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We propose a correspondence between vertex operator superalgebras and families of sigma
models in which the two structures are related by symmetry properties and a certain reflection
procedure. The existence of such a correspondence is motivated by previous work on N = (4, 4)
supersymmetric non-linear sigma models on K3 surfaces, and on a vertex operator superalgebra
with Conway group symmetry. Here we present an example of the correspondence for N = (4, 4)
supersymmetric non-linear sigma models on four-tori, and compare it to the K3 case.
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In memory of Prof. Tohru Eguchi

As students of string theory and as curious mathematicians, we needed to study various papers of
Professor Eguchi and his collaborators. A significant example is the review “Gravitation, gauge
theory and differential geometry” of almost 200 pages. As researchers, we have been seduced by
moonshine phenomena for mock modular objects, the temptation for which must be blamed on the
paper “Notes on the K3 surfaces and Mathieu group M24.” We have been missing, and will continue
to miss, Eguchi-san and his inspiring work, as well as the unassuming, creative, and curious manner
in which he discussed and talked with us in person.

1. Introduction

The relation between sporadic finite simple groups and symmetries of K3 surfaces and K3 sigma
models has attracted a lot of attention since the pioneering work of Refs. [1,2]. For some instances
of this see Refs. [3–16]. Apart from the Mathieu groups featured in Refs. [1,2], symmetries of
N = (4, 4) supersymmetric non-linear sigma models on K3 surfaces have also been related to other
groups, including the sporadic simple Conway groups [17–19] and the groups of umbral moonshine
[20,21].

The so-called twined elliptic genera play a critical role in quantifying this relation since they are
sensitive to the way that symmetries act on quantum states. Of special interest is the fact that many of
the twined elliptic genera of sigma models on K3 surfaces can be reproduced by the vertex operator
superalgebra (VOSA) V s�, which has played a prominent role in Conway moonshine [19,22,23].
(Here and in the remainder of this work we use sigma model as a shorthand for “N = (4, 4)
supersymmetric non-linear sigma model.”)
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The analysis of Ref. [21] indicates that not all the twined K3 elliptic genera can be reproduced by
Conway group symmetries of V s�. It is nonetheless interesting that the single VOSA V s� can capture
the symmetry properties of a large family of sigma models in the K3 moduli space, especially given
that V s� is, in physical terms, a chiral theory, with central charge c = 12, while the K3 sigma models
are non-chiral theories, with c = c̄ = 6. Moreover, in Appendix C we explain how all but one of the
twined K3 elliptic genera may be recovered from V s� if we allow non-Conway group symmetries
(which is to say symmetries that do not preserve supersymmetry), or Conway group symmetries that
are not of the expected order.

This novel chiral/non-chiral connection between V s� and K3 sigma models has been made precise
at a special (orbifold) point in the moduli space, where V s� can be retrieved as the image of the
corresponding K3 theory under reflection: a procedure explored in Ref. [19] for the specific case
of V s� and later formerly investigated in more generality in Ref. [24]. (See also Ref. [25] for a
complementary approach).

To put this connection in a more structured context let us consider sigma models with target space
X within one connected component of the full moduli space M = M(X ) of sigma models on X , and
denote the corresponding sigma models by �(X ;μ), for μ a point in M. For instance, for X = T 4

or X = K3 the moduli space consists of a single component, and takes the form

M(T 4) = (SO(4)× SO(4)) \SO+(4, 4)/SO+(�4,4),

M(K3) = (SO(4)× O(20)) \O+(4, 20)/O+(�4,20). (1.1)

Here, �a,b denotes an even unimodular lattice of signature (a, b).
The chiral/non-chiral connection between V s� and K3 sigma models discussed above now motivates

the following question: Are there pairs of VOSA/sigma model family pairs (V , M(X )) such that the
following properties hold?

(i) The symmetry group of V = V (X ) contains the symmetry groups of all of the �(X ;μ) for
μ ⊂ M(X ).

(ii) The twined elliptic genera of V capture the twined elliptic genera arising from the�(X ;μ) for
all μ ∈ M.

(iii) There exists a particular point μ∗ ∈ M such that the reflection procedure maps �(X ;μ∗)
to V .

We will refer to pairs (V , M) satisfying these three properties as VOSA/sigma model correspon-
dences.

As we have explained, (V s�, M(K3)) comes tantalisingly close to being an example of such a
VOSA/sigma model correspondence. However, there are (conjecturally) a handful of twined elliptic
genera of �(X ;μ), with μ lying in certain high-codimensional subspaces of M(X ), that do not
arise from V s� (see Conjectures 5 and 6, and Table 4, of Ref. [21]). As a result, Property ((2)) above
fails to hold for the (V s�, M(K3)) pair. Our main objective in this work is to illustrate a complete
example of the correspondence, where K3 surfaces are replaced by (complex) four-dimensional
tori. The counterpart to V s� in this case is the VOSA naturally associated to the E8 lattice, which
we here denote V f

E8
(as in Refs. [22,26]). With the K3 case in mind this is perhaps unsurprising,

given that V s� can be written as a suitable Z2 orbifold of V f
E8

[22,26], while on the orbifold locus of
M(K3) the corresponding sigma models can also be obtained as Z2 orbifolds of four-torus sigma
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Fig. 1. VOSA/sigma model connections and the orbifold procedure.

models (see Fig. 1). In fact, as we will see, the VOSA/sigma model correspondence works better
in the four-torus case since it holds for all points in M(T 4): the twined elliptic genera of any
�(T 4;μ) can be reproduced by the supersymmetry-preserving twined elliptic genera of V f

E8
(see

Theorem 2). So, all three properties of our proposed VOSA/sigma model correspondence, including
the one which failed for the (V s�, M(K3)) example, indeed hold in this case. It would be very
interesting to understand whether a complete realization of the VOSA/sigma model correspondence
might exist even for K3 surfaces. Our results can be regarded as encouraging evidence in this
direction.

The rest of the paper is organized as follows. In Sect. 2 we discuss the supersymmetry-preserving
symmetries of�(T 4;μ) across the moduli space, as well as the corresponding twined elliptic genera.
In Sect. 3 we summarize important results on the groups arising in Sect. 2. In Sect. 4 we discuss
the VOSA V f

E8
, naturally associated to the E8 lattice, and show that its supersymmetry-preserving

symmetry group contains all the symmetry groups discussed in Sect. 2. Hence, we obtain that
Property ((1)) of VOSA/sigma model correspondences holds for (V f

E8
, M(T 4)). We then prove in

Theorem 2 that the VOSA V f
E8

recovers all the twined elliptic general of �(T 4;μ), thereby proving
Property ((2)).

In Sect. 5 we elaborate on the relation between the VOSA/sigma model correspondences for T 4

and the near example for K3 via orbifolding. In particular, we prove in Proposition 3 that the diagram
in Fig. 1 commutes, for all orbifolding procedures of the theory. Then, in Sect. 6 we demonstrate
that V f

E8
can be obtained as the image of �(T 4;μ∗) at a particular special point μ∗ ∈ M(T 4) under

reflection, thus establishing the final VOSA/sigma model correspondence property, Property ((3)),
for (V f

E8
, M(T 4)). This is the content of Theorem 4.

We conclude the paper with three appendices. In the first of these we provide further informa-
tion on the supersymmetry-preserving symmetries of four-torus sigma models. In Appendix B we
recall, for the convenience of the reader, how automorphisms of a lattice lift to automorphisms of
a corresponding lattice VOSA, and detail the workings of this in the specific case of V f

E8
. Finally,

in Appendix C we explain how more general twinings of V s� may be used to recover the twined
K3 elliptic genera that were not computed in Ref. [19]. We also review the relationship between
V f � [22] and V s� [19,23], explain a sense in which the Conway group arises naturally as a group of
automorphisms of V s�, and explain why they are the same as far as twinings of the K3 elliptic genus
are concerned.

2. The sigma models

In this section we set up our notation and collect important background on four-torus sigma models
and their symmetries. The exposition closely follows that in Ref. [27].
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2.1. Symmetries

A sigma model on T 4 is a supersymmetric conformal field theory defined in terms of four pairs
of left- and right-moving bosonic u(1) currents ja(z), j̃a(z̄) (a = 1, . . . , 4), four pairs of left- and
right-moving free real fermions ψa(z), ψ̃a(z̄), and exponential (primary) fields Vk(z, z̄) labelled by
vectors k = (kL, kR) ∈ �4,4

w-m.
Let us now explain our notation. Let �4,4 denote an even unimodular lattice of signature (4, 4).

The real vector space

� = �4,4 ⊗ R ∼= R
4,4 (2.1)

admits orthogonal decompositions into positive- and negative-definite subspaces

� = �L ⊕⊥ �R. (2.2)

Correspondingly, we decompose k ∈ � as k = (kL, 0) + (0, kR), where the two summands lie
in the positive- and negative-definite subspaces respectively. The relative position of �L and �R

uniquely determines each four-torus sigma model, and the corresponding Narain moduli space is
as in Eq. (1.1), where O(�4,4) acts as T -dualities and we restrict to the T -dualities that moreover
preserve world-sheet parity (cf. Ref. [21]). We use �4,4

w-m to denote the lattice �4,4 equipped with a
choice of an orthogonal decomposition into positive- and negative-definite subspaces. This structure
is also known as the winding-momentum or Narain lattice in this context.

The chiral algebra of every four-torus sigma model contains a u(1)4 algebra generated by the
currents ja, as well as an so(4)1 Kac–Moody algebra generated by :ψaψb : (a, b = 1, . . . , 4). It also
contains a small N = (4, 4) superconformal algebra at central charge c = c̃ = 6, whose holomorphic
part is generated by the holomorphic stress tensor T (z), four supercurrents G±(z), G′±(z) of weight
(3/2, 0) that consist of linear combinations of terms of the form :ψajb :. In particular, the fermionic
so(4)1 algebra contains an su(2)1 “R-symmetry” Kac–Moody algebra, generated by currents J 1,
J 2, J 3. Since the anti-chiral discussion is completely analogous, from now on we focus just on the
chiral part.

To describe the superconformal algebra in detail, it is convenient to define complex fermions

χ1 := 1√
2
(ψ1 + iψ3), χ1∗

:= 1√
2
(ψ1 − iψ3),

χ2 := 1√
2
(ψ2 + iψ4), χ2∗

:= 1√
2
(ψ2 − iψ4), (2.3)

which obey the standard operator product expansions (OPEs)

χ i(z)χ j(w) ∼ O(z − w), χ i(z)χ j∗(w) ∼ χ i∗(z)χ j(w) ∼ δij

z − w
. (2.4)

In terms of the complex fermions, the stress tensor is given by

T = −
4∑

a=1

:jaja : − 1

2

2∑
i=1

(:χ i∂χ i∗ : + :χ i∗∂χ i :), (2.5)
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while the R-symmetry currents are given by1

J 1 = i
(

:χ1χ2 : + :χ1∗
χ2∗

:
)

, J 2 = :χ1χ2: − :χ1∗
χ2∗

:, J 3 = :χ1χ1∗
: + :χ2χ2∗

:. (2.6)

The symmetry groups occurring at different points in the moduli space of sigma models on T 4 that
preserve the N = (4, 4) superconformal algebra were fully classified in Ref. [27]. To describe these
groups, let U (1)4L and U (1)4R be the Lie groups generated by the zero modes ja

0 and j̃a
0 respectively.

They describe the (independent) translations along the four-torus. Recall also that apart from the
R-symmetry su(2)1 algebra with the generators in Eq. (2.6), there is another copy of the su(2)1
algebra in the fermionic so(4)1 algebra, generated by the currents

A1 = i
(

:χ1χ2∗
: + :χ1∗

χ2 :
)

, A2 = :χ1χ2∗
: − :χ1∗

χ2 :, A3 = :χ1χ1∗
: − :χ2χ2∗

:. (2.7)

Focusing on the zero modes, we have the relation

SO(4)L ∼= (SU (2)JL × SU (2)AL)/(−1)A
3
0+J 3

0 , (2.8)

where (−1)A
3
0/J

3
0 is the non-trivial central element of SU (2)A/JL , and similarly for the right-moving

side. Preserving the N = 4 superconformal algebra restricts us to the subgroup SU (2)AL which
commutes with the R-symmetry SU (2)JL. Moreover, identifying SO(4)L with SO(�L), we need to
consider subgroups that induce an automorphism of �4,4

w-m.2

These considerations lead to the following specification of the symmetry groups of the four-torus
sigma models. They take the form

G = (U (1)4L × U (1)4R).G0. (2.9)

The group G0 here is given by the intersection

G0 = (
SU (2)AL × SU (2)AR

) ∩ O
(
�4,4

w-m

)
, (2.10)

where the above identification is understood.
Notice that the groups G0 defined in Eq. (2.10) manifestly do not mix the spaces �L and �R, and

always contain a central Z2 subgroup generated by (−1, −1) ∈ SU (2)AL × SU (2)AR. Consider the set
of all possible groups arising as

G1 := G0/(−1, −1). (2.11)

This set turns out to be bijective to the set of subgroups of the group of even-determinant Weyl
transformations of E8, denoted by W +(E8), that fix an E8-sublattice of rank at least 4. See Ref. [27]
for a complete and descriptive list of all the possible groups G0. We note here that the groups G0 and
G1 are interesting finite groups only at certain special points in the moduli space M(T 4) of sigma
models on T 4. Generically, G0 is isomorphic to Z2, and G1 is trivial.

1 Note that this normalization for the currents, while convenient and common in the physics literature, differs
by a factor of 1

2 from the normalization that is common in the Kac–Moody algebra context.
2 The identification between SO(4)L with SO(�L) is given by the choice of the N = 1 supercurrent such

that its generator is proportional to
∑4

a=1 :ψaja :. Different choices of the N = 1 supercharge lead to different
isomorphisms that are related to each other by R-symmetry transformations in SU (2)JL.
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2.2. Twined genera

The elliptic genus of an N = (4, 4) superconformal theory is defined in terms of the superconformal
algebra generators as the following trace over the Ramond–Ramond (RR) sector,

φ(τ , z) = TrRR

[
(−1)F yJ 3

0 qL0− c
24 q̄L̃0− c̃

24

]
, q := e2π iτ , y := e2π iz, (2.12)

where L0 is the zero mode of the stress energy tensor T , and the fermion number operator (−1)F will
be discussed in more detail later. It receives non-vanishing contributions only from right-moving
Bogomol’nyi–Prasad–Sommerfield (BPS) states and thus does not depend on τ̄ . For the N = (4, 4)
theories that we are considering, it is also a weak Jacobi form of weight 0 and index 1, and does
not depend on the moduli. For four-torus sigma models, we have c = c̃ = 6 and the elliptic genus
is in fact identically zero due to cancelling contributions from the BPS states, which form an even-
dimensional representation of the Clifford algebra of the right-moving fermionic zero modes χ̃ i

0,
χ̃ i∗

0 . When the theory has additional symmetries G preserving the superconformal algebra (i.e. at
special points in the moduli space), we can also consider the elliptic genus twined by an element
g ∈ G acting on the RR states,

φG
g (τ , z) = TrRR

[
g(−1)F yJ 3

0 qL0− c
24 q̄L̃0− c̃

24

]
, (2.13)

where the superscript in the notation serves to remind us about moduli dependence (through the
symmetry group G). The twined genus φG

g depends only on the conjugacy class of g in G and is a
weak Jacobi form of weight 0 and index 1 for some congruence subgroup �g ⊆ SL2(Z). Note that
the normal subgroup U (1)4L × U (1)4R of G as in Eq. (2.9) acts trivially on all oscillators. For this
reason we will first focus on the G0 part when computing the twined elliptic genera.

To compute the elliptic genus twined by g ∈ G0 ⊂ SU (2)AL × SU (2)AR, let us first describe the
Fock space representation of the RR states in the present theory. This is built from all possible
combinations of the free fermionic χ i

n, χ i∗
n , χ̃ i

n, χ̃ i∗
n , and bosonic oscillators ja

n , j̃a
n (a = 1, . . . , 4,

i = 1, 2, n ∈ Z≤−1) acting on the Fock space ground states. The latter has a convenient basis given
by

|kL, kR; s〉, s = (s1, s2; s̃1, s̃2), s1, s2, s̃1, s̃2 ∈
{

1

2
, −1

2

}
. (2.14)

Here, s is an index for the 24-dimensional representation of the eight-dimensional Clifford algebra
generated by the fermionic zero modes χ i

0, χ i∗
0 , χ̃ i

0, χ̃ i∗
0 , which correspond to the fermionic RR

ground states |s〉 := |0, 0; s〉. The indices kL and kR label points in the winding-momentum lattice,
k = (kL, kR) ∈ �4,4

w-m. In terms of the primary operators Vk(z, z̄), the ground states in Eq. (2.14) are
given by |kL, kR; s〉 := Vk(0, 0)|s〉.

In this basis, the eigenvalues of the fermionic ground states under the operators J 3
0 and J̃ 3

0 are given
by

J 3
0 |s〉 = (s1 + s2)|s〉, J̃ 3

0 |s〉 = (s̃1 + s̃2)|s〉, (2.15)

and similarly

A3
0|s〉 = (s1 − s2)|s〉, Ã3

0|s〉 = (s̃1 − s̃2)|s〉, (2.16)
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while the J 3 charges of the fields are given by

χ i : +1, χ i∗
n : −1, ja

n : 0, (2.17)

and similarly for the right-movers. In these terms, the fermion number operator is defined as (−1)F :=
(−1)J

3
0 +J̃ 3

0 .
Let ρψ denote the eight-dimensional representation of G0 on the space spanned by ψ1, . . . ,ψ4

and ψ̃1, . . . , ψ̃4. For a given element g ∈ G0, choose the parametrization of the complex fermions
such that g acts as (cf. Table A3)

ρψ(g)χ
1 = ζLχ

1, ρψ(g)χ̃
1 = ζRχ̃

1. (2.18)

Since g ∈ SU (2)AL × SU (2)AR, it follows that g acts on the eight-dimensional representation ρψ as

ρψ(g)χ
1 = ζLχ

1, ρψ(g)χ
1∗ = ζ−1

L χ1∗
, ρψ(g)χ̃

1 = ζRχ̃
1, ρψ(g)χ̃

1∗ = ζ−1
R χ̃1∗

,

ρψ(g)χ
2 = ζ−1

L χ2, ρψ(g)χ
2∗ = ζLχ

2∗
, ρψ(g)χ̃

2 = ζ−1
R χ̃2, ρψ(g)χ̃

2∗ = ζRχ̃
2∗

,
(2.19)

and similarly on the bosonic currents since the superconformal algebra is preserved. Note that the
choice of parametrization in Eq. (2.18) is always possible, since by conjugations in SU (2)AL ×SU (2)AR
we can let g be contained in the Cartan subgroup generated by A3

0 and Ã3
0.

From the preceding discussion we conclude that the twined elliptic genus of the four-torus sigma
model factors as

φG
g (τ , z) = φosc

g (τ , z)φgs
g (z)φ

w-m
g (τ ), (2.20)

where the three factors capture the contributions from the oscillators, the fermionic ground states,
and winding momentum (i.e. primaries Vk ), respectively. In what follows we will discuss them
separately.

The action on the ground states is given by

g|s〉 = ζ
A3

0
L ζ

Ã3
0

R |s〉 = ζ
s1−s2
L ζ

s̃1−s̃2
R |s〉. (2.21)

Summing over the 24 ground states |s〉 we hence arrive at

φ
gs
g (z) = y−1(1 − ζLy)(1 − ζ−1

L y)(1 − ζR)(1 − ζ−1
R )

= 2(1 − Re(ζR))(y
−1 + y − 2Re(ζL)). (2.22)

From Eq. (2.19), we compute that the total contribution from the fermionic and bosonic oscillators
is

φosc
g (τ , z) =

∞∏
n=1

(1 − ζLyqn)(1 − ζ−1
L yqn)(1 − ζLy−1qn)(1 − ζ−1

L y−1qn)

(1 − ζLqn)2(1 − ζ−1
L qn)2

. (2.23)

Notice that the contribution from the right-moving oscillators, and thus the τ̄ dependence, cancels
out completely.

Finally, the contribution from winding momentum is given by

φw-m
g (τ ) =

∑
k=(kL,kR)∈

(
�

4,4
w-m

)g

ξg(kL, kR)q
k2
L
2 q̄

k2
R
2 . (2.24)
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Here,
(
�

4,4
w-m

)g is the g-fixed sublattice of �4,4
w-m, and ξg (kL, kR) are suitable phases that depend on

the choice of the lift of g from G0 to G. As discussed in Appendix B, one can always choose the
standard lift, where the phases ξg(kL, kR) are trivial for all (kL, kR) ∈ (�4,4

w-m
)g .

Notice that if g acts trivially on the right-movers, then ζR = 1 and φgs
g = 0, and therefore φG

g

vanishes. On the other hand, if both ζR and ζL are different from one, then
(
�

4,4
w-m

)g = {0} and
φw-m

g = 1. Thus, determining φw-m
g is non-trivial only when ζR �= 1 and ζL = 1. As a result, we can

rewrite

φw-m
g (τ ) =

∑
k=(kL,0)∈

(
�

4,4
w-m

)g

ξg(kL, 0)q
k2
L
2 , (2.25)

which is indeed holomorphic in τ as required.

3. The symmetry groups

In this section we establish our notation and summarize some important results on the groups that
we will make use of later. In particular, we will show that the G0, related to the total symmetry
groups of the four-torus sigma models via Eq. (2.9), are all subgroups of W +(E8), the group of
even-determinant Weyl transformations of E8. This fact will be crucial in Sect. 4, as it makes it
possible to equate the twined elliptic genera of the four-torus sigma models and the twined traces of
the E8 lattice VOSA.

By definition, W +(E8) has a natural action on the E8 lattice via its unique eight-dimensional
irreducible representation and is a subgroup of SO(8). Under the inclusion map W +(E8) ↪−→ SO(8),
the center of W +(E8) is mapped to the central Z2 subgroup of SO(8), acting as −Id in the eight-
dimensional vector representation of SO(8) in the former case and in the eight-dimensional non-trivial
representation of W +(E8) in the latter case. We denote by ιv the generator of this latter central
subgroup: 〈ιv〉 ∼= Z2 < W +(E8).The corresponding central quotient is isomorphic to the finite simple
group O+

8 (2), the group of linear transformations of the vector space F
8
2 preserving a certain quadratic

form. (See, e.g., Ref. [28] for a discussion of this.) In other words, we have W +(E8) ∼= 〈ιv〉.O+
8 (2).

Recall that G1, related to G0 as in Eq. (2.11), can be identified with subgroups of W +(E8) that fix an
E8 sublattice of rank at least 4 [27]. Since ιv does not preserve any subspace in the eight-dimensional
vector representation of W +(E8), we conclude that ιv �∈ G1, and by combining the inclusion G1 ↪−→
W +(E8) and the projection W +(E8)

π ′−→ O+
8 (2)we obtain an injective homomorphism G1 → O+

8 (2).
As a consequence, the group G1 is always isomorphic to a subgroup of O+

8 (2).
To show that the discrete part of the sigma model symmetry group G0 is always a subgroup

of W +(E8), it will be useful to consider the group Spin(8). The kernel of the spin covering map
Spin(8)

π−→ SO(8) is an involution 〈ιs〉 ∼= Z2. Considering W +(E8) < SO(8), the preimage of the
spin covering map is 〈ιs〉.W +(E8) < Spin(8). Its center can be identified with the center of Spin(8),
given by 〈ιs, ιv〉 ∼= Z2 × Z2. We thus have that 〈ιs〉.W +(E8) ∼= 〈ιs, ιv〉.O+

8 (2).

The kernel of the spin covering map Spin(8)
π−→ SO(8) is naturally identified with the kernel of the

quotient map G0 → G1 (cf. Eq. (2.11), Table 3.2). Indeed, the preimage of G1 < W +(E8) < SO(8)
in 〈ιs〉.W +(E8) < Spin(8) is precisely the group G0 ∼= 〈ιs〉.G1. As we have seen in Sect. 2.2, in the
sigma models ιs acts by flipping the sign of all the fermions in the representation ρψ (cf. Eq. (2.19)).

At this point it is crucial to recall that Spin(8) has a triality symmetry, i.e. an S3 outer automorphism
group.Also, it has one vector and the two spinor eight-dimensional irreducible representations, which
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we will denote byρs
ψ ,ρs

e, andρs
o respectively, and the action of triality on the group Spin(8) extends to

an S3 permutation action on the three representations ρs
ψ , ρs

e, and ρs
o. This S3 group also permutes the

three non-trivial generators ιv, ιs, ιvιs of the center of Spin(8), and in each of the three aforementioned
eight-dimensional representations one of these generators acts trivially. Triality for Spin(8) induces
an S3 group of outer automorphisms of 〈ιs〉.W +(E8) ∼= 〈ιs, ιv〉.O+

8 (2).
As a result, the G0 subgroup of 〈ιs〉.W +(E8) has three representations, which we denote ρψ , ρe,

and ρo, corresponding to three eight-dimensional representations of Spin(8), that are permuted by
the outer automorphisms of 〈ιs〉.W +(E8). As we have seen in Eq. (2.19), in the sigma model the
representation ρψ captures the action of the symmetry group G0 on the eight (left- and right-moving)
NS–NS (NS being Neveu–Schwarz) fermionsχ i,χ i∗ , χ̃ i, χ̃ i∗ . The other two representations,ρe (resp.
ρo), capture the action of G0 on the RR sector quantum states with even (resp. odd) fermion numbers.
As mentioned before, in the representation ρψ the central involution ιs acts by flipping the signs of
all fermions as well as all bosons (which has to be the case since G0 preserves the superconformal
algebra). On the other hand, in the representation ρe the central element of G0 acts trivially, so that
only the quotient G1 acts faithfully on the RR ground states of even fermion numbers. This is also
the representation where G1 fixes a four-dimensional subspace (cf. Table A3).

Now the S3 outer automorphisms of 〈ιs, ιv〉.O+
8 (2) guarantee that the quotient by any of the three

generators of the central subgroup 〈ιs, ιv〉 is a group isomorphic to W +(E8). In particular, since
ιv �∈ G1 and hence G0 ∼= 〈ιs〉.G1 < 〈ιs〉.W +(E8) does not contain the central involution ιv, the
homomorphism G0 → W +(E8) induced by the projection

〈ιs〉.W +(E8) ∼= 〈ιs, ιv〉.O+
8 (2) → (〈ιs, ιv〉.O+

8 (2)
)
/〈ιv〉 ∼= W +(E8) (3.1)

is injective. Thus we have proved the following result.

Proposition 1 For any four-torus sigma model the corresponding group G0 is isomorphic to a
subgroup of W +(E8).

The discussion of this section can be summarized as follows:

Spin(8)
π−→ SO(8)

↪→ ↪→

〈ιs〉.W +(E8) ∼= 〈ιv, ιs〉.O+
8 (2) −→ W +(E8) ∼= 〈ιv〉.O+

8 (2)⏐� ⏐�π ′

〈ιs〉.O+
8 (2)

∼= W +(E8)
π ′′

−→ O+
8 (2)

↪→ ↪→

G0 −→ G1

(3.2)

4. The VOSA

In this section we discuss the VOSA side of the VOSA/sigma model correspondence in this case: the
E8 lattice VOSA V f

E8
. In Sect. 4.1 we introduce the theory and set up our notation, and in Sect. 4.2

we outline the computation of the twined traces of this VOSA and prove the main theorem of the
paper, Theorem 2.

4.1. The theory

The VOSA V f
E8

is a c = 12 chiral superconformal field theory (SCFT) with eight free chiral fermions
βa(z) and eight free chiral bosons Y a(z) (a = 1, . . . , 8). Moreover, it has chiral vertex operators
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Vλ(z) = c(λ):eλ·Y : corresponding to the E8 lattice. In the above, λ ∈ E8 and c(λ) is the standard
operator needed for locality [29,30]. The stress tensor is given by

T = −
8∑

a=1

:∂Y a∂Y a : − 1

4

8∑
a=1

:βa∂βa :, (4.1)

and an N = 1 structure is provided by the supercurrent Q, proportional to the combination

8∑
a=1

:βa∂Y a :. (4.2)

The 8 currents ∂Y b form a u(1)8 bosonic algebra, while the 28 currents :βaβb : generate a fermionic
Kac–Moody algebra so(8)1. Let F be the eight-dimensional real vector space spanned by the fermions
βa. To facilitate the comparison with the sigma models, we split F into two four-dimensional sub-
spaces F = X ⊕ X̄ such that X is spanned by βa for a = 1, . . . , 4 and X̄ is spanned by βb for
b = 5, . . . , 8. As usual, it is convenient to work with the complex fermions

γ i := 1√
2
(β i + iβ i+2), γ̄ i := 1√

2
(β i+4 + iβ i+6), i = 1, 2. (4.3)

The splitting of F leads to the subalgebra so(4)1 ⊕ so(4)1 of the fermionic Kac–Moody algebra
so(8)1. Focusing on the first, so(4)1 ∼= su(2)1 × su(2)1, corresponding to X ⊂ F , the two factors
of su(2)1 are generated by J 1,2,3

X and A1,2,3
X respectively, completely analogous to the sigma model

case in Eqs. (2.6) and (2.7) upon replacing the χs with γ s.
At the level of the zero modes, we have

SO(X ) = (SU (2)AX × SU (2)JX )/(−1, −1) ∼= SO(4),

SO(X̄ ) = (SU (2)A
X̄

× SU (2)J
X̄
)/(−1, −1) ∼= SO(4). (4.4)

Note that all four SU (2)s above preserve the N = 1 superconformal algebra.
Next we discuss the quantum states of the above model. We will sometimes refer to the space

of states of this VOSA as an NS sector, since the chiral fermions satisfy the antiperiodic boundary
condition. One can also construct a canonically twisted module for this VOSA, i.e. a Ramond sector
with periodic boundary conditions for the fermions. The Ramond sector contains 28/2 = 16 ground
states, forming a representation of the Clifford algebra of the fermionic zero modes. A convenient
basis for these ground states may be denoted

|r〉 := |r1, r2, r3, r4〉, r1, r2, r3, r4 ∈
{
±1

2

}
. (4.5)

Similar to the case of the sigma models in Eq. (2.14), the Fock space ground states are then given
by |λ; r〉 := Vλ(0)|r〉, where λ ∈ E8.

With the sigma model elliptic genus in Eq. (2.12) in mind we define the following twisted module
trace:

Z(τ , z) := Trtw

[
(−1)F yJ X ,3

0 qL0− c
24

]
. (4.6)

The action of the operator J X ,3
0 on the oscillators and the ground states is completely analogous to

its counterpart in the sigma models. Namely, it acts as a number operator for the fermionic oscillators,
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counting γ j
n excitations (with n ≤ −1) as +1 and γ j∗

n excitations as −1, for j = 1, 2, while on the
ground states in Eq. (4.5) it acts as

J X ,3
0 |r〉 = (r1 + r2)|r〉. (4.7)

Similarly, the fermion number operator is defined as (−1)F := (−1)J
X ,3
0 +J X̄ ,3

0 , and acts on the ground
states as

(−1)F |r〉 = (−1)J
X ,3
0 +J X̄ ,3

0 |r〉 = (−1)r1+r2+r3+r4 |r〉. (4.8)

From this, it follows immediately that states built on the ground states |r〉 with opposite signs of r3

(or r4) lead to opposite contributions to the trace Z(τ , z), and hence the trace vanishes. In the next
subsection we will see that, similar to the sigma models, the trace is generically not vanishing when
twined by a symmetry.

4.2. Twined traces

Recall from Proposition 1 that the symmetry groups G0 of the four-torus sigma models may be
regarded as subgroups of W +(E8). We may thus identify them with symmetry groups of V f

E8
which

act on the E8 lattice by even-determinant Weyl automorphisms, according to the vector representation
ρψ . The lattice E8 is naturally contained in F , the eight-dimensional real vector space spanned by
the fermions βa, so we have G0 < W +(E8) < SO(F). As discussed in Sect. 2.1, the groups G0 are
contained in an SU (2)L ×SU (2)R subgroup of SO(4)L ×SO(4)R ⊂ SO(8), and thus they do not mix
the spaces�L and�R. We can further identify the vector spaces X = �L and X̄ = �R, so that G0 is
contained in SU (2)AX × SU (2)A

X̄
(and commutes with SU (2)JX and SU (2)J

X̄
) when acting on the E8

lattice of the VOSA. The action of G0 is then lifted to automorphisms of the E8 VOSA that preserve
the N = 1 supercurrent Q. (One may choose lifts where all phases are trivial; consult Appendix B
for details.) As a result, for each g ∈ G0 we may define the following g-twined trace in the twisted
module for the E8 VOSA:

Zg(τ , z) := Trtw

[
g(−1)F yJ X ,3

0 qL0− c
24

]
, (4.9)

generalizing Eq. (4.6).
Analogous to the sigma models in Eq. (2.20), the above g-twined trace naturally decomposes into

three factors,

Zg(τ , z) = Zosc
g (τ , z)Zgs

g (z)Z
E8
g (τ ), (4.10)

capturing the contribution from the oscillators, the fermionic ground states, and the E8 lattice chiral
operators, respectively.

Choosing a convenient basis for the fermions we observe that the action of g is precisely the same
as in Eq. (2.19), with χ i replaced by γ i, χ i∗ by γ i∗ , χ̃ i by γ̄ i, and χ̃ i∗ by γ̄ i∗ (i = 1, 2). As a result,
the oscillators give a factor of

Zosc
g (τ , z)

=
∞∏

n=1

(1 − ζLyqn)(1 − ζ−1
L yqn)(1 − ζLy−1qn)(1 − ζ−1

L y−1qn)(1 − ζRqn)2(1 − ζ−1
R qn)2

(1 − ζLqn)2(1 − ζ−1
L qn)2(1 − ζRqn)2(1 − ζ−1

R qn)2
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=
∞∏

n=1

(1 − ζLyqn)(1 − ζ−1
L yqn)(1 − ζLy−1qn)(1 − ζ−1

L y−1qn)

(1 − ζLqn)2(1 − ζ−1
L qn)2

. (4.11)

Similarly, the group action on the fermionic ground states is given by

g|r〉 = ζ
AX ,3

0
L ζ

AX̄ ,3
0

R |r〉 = ζ
r1−r2
L ζ

r3−r4
R |r〉, (4.12)

leading to the contribution

Zgs
g (τ , z) = y−1(1 − ζLy)(1 − ζ−1

L y)(1 − ζR)(1 − ζ−1
R )

= 2(1 − Re(ζR))(y
−1 + y − 2Re(ζL)). (4.13)

The contribution from the E8 lattice is

ZE8
g (τ ) =

∑
λ∈(E8)

ρψ (g)

ξg(λ)q
λ2
2 , (4.14)

where (E8)
ρψ(g) is the sublattice of E8 fixed by g (which acts on the lattice according to the ρψ

representation of G0), and ξg(λ) are phases analogous to those in the sigma models of Eq. (2.24)
that can be chosen to be trivial.

We now state and prove the main result of the paper.

Theorem 2 For every g ∈ G0 for any of the possible groups G0, Zg(τ , z) = φG
g (τ , z).

Proof. To begin, we note that, from the preceding discussion, it is evident that for each g ∈ G0 we
have

Zosc
g = φosc

g , Zgs
g = φ

gs
g , (4.15)

so we require (see Eqs. (2.20), (4.10)) to show that ZE8
g = φw-m

g . Since we have Zgs
g = φ

gs
g = 0

whenever ζR = 1, we may focus solely on the case that ζR �= 1. Moreover, if both ζL, ζR �= 1 then
ZE8

g = φw-m
g = 1, as both lattices (E8)

ρψ(g) and
(
�

4,4
w-m

)g are empty in this case. Therefore, we only
need to prove that whenever ζL = 1 and ζR �= 1, the fixed sublattice (E8)

ρψ(g) is isomorphic to(
�

4,4
w-m

)g . We will achieve this by performing a case-by-case analysis. There are only four classes in
ρψ with ζL = 1 and ζR �= 1. In the notation explained in Appendix A, they are 2A, 2E, 3E, and 4A
(see Table A3).

To proceed, we note that by inspecting the character table of W +(E8) we may deduce that the
aforementioned classes are necessarily fixed by the action of any outer automorphism. Since the
representations ρψ and ρe are related by such triality outer automorphisms (cf. Sect. 3), we deduce
that for these classes we have (E8)

ρψ(g) ∼= (E8)
ρe(g), the latter being the lattice fixed by 〈g〉 ⊆ G0

in the representation ρe. In Sect. 4 of Ref. [27], both lattices (E8)
ρe(g) and

(
�

4,4
w-m

)g were described
in detail. In particular, it was shown that they are as in Table 1, from which we see that the fixed
sublattice of the winding-momentum lattice of the four-torus sigma model and the fixed sublattice
of the E8 lattice are isomorphic in each case. This completes the proof. �
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Table 1. Lattice classes from Ref. [27].

2A 2E 3E 4A

(E8)
ρe(g)

( ∼= (E8)
ρψ (g)

)
D4 A4

1 A2
2 D4(

�4,4
w-m

)g
D4 A4

1 A2
2 D4

5. Orbifolds

In this section we investigate the extent to which the diagram in Fig. 1 commutes, or not, with
an arbitrary symmetry in place of the specific Z2 action indicated. We will demonstrate that in
fact the diagram commutes for all possible choices, at least if we assume a certain claim about
orbifolds of four-torus sigma models. We regard this result, Proposition 3, as further evidence that
the VOSA/sigma model correspondence for four-torus sigma models proposed herein represents a
natural structure.

The claim about orbifold sigma models we will require to assume is the following statement: The
orbifold of a four-torus sigma model by a discrete supersymmetry-preserving symmetry is either
a sigma model with T 4 target or a sigma model with K3 target. This claim follows, for example,
from the conjecture that the only N = (4, 4) SCFTs with four spectral flow generators, central
charge c = c̄ = 6, and discrete spectrum come from sigma models with T 4 or K3 target space. This
conjecture is widely believed to be true (see, e.g., Ref. [31]) and was implicitly assumed in early
string theory literature. Here we refer to it as the uniqueness conjecture.

Alternatively, the above claim on four-torus sigma model orbifolds is supported by the following
heuristic argument which is independent of the uniqueness conjecture. Call a symmetry g of a sigma
model T with target X geometric if it is lifted (cf. Appendix B) from a symmetry ḡ of the target space
X . Then the orbifold of T by g should be a sigma model on the orbifold of X by ḡ. Any orbifold of
a four-torus is a singular limit of K3 surfaces, so the claim about orbifolds should hold at least for
geometric symmetries.

For more general symmetries note that it can be shown, independently of the uniqueness conjecture
(see, e.g., Ref. [31]), that the elliptic genus of an N = (4, 4) SCFT with four spectral flow generators
and c = c̄ = 6 is either 0 or coincides with the K3 elliptic genus. Furthermore, if the elliptic genus
is 0 then the corresponding sigma model has T 4 target [31]. So, if the elliptic genus of an orbifold
is 0, there is no doubt that it is a sigma model on T 4.

To handle the case that the elliptic genus of the orbifold is non-vanishing, we recall the reverse
orbifold construction: If T is a sigma model and g is a discrete supersymmetry-preserving symmetry
of T then the orbifold T ′ of T by g has a distinguished symmetry g′ with the property that the orbifold
of T ′ by g′ is T . (See, e.g., Ref. [32] for an analysis of this in the vertex operator algebra (VOA)
setting.)

The supersymmetry-preserving symmetries of sigma models with K3 target have been classified
in Ref. [17], and this allows us to determine the pairs (T ′, g′), with T ′ a K3 sigma model and g′ a
symmetry of T ′, for which the orbifold of T ′ by g′ is a sigma model on T 4 (one just checks if the
elliptic genus of the orbifold vanishes or not). So, by the reverse orbifold construction we obtain a
corresponding set of pairs (T , g), with T a sigma model on T 4 and g a symmetry of T , for which
T is an orbifold of a K3 sigma model T ′ and g is the corresponding distinguished symmetry such
that the orbifold of T by g is T ′. Finally, we can check case by case that every non-geometric four-
torus sigma model symmetry for which the corresponding orbifold elliptic genus is non-vanishing
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occurs in such a pair. So there are simply no candidates for four-torus sigma model orbifolds by
non-geometric symmetries with non-vanishing elliptic genus except for K3 sigma models.

Note that the claim above on four-torus sigma model orbifolds has a rigorous counterpart for
VOSAs. Namely, if ĝ ∈ Aut

(
V f

E8

)
is the standard lift (cf. Appendix B) of a four-torus sigma model

symmetry g ∈ W +(E8) then the orbifold of V f
E8

by ĝ is either isomorphic to V f
E8

or to V s�, the
latter being the unique N = 1 VOSA with c = 12 and vanishing weight 1

2 subspace [22,23]. We
will establish this in the course of proving our next result, Proposition 3. Note that a more general
orbifolding of V f

E8
might result in the VOSA that describes 24 free fermions (cf., e.g., Ref. [25]).

We now prove the main result of this section. For the formulation of this we assume the notation
of Eq. (2.9).

Proposition 3 Let T be a four-torus sigma model and let g ∈ G0 < W +(E8) be a symmetry of T
that preserves the N = 4 superconformal algebra. Let ĝ denote the standard lift of g < W +(E8) to a
symmetry of the VOSA V f

E8
as described in Appendix B. If we assume that any orbifold of a four-torus

sigma model by a discrete supersymmetry-preserving symmetry is either a sigma model on T 4 or a
sigma model on K3, then the orbifold of V f

E8
by ĝ is isomorphic to V f

E8
or V s� according to whether

the orbifold of T by g is a sigma model on T 4 or a sigma model on K3.

Proof. The orbifold of V f
E8

by ĝ is either V f
E8

or V s� or the VOSA associated to 24 free fermions
according to Theorem 3.1 of Ref. [25]. To tell the three possibilities apart we can simply compute the
partition function Zĝ-orb(τ ) of the orbifold theory. It will develop that either Zĝ-orb(τ ) = Z(V f

E8
; τ) or

Zĝ-orb(τ ) = Z(V s�; τ), where Z(V ; τ) is the partition function of V . (In particular, the free fermion
model will not arise.)

Let us denote the anti-periodic and periodic boundary conditions for the fermions by A and P,
respectively. We are interested in the case where the fermions are in the [A, A] sector. The bosons
will always have periodic boundary condition in the current context so we will not explicitly specify
the boson boundary condition in what follows.

Let D̃
DZg

h (τ ) denote the h-twisted, g-twined partition function of V f
E8

in the sector where the fermions
have [D, D̃] boundary conditions, with D, D̃ ∈ {A, P}. The orbifold partition function is then given
by

Zĝ-orb(τ ) = 1

|ĝ|
∑

k ,�∈Z/|ĝ|
A
AZĝ�

ĝk (τ ), (5.1)

so we need to compute D̃
DZĝ�

ĝk for all k , � ∈ Z/|ĝ|. (We have |ĝ| = |g| for all cases except for when

g lies in the class 2E, in which case |2̂E| = 2|2E| = 4. More details on this can be found in
Appendix B.)

Recall that modular transformations change the twisting and twining boundary conditions
according to

PSL2(Z) � γ =
(

a b
c d

)
: (h, g) �→ (gchd , gahb). (5.2)
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Notice that γ ∈ PSL2(Z) implies that (h, g) and (h−1, g−1) correspond to equal partition functions,
since in our case all fields are invariant (self-conjugate) under charge conjugation C = S2 = (ST )3.
Additionally, modular transformations also mix the fermionic sectors [A, A], [A, P], [P, A], while
leaving the bosonic sector [P, P] invariant. In particular, for a holomorphic VOSA of central charge
c, the partition functions A

AZ , P
AZ , A

PZ span a three-dimensional representation ρc : PSL2(Z) → GL(3)
given by

⎛⎜⎝A
AZ
P
AZ
A
PZ

⎞⎟⎠(−1

τ

)
= ρc(S)

⎛⎜⎝A
AZ
P
AZ
A
PZ

⎞⎟⎠ (τ ), ρc(S) =
⎛⎜⎝1 0 0

0 0 1
0 1 0

⎞⎟⎠,

⎛⎜⎝A
AZ
P
AZ
A
PZ

⎞⎟⎠ (τ + 1) = ρc(T )

⎛⎜⎝A
AZ
P
AZ
A
PZ

⎞⎟⎠ (τ ), ρc(T ) =
⎛⎜⎝ 0 e

(− c
24

)
0

e
(− c

24

)
0 0

0 0 e
( c

12

)
⎞⎟⎠. (5.3)

Combining the above, we conclude that

⎛⎜⎜⎝
A
AZĝn

ĝm

P
AZĝn

ĝm

A
PZĝn

ĝm

⎞⎟⎟⎠ (τ ) = e(α)ρ−1
c

((
a b
c d

))⎛⎜⎝
A
AZg′

1
P
AZg′

1
A
PZg′

1

⎞⎟⎠(aτ + b

cτ + d

)
(5.4)

for some
(

a b
c d

) ∈ PSL2(Z) that can be determined from Eq. (5.2), some g′ ∈ 〈ĝ〉, and some phase
e(α) := e2π iα .

Let us use the fact that the VOSA V f
E8

is the product of a (bosonic) holomorphic lattice VOA based
on the E8 lattice, and the VOSA generated by eight real (or four complex) free fermions, and that
the symmetry ĝ acts independently on these two algebras. As a consequence, the twisted-twined

partition functions A
AZĝ�

ĝk factorize as

A
AZĝ�

ĝk = A
AFĝ�

ĝk Bĝ�

ĝk (5.5)

into the product of the twisted-twined partition functions A
AFĝ�

ĝk and Bĝ�

ĝk of the fermionic VOSA (with
[A, A] boundary conditions) and the bosonic VOA, respectively.

We will consider the fermion and boson contributions separately, and then combine the results.
Consider first the four free complex fermions, with cF = 4. Let us denote the partition function in
sector [D, D̃] by D̃

DF . Then we have

A
AF(τ ) = θ4

3 (τ )

η4(τ )
, P

AF(τ ) = θ4
4 (τ )

η4(τ )
, A

PF(τ ) = θ4
2 (τ )

η4(τ )
, P

PF(τ ) = θ4
1 (τ )

η4(τ )
= 0, (5.6)

where we write θi(τ , z) for the usual Jacobi theta functions and set θi(τ ) := θi(τ , 0). The sectors
A
AF(τ ), P

AF(τ ), A
PF(τ ) transform as in Eq. (5.3) under PSL2(Z), with c = 4.

Now consider a symmetry ĝ acting on the fermions, with eigenvalues determined by the represen-
tation ρψ , and denoted ζL = e(αL) and ζR = e(αR), where ζL and ζR are as in Eq. (2.19). Then, the
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ĝk -twisted ĝ�-twined partition function in the four sectors is given by

A
AFĝ�

ĝk (τ ) = q(α̂
2
L+α̂2

R)k
2 θ2

3 (τ , α̂L(kτ + �)) θ2
3 (τ , α̂R(kτ + �))

η4(τ )
,

P
AFĝ�

ĝk (τ ) = q(α̂
2
L+α̂2

R)k
2 θ2

4 (τ , α̂L(kτ + �)) θ2
4 (τ , α̂R(kτ + �))

η4(τ )
,

A
PFĝ�

ĝk (τ ) = q(α̂
2
L+α̂2

R)k
2 θ2

2 (τ , α̂L(kτ + �)) θ2
2 (τ , α̂R(kτ + �))

η4(τ )
,

P
PFĝ�

ĝk (τ ) = q(α̂
2
L+α̂2

R)k
2 θ2

1 (τ , α̂L(kτ + �)) θ2
1 (τ , α̂R(kτ + �))

η4(τ )
, (5.7)

where 0 ≤ k , � < N , and α̂L,R ≡ αL,R(k) are rational numbers such that e(α̂L,R) = ζL,R and
−1

2 < α̂Lk , α̂Rk ≤ 1
2 . Up to a possible redefinition ζL ↔ ζ−1

L or ζR ↔ ζ−1
R , one can restrict

0 ≤ α̂Lk , α̂Rk ≤ 1
2 . Notice that the expressions in Eq. (5.7) are in general not invariant under

k → k + N and � → �+ N , but they can change by a multiplicative constant phase (an N th root of

unity). This phenomenon reflects an ambiguity in the definition of the phases of D
DFĝ�

ĝk that depends

on the choice of the action of 〈ĝ〉 on the ĝk -twisted module.
Next, we consider four free complex bosons on the E8 torus, with cB = 8. The bosons naturally

have periodic boundary conditions on both cycles of the torus. The corresponding partition function
is

B(τ ) := �E8(τ )

η(τ )8
, (5.8)

where

�E8(τ ) = 1

2

(
θ2(τ )

8 + θ3(τ )
8 + θ4(τ )

8) = E4(τ ) (5.9)

is the theta series of the E8 lattice, equal to the Eisenstein series of weight 4. Under modular
transformations the partition function transforms according to

B
(− 1

τ

) = B(τ ), B(τ + 1) = e
(− 1

3

)
B(τ ). (5.10)

A symmetry ĝ acts on the four complex bosons in the same way as for the fermions, leaving
invariant the supersymmetry of the E8 VOSA. The corresponding untwisted ĝn-twined partition
function is thus given by

Bĝn

1 (τ ) = q− 1
3

∞∏
k=1

(
1

1 − ζ n
L qk

)2
(

1

1 − ζ−n
L qk

)2 (
1

1 − ζ n
Rqk

)2
(

1

1 − ζ−n
R qk

)2

��ĝn (τ ), (5.11)

where��ĝn (τ ) is the theta series of the sublattice fixed by ĝn (except for the case that g is of class 2E,
and n = 2, wherein��ĝn takes a slightly different meaning, as explained below). When ζ n

L , ζ n
R �= 1,

one has ��ĝn = 1 and the above may be conveniently written as

Bĝn

1 (τ ) = (ζ
n
2

L − ζ
− n

2
L )2(ζ

n
2

R − ζ
− n

2
R )2

η(τ)4

θ2
1 (τ , nαL)θ

2
1 (τ , nαR)

. (5.12)

16/32

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/8/08B102/6353037 by Biblioteca biologico-m

edica Vallisneri user on 15 Septem
ber 2021



PTEP 2021, 08B102 V. Anagiannis et al.

Table 2. Fixed sublattices of E8 in ρψ , by powers of conjugacy classes of W +(E8).

2̂A 2̂E 3̂E 4̂A −̂4A −̂3E 6̂BC

ĝ D4 A4
1 A2

2 D4 — — —
ĝ2 Ẽ8 A2

2 D4 D4 A2
2 —

ĝ3 — D4

The cases for which ��ĝn (τ ) is not identically 1 are summarized in Table 2, so that ��ĝn is the
theta series of the D4 lattice, for example, when g is of class 2A or 4A and n = 1. As hinted above,
the case that g belongs to 2E and n = 2 is a bit more subtle. This is because ĝ2 is non-trivial, even
though g has order 2. We have

ĝ2 (Vλ) = (−1)(λ,g(λ))Vλ, (5.13)

and the result of this is that �
�ĝ2 should be interpreted as �Ẽ8

(τ ) := θ4
3 (τ )θ

4
4 (τ ), rather than just

the theta series in Eq. (5.9) of E8, when g is of class 2E.

The whole set of bosonic twisted-twined partition functions Bĝ�

ĝk can be recovered from the

untwisted ones Bĝn

1 using the analog of Eq. (5.4) for the bosonic case, namely

Bĝn

ĝm(τ ) = e(αB)B
g′
1

(
aτ + b

cτ + d

)
, (5.14)

for some phases e(αB) := e2π iαB .
We need to have some control over the phases e(αB) in Ex. (5.14). For orbifolds of holomorphic

VOAs by cyclic groups, these phases were discussed in Ref. [36]. More precisely, if V is a simple,
rational, C2-cofinite, self-contragredient vertex operator algebra and g is an automorphism of V of
order N then the phases are governed by a 2-cocycle representing a class in H 2(ZN , ZN ) ∼= ZN .
According to Proposition 5.10 of Ref. [36], the cohomology class depends on 2N 2ρ1 mod N , where
ρ1 is the conformal weight of the irreducible g-twisted V -modules V (g). Different cocycles in the
same class correspond to different choices for the action of 〈g〉 on the twisted sectors.

It turns out that, upon combining the fermions and bosons into the full twisted twined partition

functions D
DZĝ�

ĝk = D
DFĝ�

ĝk Bĝ�

ĝk , the phases e(αB) always cancel against the analogous phases for the
fermionic contribution, so that the phases e(α) in Eq. (5.4) are trivial.

For example, when ζ n
L , ζ n

R �= 1, where n = gcd(k , �), one obtains

Bĝ�

ĝk (τ ) = (
ζ

n
2

L − ζ
− n

2
L

)2(
ζ

n
2

R − ζ
− n

2
R

)2q−(α̂2
L+α̂2

R)k
2 η(τ)4

θ2
1 (τ , α̂L(kτ + �))θ2

1 (τ , α̂R(kτ + �))
, (5.15)

where 0 ≤ α̂L, α̂R ≤ 1/2, so that, combining the fermions and bosons, we obtain

A
AZĝ�

ĝk = (
ζ

n
2

L − ζ
− n

2
L

)2(
ζ

n
2

R − ζ
− n

2
R

)2 θ2
3 (τ ,αL(kτ + �))θ2

3 (τ ,αR(kτ + �))

θ2
1 (τ ,αL(kτ + �))θ2

1 (τ ,αR(kτ + �))
,

P
AZĝ�

ĝk = (
ζ

n
2

L − ζ
− n

2
L

)2(
ζ

n
2

R − ζ
− n

2
R

)2 θ2
4 (τ ,αL(kτ + �))θ2

4 (τ ,αR(kτ + �))

θ2
1 (τ ,αL(kτ + �))θ2

1 (τ ,αR(kτ + �))
,

A
PZĝ�

ĝk = (
ζ

n
2

L − ζ
− n

2
L

)2(
ζ

n
2

R − ζ
− n

2
R

)2 θ2
2 (τ ,αL(kτ + �))θ2

2 (τ ,αR(kτ + �))

θ2
1 (τ ,αL(kτ + �))θ2

1 (τ ,αR(kτ + �))
. (5.16)
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Using the modular properties of Jacobi theta functions, it is easy to verify that Eq. (5.4) holds with
ρc given by Eq. (5.3) with c = 12 and with trivial phases e(α). An analogous result holds when
ζ n

L = 1 or ζ n
R = 1, n = gcd(k , �), although the formulae in Eq. (5.16) are not valid in this case.

Combining the above, we may verify case by case that Zĝ-orb(τ ) = Z(V f
E8

; τ) whenever the g-
orbifold of the four-torus sigma model is again a four-torus sigma model, and Zĝ-orb(τ ) = Z(V s�; τ)
whenever the g-orbifold of the four-torus sigma model is a K3 sigma model, which is what we were
required to show. �

6. Reflection

The procedure of reflection on a non-chiral theory entails mapping all right-movers to left-movers,
resulting in a holomorphic theory that may or may not be consistent. In Ref. [24] such a procedure
was used to show that the K3 sigma model with Z

8
2 : M20 symmetry can be consistently reflected to

give the Conway moonshine module VOSA V s�. Moreover, the necessary and sufficient conditions
that allow for reflection in a general theory were studied in detail.

In this section we demonstrate that a similar reflection relation holds between a specific four-torus
sigma model and the VOSA V f

E8
. In other words, we verify that Property ((3)) of VOSA/sigma model

correspondences holds for V f
E8

and four-torus sigma models. To formulate this result precisely we first
note that, according to Ref. [27], there exists a unique pointμ∗ ∈ M(T 4) such that the corresponding
sigma model �(T 4;μ∗) has G0 ∼= T24 ×C3 T24, where T24 is the tetrahedral group. Now we may
state the main result of this section.

Theorem 4 The image of �(T 4;μ∗) under the reflection operation is a VOSA isomorphic to V f
E8

.

For the proof of Theorem 4 it will be convenient to use a quaternionic description of the relevant
lattices. Let H be the space of quaternions, and write i, j, k for the imaginary units satisfying the
usual quaternionic multiplication rule. Then q ∈ H can be written as q = q1 + q2i + q3j + q4k,
where q1, q2, q3, q4 ∈ R. We will often denote an element q ∈ H in terms of its components
(q1, q2, q3, q4) ∈ R

4, and write q = (q1, q2, q3, q4). We use the following norm on H:

||q||2 :=
4∑

i=1

q2
i , (6.1)

and the following notation for elements of H
2 and H

1,1:

H
2 � (p | q) := (p1, p2, p3, p4 | q1, q2, q3, q4),

H
1,1 � (p ; q) := (p1, p2, p3, p4 ; q1, q2, q3, q4), (6.2)

where the corresponding norms are given by

||(p | q)||2 :=
4∑

i=1

p2
i + q2

i , ||(p ; q)||2 :=
4∑

i=1

p2
i − q2

i . (6.3)

The following lemma details a quaternionic realization of the E8 lattice.
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Lemma 5 The eight-dimensional lattice defined by

�8
w-m :=

{
1√
2
(a | b)

∣∣ ai, bi ∈ Z,
4∑

i=1

bi ∈ 2Z, ai − bi ≡ aj − bj mod 2 ∀ i, j ∈ {1, 2, 3, 4}
}

(6.4)

is a copy of the E8 lattice.

Proof. Recall that the Hurwitz quaternions are defined by

H =
{

q ∈ H | (q1, q2, q3, q4) ∈ Z
4 ∪

(
Z + 1

2

)4
}

⊂ H. (6.5)

Then, according to Sect. 2.6 of Ref. [37], for example, we obtain a copy of the E8 lattice in H
2 by

considering

�E8
∼=
{

p√
2
(2 | 0)+ q√

2
(1 − i | 1 − i)

∣∣ p, q ∈ H
}

, (6.6)

where we write q′(p | q) := (q′p | q′q). In this realization the 240 roots of E8 are expressed as

16 roots of the form
1√
2
(±2, 0, 0, 0 | 0, 0, 0, 0),

32 roots of the form
1√
2
(±1, ±1, ±1, ±1 | 0, 0, 0, 0),

192 roots of the form
1√
2
(±1, ±1, 0, 0 | ±1, ±1, 0, 0), (6.7)

where in the first line the ±2 can be in any position, in the second line the four factors of ±1 can be
either all at the left or all at the right, and in the last line the pair of ±1 at the right can either be at
the same positions as the pair at the left or at complementary positions.

We claim that the sets defined by Eqs. (6.6) and (6.4) are the same. For this, note that in terms of
components we have

p(2 | 0)+ q(1 − i | 1 − i) = 2(p1, p2, p3, p4 | 0)

+ (q1 + q2, −q1 + q2, q3 − q4, q3 + q4 | q1 + q2, −q1 + q2, q3 − q4, q3 + q4), (6.8)

and it follows that�E8 ⊆ �8
w-m. To check that �8

w-m ⊆ �E8 , we define, for every 1√
2
(a | b) ∈ �8

w-m,

pi := ai − bi, i ∈ {1, 2, 3, 4}, (6.9)

and

q2i−1 := 1

2
(b2i−1 − b2i), q2i := 1

2
(b2i−1 + b2i), i ∈ {1, 2}. (6.10)

Then, the condition ai − bi ≡ aj − bj mod 2 guarantees that (p1, p2, p3, p4) ∈ Z
4 ∪ (Z + 1

2

)4
, and

the condition
∑4

i=1 bi ∈ 2Z guarantees that (q1, q2, q3, q4) ∈ Z
4 ∪ (Z + 1

2

)4
. This completes the

proof. �
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Now we are ready to prove Theorem 4.

Proof of Theorem 4. Recall that�(T 4;μ) has a simple description in terms of Fock space oscillators
and vertex operators based on the winding-momentum lattice �w-m(μ) corresponding to the point
μ ∈ M(T 4). Since all right-moving oscillators are straightforwardly reflected to left-moving ones,
the only non-trivial part of the proof is to show that the reflection of the winding-momentum lattice
�w-m(μ

∗) is isomorphic to the E8 lattice.
At the moduli point μ∗ of the four-torus sigma model labelled by�D4 , where the symmetry group

is given by G0 = T24 ×C3 T24 in the notation of Ref. [27], the even unimodular winding-momentum
lattice is given in quaternionic language by

�4,4
w-m =

{
1√
2
(a ; b)

∣∣ ai, bi ∈ Z,
4∑

i=1

ai ∈ 2Z, ai − bi ≡ aj − bj mod 2 ∀ i, j ∈ {1, 2, 3, 4}
}

.

(6.11)
Reflecting �4,4

w-m amounts to changing the signature from (4, 4) to (8, 0), by sending (a ; b) → (a | b)
for all lattice vectors. This results precisely in the lattice �8

w-m, which according to Lemma 5 is
simply the E8 lattice. This completes the proof. �

It is interesting to note that G0 ∼= T24 ×C3 T24 is the largest possible group of symmetries for T 4

sigma models [27]. This is similar to what happens for K3 sigma models: the VOSA V s� can be
obtained by applying the reflection procedure to the K3 sigma model with the largest possible group
of symmetries [24].

Note that the left- and right-moving stress energy tensors of the T 4 sigma model are mapped, under
reflection, to two vectors of conformal weight 2 whose modes generate two commuting Virasoro
algebras at central charge c = 6. It is straightforward to verify that the conformal vector of V f

E8
is

the sum of these two.
The reflection map determines a splitting F = X ⊕ X̄ of the space of free fermions in V f

E8
, where

X and X̄ are generated by the images of, respectively, the four left-moving free fermionsψ1, . . . ,ψ4

and the four right-moving free fermions ψ̃1, . . . , ψ̃4 in �(T 4;μ∗). The currents J i
X and J i

X̄
in V f

E8
are the images of the operators of conformal weight 1 in, respectively, the left- and the right-moving
N = 4 superconformal algebra in the T 4 sigma model.

It follows that the diagonal su(2)2 algebra generated by the operators J i
X +J i

X̄
, i = 1, 2, 3, together

with the N = 1 superVirasoro operators in V f
E8

, generate an N = 4 superconformal algebra at
c = 12. This is the image, under reflection, of the diagonal of the N = (4, 4) algebra of the T 4

sigma model.
An N = 4 superconformal algebra at c = 12 can be defined in a similar way for every choice of

splitting F = X ⊕ X̄ . Moreover, by construction, this N = 4 algebra at c = 12 is preserved by the
action of G0.
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Table A3. Cyclic symmetry subgroups of four-torus sigma models.

Non-trivial eigenvalues Eigenvalues in ρψ
Class ρe in ρe Class ρψ (twice each) o(g) orb (E8)

ρe(g)

1A — — — — 1A 1 1 1 1 1 T 4 rk > 4

−1A — — — — −1A −1 −1 −1 −1 2 K3 rk > 4

2B — — −1 −1 2.2C e
(

1
4

)
e
(

3
4

)
e
(

1
4

)
e
(

3
4

)
4 K3 rk > 4

3A — — e
(

1
3

)
e
(

2
3

)
3BC e

(
1
3

)
e
(

2
3

)
e
(

1
3

)
e
(

2
3

)
3 K3 rk > 4

−3A — — e
(

1
3

)
e
(

2
3

) −3BC e
(

1
6

)
e
(

5
6

)
e
(

1
6

)
e
(

5
6

)
6 K3 rk > 4

2A −1 −1 −1 −1 2A 1 1 −1 −1 2 T 4 D4

−2A −1 −1 −1 −1 2A′ −1 −1 1 1 2 T 4 D4

2E −1 −1 −1 −1 2E 1 1 −1 −1 2 T 4 A4
1

−2E −1 −1 −1 −1 2E′ −1 −1 1 1 2 T 4 A4
1

3E e
(

1
3

)
e
(

2
3

)
e
(

1
3

)
e
(

2
3

)
3E 1 1 e

(
1
3

)
e
(

2
3

)
3 T 4 A2

2

3E′ e
(

1
3

)
e
(

2
3

)
e
(

1
3

)
e
(

2
3

)
3E′ e

(
1
3

)
e
(

2
3

)
1 1 3 T 4 A2

2

−3E e
(

1
3

)
e
(

2
3

)
e
(

1
3

)
e
(

2
3

) −3E −1 −1 e
(

1
6

)
e
(

5
6

)
6 K3 A2

2

−3E′ e
(

1
3

)
e
(

2
3

)
e
(

1
3

)
e
(

2
3

) −3E′ e
(

1
6

)
e
(

5
6

) −1 −1 6 K3 A2
2

4A e
(

1
4

)
e
(

3
4

)
e
(

1
4

)
e
(

3
4

)
4A 1 1 e

(
1
4

)
e
(

3
4

)
4 T 4 D4

4A′ e
(

1
4

)
e
(

3
4

)
e
(

1
4

)
e
(

3
4

)
4A′ e

(
1
4

)
e
(

3
4

)
1 1 4 T 4 D4

−4A e
(

1
4

)
e
(

3
4

)
e
(

1
4

)
e
(

3
4

) −4A −1 −1 e
(

1
4

)
e
(

3
4

)
4 K3 D4

−4A′ e
(

1
4

)
e
(

3
4

)
e
(

1
4

)
e
(

3
4

) −4A′ e
(

1
4

)
e
(

3
4

) −1 −1 4 K3 D4

4C e
(

1
4

)
e
(

3
4

) −1 −1 8A e
(

1
8

)
e
(

7
8

)
e
(

3
8

)
e
(

5
8

)
8 K3 A1A3

−4C e
(

1
4

)
e
(

3
4

) −1 −1 −8A e
(

3
8

)
e
(

5
8

)
e
(

1
8

)
e
(

7
8

)
8 K3 A1A3
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Appendix A. Sigma model symmetries

In this appendix we record the cyclic symmetry subgroups of four-torus sigma models (see TableA3).
Given that G1 < O+

8 (2) and G0 < W +(E8), we need to consider the lifts of relevant classes X of
O+

8 (2) to W +(E8) (see Eq. (3.2)). If there are two classes in the lift, they are denoted ±X . We use
the notation 2.2C to refer to the lift of the class 2C ⊂ O+

8 (2) to W +(E8), which is a single class of
order 4 rather than two classes ±2C. We follow Ref. [28] for the naming of the classes.

Note that the set of possible G1s is bijective to the set of subgroups of W +(E8) which fix an
E8-sublattice of rank at least four, since there is always a rank-four subspace in the representation ρe

in G0. The column “non-trivial eigenvalues in ρe” records the non-trivial eigenvalues in each case.
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Correspondingly, the W +(E8) classes ±X in the columns “Class ρe” denote the preimage of the
class X ⊂ O+

8 (2) under the projection π ′ of Eq. (3.2).
In Sect. 3 we learned that this is not the only way to obtain a lift of a class of O+

8 (2) in the context of
four-torus sigma models. In the column “Class ρψ” we record the preimage of the class X ⊂ O+

8 (2)
under the projection π ′′ in Eq. (3.2). Note that “Class ρψ” and “Class ρe” are of course related by
a triality transformation which exchanges ιs and ιv, and correspondingly ρψ and ρe. By Eq. (2.19),
each eigenvalue appears twice in ρψ and we therefore group the eight eigenvalues in four pairs (of
identical values) and record just representative eigenvalues for each of these pairs. In the notation of
Eq. (2.19), the first two eigenvalues are ζL and ζ−1

L , while the last two are ζR and ζ−1
R . The notation

±X ′ is a reminder that the same W +(E8) class can act differently on a four-torus sigma model by
exchanging left- and right-movers.

In the last part of Table A3 we write o(g) for the order of the element in G0 (i.e. in the faithful
representation ρψ ), while the order in G1 = G0/Z2 (i.e. in the unfaithful representation ρe) can be
read off from the symbol of the class, since G1 < O+

8 (2). We also indicate whether the orbifold by
g is a sigma model on T 4 or K3. Finally, we indicate the ρe(g)-fixed sublattice of E8 if it has rank
four, in which case the symmetry g is non-geometric and appears only at a single point in the moduli
space characterized by the fixed sublattice, which we record. If the rank is larger than four then the
symmetry is geometric and it occurs in some family of models.

Appendix B. Cocycles and lifts

In this appendix we review some well-known results about the OPE of vertex operators in toroidal
sigma models and in lattice vertex operator algebras, with a particular focus on the so-called “cocycle
factors.” Some early references on the subject are Refs. [29,33] in the VOA literature and Ref. [34]
in string theory; further references include Refs. [30,35,36]. Here we adopt the language of two-
dimensional conformal field theory: the lattice VOA version of our statements can be easily derived
from the particular case of chiral CFTs.

Let us consider a (bosonic) toroidal conformal field theory, describing d+ chiral and d− anti-chiral
compact free bosons, whose discrete winding-momentum (Narain) lattice is an even unimodular
lattice L of dimension d = d+ + d−, whose bilinear form (·, ·) : L × L → Z has signature (d+, d−).
Note that such a lattice exists only when d+ − d− ≡ 0 mod 8. If d− = 0, then the conformal
field theory is chiral, and it can be described as a lattice vertex operator algebra based on the even
unimodular lattice L. On the opposite extreme, if d+ = d− = d/2, the CFT can be interpreted
as a sigma model on a torus T d/2. The supersymmetric versions of these models are obtained by
adjoining d+ chiral and d− anti-chiral free fermions. The properties we are going to discuss do not
depend on whether the toroidal CFT is bosonic or supersymmetric, so we will focus on the bosonic
case for simplicity. As discussed in Sect. 2.1, for a given unimodular lattice L, there is a whole
moduli space of toroidal models based on L, whose points correspond to different decompositions
L ⊗R = �L ⊕�R into a positive definite subspace�L and a negative definite one�R. Every vector
v ∈ L ⊗ R can be decomposed accordingly as v = (vL, vR). We can define positive definite scalar
products on �L and on �R that are uniquely determined by the condition

(λ,μ) = λL · μL − λR · μR (B.1)

for all λ,μ ∈ L ⊗ R.
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The CFT contains the vertex operators Vλ(z, z̄), for each λ ∈ L, with OPE satisfying

Vλ(z, z̄)Vμ(w, w̄) = ε(λ,μ)(z − w)λL·μL(z̄ − w̄)λR·μRVλ+μ(w, w̄)+ · · · , (B.2)

where the · · · are subleading (but potentially still singular) terms. In the chiral (d− = 0) case, one
can simply set λL = λ and λR = 0, and similarly with μ. Here, ε : L × L → U (1) must satisfy

ε(λ,μ) = (−1)(λ,μ)ε(μ, λ), (B.3)

ε(λ,μ)ε(λ+ μ, ν) = ε(λ,μ+ ν)ε(μ, ν) (cocycle condition) (B.4)

in order for the OPE to be local and associative. Given a solution ε(λ,μ) to these conditions, any
other solution is given by

ε̃(λ,μ) = ε(λ,μ)
b(λ)b(μ)

b(λ+ μ)
(B.5)

for an arbitrary b : L → U (1). This change corresponds to a redefinition of the fields Vλ: if Vλ(z, z̄)
obey the OPE in Eq. (B.2) with cocyle ε, then the operators Ṽλ(z, z̄) = b(λ)Vλ(z, z̄) obey Eq. (B.2)
with the cocycle ε̃. Notice that if b(λ + μ) = b(λ)b(μ) for all λ,μ ∈ L (i.e. if b : L → U (1)
is a homomorphism of Abelian groups) then ε is unchanged, and the transformation Vλ(z, z̄) →
b(λ)Vλ(z, z̄) is a symmetry of the CFT, which is part of the U (1)d group generated by the zero
modes of the currents.

One can show that ε(λ,μ) satisfying the conditions in Eqs. (B.3) and (B.4) can be chosen to take
values in {±1}. Furthermore, one can use the freedom in redefining Vλ to set

ε(0, λ) = ε(λ, 0) = 1 ∀ λ ∈ L, (B.6)

so that V0(z, z̄) = 1. Cocycles satisfying this condition are sometimes called normalized. Finally,
one can choose ε such that3

ε(λ+ 2ν,μ) = ε(λ,μ+ 2ν) = ε(λ,μ) ∀ λ,μ, ν ∈ L. (B.7)

If we require all these conditions, then ε determines a well-defined function L/2L × L/2L → {±1}.
More formally (see, for example, Ref. [29]), the cocycle ε represents a class in the cohomology

group H 2(L, Z/2Z), where the lattice L is simply regarded as an Abelian group. These cohomology
classes are in one-to-one correspondence with isomorphism classes of central extensions 1 →
Z/2Z → L̂ → L → 1 of the Abelian group L by Z/2Z. The specific cohomology class that
is relevant for the toroidal CFT is uniquely determined by the condition in Eq. (B.3). Using this
formalism, the CFT can alternatively be defined by introducing a vertex operator V

λ̂
for each element

λ̂ ∈ L̂ in this central extension. Then, the OPE of V
λ̂
(z, z̄)Vμ̂(w, w̄) is analogous to Eq. (B.2), with

ε(λ,μ)Vλ+μ replaced by V
λ̂·μ̂ (here, λ̂ · μ̂ denotes the composition law in the extension L̂, which is

possibly non-Abelian). Our previous description of the CFT can be recovered by choosing a section
e : L → L̂ and defining the vertex operators Vλ := Ve(λ) for each λ ∈ L. This leads to the OPE in

3 One further condition that is usually imposed is ε(−λ, λ) = 1 for all λ ∈ L. With this choice the general
relation (Vλ)† = ε(λ, −λ)V−λ simplifies as (Vλ)† = V−λ. Another common choice is ε(−λ, λ) = (−1)λ

2/2. We
will not impose any of these conditions.
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Eq. (B.2), where the particular cocycle representative ε depends on the choice of the section e via
e(λ)e(μ) = ε(λ,μ)e(λ+ μ).

An automorphism g ∈ O(L) can be lifted (non-uniquely) to a symmetry ĝ of the CFT such that

ĝ(Vλ(z, z̄)) = ξg(λ)Vg(λ)(z, z̄), (B.8)

where ξg : L → U (1) must satisfy

ξg(λ)ξg(μ)

ξg(λ+ μ)
= ε(λ,μ)

ε(g(λ), g(μ))
. (B.9)

As shown below, ξg satisfying this condition always exists, and any two such ξg , ξ̃g are related by
ξ̃g(λ) = ρ(g)ξg(λ), where ρ : L → U (1) is a homomorphism. Furthermore, one can always find ξg

taking values in {±1} such that

ξg(0) = 1, (B.10)

ξg(λ+ 2μ) = ξg(λ) ∀ λ,μ ∈ L. (B.11)

With these conditions, ξg induces a well-defined map ξg : L/2L → {±1}.
A constructive proof of these statements is as follows (see Ref. [30]). Choose a basis e1, . . . , ed

for L. Define an algebra of operators γi ≡ γei , i = 1, . . . , d, satisfying4

γ 2
i = 1, γiγj = (−1)(ei ,ej)γjγi, (B.12)

and for every λ = ∑d
i=1 aiei ∈ L, set

γλ := γ
a1
1 · · · γ ad

d . (B.13)

Then, the following properties hold:

γ0 = 1, γλ+2μ = γλ, γλγμ = (−1)(λ,μ)γμγλ. (B.14)

Define ε : L × L → {±1} by

γλγμ = ε(λ,μ)γλ+μ, (B.15)

and, for every g ∈ O(L), define ξg : L → {±1} by

γg(λ) = ξg(λ)γ
a1
g(e1)

· · · γ ad
g(ed )

. (B.16)

It is easy to verify that ε and ξg satisfy all the properties mentioned above. In particular, this choice
of ξg is such that ξg(ei) = 1 for all the basis elements ei. It is clear that γλ, and therefore also ε and
ξg , depend on λ only mod 2L.

4 A slightly modified definition sets γ 2
i = (−1)e

2
i /2. With the latter choice, one obtains ε(λ, −λ) = (−1)λ

2/2

for all λ ∈ L, and γλ depends on λ mod 4L rather than 2L. However, both ε and ξg are still well defined on
L/2L.
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The constraints that we imposed on ξg still leave some freedom in the choice of the lift. There are
two further conditions that one might want to impose:

(A) One might require ĝ to have the same order N = |g| < ∞ as g. Notice that if ĝ is a lift of a g
of order N , then

ĝN (Vλ) = ξg(λ)ξg(g(λ)) · · · ξg(g
N−1(λ))Vλ, (B.17)

so that ĝN = 1 if and only if

ξg(λ)ξg(g(λ)) · · · ξg(g
N−1(λ)) = 1 ∀ λ ∈ L. (B.18)

(B) Alternatively, one might want ξg(λ) to be trivial whenever λ is g-fixed,

ξg(λ) = 1 ∀ λ ∈ Lg , (B.19)

or, equivalently,

ĝ(Vλ) = Vλ ∀ λ ∈ Lg . (B.20)

Lifts satisfying this property are usually called standard lifts.

Proposition 6 Every g ∈ O(L) admits a standard lift ĝ, i.e. such that ĝ(Vλ) = Vλ for all λ ∈ Lg.

Proof. For all λ,μ ∈ Lg , one obviously has ε(g(λ),g(μ))
ε(λ,μ) = 1. Therefore, the restriction of ξg to Lg is

a homomorphism Lg → {±1}, and it is trivial if and only if it is trivial on all elements of a basis of
Lg . By the construction described above, one can always find a lift ĝ such that ξg is trivial for all the
elements of a given basis of L. Choose a basis of Lg ; since Lg is primitive in L, this can be completed
to a basis of L. By choosing ξg to be trivial on the elements of this basis, we obtain a lift ĝ satisfying
condition (B). �

Standard lifts are not unique, but they are all conjugate to each other within the symmetry group
of the CFT, as the following proposition shows. (The following two propositions are proved in
Ref. [36].)

Proposition 7 Let g ∈ O(L) and ĝ, ĝ′ be two lifts of g with associated functions ξg , ξ ′
g : L → {±1}.

Suppose ξg = ξ ′
g on the fixed-point sublattice Lg. Then ĝ and ĝ′ are conjugate in the group of

symmetries of the CFT.

Since the order and the twined genus of a lift ĝ depends only on its conjugacy class within the group
of symmetries, this proposition then tells us that these quantities only depend on the restriction of ξg

on the fixed sublattice Lg . In particular, when g fixes no sublattice of L, all its lifts ĝ are conjugate
to each other.

The following result gives, for the standard lifts (i.e. for ξg = 1 on Lg), the order of ĝ and the

action of every power ĝk on the corresponding gk -fixed sublattice Lgk
.
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Proposition 8 Let g ∈ O(L) and ĝ be a standard lift (i.e. ξg(λ) = 1 for all λ ∈ Lg). Then:

(i) If g has odd order N , then ĝk(Vλ) = Vλ for all λ ∈ Lgk
. In particular, ĝ has order N .

(ii) If g has even order N , then for all λ ∈ Lgk
,

ĝk(Vλ) =
{

Vλ for k odd,

(−1)(λ,gk/2(λ))Vλ for k even.
(B.21)

In particular. ĝ has order N if (λ, gN/2(λ)) is even for all λ ∈ L and order 2N otherwise.

For practical applications of this proposition it is important to have an easy way to determine if
(λ, gN/2(λ)) is even for all λ ∈ L. Consider g of order 2 (these are the important cases, since gN/2

is always of order 2). One has

(λ, g(λ)) ≡ 1

2
(λ+ g(λ))2 ≡ 2

(
1 + g

2
(λ)

)2

mod 2. (B.22)

Since 1+g
2 is the projector onto the g-invariant subspace Lg ⊗ R of L ⊗ R, by self-duality of L,

one has 1+g
2 (L) = (Lg)∗. Therefore, the existence of λ ∈ L with (λ, g(λ)) odd is equivalent to the

existence of v ∈ (Lg)∗ with half-integral square norm v2 ∈ 1
2 + Z. This condition is quite easy to

check, once the lattice Lg is known. When the fixed sublattice Lg is positive definite, the order of
the standard lift can also be related to properties of the lattice theta series θLg (τ ) = ∑

λ∈Lg qλ
2/2.

This is well known to be a modular form of weight r/2, where r is the rank of Lg , for a congruence
subgroup of SL2(Z). Its S-transform θLg (−1/τ) is proportional to the theta series θ(Lg)∗(τ ) of the
dual lattice (Lg)∗. If (Lg)∗ contains a vector v with half-integral square norm v2 ∈ 1

2 + Z, then the

q-series of θ(Lg)∗(τ ) = ∑
v∈(Lg)∗ q

v2
2 contains some powers qn with n ∈ 1

4Z. As a consequence,
the standard lift of g of order 2 has order 2 if and only if the theta series θLg (τ ) is a modular form
for a subgroup of level 2, while it has order 4 if it is only modular under a subgroup of SL2(Z)

of level 4.
When g has even order N and its standard lift ĝ has order 2N , it is sometimes convenient to choose

a non-standard lift ĝ with the same order N as g. The next proposition shows that for N = 2 such a
lift always exists.

Proposition 9 Let g ∈ O(L) have order 2; then there is a lift ĝ of g of order 2.

Proof. Let ĝ′ be a standard lift of g. If (λ, g(λ)) is even for all λ ∈ L, then by the previous proposition
ĝ′ has order 2 and we can just set ĝ = ĝ′. Suppose that (λ, g(λ)) is odd for some λ ∈ L. One has

(−1)(λ,g(λ)) = (−1)
(λ+g(λ))2

2 , and the map λ+g(λ) �→ (−1)
(λ+g(λ))2

2 is a homomorphism (1+g)L →
{±1}. Thus, there is w ∈ ((1 + g)L)∗ such that (−1)

(λ+g(λ))2

2 = (−1)w·(λ+g(λ)) for all λ ∈ L. Notice
that (1 + g)L ⊆ Lg , so that (Lg)∗ ⊆ ((1 + g)L)∗. On the other hand, it is easy to see that w ∈ (Lg)∗,
i.e. that (v, w) ∈ Z for all v ∈ Lg . Indeed, if v ∈ Lg , then either v ∈ (1 + g)L (in which case,
(v, w) ∈ Z is obvious) or 2v ∈ (1 + g)L (because 2v = v + g(v) for v ∈ Lg). In the latter case one

has (−1)(2v,w) = (−1)
(2v)2

2 = 1, so that (2v, w) must be even, and therefore (v, w) ∈ Z. Finally,
by self-duality of L, for every w ∈ (Lg)∗ there always exist w̃ ∈ L such that (w̃, v) = (w, v) for all
v ∈ Lg . In particular, (−1)(w̃,λ+g(λ)) = (−1)(λ,g(λ)) for all λ ∈ L. Then, we can define the lift ĝ
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by ξg(λ) = ξ ′
g(λ)(−1)(w̃,λ), where ξ ′

g is the function corresponding to a standard lift. Thus, for all
λ ∈ L,

ĝ2(Vλ) = ξg(λ)ξg(g(λ))Vλ = ξg(λ+ g(λ))
ε(λ, g(λ))

ε(g(λ), λ)
Vλ

= ξ ′
g(λ+ g(λ))(−1)(w̃,λ+g(λ))(−1)(λ,g(λ))Vλ = Vλ, (B.23)

where we used the condition in Eq. (B.9), and the fact that ξ ′
g(λ+ g(λ)) = 1, since λ+ g(λ) ∈ Lg

and ĝ′ is a standard lift. We conclude that ĝ has order 2. �

B.1. Applications

Let us now apply the results described in the previous section to the cases we are interested in, namely
the sigma model on T 4 and the SVOA based on the E8 lattice. As explained in the article, there is
a correspondence between automorphisms g of the lattice �4,4 lifting to symmetries that preserve
the N = (4, 4) superconformal algebra, and certain automorphisms of the lattice E8. One needs
to choose a lift of these lattice automorphisms to symmetries of the corresponding conformal field
theory or SVOA. As explained above, a lift is determined, up to conjugation by CFT symmetries, by
the restriction of the function ξg to the g-fixed sublattice. The most obvious choice is to consider the
standard lift both for the sigma model and for the SVOA, so that ξg is trivial on the fixed sublattices. In
general, the order of the standard lift is either the same or twice the order of the lattice automorphism.
Therefore, it is not obvious a priori that the standard lifts in the sigma model and in the SVOA have
the same order; we will show now that this is always true in the present case.

Let g be an automorphism of the lattice �4,4. We denote any such automorphism by the class of
ρψ , as in Table A3. Using Propositions 7 and 8, the orders of the standard lifts are as follows.

Classes of odd order N (1A, 3BC, 3E, 3E′, 5BC, 5BC ′): Since N is odd, the standard lift also has
order N . This conclusion also holds for the lift of the corresponding automorphisms of the E8

lattice.
Class −1A: An automorphism g in this class flips the sign of all vectors in �4,4. Therefore, it acts

trivially on �4,4/2�4,4, so that one can set ξg(λ) = 1 for all λ ∈ �4,4, and this lift obviously has
order 2. Since g fixes no sublattice, any other lift of g is conjugate to the lift above and has order 2.
This also implies that any lift ĝ of a lattice automorphism g of even order N , and such that gN/2

is in class −1A, has order N . Indeed, ĝN/2 is a lift of a symmetry in class −1A, so that it must
have order 2. This argument applies to all g in the classes 2.2C, −3BC, −3E, −3E′, 8A, −8A,
−5BC, −5BC ′, 12BC, −12BC ′. Analogous reasoning holds for the automorphism of the lattice
E8 corresponding to class −1A, which flips the sign of all vectors in E8. This automorphism has
no fixed sublattice and acts trivially on E8/2E8, so that one can take ξg to be trivial. The same
reasoning as for the sigma model case shows that all lifts of this symmetry are conjugate to each
other and have order N = 2. More generally, all automorphisms of E8 in the classes 2.2C, −3BC,
−3E, −3E′, 8A, −8A, −5BC, −5BC ′, 12BC, −12BC ′ lift to symmetries of the SVOA of the
same order.

Classes 2A and 2A′: The fixed sublattice is isomorphic to the root lattice D4, and its dual D∗
4 is an

integral lattice. In particular, D∗
4 contains no vector of half-integral square norm, and therefore

the standard lift has order 2. Furthermore, for any g of even order N such that gN/2 is in class 2A
or 2A′, one has that (λ, gN/2(λ)) is even for all λ, so that a standard lift has the same order N .
This applies to all g in the classes 4A, 4A′, −4A, −4A′, 6BC, 6BC ′. For automorphisms of the E8
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lattice in classes 2A and 2A′, the fixed sublattice is also isomorphic to D4, so the standard lift has
the same order N = 2. The same reasoning holds for the standard lifts of automorphisms in the
classes 4A, 4A′, −4A, −4A′, 6BC, 6BC ′.

Classes 2E and 2E′: The fixed sublattice is A4
1, and its dual (A4

1)
∗ contains vectors of square length

1/2. Thus, the standard lift has order 2N = 4. The corresponding automorphism of the E8 lattice
also fixes a sublattice isomorphic to A4

1, so its standard lift has order 4.

The conclusion of this analysis is that, both for toroidal sigma models and for the E8 SVOA, the
only case where the standard lift has twice the order of the corresponding lattice automorphism is
for the class 2E.

If g is in class 2E, the twined genus for the standard lift (which has order 4) involves the theta
series of the A4

1 lattice,

�A4
1
(τ ) = θ3(2τ)4. (B.24)

This theta series (and the corresponding twined genus) is a modular form of level 4. This is consistent
with the analysis above.

One can also focus on a (non-standard) lift of order 2, with ξg(λ) = (−1)λ
2
/2 for allλ ∈ (1+g)�4,4.

For any g of order 2, one has (1 + g)�4,4 = 2((�4,4)g)∗; in particular, for g in class 2E or 2E′, one
has (�4,4)g ∼= A4

1, so that (1 + g)�4,4 ∼= 2(A4
1)

∗ ∼= A4
1

∼= �g . For this lift, the twining genus involves
the theta series with characteristics

�A4
1,ξg
(τ ) =

∑
λ∈A4

1

qλ
2/2(−1)λ

2/2 = �A4
1

(
τ + 1

2

)
= θ3(2τ + 1)4 = θ4(2τ)4, (B.25)

which is modular (with multipliers) for�0(2) (its S-transform is proportional to θ4(τ/2)4). As for the
E8 SVOA, since the sublattice fixed by the automorphism is also isomorphic to A4, one can choose
an analogous (non-standard) lift with the same ξg on the fixed sublattice, which is also of order 2.

For a general class, it is difficult to define a reasonable correspondence between non-standard lifts
in the sigma model and the E8 SVOA, since the fixed sublattices are, in general, not isomorphic.

Appendix C. The K3 case revisited

In Ref. [19] it was shown that the Conway group action on V s� may be used to recover many of the
weak Jacobi forms that arise as twined elliptic genera of K3 sigma models. It was also conjectured
that all twined K3 elliptic genera arise in this way, but the analysis of Ref. [20] subsequently showed
that there are four exceptions. In Sect. C.1 we explain how all but one of these exceptional cases may
be recovered if we allow non-supersymmetry-preserving automorphisms of V s�, and the remaining
one too if we allow linear combinations of supersymmetry-preserving automorphisms of V s� with
higher than expected order.

VOSAs V f � and V s� are studied in Refs. [22] and [19,23], respectively, in connection with moon-
shine for the Conway group. In Sect. C.2 we briefly review the relationship between these objects,
and explain a sense in which the Conway group Co0, see Eq. (C.3), arises naturally as a group of auto-
morphisms of the latter. Specifically, we introduce the notion of Ramond (sector) N = 1 structure,
show that V s� admits such a structure, and demonstrate that Co0 is the full group of automorphisms
of this structure. We also explain why V f � and V s� are the same as far as twinings of the K3 elliptic
genus are concerned.
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C.1. Twined elliptic genera

We begin by reviewing the exceptional forms identified in Ref. [20]. Three of them actually arise in
Mathieu moonshine, as the weak Jacobi forms associated to the conjugacy classes 3B, 4C, and 6B of
M24. (As before, we adopt the notation of Ref. [28] for conjugacy classes.) According to Ref. [38],
for example, these forms are given respectively by

Z3|3(τ , z) = 2
η(τ)6

η(3τ)2
φ−2,1(τ , z),

Z4|4(τ , z) = 2
η(τ)4η(2τ)2

η(4τ)2
φ−2,1(τ , z),

Z6|6(τ , z) = 2
η(τ)2η(2τ)2η(3τ)2

η(6τ)2
φ−2,1(τ , z), (C.1)

where φ−2,1 = −θ2
1η

−6 is the unique weak Jacobi form of weight −2 and index 1 for SL2(Z) such
that φ−2,1(τ , z) = y−1 − 2 + y + O(q) for q = e2π iτ and y = e2π iz. The subscripts n|h in Eq. (C.1)
encode the characters (i.e. multiplier systems) of the respective forms; see Eqs. (1.9) and (3.8) of
Ref. [38], for example, for the details of this. We denote the remaining exceptional form Z8|4. It is
given explicitly by

Z8|4(τ , z) = 2
η(2τ)4η(4τ)2

η(8τ)2
φ−2,1(τ , z). (C.2)

Next, we recall that in Sect. 9 of Ref. [19] a holomorphic function φg(τ , z) : H × C → C is
associated to each element g of the Conway group

Co0 := Aut(�) (C.3)

such that the space of g-fixed points in � ⊗Z C � C
24 is at least four-dimensional. In Eq. (C.3)

we write � for the Leech lattice (cf., e.g., Refs. [28,37]). Now the full automorphism group of the
VOSA structure on V s� is a Z2 quotient of the Lie group Spin24(C), and we observe here that the
construction of Ref. [19] works equally well for any element of Spin24(C) whose image in SO24(C)

fixes a 4-space in �⊗Z C. For example, consider an orthogonal transformation x ∈ SO24(C) with
Frame shape πx = 28.42 (so that the characteristic polynomial of x is (1 − x2)8(1 − x4)2). Then we
have C−x = Dx = 0 in the notation of Ref. [19], and a computation reveals that φx = Z4|4. Similarly,
we recover Z6|6 and Z8|4 by taking πx to be 26.62 and 24.82, respectively.

The Frame shapes 28.42, 26.62, and 24.82 are not represented by elements of the Conway group,
and the Conway group is distinguished in that it arises as the stabilizer of any N = 1 structure on
V s� (cf. Sect. C.2), so such symmetries of V s� do not preserve supersymmetry; it is notable, however,
that we can recover three of the four exceptional twined K3 elliptic genera by allowing these more
general twinings on the VOSA side.

Another interesting coincidence is the fact that Z4|4 = φg for g ∈ Co0 with Frame shape πg =
24.4−4.84. (For this we take Dg = 16 in the notation of Ref. [19].) The surprising part is that g has
order 8, rather than 4. We have not found a way to recover the last remaining form, Z3|3, directly
from an element of Spin24(C), but we have

Z3|3 = 2φg − 2

3
φg3 − 1

3
φe (C.4)
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for g ∈ Co0 with Frame shape πg = 13.3−2.93 (take Dg = 9 for the computation of φg here), which
may be regarded as an analog.

C.2. Conway modules

Both Refs. [22] and [23] are concerned with moonshine for the Conway group, but the former
focusses on V f �, whereas the latter puts a spotlight on V s�. As explained in Ref. [23], these two
objects are isomorphic as VOSAs, but inequivalent as representations of Co0. Indeed, the action of
Co0 on V s� is faithful, whereas the action of Co0 on V f � factors through its center to the (sporadic)
simple group Co1 := Co0/〈z〉 (cf., e.g., Ref. [28]). Here, z denotes the unique non-trivial central
element of Co0, which is realized by −I as an automorphism of � (cf. Eq. (C.3)).

To make our discussion explicit and concrete, let A denote the VOSA of 24 free fermions, and
let Atw be an irreducible canonically twisted module for A. Then A := A ⊕ Atw admits a structure
(A, Y ,ω, v) of intertwining operator algebra, and the spin group Spin24(C) is the automorphism
group of this structure. Now, according to the construction of Ref. [22] there exists a vector τ ∈ Atw

with the property that if Y (τ , z) = ∑
n∈ 1

2 Z
τnz−n−1 then the operators τn for n ∈ 1

2Z generate actions
of the NS and Ramond Lie superalgebras (cf., e.g., Ref. [39]) on A. Thus it is natural to consider
the subgroup of Spin24(C) = Aut(A) that fixes τ . It follows from the results of Ref. [22] that this
fixing group is none other than the Conway group, Co0.

Now let A = A0 ⊕ A1 and Atw = A0
tw ⊕ A1

tw be the eigenspace decompositions for the action of
the central element z ∈ Co0 on A and Atw, respectively, so that z acts as (−I )k on Ak ⊕ Ak

tw for
k ∈ {0, 1}. Then the intertwining operator algebra (IOA) structure on A restricts to VOSA structures
on A0 ⊕ A0

tw and A0 ⊕ A1
tw, and the distinguished vector τ lies in A0

tw and generates a representation
of the NS Lie superalgebra on A0 ⊕ A0

tw.
Now, as VOSAs with Co0-module structure we have V f � = A0 ⊕ A0

tw and V s� = A0 ⊕ A1
tw. Both

VOSAs admit (non-faithful) actions of Spin24(C) by automorphisms, but we can naturally isolate
an action of the Conway group in the case of V f � as follows. Recall that an N = 1 structure on
a VOSA V is a choice of vector in V for which the modes of the corresponding vertex operator
generate a representation of the NS superalgebra on V . Then, according to the discussion above, τ
defines an N = 1 structure on V f �, and Co1 = Co0/〈z〉 is the subgroup of Aut(V f �) that preserves
this structure.

How about for V s�? Well, it is no less natural to consider the subgroup of Aut(V s�) that fixes τ ,
which is precisely Co0. Since τ does not belong to V s� it does not define an N = 1 structure on V s� in
the sense of Ref. [22], but it does belong to the canonically twisted V s�-module V s�

tw = A1 ⊕A0
tw, and,

according to our discussion, the modes of suitable corresponding intertwining operators generate
representations of the NS and Ramond superalgebras on V s� ⊕ V s�

tw. With this in mind we make the
following definition. For V a VOSA, define a Ramond sector N = 1 structure for V to be a choice of
vector τ ∈ Vtw, for a canonically twisted V -module Vtw, with the property that the modes attached
to τ by some intertwining operator on V ⊕ Vtw generate representations of the NS and Ramond
superalgebras on V ⊕ Vtw. Then we have shown that τ defines a Ramond sector N = 1 structure for
V s�, and Co0 arises as the automorphism group of this structure.

Finally, we comment on the question of what happens when we take V f � in place of V s� in the
setup of Ref. [19]. The question makes sense because the construction of Sect. 9 of Ref. [19] applies
equally well to V f � as it does to V s�, but actually there is no difference in the Jacobi forms that
one obtains. This is because if G is any subgroup of Co0 = Aut(�), or the orthogonal group
SO(�⊗Z C) = SO24(C) for that matter, that fixes a vector in �⊗Z R, then it fixes an orthonormal
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vector v in the space�⊗Z C, which is naturally identified with A1
1/2. Now the zero mode v(0) of the

associated vertex operator A⊗Atw → Atw((z
1
2 )) defines an isomorphism of G-modules A0

tw → A1
tw,

since G fixes v by assumption. So V f �
tw = A1 ⊕ A1

tw and V s�
tw = A1 ⊕ A0

tw are the same as G-modules,
and so the twinings of the K3 elliptic genus that we can recover from V f �

tw and V s�
tw coincide.
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