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Abstract

We prove that the invariably generating graph of a finite group can have an arbitrarily large number of
connected components with at least two vertices.
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1. Introduction

Given a finite group G and a set X = {C1, . . . , Ct} of conjugacy classes of G, we say
that X invariably generates G if 〈x1, . . . , xt〉 = G for every x1 ∈ C1, . . . , xt ∈ Ct. In this
case, we write 〈X〉I = G. This concept was introduced by Dixon [16] with motivations
from computational Galois theory and has been widely studied in recent years.

In [17], the following definition was given. For a finite group G, the invariably
generating graph Λ(G) of G is the undirected graph whose vertices are the conjugacy
classes of G different from {1}, and two vertices C and D are adjacent if 〈C, D〉I = G.
If G is not invariably 2-generated, Λ(G) is the empty graph. Even when G is invariably
2-generated, the graph Λ(G) can have isolated vertices (for example, when G is not
cyclic, the classes contained in the Frattini subgroup). Define Λ+(G) as the graph
obtained by removing the isolated vertices of Λ(G). In this paper we prove the
following result.

THEOREM 1.1. For every positive integer n, there exists a finite group G such that
Λ+(G) has more than n connected components.

Theorem 1.1 should be seen in comparison with the analogous graph for the case of
usual generation (see Subsection 1.2).

In the proof of Theorem 1.1, we use G = Sβ, where S = PSL2(q) and β = β(S) is the
largest integer for which Sβ is invariably 2-generated.

The crucial observation about S = PSL2(q) is that the graph Λ+(S) is bipartite,
which follows from the fact that S admits a 2-covering (Lemma 2.6). See Section 3
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454 D. Garzoni [2]

for further comments in this direction, related to the clique number and the chromatic
number of Λ+(S), in the case where S is a nonabelian finite simple group.

In order to estimate the number of connected components of Λ+(Sβ), we will need
the following result.

THEOREM 1.2. Let S = PSL2(q) and let C1, C2 be conjugacy classes of S chosen
uniformly at random. Then

P(〈C1, C2〉I = S) = 1/2 + O(1/q).

The proof of Theorem 1.2 is straightforward, since the subgroups and conjugacy
classes of PSL2(q) are known very explicitly (and one can be much more precise about
the error term).

For our application to Theorem 1.1, we could somewhat shorten the proof by
imposing some restrictions on q (for example, by requiring q prime). However, we
prefer to state and prove Theorem 1.2 in general. Indeed, it is interesting that the
asymptotic behaviour of P(〈C1, C2〉I = S) is equal to the asymptotic behaviour of
P(〈xS

1, xS
2〉I = S), where x1, x2 ∈ S are random elements (see [20, Subsection 6.1]).

1.1. Some context on �(G). Guralnick and Malle [22] and Kantor et al. [26]
independently proved that every finite simple group S is invariably 2-generated, so
that Λ(S) is not the empty graph. In [17], the author studied the graph Λ(G), in the
case where G is an alternating or symmetric group, and proved thatΛ+(G) is connected
with diameter at most 6 in these cases (with the exception of S6, which is not invariably
2-generated).

At present, it is not known whether Λ+(S) is connected if S is nonabelian simple
(see [17, Question 1.6]).

In [17], an analogous graph, denoted by Λe(G), was defined. Its vertices are the
nontrivial elements of G, and two vertices are adjacent if the corresponding classes
invariably generate G. In [20], it was proved that if S is nonabelian simple, then either
S belongs to three explicit families of examples, or the proportion of isolated vertices
of Λe(S) tends to zero as |S| → ∞. See [20, Corollary 1.6] for a precise statement and
further comments.

1.2. Comparison with usual generation. For a finite group G, the generating graph
Γ(G) of G is the undirected graph whose vertices are the nonidentity elements of G,
with vertices x and y adjacent if 〈x, y〉 = G. This graph has been intensively studied in
the past two decades (see Burness [10] and Lucchini and Maróti [28] for many results
in this context).

Again, the graph Γ(G) can have isolated vertices and we consider the graph Γ+(G)
obtained by removing the isolated vertices of Γ(G).

It is known that Γ+(G) is connected in several cases. For instance, Burness
et al. [11] showed that if G is a finite group such that every proper quotient of
G is cyclic, then Γ(G) = Γ+(G) and Γ(G) is connected with diameter at most 2
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[3] The invariably generating graph 455

(the special case where G is simple was proved by Guralnick and Kantor [21] and
Breuer et al. [3]).

We recall other results of the same flavour, proved by Crestani and Lucchini
[12, 13], in Section 3.

On the other hand, no example of G is known for which Γ+(G) is disconnected. In
fact, it is believed that there should be no such example. See Acciarri and Lucchini
[1, comments after Corollary 2.7] for a more general conjecture, which would imply
that Γ+(G) is connected for every 2-generated finite group G.

This determines a sharp difference with respect to Theorem 1.1. We note that this
difference does not occur for nilpotent groups. Indeed, in a finite nilpotent group, every
maximal subgroup is normal; therefore, the concepts of generation and invariable
generation coincide. See Harper and Lucchini [24] for results on the generating graph
of finite nilpotent groups.

2. Proof of Theorems 1.1 and 1.2

2.1. Direct powers of finite simple groups. Throughout this subsection, S denotes
a nonabelian finite simple group. We review some properties of invariable generation
of direct powers of S, which reflect some interesting properties of the corresponding
invariably generating graphs. The key tool is an elementary criterion due to Kantor
and Lubotzky [25], which we recall here.

Denote by Ψ2(S) the set of all pairs (C1, C2), where Ci is a conjugacy class of S, and
〈C1, C2〉I = S. As recalled in Subsection 1.1, it is known that Ψ2(S) � ∅.

Now let t be a positive integer and let C and D be conjugacy classes of St, with
C = C1 × · · · × Ct and D = D1 × · · · × Dt (where Ci and Di are conjugacy classes of S).
Consider the matrix

AC,D =

(
C1 C2 · · · Ct
D1 D2 · · · Dt

)
.

LEMMA 2.1. We have 〈C, D〉I = St if and only if the following conditions are both
satisfied:

(i) each column of AC,D belongs to Ψ2(S);
(ii) no two columns of AC,D lie in the same orbit for the diagonal action of Aut(S) on

Ψ2(S).

PROOF. See [25, Proposition 6] and also [14, Lemma 20]. �

Let β = β(S) be the largest integer for which Sβ is invariably 2-generated. Lemma 2.1
implies that β(S) is equal to the number of orbits for the diagonal action of Aut(S) on
Ψ2(S). We note the following fact.

LEMMA 2.2. We have

|Ψ2(S)|
|Out(S)| � β(S) � |Ψ2(S)|.
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456 D. Garzoni [4]

PROOF. The second inequality is clear. The first follows from the fact that Inn(S) � S
acts trivially in the relevant action, hence each orbit has size at most |Out(S)|. �

If S is a nonabelian finite simple group, then Out(S) is ‘very’ small. For instance,
|Out(S)| = O(log2 |S|) (see, for example, [27, Tables 5.1.A–5.1.C] for the exact value of
|Out(S)| in each case). We expect |Out(S)| to be much smaller than |Ψ2(S)| for every
sufficiently large nonabelian finite simple group S. Therefore, |Ψ2(S)| should be, in
some sense, a good approximation for β(S).

REMARK 2.3. Let us compare Lemma 2.2 with the analogous problem for classical
generation.

Let δ = δ(S) be the largest integer for which Sδ is 2-generated. In contrast to the
situation for β(S), there is an exact formula for δ(S), namely, δ(S) = φ2(S)/|Aut(S)|,
where φ2(S) denotes the number of ordered pairs (x, y) ∈ S2 such that 〈x, y〉 = S. (This
goes back to Hall [23] in the 1930s and has been widely used.) The difference is that
the diagonal action of Aut(S) on the set of generating pairs of elements is semiregular
(that is, only the identity fixes a generating pair), while this need not be the case for
the action of Aut(S) on the set of invariable generating pairs of conjugacy classes.

Lemma 2.1 describes quite precisely the graph Λ+(Sβ). Indeed, any arc in the graph
is obtained as follows (and only in this way). Construct a 2 × β matrix, in which the
columns form a set of representatives for the Aut(S)-orbits on Ψ2(S). Then the first
row is adjacent to the second row in Λ+(Sβ) (here we are identifying a conjugacy class
C1 × · · · × Cβ of Sβ with a row vector (C1, . . . , Cβ)). Since Aut(Sβ) � Aut(S) � Sym(β)
acts by automorphisms on Λ+(Sβ), we also see that Λ+(Sβ) is arc-transitive.

2.2. The case S = PSL2(q). Throughout this subsection, we let S = PSL2(q), where
q � 4 is a power of the prime p, and we let d = (2, q − 1).

The maximal subgroups of S are known from the work of Dickson [15] (see also [2,
Table 8.1]). For the reader’s convenience, we report here the list, up to conjugacy.

LEMMA 2.4. The maximal subgroups of S are the following, up to conjugacy:

• a subgroup B of order q(q − 1)/d (the stabiliser of a 1-space);
• a dihedral group of order 2(q − 1)/d, for q even or q � 13;
• a dihedral group of order 2(q + 1)/d, for q � 7, 9;
• PSL2(q0), where q = qr

0, q0 � 2 and r is an odd prime;
• PGL2(q0), where q = q2

0 and q0 � 2 (two classes if q is odd);
• A4 for q = p ≡ ±3, 5,±13 (mod 40); S4 for q = p ≡ ±1 (mod 8) (two classes);

A5 for either q = p ≡ ±1 (mod 10), or q = p2 and p ≡ ±3 (mod 10) (two classes).

For completeness, we report the exact conditions on q under which the relevant
items yield maximal subgroups of S, although these are largely irrelevant for our
purposes. For instance, the conditions on q in the last item can safely be ignored (except
possibly for the purposes of Remark 2.7).

We recall other well-known facts.
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[5] The invariably generating graph 457

LEMMA 2.5. The following assertions hold.

(1) S contains a unique conjugacy class of involutions and, for p odd, two conjugacy
classes of elements of order p.

(2) Let � � 3 be a divisor of (q ± 1)/d. There are φ(�)/2 conjugacy classes of elements
of order � in S, where φ is Euler’s totient function.

(3) The number of conjugacy classes of S is (q + 4d − 3)/d.

PROOF. We sketch a proof.
(1) Assume first that q is odd, and let us deal with involutions. Let ε = 1 if

q ≡ 1 (mod 4) and ε = −1 otherwise. By explicit matrix computation, we find that
the number of involutions of S is q(q + ε)/2. This coincides with the number of
conjugates of a dihedral subgroup of order q − ε, so we deduce that all involutions
of S are conjugate. Next, we deal with elements of order p (including the case
where q is even). The image in S of the subgroup of SL2(q) consisting of the
upper unitriangular matrices is a Sylow p-subgroup P of S. This is contained in a
subgroup B, consisting of the image of the upper triangular matrices of SL2(q). Let
1 � x ∈ P. We verify that xS ∩ P = xB, and we compute that conjugating x by elements
of B can only multiply the upper-right entry by every nonzero square of Fq. This
proves (1).

(2) Let � � 3 be a divisor of (q ± 1)/d. All cyclic subgroups of order � are conjugate
in S. Assume x ∈ S has order �. Then NS(〈x〉) is dihedral of order 2(q ± 1)/d, from
which xS ∩ 〈x〉 = {x, x−1}. This proves (2).

(3) An element of S has either order p or order dividing (q ± 1)/d. Then (3) follows
from (1), (2) and the formula ∑

�|(q±1)/d

φ(�)
2
=

q ± 1
2d

. �

The following lemma represents the main observation regarding S = PSL2(q).

LEMMA 2.6. The graph Λ+(S) is bipartite.

PROOF. Let H be a dihedral subgroup of S of order 2(q + 1)/d, and let K be a Borel
subgroup of order q(q − 1)/d. It is well known (see, for example, [6]) that {H, K} is a
2-covering of S, that is,

S =
⋃
g∈S

Hg ∪
⋃
g∈S

Kg.

For convenience, we write H̃ = ∪g∈SHg and K̃ = ∪g∈SKg. A conjugacy class contained
in H̃ ∩ K̃ is isolated in Λ(S), and a class contained in H̃ \ K̃ can be adjacent in Λ+(S)
only to a class contained in K̃ \ H̃. This gives a partition of Λ+(S) into two parts. �

We refer to Subsection 3.1 for a discussion on the topic of 2-coverings of finite
simple groups.
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458 D. Garzoni [6]

REMARK 2.7. Using Lemmas 2.4 and 2.5, it is not hard to show thatΛ+(S) is connected
with diameter at most 3. Now, let us briefly comment on the graph Λ(S) and how it
differs from Λ+(S). It is straightforward to prove the following.

(i) If q = 7, then Λ(S) has one isolated vertex: the class of elements of order 3.
(ii) If q = 9, then Λ(S) has three isolated vertices: the two classes of elements of

order 3, and the class of involutions.
(iii) If q � 9, and q is even or q ≡ 1 (mod 4) or q � p, then Λ(S) has one isolated

vertex: the class of involutions.
(iv) If q � 7 and q = p ≡ 3 (mod 4), then Λ(S) has no isolated vertices; therefore

Λ(S) = Λ+(S).

In particular, if q � 9 then Λ(S) has at most one isolated vertex. This is in contrast
to the case of alternating or symmetric groups G, where Λ(G) can have an arbitrarily
large number of isolated vertices (see [17, Theorem 1.2]).

Let P1 and P2 be the parts ofΛ+(S) given in the proof of Lemma 2.6. We note that
for every conjugacy class C of S and for every σ ∈ Aut(S), {C, Cσ} does not invariably
generate S. (A way to see this is that the sets H̃ and K̃ from the proof of Lemma 2.6
are preserved by every automorphism of S.) In particular, for every (C1, C2) ∈ Ψ2(S),
(C1, C2) and (C2, C1) belong to different Aut(S)-orbits. We also note that the parts P1
and P2 are invariant under the action of Aut(S). We deduce the following result.

LEMMA 2.8. β = β(S) is even, and for each vertex C = C1 × · · · × Cβ of Λ+(Sβ), there
exists a subset Ω = Ω(C) of {1, . . . , β} of size β/2 such that Ci ∈P1 for every i ∈ Ω
and Ci ∈P2 for every i � Ω.

We can finally prove the key result.

THEOREM 2.9. The graph Λ+(Sβ) has at least 1
2 ·

(
β
β/2

)
connected components.

PROOF. For a vertex C = C1 × · · · × Cβ of Λ+(S), letΩ(C) be the set from Lemma 2.8.
Then, C can be adjacent only to vertices D such that Ω(D) = {1, . . . , β} \Ω(C).
In particular, the number of connected components of Λ+(Sβ) is at least half the
number of β/2-subsets of {1, . . . , β}, which proves the statement. �

It is not difficult to establish that β(S) tends to infinity as |S| → ∞ (that is, q→ ∞),
thereby proving Theorem 1.1. In the next subsection we will obtain a better estimate
for β(S).

2.3. Bounds. We want to estimate β(S), where S = PSL2(q). We will find the
asymptotic behaviour of |Ψ2(S)| and then apply Lemma 2.2. In the following, f = O(g)
means that | f | � Cg for some constant C (so f might also be negative).

THEOREM 2.10. Let S = PSL2(q) and d = (2, q − 1). Then

|Ψ2(S)| = q2

2d2 + O(q).
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[7] The invariably generating graph 459

(For q odd, the first term of the expression is not an integer, but the statement still
makes sense.)

PROOF. In this proof, when we say that a conjugacy class C intersects a subgroup H,
we mean that C ∩ H � ∅.

We need to count the pairs of conjugacy classes (C1, C2) which invariably gener-
ate S. We ignore the pairs where either C1 or C2 comprises elements of order p, or
order at most 2. By Lemma 2.5, the number of these pairs is O(q).

By this choice, up to swapping the indices, C1 intersects a cyclic subgroup of order
(q − 1)/d, and C2 intersects a cyclic subgroup of order (q + 1)/d. Given C1 and C2
with this property, by Lemma 2.4, we see that C1 and C2 invariably generate S unless
one of the following occurs:

(i) C1 and C2 intersect a subgroup isomorphic to A4, S4 or A5, and there are at most
four conjugacy classes of such subgroups;

(ii) C1 and C2 intersect a maximal subgroup conjugate to PSL2(q1/r), where r is an
odd prime (and q is an rth power).

(Note that in (ii) we are excluding the subfield subgroups PGL2(q1/2). Indeed, any
class of elements of PGL2(q1/2) of order prime to q intersects a cyclic subgroup of S
of order (q − 1)/d, and this cannot occur for C2.) Clearly there are O(1) possibilities
for (C1, C2) satisfying (i). The number of conjugacy classes of PSL2(q1/r) is O(q1/r);
therefore, for fixed r, the number of possibilities for the pair (C1, C2) satisfying
(ii) is O(q2/r). Summing over the odd prime divisors of logp q, we see that there
are O(q2/3) possibilities in (ii), noting that there are at most log2 log2 q possibilities
for r.

Using Lemma 2.5, we get the following formula for |Ψ2(S)| (the factor 2 at the
beginning comes from the fact that we may also have C1 intersecting a cyclic subgroup
of order (q + 1)/d and C2 intersecting a cyclic subgroup of order (q − 1)/d):

|Ψ2(S)| = 2 ·
∑

�1 |(q−1)/d
�2 |(q+1)/d

φ(�1)
2
φ(�2)

2
+ O(q) =

q2 − 1
2d2 + O(q) =

q2

2d2 + O(q).

Here we use the formula
∑
�|n φ(�) = n and the fact that φ(�1)φ(�2) = φ(�1�2) for

coprime �1 and �2. �

PROOF OF THEOREM 1.2. The statement follows from Lemma 2.5(3) and
Theorem 2.10. �

Finally, we can estimate β(S) and obtain a lower bound for the number of
connected components of Λ+(Sβ), thereby proving Theorem 1.1. For aesthetic reasons,
we denote 2a = exp2{a}, and the symbol o(1) is understood with respect to the limit
q→ ∞.

Let N(S) denote the number of connected components of Λ+(Sβ).
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460 D. Garzoni [8]

THEOREM 2.11. If S = PSL2(q), then

q2−o(1) � β(S) �
q2

2
+ O(q) (2.1)

N(S) � exp2{q2−o(1)}. (2.2)

PROOF. Equation (2.1) follows from Lemma 2.2, the fact that |Out(S)| � 2 log2 q and
Theorem 2.10. Next, Theorem 2.9, Stirling’s approximation and (2.1) give

N(S) �
1
2
·
(
β

β/2

)
= (1 + o(1)) · 2β

(2πβ)1/2 � exp2{q2−o(1)},

and the proof is complete. �

3. Further comments

Recall that Γ+(G) is the graph obtained by removing the isolated vertices from
the generating graph Γ(G) of G. Crestani and Lucchini [13] showed that if G is a
2-generated direct power of a nonabelian finite simple group, then Γ+(G) is connected.

In particular, Theorem 2.11 shows that the result of [13] does not hold for invariable
generation. Nevertheless, a combinatorial proof along the lines of [13, Theorem 3.1]
might be feasible in order to show the following: if a finite simple group S is such
that Λ+(S) is connected and not bipartite, then Λ+(St) is connected for every t � β(S).
At present, the connectedness of Λ+(S) for S simple is essentially only known for
alternating groups [17], which somewhat limits the applications of such a result.

We also remark that we are currently unable to construct examples of soluble groups
G for which Λ+(G) is disconnected.

QUESTION 3.1. Let G be a finite soluble group which is invariably 2-generated. Is the
graph Λ+(G) connected?

Crestani and Lucchini [12] showed that this is true for the graph Γ+(G) (and, in
particular, Question 3.1 has a positive answer for nilpotent groups).

3.1. �+(S) bipartite. For the proof of Theorem 2.11, the only important property of
S = PSL2(q) is that the graph Λ+(S) is bipartite, which follows from the fact that S
admits a 2-covering (see the proof of Lemma 2.6).

The 2-coverings of the finite simple groups have been well studied (see Bubboloni
[5], Bubboloni and Lucido [6], Bubboloni et al. [7, 8] and Pellegrini [29]). In particu-
lar, all finite simple groups admitting a 2-covering are known, except for some classical
groups of small dimension.

We have the following clear implications:

S admits a 2-covering =⇒ Λ+(S) is bipartite =⇒ Λ+(S) has no triangles. (3.1)

(These implications are a special case of the inequalities in (3.2) below.) The reverse
of the first implication in (3.1) does not necessarily hold. For instance, A9 does not
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[9] The invariably generating graph 461

admit a 2-covering. (It was proved in [5] that An admits a 2-covering if and only if
4 � n � 8.) On the other hand, it is not difficult to show that Λ+(A9) is bipartite. This
might be one of only finitely many exceptions.

PROBLEM 3.2. Determine the finite simple groups S for which Λ+(S) is bipartite
(respectively, contains no triangles). Up to finitely many cases, do the reverse
implications in (3.1) hold?

These considerations can be viewed more generally as follows. For a noncyclic finite
group G, consider the following invariants:

• κ(G), the clique number of Λ+(G), that is, the largest order of a complete subgraph
of Λ+(G);

• τ(G), the chromatic number of Λ+(G), that is, the least number of colours needed
to colour the vertices of Λ+(G) in such a way that adjacent vertices have different
colours;

• γ(G), the normal covering number of G, that is, the least number of proper subgroups
of G such that each element of G lies in some conjugate of one of these subgroups.

The following inequalities hold:

κ(G) � τ(G) � γ(G). (3.2)

(These are ‘invariable’ versions of inequalities studied, for instance, in [28].) The
implications in (3.1) can be stated as follows for a general noncyclic finite group G:

γ(G) � 2 =⇒ τ(G) � 2 =⇒ κ(G) � 2.

(We note that for every finite group G, γ(G) � 2 and, by [22, 26], if S is nonabelian
simple then κ(S) � 2.) Problem 3.2 asks whether, up to finitely many exceptions,

γ(S) = 2 ⇐⇒ τ(S) = 2 ⇐⇒ κ(S) = 2.

The invariants κ(G) and γ(G) are studied in Britnell and Maróti [4], Bubboloni et al.
[9] and Garonzi and Lucchini [18].

As a final remark, the fact that Λ(G) can have no triangles is somewhat strange,
in comparison with classical generation. Indeed, for every 2-generated finite group G
of order at least 3, the generating graph Γ(G) contains a triangle, and indeed ‘many’
triangles. This follows from the fact that if 〈x, y〉 = G then 〈x, xy〉 = 〈xy, y〉 = G. The
fact that this property fails for invariable generation makes it difficult to extend results
from the classical to the invariable setting. See the introduction of [19] for comments
in this direction.
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