) base distributions, estimated with T = 4 iterations of the local search
and 20, 000 samples. Dots represent values of the cumulative probabilities, with different
colors in correspondence to different values of the parameter ψ. Using these estimates
one can assess how much probability is placed in different distance neighborhoods of c0;
tables in Figure 7 show the distance values defining neighborhoods around c0 with
90% prior probability. If one wishes to place such probability mass on partitions within
distance 1 from c0, a value of ψ around 10 and 15 is needed, respectively, under uniform
and DP base EPPF prior.

5 The National Birth Defects Prevention Study

The National Birth Defects Prevention Study (NBDPS) is a multi-state population-
based, case-control study of birth defects in the United States (Yoon et al., 2001).
Infants were identified using birth defects surveillance systems in recruitment areas
within ten US states (Arkansas, California, Georgia, Iowa, Massachusetts, New Jersey,
New York, North Carolina, Texas, and Utah), which cover roughly 10% of US births.
Diagnostic case information was obtained from medical records and verified by a stan-
dardized clinician review specific to the study (Rasmussen et al., 2003). Participants in
the study included mothers with expected dates of delivery from 1997–2009. Controls
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were identified from birth certificates or hospital records and were live-born infants
without any known birth defects. Each state site attempted to recruit 300 cases and
100 (unmatched) controls annually. A telephone interview was conducted with case and
control mothers to solicit a wide range of demographic, lifestyle, medical, nutrition,
occupational and environmental exposure history information.

Because birth defects are highly heterogeneous, a relatively large number of defects
of unknown etiology are included in the NBDPS. We are particularly interested in
congenital heart defects (CHD), the most common type of birth defect and the leading
cause of infant death due to birth defects. Because some of these defects are relatively
rare, in many cases we lack precision for investigating associations between potential
risk factors and individual birth defects. For this reason, researchers typically lump
embryologically distinct and potentially etiologically heterogeneous defects in order to
increase power (e.g., grouping all heart defects together), even knowing the underlying
mechanisms may differ substantially. In fact, how best to group defects is subject to
uncertainty, despite a variety of proposed groupings available in the literature (Lin et al.,
1999).

In this particular application, we consider 26 individual heart defects, which have
been previously grouped into 6 categories by investigators (Botto et al., 2007). The prior
grouping is shown in Table 3, along with basic summary statistics of the distribution
of defects in the analyzed data. We are interested in evaluating the association between
heart defects and about 90 potential risk factors related to mothers’ health status,
pregnancy experience, lifestyle and family history. We considered a subset of data from
NBDPS, excluding observations with missing covariates, obtaining a dataset with 8,125
controls, while all heart defects together comprise 4,947 cases.

5.1 Modeling Birth Defects

Standard approaches assessing the impact of exposure factors on the risk to develop
a birth defect often rely on logistic regression analysis. Let i = 1, . . . , N index birth
defects, while j = 1, . . . , ni indicates observations related to birth defect i, with yij = 1
if observation j has birth defect i and yij = 0 if observation j is a control, i.e. does not
have any birth defect. LetXi denote the data matrix associated to defect i, with each row
xT
ij = (xij1, . . . , xijp) being the vector of the observed values of p categorical variables

for the jth observation. At first one may consider N separate logistic regressions of the
type

log

(
Pr(yij = 1|xij)

Pr(yij = 0|xij)

)
= logit(πij) = αi + xT

ijβi, (5.1)

with αi denoting the defect-specific intercept, and βi the p × 1 vector of regression
coefficients. However, Table 3 highlights the heterogeneity of heart defect prevalences,
with some of them being so few as to preclude separate analyses.

A first step in introducing uncertainty about clustering of the defects may rely on
a standard Bayesian nonparametric approach, placing a Dirichlet process prior on the
distribution of regression coefficient vector βi in order to borrow information across
multiple defects while letting the data inform on the number and composition of the
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Congenital Heart Defect Abbreviation Frequency Percentage
of cases

Septal
Atrial septal defect ASD 765 0.15
Perimembranous ventricular septal
defect

VSDPM 552 0.11

Atrial septal defect, type not
specified

ASDNOS 225 0.04

Muscular ventricular septal defect VSDMUSC 68 0.02
Ventricular septal defect, otherwise
specified

VSDOS 12 0.00

Ventricular septal defect, type not
specified

VSDNOS 8 0.00

Atrial septal defect, otherwise
specified

ASDOS 4 0.00

Conotruncal
Tetralogy of Fallot FALLOT 639 0.12
D-transposition of the great arteries DTGA 406 0.08
Truncus arteriosus COMMONTRUNCUS 61 0.01
Double outlet right ventricle DORVTGA 35 0.01
Ventricular septal defect reported as
conoventricular

VSDCONOV 32 0.01

D-transposition of the great arteries,
other type

DORVOTHER 22 0.00

Interrupted aortic arch type B IAATYPEB 13 0.00
Interrupted aortic arch, not
otherwise specified

IAANOS 5 0.00

Left ventricular outflow
Hypoplastic left heart syndrome HLHS 389 0.08
Coarctation of the aorta COARCT 358 0.07
Aortic stenosis AORTICSTENOSIS 224 0.04
Interrupted aortic arch type A IAATYPEA 12 0.00
Right ventricular outflow

Pulmonary valve stenosis PVS 678 0.13
Pulmonary atresia PULMATRESIA 100 0.02
Ebstein anomaly EBSTEIN 66 0.01
Tricuspid atresia TRIATRESIA 46 0.01
Anomalous pulmonary venous return

Total anomalous pulmonary venous
return

TAPVR 163 0.03

Partial anomalous pulmonary venous
return

PAPVR 21 0.01

Atrioventricular septal defect
Atrioventricular septal defect AVSD 112 0.02

Table 3: Summary statistics of the distribution of congenital heart defects among cases.
Defects are divided according the grouping provided from investigators.
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clusters. A similar approach has been previously proposed in MacLehose and Dunson
(2010), with the aim being to shrink the coefficient estimates towards multiple unknown
means. In our setting, an informed guess on the group structure is available through c0,
reported in Table 3.

We consider a simple approach building on the Bayesian version of the model in
(5.1), and allowing the exposure coefficients βi for i = 1, . . . , N to be shared across
regressions, while accounting for c0. The model written in a hierarchical form is

yij ∼ Ber(πij) logit(πij) = αi + xT
ijβci , j = 1, . . . , ni,

αi ∼ N (a0, τ
−1
0 ) βci |c ∼ Np(b,Q) i = 1, . . . , N,

p(c) ∼ CP (c0, ψ, p0(c)) p0(c) ∝ αK
K∏

k=1

(λk − 1)! (5.2)

where CP (c0, ψ, p0(c)) indicates the Centered Partition process, with base partition c0,
tuning parameter ψ and baseline EPPF p0(c). We specify the baseline EPPF so that
when ψ = 0 the prior distribution reduces to a Dirichlet Process with concentration
parameter α. Instead, for ψ → ∞ the model corresponds to K separate logistic regres-
sions, one for each group composing c0. The model estimation can be performed by
leveraging a Pòlya-Gamma data-augmentation strategy for Bayesian logistic regression
(Polson et al., 2013), combined with the procedure illustrated in Section 3.4 for the
clustering update step. The Gibbs sampler is detailed in the Supplementary Material
(Algorithm 3), while code is available at https://github.com/salleuska/CPLogit.

5.2 Simulation Study

We conduct a simulation study to evaluate the performance of our approach in accu-
rately estimating the impact of the covariates across regressions with common effects,
under different prior guesses. In this section we choose a scenario mimicking the struc-
ture of our application. An additional simulation study under a continuous setting can
be found in the Supplementary Material.

In simulating data we take a number of defects N = 12 equally partitioned in 4
groups and consider p = 10 dichotomous explanatory variables, under the assumption
that defects in the same group have the same covariates effects. We take a different num-
ber of observations across defects, with {n1, n2, n3} = {100, 600, 200}, {n4, n5, n6} =
{300, 100, 100}, {n7, n8, n9} = {500, 100, 200}, {n10, n11, n12} = {200, 200, 200}. For
each defect i with i = 1, . . . , 12 we generate a data matrix Xi by sampling each
of the variables from a Bernoulli distribution with probability of success equal to
0.5. We set most of coefficients βi1, . . . , βi10 to 0, while defining a challenging sce-
nario with small to moderate changes across different groups. In particular we fix
{β1, β2, β3, β4} = {0.7,−1.2, 0.5, 0.5} for group 1, {β4, β5, β6} = {0.7,−0.7, 0.7} for
group 2, {β9, β10} = {0.7,−1.2} for group 3 and {β1, β2, β9, β10} = {0.7,−0.7, 0.7,−0.7}
for group 4. Finally, response variables yi for i = 1, . . . , 12 are drawn from a Bernoulli
distribution with probability of success pi = logit(XT

i βi).

https://github.com/salleuska/CPLogit
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Figure 8: Results from grouped logistic regressions with DP(α = 1) prior and CP
process prior with DP(α = 1) base EPPF for ψ = {15, 17}, centered on the true
partition. Heatmaps on the left side show the posterior similarity matrix. On the right
side, boxplots show the distribution of deviations from the maximum likelihood baseline
coefficients and posterior mean estimates for each defect i = 1, . . . , 12.

We compare coefficients and partition estimates from a grouped logistic regression
using a DP prior with α = 1 and using a CP prior with DP base EPPF with α = 1. In
evaluating the CP prior performances, we consider both the true known partition and
a wrong guess. Posterior estimates are obtained using the Gibbs sampler described in
the Supplementary Material. We consider a multivariate normal distribution with zero
mean vector and covariance matrix Q = diagp(2) as base measure for the DP, while
we assume the defect-specific intercepts αi ∼ N(0, 2) for i = 1, . . . , 12. We run the
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Figure 9: Results from grouped logistic regression using CP process prior with DP(α =
1) base EPPF for ψ = 15 centered on partition c′0 = {1, 5, 9}{2, 6, 10}{3, 7, 11}{4, 8, 12}
which has distance 3.16 from the true one. Heatmaps on the left side show the posterior
similarity matrix. On the right side, boxplots show the distribution of deviations from
the maximum likelihood baseline coefficients and posterior mean estimates for each
defect i = 1, . . . , 12.

algorithm for 5,000 iterations discarding the first 1,000 as burn-in, with inspection of
trace-plots suggesting convergence of the parameters.

In evaluating the resulting estimates under different settings, we take as baseline val-
ues for coefficients the maximum likelihood estimates obtained under the true grouping.
Figure 8 shows the posterior similarity matrices obtained under the Dirichlet and Cen-
tered Partition processes, along with boxplots of the distribution of differences between
the coefficients posterior mean estimates and their baseline values, for each of the 12
simulated defects. We first centered the CP prior on the true known grouping and,
according to the considerations made in Section 4.2, we fixed the value of ψ to 15 for
the CP process prior, founding the maximum a posteriori estimate of the partition al-
most recovering the true underlying grouping expect for merging together the third and
fourth group. We also considered other values for ψ close to 15, and report the case
for ψ = 17 in Figure 8, for which the true grouping is recovered, with resulting mean
posterior estimates of the coefficients almost identical to the baseline. The Dirichlet pro-
cess, although borrowing information across the defects, does not distinguish between
all the groups but individuate only the first one, while the CP process recovers the true
grouping, with better performances in estimating the coefficients.

Finally, we evaluate the CP prior performances when centered on a wrong guess c′0 of
the base partition (Figure 9). In particular, we set c′0={1, 5, 9}{2, 6, 10}{3, 7, 11}{4, 8, 12}.
Despite having the same configuration of c0, it has distance from c0 of approximately
3.16, where the maximum possible distance is log2(12) = 4.70. Under such setting we
estimate the partition ĉ = {1, 2, 3, 5}{4, 6, 7, 8, 9, 10, 11, 12} via maximum at posteriori,
obtaining two clusters. Although we center the prior in c′0, the estimated partition re-
sults to be closer to the one induced by the DP (0.65) than c′0 (2.45), with also similar
performances in the coefficient estimation, which may be interpreted as a suggestion
that the chosen base partition is not supported by the data.
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5.3 Application to NBDPS Data

We estimated the model in (5.2) on the NBDPS data, considering the controls as shared
with the aim of grouping cases into informed groups on the basis of the available c0. In
order to choose a value for the penalization parameter, we consider the prior calibra-
tion illustrated in Section 4, finding a value of ψ = 40 assigning a 90% probability to
partitions within a distance around 0.8, where the maximum possible distance is equal
to 4.70. In terms of moves on the Hasse diagram we are assigning 90% prior probability
to partitions at most at 11 split/merge operations from c0, given that the minimum
distance from c0 is 2/N ≈ 0.07. The R code is computationally intensive, running 2
days on a Linux cluster with 512 GB of RAM using a single core of a Intel Xeon (R)
2.10 GHz processor. Efficiency gains are expected by adapting our code through includ-
ing precompiled C++ code or and/or adopting parallelization on a computing network.
However, our current prior calibration algorithm is intrinsically very computational in-
tensive in settings involving large numbers of objects to cluster. To assess sensitivity of
the results, we performed the analysis under different values of ψ ∈ {0, 40, 80, 120,∞}.
In particular, for ψ = 0 the clustering behavior is governed by a Dirichlet process prior,
while ψ → ∞ corresponds to fixing the groups to c0.

In analyzing the data, we run the Gibbs sampler for 10,000 iterations and use a burn-
in of 4,000, under the same prior settings as in Section 5.2. Figure 10 summarizes the
posterior estimates of the allocation matrices under different values of ψ, with colored
dots emphasizing differences with the base partition c0. Under the DP process (ψ = 0)
the estimated partition differs substantially from the given prior clustering. Due to the
immense space of the possible clusterings, this is likely reflective of limited information
in the data, combined with the tendency of the DP to strongly favor certain types
of partitions, typically characterized from few large clusters along many small ones.
When increasing the value of the tuning parameter ψ the estimated clustering is closer
to c0, with a tendency in favoring a total number of three clusters. In particular, for
ψ = 120 one of the groups in c0 is recovered (left ventricular outflow), while the others
are merged in two different groups. It is worth noticing that AVSD, which is placed in
its own group under c0, is always grouped with other defects with a preference for ones
in the septal group (blue color). Also two defects of this last class, ASD and ASDOS,
are consistently lumped together across different values of ψ, and are in fact two closely
related defects.

Details on the results for each of the estimated models are given in the Supplemen-
tary Material (Figures 3–7) and summarized here. Figure 11 shows a heatmap of the
mean posterior log odds-ratios for increasing values of the penalization parameter ψ,
with dots indicating significant values according to a 95% credibility interval. In gen-
eral, the sign of the effects does not change for most of the exposure factors across
the different clusterings. Figure 11 focuses on pharmaceutical use in the period from 1
month before the pregnancy and 3 months during, along with some exposures related
to maternal behavior and health status.

We found consistent results for known risk factors for CHD in general, including
diabetes (Correa et al., 2008) and obesity (Waller et al., 2007). The positive association
between nausea and positive outcomes is likely due to the fact that nausea is indicative
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Figure 10: Posterior allocation matrices obtained using the CP process with a DP
(α = 1) prior for different values of ψ ∈ {0, 40, 80, 120}. On the y-axis labels are col-
ored according base grouping information c0, with dots on the diagonal highlighting
differences between c0 and the estimated partition ĉ.

of a healthy pregnancy, and is consistent with prior literature (Koren et al., 2014).
The association between the use of SSRIs and pulmonary atresia was also reported in
Reefhuis et al. (2015). It is worth noticing that estimates obtained under the DP prior
are less consistent with prior work. In particular, there are apparent artifacts such as the
protective effect of alcohol consumption related to defects in the bigger cluster, which is
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Figure 11: Comparison of significant odds ratio under ψ ∈ {0, 40, 80, 120,∞} for some
exposure factors and 4 selected heart defects in 4 different groups under c0. Dots are in
correspondence of significant mean posterior log-odds ratios (log-OR) at 95% with red
encoding risk factors (log-OR > 0) and green protective factors (log-OR < 0).

mitigated from an informed borrowing across the defects. On the other side, estimates
under separate models for AVSD or PAPVR, which corresponds to 0.02% and 0.01%
of cases respectively, show how a separate analysis of cases with low prevalence misses
even widely assessed risk factors, as for example diabetes.

Discussion

There is a very rich literature on priors for clustering, with almost all of the emphasis on
exchangeable approaches, and a smaller literature focused on including dependence on
known features (e.g. covariates, temporal or spatial structure). The main contribution of
this article is to propose what is seemingly a first attempt at including prior information
on an informed guess at the clustering structure. We were particularly motivated by
a concrete application to a birth defects study in proposing our method, based on
shrinking an initial clustering prior towards the prior guess.

Our approach is conceptually quite general and represents a first attempt to include
this sort of prior information in clustering. However, we recognize that the proposed
prior calibration does not allow a straightforward scaling when the number of objects
is much larger than the N = 26 considered in the motivating birth defects application.
This is due to a combinatorial explosion as N increases which leads to an inevitable
deterioration of our prior calibration algorithm. For larger N , one can consider results
from the prior calibration approach as providing a reasonable lower bound for ψ, with
several higher values also considered in data analyses. An immediate direction of future
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research considers improving our prior calibration algorithm, by relying on more efficient
sampling methods on discrete combinatorial spaces, with promising directions given in
the recent works of Arratia and DeSalvo (2016) and DeSalvo (2017).

Although our proposed CP process may in principle accommodate hyperprior dis-
tributions for the Dirichlet and Pitman-Yor process parameters, a limitation is in that
the prior calibration directly depends on such parameters, making the implementation
difficult when hyperpriors are used. For example, if a prior is put on the hyperparam-
eters of the baseline EPPF, then the calibration for ψ has to be performed at each
MCMC step, conditionally on the value of the EPPF’s hyperparameters, unless one
integrates over the hyperparameters’ distribution. We are considering the alternative of
a prior distribution on ψ, although the corresponding posterior leads to an intractable
normalizing constant. Possible options to address this issue may be to consider a di-
rect approximation for the constant as in Vitelli et al. (2018), or to explore specialized
MCMC algorithms for doubly intractable problems in which the likelihood involves an
intractable normalizing constant (Murray et al., 2006; Møller et al., 2006; Rao et al.,
2016).

There are many immediate interesting directions for future research. One thread
pertains to developing better theoretical insight and analytical tractability into the new
class of priors. For existing approaches, such as product partition models and Gibbs-
type partitions, there is a substantial literature providing simple forms of prediction rules
and other properties. It is an open question whether such properties can be modified
to our new class. This may yield additional insight into the relative roles of the base
prior, centering value and hyperparameters in controlling the behavior of the prior
and its impact on the posterior. Another important thread relates to applications of
the proposed framework beyond the setting in which we have an exact guess at the
complete clustering structure. In many cases, we may have an informed guess or initial
clustering in a subset of the objects under study, with the remaining objects (including
future ones) completely unknown. Conceptually the proposed approach can be used
directly in such cases, and also when one has different types of prior information on the
clustering structure than simply which objects are clustered together.

Supplementary Material

Supplementary material for Centered Partition Processes: Informative Priors for Clus-
tering (DOI: 10.1214/20-BA1197SUPP; .pdf).
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Invited Discussion

David B. Dahl∗,§, Richard L. Warr†, and Thomas P. Jensen‡

We enthusiastically applaud Paganin et al. (2021) for a stimulating article. The emergent
idea of developing a partition distribution that utilizes an a priori estimate of the
partition itself is novel and intriguing. It is very natural in the Bayesian literature to
use an a priori estimate of a parameter when placing a prior distribution on an unknown
parameter. Yet, Smith and Allenby (2020) and Paganin et al. (2021) have recognized
the need for such prior distributions in the context of random partition models, which
presents unique challenges because of the vast size of the discrete space of partitions.
These authors add to the utility and applicability of random partition models and they
have laid a foundation for fruitful future work in this area.

The Centered Partition (CP) process proposed by Paganin et al. (2021) is a dis-
tribution over partitions that is composed of four primary ingredients: 1) a baseline
exchangeable partition probability function (EPPF), 2) a centering partition c0, 3) a
distance function between partitions d(c, c0) to measure departures from c0, and 4) a
penalization parameter ψ which controls how much influence is given to c0. The prob-
ability mass function is provided in Equation (3.1) of their article. Their formulation is
clever in that, when ψ = 0, the CP process reduces to the baseline EPPF. Although
the default may be the Dirichlet process (DP) EPPF and the variation of information
(VI) distance (Meilă, 2007; Wade and Ghahramani, 2018), Paganin et al. (2021) have
developed a very general framework which allows for any EPPF or distance function.
The resulting CP process is a non-exchangeable random partition distribution influ-
enced by c0. The authors provide a compelling application that harnesses the power of
the CP process.

In this discussion we raise a few ideas that have captured our attention as we have
studied the CP process. First, we note that c0 is not the center of the CP process ac-
cording to a conventional Bayesian definition and, instead, the CP process is a random
partition distribution shrunk toward c0. Second, we suggest an alternative prior cali-
bration algorithm for the penalization parameter ψ that scales beyond N = 26 which
seems to be the limit in Paganin et al. (2021). This results in figures that reinforce
the first point that c0 is not the center. Next, rather than fixing hyperparameters, we
advocate for future research to allow priors to be placed on ψ and on hyperparameters
of the baseline EPPF. Finally, we observe that a property of the VI distance may lead
to problems using a Gibbs sampling scheme and also note the importance of congruity
between c0 and the baseline EPPF. In sum, we are enthusiastic about the CP process
and the new avenues for research which it opens.

∗Brigham Young University, 2152 WVB, Provo, UT 84602, dahl@stat.byu.edu
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1 “Center” Is a Misnomer

We believe that the term “center” in the proposed CP process is a misnomer that may
lead to a mistaken understanding of its nature. The paper describes the CP process
as a partition distribution “centered on c0” and one might therefore expect that c0
is, in some sense, the middle partition or the partition around which the CP process is
concentrated. Of course, as the penalization parameter ψ goes to infinity, all probability
mass collapses to c0 and there is no disagreement that c0 is the middle partition. But
what is the middle partition of the CP process for finite ψ? The middle of a univariate
distribution might be described as the mean, i.e., the value that minimizes the expected
squared error loss. Likewise, the Bayesian analog of the Fréchet mean for a partition
distribution is the partition that minimizes the expected loss for some partition metric.
Here, let ĉ denote the partition that minimizes the expected value of the variation of
information.

Consider, for example, the CP process with Pitman-Yor process base EPPF with dis-
count σ = 0.75 and concentration parameter α = −0.691 and c0 = {{1, 2}, {3, 4}, {5}}.
(This is the distribution displayed in Figure 5(b) of Paganin et al. (2021).) For this
CP process, ĉ = c0 when ψ ≥ 2.74, ĉ = {{1, 2, 3, 4}, {5}} when 2.56 ≤ ψ ≤ 2.73,
and ĉ = {{1, 2, 3, 4, 5}} when ψ ≤ 2.55. The point is that, for ψ ≤ 2.73, the “center”
partition c0 is in fact not the middle partition, at least not according to a conven-
tional Bayesian definition. As such, instead of thinking of c0 as a “center” partition, we
suggest thinking of the CP process as a baseline partition distribution that is shrunk
towards c0. That is, for nontrivial values of penalization parameter ψ, the CP process
is a compromise between the baseline EPPF and c0.

2 A Scalable Prior Calibration Algorithm

Paganin et al. (2021) note that, as the number of observations N increases, larger
values of the penalization parameter ψ are needed such that there is non-negligible
prior probability around the center partition c0. Rather than picking ψ arbitrarily, they
suggest finding ψ such that a random partition is within some chosen distance δ∗ from
c0 with a desired probability q. We think this is a practical and interpretable objective.
To find ψ yielding the objective, Section 4 of Paganin et al. (2021) provides a creative
algorithm involving a deterministic local search and uniform sampling of partitions from
the partition space. As noticed in their Discussion section, however, this algorithm does
not scale much beyond N = 26 used in their application.

Here we suggest a simple alternative approach to obtain the desired objective that
easily scales in N . Simply tune ψ to obtain the objective by Monte Carlo estimation
based on sampling from the CP process prior itself (rather than sampling partitions
from the uniform distribution). Given samples c1, . . . , cT from the CP process for some
ψ, the Monte Carlo estimate q̂ of the desired probability q for threshold δ∗ is:

q̂ =
1

T

T∑
t=1

I { d(ct, c0) ≤ δ∗} .
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Figure 1: Estimate of the cumulative prior probabilities assigned to different distances
from c0 for N = 96, where c0 consists of 8 clusters of 12 items each. The left plot shows
the CP process using the uniform EPPF and ψ ∈ {0, 40, 55, 70, 90} (from black to cyan).
The right plot shows the DP(α = 1) EPPF and ψ ∈ {0, 5, 60, 70, 75}. The results are
obtained using the scalable algorithm in our Section 2.

Of course, the definition of the CP process does not lend itself to straight Monte Carlo
sampling, but the MCMC scheme for posterior simulation — detailed in Section 3.4 of
Paganin et al. (2021) — is easily adapted to prior simulation by simply dropping the
terms involving data yi in their equation (3.5). We replicated their Figure 7 for N = 12
observations (not shown here). Now, consider N = 96 and c0 having 8 clusters of 12
items each. Our Figure 1 shows the distribution of distances for the CP process with
ψ ∈ {0, 40, 55, 70, 90} for the uniform EPPF and ψ ∈ {0, 5, 60, 70, 75} for the DP(α = 1)
EPPF. One might use, for example, ψ = 70 for both EPPFs to obtain a CP process
prior with about 60-70% probability that a random partition is within δ∗ = 1 of c0.
Refinements to our approach could be implemented, such as using samples for various
values of ψ through importance sampling, starting with small T and increase it for more
promising values of ψ, and sampling in parallel for a variety of ψ values.

We believe that the point that c0 is not the center, which we discussed in the previous
section, is also made by inspecting Figure 7 of Paganin et al. (2021) and our Figure 1.
Note that, for very large ψ, there is a large point mass at c0. But, for other values
of ψ, there is virtually no probability for partitions close to c0, as evidenced by the
slope of zero coming away from the origin. If c0 were indeed the center of the partition
distribution, one would expect a non-zero slope. This is indeed the behavior of random
samples from a Gaussian distribution centered at 0 with standard deviation exp{−ψ}
and using Euclidean distance, as shown in Figure 2.

3 Posterior Inference on Hyperparameters

The lack of a tractable normalizing constant in the p.m.f. of the CP process — see
(3.1) in Paganin et al. (2021) — is a major concern which motivated the development
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Figure 2: Cumulative distribution of distances from 0 for Gaussian distributions centered
at 0 using Euclidean distance and standard deviation exp{−ψ} for ψ ∈ {0, 0.5, 1, 2, 3}
(black to cyan). In contrast to Figure 1, notice here the nonzero slope from the origin,
suggesting that appreciable values are close to the center 0.

of the prior calibration algorithm in their Section 4. As suggested in our Section 2, the
scalability in N of the calibration algorithm can be overcome and a suitable fixed value
for the penalization parameter ψ can be obtained. Of course, the choice of q and δ∗ in the
prior calibration algorithm is somewhat arbitrary and sensitivity of the analysis among
reasonable values of q and δ∗ would need to be explored. More serious in our view,
however, is that fixing ψ precludes the possibility of posterior inference on it. Although
Bayesians often eventually fix hyperparameters that are far from the data and of little
interest, the penalization parameter ψ is a key component of the CP process. It would
seem that one would naturally be curious regarding how the data changes its value from
a prior belief regarding it.

The last section of Paganin et al. (2021) discusses issues stemming from the lack of a
tractable normalizing constant. They suggest that prior distributions could theoretically
be placed on hyperparameters of the baseline EPPF (e.g., the concentration parameter
α and the discount parameter σ from the Pitman-Yor process) but acknowledge that
this would necessitate recalibration of ψ for every update of the other hyperparam-
eters. We believe the issue is even more fundamental in that, even for a fixed value
of ψ, the unknown normalizing constant potentially depends on these hyperparame-
ters and, therefore, posterior inference on them would be challenging. We appreciate
the ideas of estimating the normalizing constant or using MCMC algorithms for dou-
bly intractable problems, but note that these approaches are nontrivial. Lacking that,
in addition to fixing the penalization parameter ψ, these other hyperparameters must
also be fixed (through an arbitrary choice or through some sort of calibration) and
one cannot study the effect of the data on prior beliefs regarding these hyperparame-
ters.
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4 Local Modes Induced by Variation of Information

The one-at-a-time Gibbs sampling scheme described in Section 3.4 of Paganin et al.
(2021) is a familiar and practical MCMC scheme for random partition models. When
using the variation of information distance in the CP process, however, we came across
an oddity. The issue is that the variation of information can induce local modes which
may be difficult to escape using one-at-a-time updates. Consider, for example, the CP
process with uniform base EPPF, center partition c0 = {{1, 2, 3}, {4, 5, 6}}, and current
state c = {{1, 2, 3, 4, 5, 6}}. With large penalization parameter ψ, the Markov chain
should spend most of its time at c0. Moving towards c0 from c, however, is unlikely since
one-at-a-time updating requires going through a configuration with exactly one singleton
cluster, e.g., c∗ = {{1, 2, 3, 4, 5}, {6}}. To see the problem, note that VI(c∗, c0) ≈ 1.27
is greater than VI(c, c0) = 1 (a difference that is accentuated by a large ψ) making it
unlikely that a Gibbs update would move from c to c∗, especially as ψ increases. It is
hard to say how frequently this issue would occur in practical data analysis, but we
note that Binder (1978) loss with equal costs may not suffer from this local mode issue,
e.g., Binder(c∗, c0) < Binder(c, c0). As such, we feel it may also be worth considering
using Binder loss for the CP process.

5 Compatibility with the Baseline Distribution

Based on our explorations of the CP process, we suggest the users of the CP process
should be careful that c0 and the baseline EPPF are congruous. We believe that con-
flicting choices for these important parameters leads to non-smooth behavior. Consider,
for example, our Figure 1 which is smooth for the left plot and erratic for the right plot.
Recall that c0 has eight clusters of equal size, which seems to be compatible with the
uniform EPPF on the left, yet contradictory to the “rich get richer” property of the
DP(α = 1) based EPPF on the right. Further, for the right plot, it seems odd that the
cumulative probabilities of ψ = 60 are closer to those of ψ = 5 than ψ = 70.

If an incongruity between c0 and the baseline EPPF exists, it may become difficult
for a Markov chain to mix well in the partition space. In fact, in order to feel confident
in Figure 1, we had to run 200,000 Gibbs scans — half of which were discarded and
thinned by 1-in-100 — for Markov chains started from c = (1, . . . , 1), c = (1, . . . , N),
and c = c0. The difficulty in mixing well seems to be a consequence of a “tug of war”
between c0 and the baseline EPPF, which we interpret as further evidence that c0 is,
in fact, not the center of the CP process.
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Meilă, M. (2007). “Comparing clusterings—an information based distance.” Journal of
Multivariate Analysis, 98(5): 873–895. MR2325412. doi: https://doi.org/10.1016/
j.jmva.2006.11.013. 333

https://www.ams.org/mathscinet-getitem?mr=0501592
https://doi.org/10.1093/biomet/65.1.31
https://www.ams.org/mathscinet-getitem?mr=2325412
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1016/j.jmva.2006.11.013


338 Invited Discussion

Paganin, S., Herring, A. H., Olshan, A. F., and Dunson, D. B. (2021). “Centered par-
tition processes: Informative priors for clustering.” Bayesian Analysis. Advance pub-
lication. doi: https://doi.org/https://doi.org/10.1214/20-BA1197. 333, 334,
335, 336, 337

Smith, A. N. and Allenby, G. M. (2020). “Demand models with random parti-
tions.” Journal of the American Statistical Association, 115(529): 47–65. MR4078444.
doi: https://doi.org/10.1080/01621459.2019.1604360. 333

Wade, S. and Ghahramani, Z. (2018). “Bayesian cluster analysis: Point estimation and
credible balls (with discussion).” Bayesian Analysis, 13(2): 559–626. MR3807860.
doi: https://doi.org/10.1214/17-BA1073. 333

https://doi.org/https://doi.org/10.1214/20-BA1197
https://www.ams.org/mathscinet-getitem?mr=4078444
https://doi.org/10.1080/01621459.2019.1604360
https://www.ams.org/mathscinet-getitem?mr=3807860
https://doi.org/10.1214/17-BA1073


A. N. Smith 339

Invited Discussion

Adam N. Smith∗

The analysis of discrete random structures underlying Bayesian nonparametric models
continues to be a growing area of research. Of particular interest is the way in which
nonparametric priors can be used for model-based clustering. This paper makes an im-
portant and practically useful contribution to this literature by constructing a prior that
can be “centered” around a pre-specified clustering. The elicitation of prior information
is indeed at the core of the Bayesian paradigm and is often facilitated through the use
of priors belonging to a location-scale family: a location parameter encodes what the
belief is while a scale parameter encodes the strength of that belief. Constructing an
analogous prior for a partition parameter is challenging given the complex topology on
which partitions are defined. Consequently, researchers are often left resorting to default
prior settings and lack the ability to bring substantive knowledge (or lack thereof) to
bear on the analysis. This paper fills this gap and, in doing so, adds a nice tool to the
Bayesian clustering toolkit.

The authors propose the centered partition (CP) process for a clustering parameter
c ∈ ΠN . The CP process consists of four components: (1) a baseline exchangeable
partition probability function (EPPF) p0(c); (2) a pre-specified clustering c0; (3) a
function d(c, c0) measuring the distance between c and c0; and (4) a penalty parameter
ψ ≥ 0. The CP process is written as: p(c|c0, ψ) ∝ p0(c)e

−ψd(c,c0), where the limiting
cases of ψ = 0 and ψ = ∞ reveal its location-scale flavor. The idea of a adding structure
through a penalty that multiplies a baseline EPPF is quite parsimonious and is a point of
departure from existing approaches that modify the EPPF directly (Park and Dunson,
2010; Müller and Quintana, 2011; Blei and Frazier, 2011; Dahl et al., 2017; Smith and
Allenby, 2020).

In this discussion, I plan to first review the roles of the various model components
and highlight the practical challenges of prior elicitation in the context of clustering.
I will then comment on posterior computation and conclude with a few open questions
and thoughts on fruitful areas for future work.

1 The Centering Partition and Domain Knowledge

Throughout the paper the authors assume that c0 is a single fixed clustering which
represents the “location” component of the researcher’s beliefs. The CP prior will assign
higher probability to c0 and neighboring clusters as the penalty parameter increases.
But given the complex nature of the space of partitions ΠN , do strong beliefs about c0
necessarily translate into strong beliefs about clusters within some small neighborhood
of c0? For example, if I could enumerate all possible clusterings and then rank order
them based on my prior beliefs, will the first two or three clusters always be “close” as

∗UCL School of Management, University College London, a.smith@ucl.ac.uk
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defined by an information-based distance metric? Or is it possible that clusters “close”
to c0 (based on the distance metric) are actually less sensible a priori?

Consider the paper’s empirical application to modeling congenital heart defects with
a centered clustering c0 defined based on prior research (Botto et al., 2007). Specifically,
the N = 26 individual heart defects are partitioned into K = 6 groups, where defects
within a group are similar on the basis of various epidemiologic and anatomic factors.
A CP prior with a large penalty term ψ will then place high probability on c0 and
clusters close to c0. Now consider a new clustering c′0 which is equal to c0 but moves
the “atrial septal defect” away from its original cluster (“Septal”) and into another
cluster, say “Conotruncal”. Here c0 and c′0 have the same number of groups and differ
only by one element so d(c0, c

′
0) will be small. But is it sensible, based on relevant

epidemiologic or anatomic factors, that “atrial septal defect” is grouped assigned into
“Conotruncal” while all other “Septal” defects are not? Perhaps a domain expert would
place higher prior probability on clusterings that merge the “Conotruncal” and “Septal”
groups than clusterings that merge individual defects across groups.

Another motivating example stems from the application of nested logit demand
models (McFadden, 1978; Train, 2002) in fields like quantitative marketing and micro-
econometrics. Here, the goal is to model consumer choice among discrete alternatives
such as products. The nested logit model is attractive because of its ability to accom-
modate correlated error structures across products, but it requires the researcher to
first partition the set of products into groups (nests) such that products within a group
are more similar than products across groups. One challenge is that products can have
many attributes (e.g., brand name, size, flavor, package type) and so it is often unclear
how to define this partitioning of goods a priori. In practice, researchers often resort
to testing a few different grouping structures on the data. For example, Allenby (1989)
compare clusters based on price tiers vs. size and Draganska and Jain (2006) compare
clusters based on brand vs. flavor. In each of these examples, the researchers effectively
place prior mass on only two points in the space of partitions. Moreover, while these
clusterings are well-motivated by managerial/economic considerations, they are likely
far away based on any information-based distance metric.

The examples described above demonstrate that domain knowledge may lead to prior
beliefs that are spread across fairly disparate regions of ΠN , and so an application of the
“vanilla” CP prior may be inconsistent with such beliefs. How can location-scale-type
priors like the CP process better account for prior uncertainty around c0?

• Point mass mixture priors. One approach is to enlarge the space of possible cen-
tering partitions and directly model prior uncertainty in c0. For example, consider
the following two-stage prior:

c|c0, ψ ∼ CP(c0, ψ, p0(c))

c0 ∼
L∑

	=1

w	δc̄�

where c̄1, . . . , c̄L are pre-specified partitions, δc̄�
is a point mass at c̄	, and

w1, . . . , wL are weights satisfying
∑L

	=1 w	 = 1. This point mass mixture prior
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on c0 can induce a marginal prior p(c) that exhibits a more global dispersion
of probability mass across ΠN , while also retaining the ability to deviate locally
around each fixed location c̄	. This approach could also allow the researcher to
incorporate information from a more general classification hierarchy, which can be
common in clustering problems (including the three-level hierarchy presented in
Botto et al., 2007). For example, one could define the set of partitions c̄1, . . . , c̄L
to include an initial guess as well as variants that are derived by merging groups
according to the next level in the hierarchy.

• Pairwise information. The distance function d(c, c0) inside the CP process is
implicitly defined over N -vectors of group membership indices. One drawback
with this measure of distance is that the domain knowledge driving prior co-
clustering probabilities is reduced to whether the two items belong to the same
group within c0. Another approach is to define distances over an N ×N pairwise
information matrix (Blei and Frazier, 2011; Dahl et al., 2017). The benefit is that
prior co-clustering probabilities can depend on a more flexible measure of pairwise
distance, including other item-level characteristics (e.g., the various epidemiologic
and anatomic factors of heart defects). To see where this flexibility comes from,
note that the information contained within a centering partition c0 can also be
represented as a block-diagonal N × N matrix (after re-ordering items) with 1’s
within each block and 0’s on the off-diagonals. A pairwise information approach
will allow for richer sources of variation to enter the “within-group” and “across-
group” elements of this matrix and thus more control over the spread of prior
probability mass over ΠN .

2 The Penalization Parameter

The dispersion of probability mass under the CP process is largely governed by the
penalization parameter ψ. All else equal, as ψ → ∞, mass will concentrate on c0 and
its close neighbors while as ψ → 0, mass will be dispersed according the baseline EPPF.
Given that ψ captures the “strength” of the prior belief and that the dimension of
ΠN grows exponentially in the number of items N , care must be taken when choosing
ψ across analyses with varying N . For example, choosing ψ = 1 will imply a very
different strength of belief about c0 when N = 5 (B5 = 52) than it does when N = 50
(B50 > 1.8× 1047). The same issue is acknowledged by Smith and Allenby (2020) in the
context of tuning random-walk Metropolis-Hastings proposals with their location-scale
partition (LSP) distribution.

I appreciate that the authors address this point and propose a method that does not
elicit ψ directly, but is instead based on choosing a probability q and a distance δ∗ that
together induce a penalty ψ. Their novel idea is to choose the pair (q, δ∗) such that the
CP process places probability of at least q on partitions within distance δ∗ from c0. The
authors use the variation of information (VI) distance metric throughout, which has the
key property of being N -invariant (Meilă, 2007). Therefore, eliciting a prior through q
and δ∗ is in principle more straightforward because the (q, δ∗) pair is invariant to the
size of the clustering problem.
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However, given the heavy computation involved with calibrating the CP prior (i.e.,
tracing out the values of ψ corresponding to different combinations of q and δ∗), I wonder
what the trade-off is between investing time to get the prior “exactly right” vs. letting
ψ be an estimated model parameter? Are there significant computational challenges
associated with adding a step to the sampler which, say, cycles through a grid of possible
ψ values? Within the context of the paper’s empirical application, integrating over the
uncertainty in ψ should lead to improved estimates of the regression coefficients and
could even help guard against misspecification of c0.

3 Computation

The posterior sampling strategy for the CP process borrows from the usual suite of sam-
pling methods for Dirichlet process mixture (DPM) models – specifically, Algorithm 2
of Neal (2000) where item-group indicators are iteratively sampled from their respective
full conditional distributions p(ci = k|c−i, else). One potential concern is that these “lo-
cal moves” do not allow the sampler to sufficiently traverse the posterior and can lead
to underestimated posterior uncertainty in estimates of c. There is no real discussion of
the sampler’s mixing properties in the paper, and I wonder whether the imposition of
strong prior information on c exacerbates this issue.

It is certainly true that more informative priors will lead to more concentrated
posteriors. However, the real challenge is that the regions of high posterior probability
may still be separated by sizable peaks and valleys due to the complex topology of ΠN ,
creating problems for samplers relying on incremental moves. As it becomes feasible
to incorporate prior information on clustering problems, I believe it is also useful to
ensure that this information does not mechanically lead to samplers getting stuck in
small neighborhoods of high probability mass induced by the prior. To this end, more
radical split-merge Metropolis-Hastings proposal mechanisms can be attractive (Dahl,
2003; Jain and Neal, 2004, 2007). Another option is to rely on the CP process itself to
construct random-walk-style Metropolis-Hastings proposals (akin to Smith and Allenby,
2020), which would also have applicability beyond the class of DPM models.

4 Closing Thoughts

The CP process adds to a growing set of partitioning models designed to help researchers
incorporate prior information in clustering problems (Park and Dunson, 2010; Müller
and Quintana, 2011; Blei and Frazier, 2011; Dahl et al., 2017; Smith and Allenby,
2020). There are many nice features of the CP process – in particular, the user can
directly input a “best guess” of the grouping structure and has the ability to control
the dispersion of prior probability mass. However, the complex topology of the clustering
space can create challenges in the prior elicitation process, especially relative to the more
familiar case of location-scale priors with support over the real line. I conclude with a
few closing thoughts, open questions, and ideas for future work.

• On the role of directing shrinkage. Many modern statical problems are high-
dimensional in nature and so shrinkage estimators are becoming indispensable
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tools (especially for those working outside of the Bayesian paradigm!). Applied
scientists often have prior information about these “shrinkage points” which can
improve estimators that would otherwise rely on more ad-hoc default settings
(for recent applications in economics, for example, see Fessler and Kasy 2019 or
Smith et al. 2019). The paper’s empirical application nicely highlights the often
underappreciated role that model-based clustering can offer in this process.

• What is the best way to compare and select models? In the paper’s empirical
application, four different versions of the CP process are fit to the data with
varying degrees of the penalty: ψ ∈ {0, 40, 80, 120}. The authors report distances
from each model’s MAP estimate ĉ and the centered clustering c0 and find that
d(ĉ, c0) is monotonically decreasing in ψ. However, this seems to be driven by
the mechanics of the prior itself and does not necessarily reflect which model
is best supported by the data. I was left wondering how the inclusion of prior
information here leads to improved measurements or insights? More generally,
how should model fit should be assessed so that researchers can learn the extent
to which the data supports or contradicts prior beliefs?

• What happens for large N? Many of the modeling decisions are motivated by the
specific dimensions of the empirical application where N = 26. However, as the
authors note, many aspects of their suggested prior elicitation and calibration pro-
cesses become infeasible as N gets large. I am personally very excited about the
opportunities to scale partitioning methods to much larger problems. For example,
I work on applications in marketing and economics where the goal is measure com-
petition between brands. The growth of e-commerce has led to massive product
assortments and so in practice, retailers have a partitioning problem with N in the
hundreds or thousands! One option for scaling existing methods in the short term
is to impose more dogmatic prior assumptions. For example, we could impose the
restriction that a subset of items must always be grouped together and so even if
N is very large, the partitioning problem lives in a lower-dimensional space. I look
forward to seeing the authors make future developments in this area.

In closing, I congratulate the authors for an exciting paper and a notable contribution
to the field. I also thank the Editor-in-Chief of Bayesian Analysis for the opportunity
to participate in this discussion.
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Contributed Discussion

Isadora Antoniano-Villalobos∗, Cristiano Villa†, and Sara Wade‡

We would like to congratulate the authors on a well written article containing innovative
ideas and a compelling application. The authors propose to incorporate subjective prior
information on the clustering structure by defining a centred partition process. The
proposed family of processes combines well known priors for partitions (specifically
exchangeable partition probability functions, EPPFs) with a measure of discrepancy
from an initial partition c0, summarizing prior belief.

While it may be difficult to subjectively elicit c0 for large sample sizes, one limitation
of the proposed methodology is that the prior calibration strategy is computationally
expensive and therefore limited to small sample sizes. It also becomes too expensive to
include hyperpriors on key parameters of the EPPF, such as the concentration parameter
α of the Dirichlet process, which controls the number of clusters.

We discuss a simple, alternative idea to include the prior clustering information.
Specifically, we include the initial partition c0 as a covariate, through dependent Dirich-
let processes (e.g. MacEachern, 2000; Dunson and Park, 2008; Griffin and Steel, 2006;
Rodriguez and Dunson, 2011) or more generally, dependent normalized random mea-
sures (e.g. Griffin and Leisen, 2017; Chen et al., 2013; Lijoi et al., 2014; Griffin et al.,
2013). In this case, we view c0 as a categorical covariate, with each element c0,i indi-
cating the cluster allocation of the ith data point in the initial partition. For example,
we focus on the dependent normalized weights model proposed in Antoniano-Villalobos
et al. (2014) and define:

p(ci = j|c0,w,p) =
wjCat(c0,i|pj)∑∞

j′=1 wj′Cat(c0,i|pj′)
=

wjpj,c0,i∑∞
j′=1 wj′pj′,c0,i

,

where w = (w1, w2, . . .) and p = (p1,p2, . . .) are the parameters defining the dependent
weights. Specifically, we can assume w follow a stick-breaking construction with mass
parameter α, and the pj = (pj,1, . . . , pj,k0) are iid with pj ∼ Dir(β/k0, . . . , β/k0).

In this construction, we can study the following limiting cases. On one hand, if
β → ∞, then

pj → (1/k0, . . . , 1/k0)

with probability one. Thus, the prior on the partition c converges to the EPPF induced
by the DP with mass parameter α. On the other hand, if β → 0, then base measure on pj

converges to a uniform discrete distribution over the vertices of the simplex. Moreover,
when α → 0 and β → 0, c = c0 with probability one.
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While not as intuitive as the centred partition process, which includes a parameter
ψ to control the tradeoff between the EPPF and subjective information, it is possible
to fix the value of α to reflect prior belief in the number of clusters and β to reflect the
strength of belief in c0. Moreover, an advantage of this alternative approach is the ability
to place hyperpriors on α and β, thus avoiding the calibration issues and making the
method more robust to misspecification. This also helps to scale to larger sample sizes.

We highlight an additional advantage of this alternative approach is the ability to
simulate from the prior by using a reasonable computable truncation for the mixture
weights. This can be exploited to investigate prior sensitivity, callibration or elicita-
tion. Furthermore, prediction for new observations could incorporate prior information
regarding clustering, without requiring a recalibration of the prior and subsequent re-
calculation of the posterior.
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Tommaso Rigon∗, Emanuele Aliverti†, Massimiliano Russo‡, and Bruno Scarpa§

We congratulate the authors on an interesting paper, which provides a concrete con-
tribution in Bayesian nonparametric methods. The proposed centered partition (cp)
process p(c | c0) is an exponential contamination of a baseline process p0(c) towards
a fixed partition c0. The authors suggest a Gibbs-type specification for the baseline
distribution p0(c), since this class displays a nice balance between flexibility and com-
plexity (Lijoi et al., 2007). The cp informs the clustering process exploiting existing
prior knowledge about the partition.

The cp process is defined as p(c | c0) ∝ p0(c) exp{−ψd(c, c0)}, with ψ > 0 being a
penalization parameter, and d(c, c0) being a metric between partitions, such as the Vari-
ation of Information (vi). The cp process can be also interpreted as a generalized Bayes
posterior, in the sense of Bissiri et al. (2016). Within such a framework, the baseline
distribution p0(c) represents the prior belief about an unknown partition, whereas c0 is
regarded as a data point. Moreover, in the generalized Bayes terminology the distance
d(c, c0) is the loss function, meaning that the parameter ψ > 0 balances the importance
of the observations relative to the prior. This perspective leads to an alternative inter-
pretation of cp processes, where p(c | c0) can be regarded as the posterior belief about
the partition conditionally on the observation c0.

Such a generalized Bayes interpretation leads to interesting modeling extensions. In
many practical contexts, it might be difficult to select a single c0 encapsulating our prior
knowledge about the partition. Instead, it might be easier to identify several plausible
partitions that well describe the phenomenon under consideration. For example, in
the application considered by the authors, different investigators could provide equally
plausible mechanistic groups of the birth defects c0,1, . . . , c0,S . Following Bissiri et al.
(2016), it is natural to include all these representative partitions in an additive manner,
namely

p(c | c0,1, . . . , c0,S) ∝ p0(c) exp

{
−ψ

S∑
s=1

d(c, c0,s)

}
. (1)

The above conditional distribution can be regarded as the posterior distribution of c
given the observations c0,1, . . . , c0,S . As ψ → 0 the distribution p(c | c0,1, . . . , c0,S)
converges to the baseline law p0(c). However, when ψ → ∞ then p(c | c0,1, . . . , c0,S)
converges to a discrete distribution function placing mass over the set of partitions
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Figure 1: Prior probabilities of the 52 partitions of N = 5 elements for the cp process
with p0(c) ∝ 1. Left panel corresponds to the cp process centered on a single partition
c0 = {1, 2}{3, 4}{5}. Right panel refers to a cp process centered on two partitions:
c0,1 = {1, 2}{3, 4}{5} and c0,2 = {1}{2}{3, 4}{5}. The cumulative probabilities across
different values of the penalization parameter ψ are joined to form the curves, so that
the probability of a given partition corresponds to the area between the curves. Blue
areas correspond to the centering partitions c0 (left plot), and c0,1, c0,2 (right plot).

ĉ1, . . . , ĉM , corresponding to the minimizers of

min
c

S∑
s=1

d(c, c0,s),

whereM represents the number of solutions of the above minimization problem. Broadly
speaking, each ĉm, for m = 1, . . . ,M , is an “average” partition summarizing the in-
formation contained in the observations c0,1, . . . , c0,S . Hence, the distribution p(c |
c0,1, . . . , c0,S) can be arguably regarded as a cp process with multiple centers ĉ1, . . . , ĉM .
Such a generalization of the cp is fairly straightforward and it might have useful prac-
tical implications, especially if there is uncertainty about the fixed partition c0. In
addition, the Gibbs sampling devised by Paganin et al. (2021) can be easily modified
to account for this extension.

In Figure 1 we reproduce Figure 2 of Paganin et al. (2021) and we illustrate the effect
of our multi-centers extension. We compare the model of Paganin et al. (2021) when
p0(c) ∝ 1 and c0 = {1, 2}{3, 4}{5}, with the extension in (1) when p0(c) ∝ 1, S = 2,
and c0,1 = {1, 2}{3, 4}{5}, c0,2 = {1}{2}{3, 4}{5}. Larger values of ψ increase the prior
probability assigned to c0 in the left panel, and to each of the centers ĉ1, . . . , ĉM in the
right panel. These centers represent the partitions that are more similar in terms of vi
to c0,1 and c0,2. In this specific scenario, the centers ĉ1, . . . , ĉM actually coincide with
the data points c0,1, c0,2 and S = M = 2, but this is not always the case.
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Contributed Discussion

Alejandra Avalos-Pacheco∗,†, Roberta De Vito‡, and Sara Wade§

1 Introduction

We congratulate the authors on the development of a broad new class of Bayesian clus-
tering models that allow for inclusion of prior information on the clustering structure,
and result in improvement of model performance in practice when such prior informa-
tion is available. The authors applied this method in an interesting and novel context
where there are N = 26 different birth defects, and for each defect i ∈ {1, . . . , N},
there is a highly variable number of observations. The prior knowledge of the initial
partition c0 of the birth defects provided by experts is merged with information in the
data through a grouped logistic regression model to produce a posterior distribution on
the partition, which also characterizes uncertainty.

2 Biomedical Applications

In the following, we discuss two possible biomedical applications.

2.1 Clinical Trials

The model proposed by Paganin et al. (2020) is relevant in the clinical trial setting, in
particular in novel trial designs such as master protocols. Master protocols are clinical
designs that study in parallel multiple therapies, different sub-populations, multiple
diseases and/or several targets (Woodcock and LaVange, 2017). Such innovative designs,
when designed correctly, maximize the number of patients assigned to promising novel
therapies, reduce the overall sample size of the trial, minimize downtime between trials,
and reduce costs; overall, this assists in significantly speeding up drug discovery, in
comparison with standard two-arm randomized controlled trials. Master protocols, can
last for decades, allowing for incorporation of new therapies to an ongoing study at any
time (Angus et al., 2019). This is of particular interest in case of pandemics, enabling
the study to evaluate multiple novel treatments for critically ill patients, as was the case
of the REMAP-CAP trial in the COVID-19 pandemic (Angus et al., 2020).

Basket or bucket trials are a particular type of master protocols that test the efficacy
or safety of a novel treatment in a group of patients with different diseases that have the
same mutation or biomarker, or with different subtypes of the same disease (Woodcock
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Figure 1: Illustration of a basket trial (left) and a master protocol (right) for four
different diseases. Biomarkers/mutations are illustrated with coloured circles.

and LaVange, 2017). Figure 1a provides an illustration of this clinical design. For exam-
ple, in oncology, patients recruited in the basket study have the same genetic mutation
but cancers located in different regions such as the lung, liver, prostate, etc.

Borrowing of information between disease groups in basket trials is usually done via
Bayesian hierarchical models (Berry et al., 2013; Ventz et al., 2017). In this setting, all
diseases are pooled together and are assumed to be exchangeable, which could lead to
inflated type I error rates and reduced power (Freidlin and Korn, 2013). Thus, cluster-
based models can be employed to borrow information, which are especially appealing
when the differences between groups are large (Chen and Lee, 2019, 2020). However, in
these methods, the number of clusters needs to be pre-specified and/or does not allow
for incorporation of prior knowledge of the initial partition of the different groups.

Let j = 1, . . . , N index disease types and i = 1, . . . , nj index patients with disease
type j, with yij denoting the ith response to the treatment of patient i with disease type
j. Let xij = (xij1, . . . , xijp)

� be the p-dimensional vector of the observed pre-treatment
characteristics for patient i with disease type j. The indicator aij = 0 or aij = 1
if patient i was assigned to the control group or the treatment group, respectively.
Letting θj denote the treatment effect for disease type j, we test, for each disease type,
the hypotheses

H0,j : θj ≤ δj vs H1,j : θj > δj .

We model the data as:

log

(
p(yij = 1 | xij , aij)

p(yij = 0 | xij , aij)

)
= logit(πij) = αj + x�

ijβ
∗
cj + θ∗cj I(aij = 1),

with αj the disease-specific intercept, β∗
k the cluster-specific pre-treatment coefficients,

and c = (c1, . . . , cN ) the cluster allocations. We propose to use the centered partition
process to model c and incorporate expert knowledge on the grouping of disease types.
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An attractive property of this model is that it can easily be adapted to cluster
only the coefficients βj , when there is no certainty about the exchangeability of the
treatment effects θj within the diseases of the cluster, avoiding inflation/deflation of
type I error/power. We could also model the data taking into account only the treatment
effects, without including the pre-treatment patient characteristics. This setting can be
seen as a traditional beta-binomial model, when borrowing of information can be done
through θcj . Finally, the design can also become more complex including more than
one genetic mutation across multiple diseases (see e.g. Figure 1b), and the clustering
structure can be adapted appropriately.

2.2 Nutritional Epidemiology

This application is motivated by nutritional epidemiological data analysis of single foods
(Wirfalt and Jeffery, 1997; Hu, 2002). In this framework, models considering a single
food can be difficult to interpret since foods are consumed in many different combi-
nations, and studies of individual foods present strong inter-correlations (Hearty and
Gibney, 2008). Factor analysis and cluster analysis are used to find groups of foods,
referred to as dietary patterns (Edefonti et al., 2008; Brennan et al., 2010; Grosso et al.,
2017; De Vito et al., 2019). The solution obtained by these dimension reduction tech-
niques is used to predict disease risk. However, there is a discussion on how to group
the foods, for example, based on their association with the disease or using a priori
food groups provided by a nutritional expert; importantly, these different techniques
can lead to quite different results. The proposed prior of Paganin et al. (2020) would
allow for uncertainty in the food groups, while also incorporating prior information.
Then including this in a logistic regression model to associate food consumption with
disease risk, could improve cluster food methods and identification of dietary patterns.

We can adopt the model in this framework. Let i = 1, . . . , n index the subject,
j = 1, . . . , p index the single foods, and yi represents the case or control for a disease
(e.g. cancer or cardiovascular disease). For each individual, let xi = (xi1, . . . , xip)

� be
the food level consumption by the subject i. Finally, let zi = (zi1, . . . , zir)

� denote
the vector of confounders (i.e., alcohol consumption or smoking status). The proposed
model is

log

(
p(yi = 1 | xi, zi)

p(yi = 0 | xi, zi)

)
= α+ z�i θ +

p∑
j=1

xijβ
∗
cj = α+ z�i θ +

K∑
k=1

β∗
k(

∑
j∈Ck

xij).

This allows us to cluster the foods which have similar effects, and we can employ the
centred partition process to incorporate an initial partition c0 of food groups.

One other difference with the model studied in Paganin et al. (2020) is the inclusion
of confounders in this logistic framework to detect food groups, independently from
other covariates. The clustering framework is crucial to improve the estimation of β and
interpretability (especially compared to dimension reduction techniques). The clustering
itself is also interesting and could help nutritional epidemiologists detect groups of food
more formally, along with measures of uncertainty.
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3 Final Remarks

In this discussion, we have highlighted two possible applications of the proposed cen-
tered partition process, but this novel process is relevant and applicable in many other
settings. However, the application in nutritional epidemiology highlights the need of
alternative methods of prior calibration that can scale to higher dimensions. The pro-
posed prior calibration does not scale well when the number of objects is much larger
than the N = 26 considered in the motivating birth defects application. This is due
to a combinatorial explosion of the partition space as N increases which leads to an
inevitable deterioration of their prior calibration algorithm. Specifically, as the number
of observations N increases, the number of partitions explodes, and higher values of the
penalization parameter ψ are needed to place non-negligible prior probability in small
to moderate neighborhoods around c0.
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Contributed Discussion

Laura D’Angelo∗ and Antonio Canale†

We would like to congratulate the authors for their valuable contribution to Bayesian
model-based clustering. We believe that one of the most appealing peculiarities of
Bayesian statistics is the opportunity of introducing informative prior knowledge into
the learning process. The centered partition processes (cpp) introduced by the authors
have the merit of allowing an elaborate and rich informative prior elicitation in the con-
text of some the most successful tools used in Bayesian model-based clustering, namely
the Dirichlet process (dp, Ferguson, 1974), the Pitman-Yor process (Pitman and Yor,
1997), or, in general, the Gibbs-type priors (De Blasi et al., 2015).

Paganin et al. (2021) key idea is to penalize usual Exchangeable Partition Probabil-
ity Functions (EPPF) of a general partition c with an exponential factor that depends
on its distance d(c, c0) from c0, an informed prior guess for the partition of the dataset.
The idea of using a suitable distance function in the space of partitions d(c, c0) is reason-
able in many settings considering its symmetric nature. In some applications, however,
we would like to avoid this intrinsic symmetry and differently penalize partitions with
different characteristics even if they have the same distance from c0. The most trivial
example, which we will discuss hereafter, consists in those situations when, in addition
to an informed prior guess c0, we also seek a parsimonious clustering structure, thus
preferring a partition with a small number of clusters. Application areas where inter-
pretability and parsimony in the number of clusters are fundamental include genetics (Fu
and Perry, 2020), market segmentation (Wagner et al., 2005), topic modeling (Yau et al.,
2014), or network data analysis (Vu et al., 2013) among others. Consistently with this
applied motivation in what follows we sketch a possible modification of the approach
presented in the paper.

1 An asymmetric penalization for the CPP

We propose to generalize Equation 3.1 of the paper with

p(c | c0, ϕd) ∝ p0(c) e
−ϕd(c,c0), (1)

where ϕd(c, c0) is a general function of c and c0 depending on the distance function d.
When ϕd(c, c0) = ψd(c, c0) and ψ is a positive scalar, we get the original formula-
tion presented in Equation 3.1. Consistently with our applied motivation of penalizing
partitions with many clusters, we let

ϕd(c, c0) = {ψ1 I(Kc ≤ K0) + ψ2 I(Kc > K0)}d(c, c0), (2)
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Figure 1: Prior probabilities of the 52 set partitions of N = 5 elements for the cpp with
uniform (top) and dp with α = 1 (bottom) base EPPF. The asymmetric penalization
follows (2) with ψ2 = 1.5ψ1 and different values of ψ1.

where Kc and K0 are the number of clusters of c and c0, respectively, ψ1 and ψ2 are
two positive scalars, and I(·) is the indicator function.

Figure 1, similarly to Figures 2–3 in the paper, shows the effect of this asymmetric
penalization when the base EPPF is a uniform distribution (top panels) or a dp (bottom
panels), N = 5, and ψ2 = 1.5ψ1. The plots depict the prior probabilities assigned to
partitions for different values of the parameter ψ1 ∈ (0, 3): a quick visual comparison
with the plots in panels (b) and (c) of Figures 2 and 3 of the paper clearly shows the effect
of this penalization. The prior probability assigned to partitions with a small number
of clusters are inflated proportionally to their distance from c0, while the probabilities
for the finer partitions are shrunk. For example, for the case of a uniform prior and a
centering partition with two clusters (Figure 1a), the cumulative probability assigned
to partitions with two or less clusters using a constant penalization and ψ = 3 or using
the proposed asymmetric penalization with ψ1 = 3 and ψ2 = 4.5 are equal to 0.491 and
0.725, respectively.
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Prior calibration remains a delicate issue in general but for the specific formulation
in (2), one can express ψ2 = k ψ1, and then adapt computation of the probability
distribution of the distances (Section 4 of the paper) by splitting the procedure for finer
and coarser partitions, keeping in mind that the asymmetry in the penalty potentially
affects also the order of the local search in Section 4.2 of the paper.
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Contributed Discussion

Christian Hennig∗

The key idea of “Centered Partition Processes: Informative Priors for Clustering” is
the use of a pre-specified clustering c0 to “center” the prior distribution of partitions.
The prior probability of a partition is then governed by the Variation of Information
distance to c0.

Generally, in Bayesian statistics the prior distribution is meant to represent prior
information. Ideally the prior information comes as full probability distribution, but in
reality this is rarely the case. In the motivating example, apparently the only information
that is used is the partition given in Botto et al. (2007); no subject matter reasons
are discussed or given for the way in which this was chosen to influence the prior
construction. In particular, the parameter ψ seems to have a strong influence on the
resulting clustering, but its choice has not been connected to any available information.

In Hennig (2015a,b) I have argued that there can be different legitimate cluster-
ings on the same data and different concepts of what kind of clusters are of interest,
depending on the aim of clustering, and that different methods and approaches imply
different “cluster concepts”. The idea that the pre-specified c0 is aimed at the same
“truth” as the clustering of the new data using the authors’ approach is debatable.
Prior construction in Bayesian clustering can benefit from involving information about
the aim of clustering rather than thinking in terms of trying to find a unique “true”
clustering.

For the use of the method proposed by the authors with a pre-specified clustering it is
important to think about how the concept and aim of the pre-specified clustering relates
to what the authors try to achieve with their clustering. I have no expertise in birth
defects, so I cannot discuss this competently, but it could be worthwhile to use more
detailed information given in Botto et al. (2007) to this end. There are various possible
principles to group birth defects. The cluster concept used by the authors is defined
by (5.2) and the role of βci in particular. The cluster concept of Botto et al. (2007)
is apparently not related to fitting data, but rather based on specific characteristics of
interest. To what extent these are related probably depends on how these characteristics
are related to the variables in the matrices Xi. I can imagine that it makes sense to
favour to some extent clusters similar to c0, but I think that quite strong subject
matter arguments would be required to make the case for a very large prior probability
concentrating in a close neighbourhood of c0, i.e., effectively excluding clusterings that
are substantially different. I also think that among clusterings that are very different
from c0 the exact difference to c0 is no longer relevant (if it turns out that the data favour
a substantially different clustering, relative closeness to c0 seems no longer informative).
Therefore I would probably favour rather small values of ψ, and I am skeptical about
prior probabilities going down exponentially with growing distance to c0.
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A major reason for clustering is given as lumping together rare defects in order
to achieve better precision when estimating their association with risk factors. This
suggests that a useful prior could put low probability on undesirable partitions in which
rare defects are still isolated, regardless of their distance from c0.

My main point is however that for applying this approach properly, more thought
should go into the role and meaning of c0 for clustering the new data, and this should
involve how and to what extent the potentially different clustering aims and cluster
concepts are related in the specific situation. In many applications a comparison of c0
with what is achieved without using it at all (i.e., ψ = 0) may be more informative than
just choosing a specific compromise. In fact Figure 10 is quite informative, except that
I would have preferred to see a smaller ψ > 0 involved.
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Contributed Discussion

Alessandro Casa∗,§, Michael Fop‡, and Thomas Brendan Murphy‡,¶

We would like to congratulate the authors for their work, which represents a relevant
contribution to the Bayesian cluster analysis framework. Prior elicitation is a critical
issue and currently most people rely on the exchangeability assumption. To the best of
our knowledge, this work is one of the first attempts to include concrete available prior
information on the partition, and we hope it will serve as a stepping stone motivating
further explorations of the topic.

The proposal is directly motivated by an epidemiological application where some
experts provided an initial clustering c0 subsequently used to center the proposed prior.
However, there could be cases where the experts do not agree on the classification of the
objects to be clustered, thus resulting in a situation where a set of G initial clusterings
C0 = {c10, . . . , cG0 } is available. As a consequence, it may be interesting to propose
a suitable modification of the proposed prior, possibly able to encompass scenarios
where multiple initial partitions are available, thus enlarging the applicability of the
CP process. In our opinion, a reasonable and simple modification may be expressed as
follows:

p(c|C0) ∝ p0(c)e
−ψ

∑G
g=1 ωgd(c,c0

g) (1)

where ωg ≥ 0 for g = 1, . . . , G with
∑

g ωg = 1, while the other quantities are defined
as in the original paper. The coefficients ωg’s allows to assign different weights to the
initial partitions in C0.

Note that a wider range of situations may be framed in a multiple initial partitions
scenario, namely all the ones where only partial information are available a priori. In
fact, a similar problem appears in the recent work by Casa et al. (2021), involving
searching for a partition of the wavelengths in a spectroscopy application. The prior
(1) could be used to incorporate subject matter knowledge on those spectral regions
influenced by the same chemical compounds, and likely to be clustered together. We
believe that a broad set of issues arising in the semi-supervised clustering framework
(see Melnykov et al., 2016, and reference therein) can be flexibly faced by considering
the strategy outlined above. In fact, this approach would encompass restrictions on
cluster membership, as well as cannot- or must-link among them, by simply populating
C0 with those partitions complying with the restrictions themselves. Finally, note that
the same reasoning applies when relevant prior mass has to be considered for partitions
with specific cluster sizes or number of clusters.
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Figure 1: Prior probabilities of the 52 set partitions of N = 5 elements for the prior
(1) with Dirichlet process of α = 1 base EPFF. In each graph the modified CP process
is centered on a different set of partitions C0 highlighted with different colors. The
partitions in C0 are reported below the respective graph alongside with the mean of the
pairwise Variation Information (VI) computed for the partitions in C0.

In the following, mimicking what the authors did in the paper, we study the behavior
of the prior in (1) as a function of ψ. As a base EPFF p0(c) we use the Dirichlet process
with α = 1 while ωg = 1/G for g = 1, . . . , G. In the left plot the set of initial partitions
C0 contains five partitions with 3 clusters. For increasing values of ψ, the prior (1)
naturally tends to assign higher probabilities to the partitions in C0. Moreover a greater
increase in the probability for the partition {1, 2, 3}{4}{5}, highlighted in yellow, being
the one closer to the others in C0, is witnessed: this implies that the modified CP process
tends to favor the partitions in C0 being more similar to the others in the same set. On
the other hand, in the right plot, C0 contains all those partitions where the observations
{3, 4, 5} are clustered together; this scenario resembles the one in Casa et al. (2021)
outlined above. It stands out even more clearly how, for increasing ψ, most of the mass
is assigned to the partitions in C0.

An additional point, which might worth a reflection, consists in the potential changes
to the prior calibration step and to the local search when the prior is not centered
on a single node of the Hasse diagram but on multiple ones. We would like to hear
authors’ thoughts on this and, more generally, about our alternative prior formulation,
encompassing the situation where multiple reference partitions and partial grouping
information are available.
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Sally Paganin∗, Amy H. Herring†, Andrew F. Olshan‡, David B. Dunson§,
and The National Birth Defects Prevention Study

We thank the editorial board of Bayesian Analysis and the editor-in-chief Michele Guin-
dani for inviting this stimulating discussion. We are also grateful to the discussants for
the thoughtful remarks and the very interesting extensions. It is exciting that the idea
of a partition distribution that uses prior information on the partition itself has been
recognized as valuable, and with such enthusiasm.

Our proposal is motivated by an epidemiological application involving data on birth
defects, where prior information is available about a partition of these defects into
groups, based on fetal developmental and epidemiologic considerations. The methodol-
ogy we presented investigates how to include such information into a prior distribution
over the set of possible clusterings, building on Bayesian nonparametric priors for model-
based clustering, in particular Exchangeable Partition Probability Functions (EPPF).
As highlighted by the discussants, there are a number of relevant extensions and open
problems.

On how we interpreted the prior guess

One common theme concerns the meaning of the prior guess c0, and how we translated
this information into a prior probability distribution. Our proposal considers a single
partition c0, that we wish to account for when constructing a prior distribution over the
space of set partitions. To do so, we start from a baseline EPPF and include an expo-
nential penalization that depends on a distance from c0 and a penalization parameter
ψ. Although we considered the Dirichlet Process (DP) and Variation of Information
(VI) as default EPPF and distance, we developed a general framework that we name a
Centered Partition (CP) process.

However, as Dahl, Warr, and Jensen argue, c0 is not necessarily the “center” of
the CP process in general, where the center partition is defined as the partition that
minimizes the expected loss for some partition metric. Under a uniform baseline EPPF,
c0 is indeed the center of the CP process, but, as Dahl, Warr, and Jensen show,
different combinations of the EPPF and the penalization parameter ψ lead to different
center partitions. We agree with Dahl, Warr, and Jensen’s suggestion of thinking of
the CP process as a baseline partition distribution shrunk towards c0.

The CP process induces shrinkage towards c0 via a distance dependent exponential
penalty that includes a parameter ψ controlling for the amount of shrinkage. Depending
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on the value of ψ, partitions in a small to moderate neighborhood close to c0 have higher
prior probability, with the notion of “closeness” defined by the distance.

In formulating our CP process, we implicitly make some assumptions that are mainly
discussed in the contributions from Smith and Hennig. In particular, we assume that
having a prior guess c0 translates into strong beliefs about clusters within some neigh-
borhood of c0, and that prior probabilities decay exponentially with growing distance
from c0.

In our particular application to birth defects we referred to one classification given in
Botto et al. (2007), chosen in collaboration with epidemiologists involved in the National
Birth Defects Prevention Study. This is a case in which there is some leading biological
theory, and researchers wish to interpret results from data analysis with respect to the
theory; in such settings, we support the choice of stronger and localized priors rather
than weaker ones.

In general, one needs to take in account the clustering behavior induced by the
baseline EPPF.Dahl, Warr, and Jensen warn about possible incompatibility between
c0 and the EPPF, considering as an example a base partition with equal-sized clusters
and the DP EPPF. In this setting, the penalty would favor partitions with similar cluster
sizes, which seems contradictory to the “rich-get-richer” property of the DP with α = 1.
We agree that it is desirable that the EPPF is congruous with c0, and we stress that the
choice of the hyperparameters of the DP and PY processes should be tuned accordingly.
In practice, one can check that the a priori expected value and variance of the number
of clusters are compatible with c0.

Finally, we definitely share Hennig’s perspective that different clustering concepts
can apply to the same data depending on the objective of the analysis, and that these
clustering concepts are often embedded in the choice of method. The implicit assump-
tions of our CP process may not be appropriate in all contexts. Domain knowledge and
inferential goals can suggest different definitions of prior distributions over the set par-
titions space. However, some cases can still be easily addressed within our framework,
and some of the discussions provided interesting examples and extensions.

Extensions and alternatives

We have been considering extending our proposal to account for more complex infor-
mation about the data clustering, and we are excited that some of the discussions shed
some light on interesting extensions of the CP process.

Particularly relevant to our birth defects application is the case of having multi-
ple plausible prior partitions, i.e. C0 = {c01, . . . , c0S}. This situation is explored in
Smith, Rigon, Aliverti, Russo, and Scarpa and Casa, Fop, and Murphy. While
Smith formulates a two-stage prior, Rigon, Aliverti, Russo, and Scarpa and Casa,
Fop, and Murphy extend our CP process formulation considering the sum of dis-
tances

∑S
s=1 d(c, c0s) in the exponential penalty. The interpretation in Rigon, Aliv-

erti, Russo, and Scarpa in light of the generalized Bayes perspective (Bissiri et al.,
2016), seems to tie the two representations together, as the resulting p(c|C0) can be
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regarded as the posterior belief about the partition conditionally on observations in C0.
Smith’s suggestion of hierarchical structure is particularly compelling in our appli-
cation, in which it is possible to group birth defects more finely than shown in our
manuscript.

Motivation in these discussions comes from different assumptions on the prior infor-
mation available. For example C0 can include: a set of alternative partitions to a given
classification (partitions in the same neighborhood); a set of very different partitions
(far in the set partition space) coming from different leading theories or experts not
agreeing with each other; or a relevant portion of the set partition space complying
with partial information about the clustering, for example a set of cannot/must link
constraints.

Another interesting extension of the CP process is given in D’Angelo and Canale,
starting from considerations regarding the aim of the clustering, rather than the domain
knowledge. The authors consider the case in which one wants to favor partitions in neigh-
borhood of c0 that are coarser (i.e., parsimonious) rather than finer. Some asymmetric
preference could be induced with the choice of different distances (e.g. the Binder Loss)
or EPPFs (rich-get-richer behavior of the DP), however it can be hard to control for spe-
cific clustering characteristics of interest. Similar to the previous discussants, D’Angelo
and Canale modify the exponential penalty, using different penalization parameters
(ψ1, ψ2) depending on the number of clusters. In this formulation, preference for a par-
simonious partition in a neighborhood of c0 is therefore made explicit, and one can
accommodate alternative prior information on characteristics of the partitions.

The extensions discussed in Casa, Fop, and Murphy, Rigon, Aliverti, Russo,
and Scarpa and D’Angelo and Canale, can be included in a generalized CP process
defining as prior for c ∈ ΠN ,

p(c|C0) ∝ p0(c) exp

{
−ψ

S∑
s=1

ϕs(c, c0s, d(·))
}
,

where ϕs(·) is a general function that depends on the partition in C0 and the choice of
the distance between partitions. This general formulation allows to account for multi-
ple prior guesses, together with characteristics of interest of the partition. Considering
for example the number of clusters as in D’Angelo and Canale, then ϕs(c, c0s) =
{κ1sI(|c| ≥ |c0s|) + κ2sI(|c| < |c0s|)}d(c, c0s), where {κ1s, κ2s} are positive scalars that
can change depending on the partition in C0.

Finally, Antoniano-Villalobos, Villa, and Wade build on Antoniano-Villalobos
et al. (2014), interpreting c0 as a covariate, so that it can be included in a dependent
normalized random measure. This formulation shares the same limiting behavior of
our CP process, and some control on the prior probability mass is achieved via setting
hyperparameters related to the number of clusters and strength of the influence of the
covariate c0. Nevertheless, it seems hard to obtain an interpretation of where the prior
probability mass is placed in the set partition space with respect c0. However we think
this a possible scalable alternative, especially in situations where one wants to include
mild dependence on c0 while not necessarily inflating the prior probability of partitions
in a neighborhood of c0.



S. Paganin et al. 367

Computational challenges

As highlighted from different discussants, our CP process provides an intuitive represen-
tation for an informative prior distribution over the clustering space, but it comes with a
computational price. Computational challenges and possible alternatives are considered
in the discussions from Dahl, Warr, and Jensen and Smith.

Prior calibration. In the paper, we propose a prior calibration procedure to choose a
value for the penalization parameter ψ. As noted by Smith, we bypass direct elicitation
of ψ, focusing instead on the distribution of distances from c0 induced from our prior.
Using the c.d.f. of this random variable, we can choose a probability q and a distance δ∗,
and determine ψ such that the CP process places a probability of at least q on partitions
within distance δ∗. We estimate the c.d.f. via Monte Carlo, relying on a greedy search
algorithm paired with direct sampling on the partition space, a procedure difficult to
scale with N .

Smith suggests avoiding exact computation of the parameter ψ via the prior cali-
bration, considering a grid of plausible values to integrate out ψ during the posterior
sampling. This option does not increase the computational burden of the posterior
sampling, and it looks in line with our suggestion of considering other values of the
penalization parameter besides the elicited one. However, we argue that choosing a
plausible grid values for ψ still needs some sort of prior calibration procedure, as the
same value of ψ can induce very different priors depending on the given partition c0,
the type of distance, the chosen EPPF, and the number of objects to cluster.

An alternative strategy for prior calibration is given in the discussion from Dahl,
Warr, and Jensen. They suggest to estimate the c.d.f. of the distance from c0 sampling
from the prior itself, adapting the algorithm for posterior computation. We considered
this strategy while developing our CP process, but found it not robust in some sense. In
particular, we observed degenerate behaviors of the sampler, such as being stuck in local
modes or collapsing towards c0. This behavior can potentially be related to situations
where there is some incongruity between c0 and the baseline EPPF, as mentioned from
Dahl, Warr, and Jensen. These issues motivated us to look into a solution that uses
samples obtained independently from the prior. On the other hand, we recognize that
improvements to the algorithm for posterior computation could benefit prior sampling.
Some possible improvements are discussed in the next paragraphs.

Posterior computation. Our strategy for posterior sampling builds on traditional
MCMC schemes for random partition models. In particular, we adapted Algorithm 2 in
Neal (2000) which uses one-at-a-time moves, sampling group indicators for clustering
objects iteratively.

As noted from Smith, a possible concern is that these one-at-a-time moves may be
susceptible to getting stuck in local modes, not allowing the sampler to fully explore the
posterior distribution. b Although we did not observe such problems in our applications,
we definitely agree that our strategy for posterior sampling can be improved, for example
adding split-and-merge moves (Dahl, 2003; Jain and Neal, 2004, 2007) or adapting the
more recent proposal in Bouchard-Côté et al. (2017). We thank Smith for pointing out
also the strategy adopted in Smith and Allenby (2020) of building random-walk style
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M-H proposals relying on the CP process itself. This seems promising to extend our
analysis of birth defect data beyond what we presented in the paper.

On the topic of posterior sampling, Dahl, Warr, and Jensen add that local modes
could also have been induced by the use of the VI as a distance, suggesting the Binder
(1978)’s loss as a more robust alternative for the distance. We chose the VI as it more
closely represented our intuition of the neighborhood of a partition. For example, as
noted in Wade and Ghahramani (2018), the Binder’s loss seems to give more weight to
partitions that differ from c0 because of a split rather than a merge, while the variation
of information is more symmetric in this sense. However, we agree that it is worth
investigating how the choice of distance impacts sampling efficiency.

Applications

We build our CP process starting from an epidemiological application to birth defects,
and we are pleased that several discussants highlighted other relevant domains of ap-
plication.

In particular, Avalos-Pacheco, De Vito, and Wade illustrate two interesting
examples that can benefit from inclusion of prior information on the clustering: clin-
ical trials and nutritional epidemiology. Some oncology clinical trials (e.g. basket tri-
als) investigate drug effects across multiple cancer populations, divided into biomarker-
based subgroups. Bayesian hierarchical models can be used to borrow information across
biomarker and cancer subgroups. These groups are either estimated or prespecified, and
relevant biological information is not accounted for. The other example from Avalos-
Pacheco, De Vito, and Wade considers analysis of food intakes, where it is of interest
to interpret results with respect to some dietary patterns. These patterns are typically
estimated using dimension reduction techniques, ignoring available prior information,
for example about food combinations related to some disease. On a related theme,
Casa, Fop, and Murphy mention instead analysis of spectroscopy data representing
food characteristics, and substantial information about grouping comes from knowledge
of the chemical interactions. Smith brings an example from quantitative marketing,
where partitions of products are typically motivated from managerial choices.

In considering wider applications of our method, there are still some open questions
to investigate. For example, Smith mentions model assessment. In our application to
birth defects data, we illustrated results from different models fit to the data with vary-
ing degrees of penalization parameter ψ, with extreme situations where the clustering
behavior is governed by a Dirichlet process prior, or fixing the groups as c0. Model
assessment can be done using standard techniques for Bayesian models, relying for ex-
ample on Bayesian predictive checks (Gelman et al., 2013), or (calibrated) posterior
predictive p-values (Meng et al., 1994; Hjort et al., 2006). Uncertainty about the clus-
tering can be summarized via the recent proposal of Wade and Ghahramani (2018)
using credible balls for the clustering estimate.

Finally, scalability withN remains a concern, although technical suggestions given in
the discussions from Dahl, Warr, and Jensen and Smith look promising to address
some of the computational issues. We agree with Smith that a practical approach is
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to impose more dogmatic prior assumptions, so that the partitioning problem lives in a
lower dimensional space. Our application uses this concept already in that observations
are collected at the individual level, and we used prior information for clustering group
effects for individuals having the same birth defect. The use of more dogmatic assump-
tions seems a reasonable strategy, as it may be hard in practice to have substantial prior
information on many many individuals.
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