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Abstract. We consider the functional
∫

Ω
g(∇u + X∗) dL2n where g is convex and X∗(x, y) =

2(−y, x) and we study the minimizers in BV(Ω) of the associated Dirichlet problem. We prove
that, under the bounded slope condition on the boundary datum, and suitable conditions on g,
there exists a unique minimizer which is also Lipschitz continuous. The assumptions on g al-
low to consider both the case with superlinear growth and the one with linear growth. Moreover
neither uniform ellipticity nor smoothness of g are assumed.

1. Introduction

In the present paper we are interested in the study of the Lipschitz regularity of minimizers

of a class of functionals starting from the regularity of the boundary datum without assuming

neither ellipticity nor the growth conditions on the Lagrangian: the literature on this subject is

extremely rich, we address the interested reader to [6, 8, 15, 16, 19, 30, 33, 34, 35] and references

therein for an overview. Our analysis moves from a recent paper by Pinamonti et al. [38] where

the area functional for the t-graph of a function u ∈ W1,1(Ω) in the sub-Riemannian Heisenberg

group Hn = Rn
x × R

n
y × Rt is investigated (see also further references in [38] on the Heisenberg’s

literature). Precisely, if Ω ⊂ R2n is open with Lipschitz boundary and X∗(x, y) B 2(−y, x) ∈ R2n

they consider the functional A : W1,1(Ω)→ R defined by

A (u) =

∫
Ω

|∇u + X∗| dL2n.

It was shown in [40] that because of the linear growth in the gradient variable, the natural vari-

ational setting for the functional A is BV(Ω), the space of functions of bounded variation in Ω.
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More precisely, it has been proved that the L1−relaxation of A is

A (u) =

∫
Ω

|∇u + X∗| dL2n + |Dsu|(Ω), u ∈ BV(Ω)

where |Dsu| denotes the total variation of the singular part of the distributional derivative of u.

In [38], the authors investigate a suitable Dirichlet problem for A . Precisely, they show that the

problem

min
{
A (u) : u ∈ BV(Ω), u|∂Ω = ϕ

}
has a unique solution which is also Lipschitz continuous if ϕ ∈ L1(∂Ω) satisfies the so-called

bounded slope condition (see Section 4 below for the definition).

In the present paper we are interested in the more general case of functionals of type

G (u) =

∫
Ω

g(∇u + X∗) dL2n (1.1)

where g : R2n → R is convex but not necessarily strictly convex. In particular, we want to study

the Dirichlet problem associated with G , i.e.

min
{
G (u) : u ∈ W1,1(Ω), u|∂Ω = ϕ

}
(1.2)

where ϕ ∈ W1,1(∂Ω). It is worth to remark that, while in the superlinear case the existence of

a solution of (1.2) is guaranteed by the Direct Method of the calculus of Variations, when we

consider g with linear growth it may happen that the minimum is not achieved and we follow a

widely used approach considering the relaxed functional in BV(Ω).

In the first part of Section 3, we start by proving a representation formula for the relaxed

functional of G in the L1-topology and then we use the fact that the functional

Gϕ,Ω(u) =

∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞((ϕ − u|∂Ω)νΩ) dH2n−1 (1.3)

admits a minimum in BV(Ω). Here g∞ : R2n → [0,+∞) denotes the recession function of g see

(3.2)) and νΩ is the unit outer normal to ∂Ω.

The most part of section 3 is devoted to proving the Lipschitz regularity of a special minimizer

of (1.3) using the assumption that the boundary datum ϕ satisfies the Bounded Slope Condition.

Our approach is inspired by some classical and well known results in the Calculus of Variations

(see [29] and [25] and also [26, 27, 28, 42]). In all the cited results the focus is on the existence of

minimizers where the space of competitor functions coincides with the set of Lipschitz functions

and the main idea (see [24, Chapter 1]) is that the Bounded Slope Condition assumed on the

boundary data allows the use of a compactness argument even with no growth assumptions on
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the Lagrangian. In recent years the use of the bounded slope condition has been renewed and

applied to obtain various regularity results of minimizers that a priori exist in Sobolev spaces

([6], [9] [15], [16], [36],[33], [34], [35]). We point out that crucial points in this approach are:

the validity of comparison principles between minimizers; the invariance of minimizers under

translations of the domain; the fact that, if the boundary datum ϕ is affine, ϕ itself is a minimizer.

In the recent results cited above comparison principles are extended to Sobolev functions and

to problems where minimizers are not unique. Moreover, barriers that are different from affine

functions are used. In [8], [7], [19], [22], [37] Lagrangians of the form f (∇u) + g(x, u) have

been considered and the fact that the invariance of minimizers with respect to translations of the

domain is peculiar of functionals depending only on the gradient has been overcome in various

ways, thanks to additional special structure assumed on the function f and/or g.

In the present paper, as in [38], a different kind of functional is considered. One of the main

difficulties of Section 3 is due to the fact that we deal with BV-functions. For some aspects, this

obstacle has been overcome in [38] but here we treat also more general situations. In Subsection

3.2 we state a Comparison Principle for BV minimizers, Theorem 3.13, that relies on the validity

of a general inequality proved in Theorem 3.8. We underline that Theorem 3.8 as here stated

can have its own independent interests since it applies to more general functionals and is proof

only relies on fine properties of BV functions. In Proposition 3.18 we also overcome the non-

smoothness of the Lagrangian by proving the uniqueness of the affine function as solution of a

Dirichlet problem with the affine map itself as boundary datum. In this section we also introduce

two assumptions on g that we denote by (A) and (B). Roughly speaking, a function g satisfying

these properties is not too far from being strictly convex. However, the epigraphs of g and g∞

may only have n − 1-dimensional flat faces with radial directions. Radial functions g defined by

g(z) = f (|z|) with a convex f with linear growth satisfy both (A) and (B), see Example 3.1 and

notice that this class of functions includes the Lagrangian of the t-graphs of minimal area; a non

radial function satisfying both (A) and (B) is given by g(x, y) =
√

x2/a2 + y2/b2, see Example

3.2.

Section 4 is completely devoted to the proof of uniqueness and Lipschitz regularity of mini-

mizers in the BV class. Our main result is the following (see Theorem 4.4).

Theorem. If ϕ ∈ L1(∂Ω) satisfies the bounded slope condition with constant Q > 0 and g satisfies

properties (A) and (B), then Gϕ,Ω has a unique minimizer u ∈ BV(Ω) with u|∂Ω = ϕ and it satisfies

Lip(u) ≤ Q where Q is a costant depending on Q and Ω.
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We notice that in our setting uniqueness is far from being obvious since our assumptions

include non strictly convex Lagrangians whose epigraph may have unbounded exposed faces

and, at least in the linear case, we deal with BV-functions. The problem of uniqueness has been

previously addressed in [31] and [30] for the Euclidean setting, in [38] for the Heisenberg case,

and in [4] for relaxed functionals.

In section 5 we describe how to modify the previous proofs in order to deal with the case for

which g has superlinear growth. In particular, the main result is as follows, see Theorem 5.1.

Theorem. Assume g has superlinear growth at infinity and satisfies condition (A), and assume

ϕ ∈ L1(Ω) satisfies the bounded slope condition at ∂Ω. Then G (u) has a unique minimizer in

ϕ + W1,1
0 (Ω) which is Lipschitz.

We conclude this introduction underlying some significant aspects of the results that we present

in this paper. First of all we recall that regularity results are usually obtained under ellipticity and

growth conditions on the Lagrangian. In the present paper, the bounded slope condition allows us

to drop these assuptions and to prove Lipschitz regularity up to the boundary. As we mentioned

above, the use of the bounded slope condition is strictly related to the invariance of the minimiz-

ers w.r.t translation. This property is quite strong and it is satisfied for example by functionals

depending only on the gradient or, as mentioned above, by functionals of sum type under very

special assumptions on the structure of the Lagrangian. In particular, due to the x-dependence of

the Lagrangian, the functional considered here does not satisfy it. Anyhow it is interesting that,

as it will be pointed out in the proof Theorem 4.4, it turns out that a slight modification of the

translated minimizer is still a minimizer and this property is crucial to complete the proof.

It is worth recalling that, in the framework of classical problems of the Calculus of Variations,

the Lipschitz regularity of minimizers is the first ingredient to prove higher regularity. The

assumptions of our main Theorem are wide enough to take into account Lagrangians that are not

smooth so we can’t expect more regularity in such a general case.

As last remark we notice that our regularity result in particular implies the non occurrence of

the Lavrentiev phenomenon. This result is classically obtained under suitable assumptions that

control both from below and from above the growth of the functional and it has been proved also

for some special classes of problems. To be more precise it has been proved that autonomous

multidimensional scalar functionals do not exhibit the Lavrentiev phenomenon (see [12] for some

special cases and [13, 14] for more general results). A recent result on a class of functional that

includes those considered in this paper is contained in [32].
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2. Preliminaries

2.1. Functions of Bounded Variation and traces. The aim of this section is to recall some

basic properties of the space of functions of bounded variation; we refer to the monographs

[1, 23] for a more extensive account on the subject as well as for proofs of the results we are

going to recall.

Let Ω be an open set in Rn. We say that u ∈ L1(Ω) has bounded variation in Ω if

sup
{∫

Ω

u divϕ dx | ϕ ∈ C1
c (Ω,Rn), ‖ϕ‖∞ ≤ 1

}
< +∞; (2.1)

equivalently, u has bounded variation if there exist aRn-valued Radon measure Du B (Du1, . . . ,Dun)

in Ω which represents the distributional derivatives of u, i.e.,∫
Ω

u
∂ϕ

∂xi
dLn = −

∫
Ω

ϕ dDiu ∀ϕ ∈ C1
c (Ω), ∀i = 1, . . . , n.

The space of functions with bounded variation in Ω is denoted by BV(Ω). By definition, W1,1(Ω) ⊂

BV(Ω) and Du = ∇uLn for any u ∈ W1,1(Ω).

We denote by |Du| the total variation of the measure Du; |Du| defines a finite measure on Ω

and the supremum in (2.1) coincides with |Du|(Ω).

It is well-known that BV(Ω) is a Banach space when endowed with the norm

‖u‖BV(Ω) B ‖u‖L1(Ω) + |Du|(Ω). (2.2)

We say that u ∈ L1
loc(Ω) has an approximate limit z ∈ R at x ∈ Ω if

lim
ρ→0+

?
B(x,ρ)
|u − z| dLn = 0. (2.3)

The set S u of points where u has no approximate limit is called approximate discontinuity set of

u; for any x ∈ Ω \ S u, we denote by ũ(x) the unique z for which (2.3) holds. By the Lebesgue

Theorem we have Ln(S u) = 0.

Moreover, we say that u has an approximate jump point at x ∈ Ω if there exist ν ∈ Sn−1 and

a, b ∈ R, a , b such that

lim
ρ→0+

?
B(x,ρ;ν)+

|u − a| dLn = 0, lim
ρ→0+

?
B(x,ρ;ν)−

|u − b| dLn = 0

where

B(x, ρ; ν)+ B {y ∈ B(x, ρ) | 〈y − x, ν〉 > 0}

B(x, ρ; ν)− B {y ∈ B(x, ρ) | 〈y − x, ν〉 < 0}.
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We observe that the triple (a, b, ν) is uniquely determined up to a permutation of (a, b) and a

change of sign of ν; we denote it by (u+(x), u−(x), νu(x)). The set of approximate jump points of

u is denoted by Ju; clearly, Ju ⊂ S u.

Remark 2.1. Depending on the context, we will sometimes use the symbols u+, u− also to denote

the positive part u+ B max{0, u} and the negative part u− B max{0,−u} of a real function u.

This will not generate confusion.

When u has bounded variation in Ω, the set of approximate jump points Ju enjoys much finer

regularity properties. First, there holds

|Du|(S u \ Ju) = Hn−1(S u \ Ju) = 0 , (2.4)

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure on Rn (see e.g. [1] or [23]).

Moreover, by the Federer-Vol’pert Thoerem, see [1, Theorem 3.78], Ju (and, consequently, S u)

is (n − 1)-rectifiable, i.e., Hn−1(Ju) < ∞ and there exist N ⊂ Rn and a countable family of

hypersurfaces {S j : j ∈ N} of class C1 such that

Ju ⊂ N ∪
∞⋃
j=0

S j and Hn−1(N) = 0 .

It turns out that νu corresponds (Hn−1-a.e. and up to a sign) to a unit normal to Ju, i.e., for

Hn−1-a.e. x ∈ Ju, there holds

νu(x) = ±νS i(x) if x ∈ S i \

i−1⋃
j=0

S j, ∀i ∈ N .

By the Radon-Nikodym Theorem, if u ∈ BV(Ω) one can write Du = Dau + Dsu, where Dau

is the absolutely continuous part of Du with respect to Ln and Dsu is the singular part of Du

with respect to Ln. We denote by ∇u ∈ L1(Ω) the density of Dau with respect to Ln, so that

Dau = ∇uLn. We are now in a position to state the following result:

Theorem 2.2. Let u ∈ BV(Ω); then u is approximately differentiable at a.e. x ∈ Ω with approxi-

mate differential ∇u(x), i.e.,

lim
ρ→0+

?
B(x,ρ)

|u(y) − ũ(x) − 〈∇u(x), y − x〉 |
ρ

dLn = 0 for Ln-a.e. x ∈ Ω .

Moreover, the decomposition Dsu = D ju + Dcu holds, where

D ju B Dsu Ju = (u+ − u−)νuH
n−1 Ju, Dcu B Dsu (Ω \ S u)

are called respectively the jump part and the Cantor part of the derivative Du.
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Notice that Dau,Dcu,D ju are mutually singular; in particular

|Dau| = |∇u|Ln, |D ju| = |u+ − u−|Hn−1 Ju

and

|Du| = |Dau| + |Dcu| + |D ju|

because the total variation of a sum of mutually singular measures is the sum of their total varia-

tions.

In what follows we recall a few basic facts about boundary trace properties of BV functions;

we refer again to [1] and [23] for more details.

Let Ω ⊂ Rn be a fixed open set with bounded Lipschitz regular boundary; the spaces Lp(∂Ω), p ∈

[1,+∞], will be always understood with respect to the (finite) measure Hn−1 ∂Ω. It is well-

known that for any u ∈ BV(Ω) there exists a (unique) function u|∂Ω ∈ L1(∂Ω) such that, for

Hn−1-a.e. x ∈ ∂Ω,

lim
ρ→0+

ρ−n
∫

Ω∩B(x,ρ)
|u − u|∂Ω(x)| dLn = lim

ρ→0+

?
Ω∩B(x,ρ)

|u − u|∂Ω(x)| dLn = 0 .

The function u|∂Ω is called trace of u on ∂Ω. The trace operator u 7→ u|∂Ω is linear and continuous

between (BV(Ω), ‖·‖BV) and L1(∂Ω); actually, it is continuous also when BV(Ω) is endowed with

the (weaker) topology induced by the so-called strict convergence, see [1, Definition 3.14].

Remark 2.3. It is well-known that, if u1, u2 ∈ BV(Ω), then u B max{u1, u2} and u B min{u1, u2}

belong to BV(Ω); moreover, one can show that

u|∂Ω = max{u1|∂Ω, u2|∂Ω}, u
|∂Ω

= min{u1|∂Ω, u2|∂Ω} .

The proof of this fact follows in a standard way from the very definition of traces.

Since Du � |Du| we can write Du = σu|Du| for a |Du|-measurable function

σu : Ω→ Sn−1.

With this notation one also has∫
Ω

u divϕ dLn = −

∫
Ω

〈σu, ϕ〉 d|Du| +
∫
∂Ω

u|∂Ω 〈ϕ, νΩ〉 dHn−1, ∀ϕ ∈ C1
c (Rn;Rn) (2.5)

where νΩ is the unit outer normal to ∂Ω.

Finally, we recall the following fact, whose proof essentially follows from (2.5).
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Proposition 2.4 ([23, Remark 2.13]). Assume that Ω and Ω0 are open subsets of Rn with bounded

Lipschitz boundary and such that Ω b Ω0. If u ∈ BV(Ω) and v ∈ BV(Ω0 \Ω), then the function

f (x) :=
 u(x) if x ∈ Ω

v(x) if x ∈ Ω0 \Ω

belongs to BV(Ω0) and

|D f |(∂Ω) = |D j f |(∂Ω) =

∫
∂Ω

|u|∂Ω − v|∂Ω| dHn−1 ,

where we have used the notation v|∂Ω to mean (v
|∂(Ω0\Ω)) ∂Ω.

For any z = (x, y) ∈ R2n, we define z∗ B (−y, x). Let X∗ : R2n → R2n be given by X∗(z) B 2z∗.

We conclude this section with the next lemma which can be extracted from the proof of [38,

Thm. 5.5].

Lemma 2.5. Let R > 0 and u ∈ BV(BR(0)) with u = 0 on ∂BR(0). Assume that there exists a

|Du|-measurable function λ : BR(0)→ R such that

dDu
d|Du|

= λX∗ |Du|-a.e. on BR(0).

Then u = 0.

3. The linear growth case

Throughout this section we assume that g : R2n → R is a positive convex function with linear

growth, namely
1
C
|z| ≤ g(z) ≤ C(1 + |z|), (3.1)

for a constant C ≥ 1 and for any z ∈ R2n. Moreover, defining the recession function of g as the

function g∞ : R2n → [0,+∞) given by

g∞(p) B lim
t→+∞

g(tp)
t

. (3.2)

Note that, since g(0) < ∞, our definition of g∞ coincides with the one given in [1, Definition

2.32]. As proved in [1], the recession function is positively homogeneous of degree 1, convex

and lower semicontinuous. In particular, g∞ satisfies the following inequalities

g∞(p) ≤ g∞(q) + g∞(p − q), ∀p, q ∈ R2n, (3.3)

1
C
|p| ≤ g∞(p) ≤ C|p|, ∀p ∈ R2n. (3.4)
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Since by [17, Proposition 2.32], g is Lipschitz continuous then denoting by Lg its Lipschitz

constant we get

|g(tp) − g(tp + z)| ≤ Lg|z|

which implies that for any z, p ∈ R2n we have

g∞(p) = lim
t→+∞

g(tp + z)
t

. (3.5)

We consider the following conditions:

(A) If ξ1, ξ2 ∈ R
2n are such that

g
(
ξ1 + ξ2

2

)
=

g(ξ1) + g(ξ2)
2

, (3.6)

then there exists λ ∈ R such that ξ1 = λξ2.

(B) If ξ1, ξ2 ∈ R
2n and p ∈ ∂g(ξ2) are such that

g∞(ξ1) = 〈p, ξ1〉 (3.7)

then there exists λ ∈ R such that ξ1 = λξ2. Here ∂g(q) denotes the subdifferential of g at

the point q.

Example 3.1. Let f : [0,+∞) → R be a convex and strictly increasing function such that there

exists C > 1 satisfying
1
C

s ≤ f (s) ≤ C(s + 1)

for any s ∈ [0,+∞). Consider the function g : R2m → R defined by g(z) := f (|z|). We claim that

g satisfies conditions (A) and (B). Indeed, for any ξ1, ξ2 ∈ R
2m satisfying (3.6) we get

f
(
|ξ1|

2
+
|ξ2|

2

)
≤

1
2

( f (|ξ1|) + f (|ξ2|)) = f
(
|ξ1 + ξ2|

2

)
≤ f

(
|ξ1|

2
+
|ξ2|

2

)
(3.8)

from which we infer |ξ1 + ξ2| = |ξ1| + |ξ2| and the thesis follows. To prove condition (B), we start

observing that by [3, Example 16.73] we have

∂g(ξ) =


{
α
|ξ|
ξ | α ∈ ∂ f (|ξ|)

}
, if ξ , 0

B(0, ρ), if ξ = 0
(3.9)

where ρ ∈ [0,+∞) is such that ∂ f (0) = [−ρ, ρ]. Moreover a direct computation gives

g∞(ξ) = f∞(|ξ|) = β|ξ| (3.10)

where, denoting by f ′(t) an arbitrary selection of ∂ f (t), β = limt→+∞
f (t)
t = limt→+∞ f ′(t). Hence

the convexity of f implies also that β ≥ α for every α ∈
⋃

t∈[0,+∞) ∂ f (t). Let us now consider
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ξ1, ξ2 ∈ R
2n and p ∈ ∂g(ξ2) such that g∞(ξ1) = 〈p, ξ1〉. If ξ2 = 0 there is nothing to prove.

If ξ2 , 0 then p = α ξ2
|ξ2 |

for some α ∈ ∂ f (|ξ2|) and α > 0. By (3.10) and the fact that f∞ is

1−homogeneous we get

g∞(ξ1) = 〈α
ξ2

|ξ2|
, ξ1〉 ≤ α|ξ1| ≤ β|ξ1| = g∞(ξ1)

and this implies that all the inequalities are in fact equalities and in particular the vectors ξ1

and ξ2 have to be parallel, concluding the proof. We notice that the Lagrangian describing the

minimal area of t-graphs is included in this class.

Example 3.2. Let a, b ∈ (0,+∞). We claim that the function g : R2 → [0,+∞) defined by

g(z1, z2) =

√
z2

1

a2 +
z2

2

b2 (3.11)

satisfies (3.1), conditions (A) and (B). Indeed, for any z ∈ R2

min
{

1
a
,

1
b

}
|z| ≤ g(z) ≤ max

{
1
a
,

1
b

}
|z| (3.12)

and g is convex and it satisfies (A) by a direct computation. In order to prove condition (B)

we start observing that, being g 1-homogeneous and in C∞(R2 \ {(0, 0)}), we have g∞(z) = g(z)

for any z ∈ R2 and ∂g(z) =
{(

z1
a2g(z) ,

z2
b2g(z)

)}
for any z ∈ R2 \ {(0, 0)}. Let ξ = (ξ1, ξ2) ∈ R2,

(η1, η2) ∈ R2 \ {(0, 0)} and (p1, p2) =
(

η1
a2g(η) ,

η2
b2g(η)

)
be such that g∞(ξ) = 〈p, ξ〉, namely√

ξ2
1

a2 +
ξ2

2

b2 =
η1ξ1

a2g(η)
+

η2ξ2

b2g(η)
(3.13)

which immediately implies that ξ1η2 = η1ξ2 and the thesis follows. On the other hand, let ξ =

(ξ1, ξ2) and η = (η1, η2) be such that

η ∈ ∂g((0, 0)) and g(ξ) = 〈η, ξ〉. (3.14)

Since the function f (z) = g(z) − 〈p, z〉 is convex, 1-homogeneous, nonnegative and f (ξ) =

f ((0, 0)) = 0, then one has ξ = (0, 0).

Let Ω ⊂ R2n be bounded, open and with Lipschitz boundary. We consider the functional

GΩ : W1,1(Ω)→ [0,+∞] defined by

GΩ(u) B
∫

Ω

g(∇u + X∗) dL2n (3.15)

where we recall that X∗(z) = 2(−y, x), with z = (x, y), x, y ∈ Rn. In the following proposition, we

underline some basic properties of the operator z∗, see [38, Lemma 3.1] for a proof.
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Proposition 3.3. The following properties hold:

(i) if z1, z2 ∈ R
2n are linearly dependent, then z1 · z∗2 = 0;

(ii) z1 · z2 = z∗1 · z
∗
2 for each z1, z2 ∈ R

2n;

(iii) if Ω ⊂ R2n is open and f ∈ C∞(Ω), then div (∇ f )∗ = 0 on Ω.

The following result, which generalizes [38, Proposition 5.1], states that if GΩ has a minimizer

with some additional integrability, then it is unique.

Proposition 3.4. Let p ∈ [1, 2], let p′ B p
p−1 , let ϕ ∈ W1,p′(Ω) and assume g satisfies condition

(A). Let u ∈ W1,p′(Ω) and v ∈ W1,p(Ω) be two minimizers of

min
{
GΩ(u) : u ∈ ϕ + W1,p

0 (Ω)
}
,

then u = v a.e. in Ω.

Proof. First of all we use a standard argument in order to prove that ∇u + X∗ and ∇v + X∗ are

linearly dependent a.e. on Ω. Using the convexity of g, we have

g
(
∇u + X∗

2
+
∇v + X∗

2

)
≤

g(∇u + X∗) + g(∇v + X∗)
2

a.e. on Ω.

Hence, from the minimality of u and v we get

G (u) ≤
∫

Ω

g
(
∇u + X∗

2
+
∇v + X∗

2

)
dL2n ≤

1
2

∫
Ω

[
g(∇u + X∗) + g(∇v + X∗)

]
dL2n = G (u).

Then

g
(
∇u + X∗

2
+
∇v + X∗

2

)
=

g(∇u + X∗) + g(∇v + X∗)
2

, a.e. on Ω.

Using (A) we deduce that ∇u + X∗ and ∇v + X∗ are linearly dependent a.e. on Ω. The conclusion

now follows proceeding exactly as in the second part of [38, Proposition 5.1]). �

Remark 3.5. Notice that inequality (3.1) can be replaced by
1
C
|z| −C ≤ g(z) ≤ C(1 + |z|), (3.16)

in which the map g is not necessarily positive. This comes by the fact that, since we are studying

minimizers, the function g can be replaced by g + M, for any M ∈ R.

In order to prove the existence of a minimizer for GΩ we first compute its L1 relaxed functional,

namely

GΩ(u) := GΩ(u) = inf
{
lim inf

h
GΩ(uh) : uh ∈ W1,1(Ω), uh → u in L1(Ω)

}
. (3.17)

The following proposition provides an integral representation of GΩ.
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Proposition 3.6. Let g be a convex function satisfying (3.1) and let Ω ⊆ R2n be open with

Lipschitz boundary. Then the following facts hold.

(i) for any u ∈ BV(Ω) one has

GΩ(u) =

∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu|. (3.18)

(ii) For any ϕ ∈ L1(∂Ω) the functional

Gϕ,Ω(u) B
∫

Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞((ϕ − u|∂Ω)νΩ) dH2n−1 (3.19)

admits a minimizer in BV(Ω).

Proof. (i) By [20, Remark 2.17], it is enough to check (H1)-(H5) of the reference and observing

that thanks to (3.5), g∞ does not depend on x. Consider f : Ω × R × R2n → R defined by

f (x, z) = g(z + X∗(x)). For the sake of clarity, we here list the precise properties used in [20] for

our specific case.

(H1) f is continuous;

(H2) f (x, ·) is quasiconvex;

(H3) there exists a bounded and continuous h : Ω→ [0,+∞) and a constant M > 0 such that

1
M

h(x)‖z‖ ≤ f (x, z) ≤ Mh(x)(1 + ‖z‖),

for all x ∈ Ω, and z ∈ R2n;

(H4) for every compact set K ⊆ Ω, there exists a continuous function ω : R→ Rwith ω(0) = 0

and

| f (x, z) − f (x′, z)| ≤ ω(|x − x′|)(1 + |z|),

for all x, x′ ∈ Ω and z ∈ R2n. In addition, for every x0 ∈ Ω and ε > 0, there exists δ such

that

f (x, z) − f (x0, z) ≥ −εh(x)(1 + |z|),

for every x ∈ Ω, z ∈ R2n with |x − x0| < δ;

(H5) There exist C′, L > 0 and 0 ≤ m < 1 such that∣∣∣∣∣ f∞(x, z) −
f (x, tz)

t

∣∣∣∣∣ ≤ C′h(x)
|z|1−m

tm ,

whenever x ∈ Ω, z ∈ R2n and t > 0 such that t|z| > L.
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It is clear by construction that f is continuous and f (x, ·) is convex. This yields (H1) and (H2).

We set h ≡ 1. Then property (H3) comes directly from (3.1). To prove (H4), we first recall

that g is Lipschitz with Lipschitz constant equal to Lg and therefore

| f (x, z) − f (x′, z)| ≤ Lg|x − x′| ≤ Lg|x − x′|(1 + |z|).

In particular, if x0 ∈ Ω and δ > 0, then, whenever |x − x0| ≤
δ

Lg
we get

f (x, z) − f (x0, z) ≥ −Lg|x − x0|(1 + |z|) ≥ −δ(1 + |z|),

which completes the proof of (H4). Finally, (H5) comes from the fact that (3.1) implies

| f∞(x, z) − f (x, z)| ≤ C(|z| + 1).

(ii) Let Ω0 ⊂ R
2n be an open Lipschitz domain with Ω b Ω0. Let ϕ ∈ L1(∂Ω) and Φ ∈

W1,1(Ω0 \Ω) such that Φ = ϕ on ∂Ω and Φ = 0 on ∂Ω0. We set

BVΦ(Ω0) B {u ∈ BV(Ω0) : u = Φ on Ω0 \Ω}.

By [21, Theorem 1.3] (see also [5, Theorem 1.1]) we know thatGΩ0 has a minimum on BVΦ(Ω0).

Now observe that for any u ∈ BVΦ(Ω0) we have

GΩ0(u) =

∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu|

+

∫
∂Ω

g∞((ϕ − u|∂Ω)νΩ) dH2n−1 + GΩ0\Ω(Φ)
(3.20)

where νΩ is the outer unit normal to Ω and u|∂Ω is the trace of u on ∂Ω. Since the last term in the

right-hand side of (3.20) is constant we can write for any u ∈ BVΦ(Ω0),

GΩ0(u) = Gϕ,Ω(u|Ω) + constant. (3.21)

Conversely, for any u ∈ BV(Ω) the extended function

u0 =

u on Ω,

Φ on Ω0 \Ω

belongs to BVΦ(Ω0) and

GΩ0(u0) = Gϕ,Ω(u) + constant.

Since GΩ0 admits a minimizer in BVΦ(Ω0), we have then proved that, for any ϕ ∈ L1(∂Ω), the

functional Gϕ,Ω admits a minimizers in BV(Ω). �

The following result will be crucial later on, it relies on the approach developed in [23] for the

area functional (see also [5]).
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Proposition 3.7. For any ϕ ∈ L1(∂Ω),

min
u∈BV(Ω)

Gϕ,Ω(u) = inf
{
GΩ(u) : u ∈ W1,1

0 (Ω) + ϕ
}
. (3.22)

Proof. First we observe that GΩ(u) = Gϕ,Ω(u) for any u ∈ W1,1
0 (Ω) + ϕ, therefore

inf
{
GΩ(u) : u ∈ W1,1

0 (Ω) + ϕ
}
≥ min

u∈BV(Ω)
Gϕ,Ω(u). (3.23)

Let u ∈ BV(Ω) and define u0 ∈ BVΦ(Ω0) as above. Then by [5, Lemma 2.1] there exists a

sequence (uh) in C∞c (Ω0) such that uh = Φ on Ω0 \ Ω, uh → u0 in L1(Ω0) and
∫

Ω0

√
1 + |∇uh|

2 →∫
Ω0

√
1 + |∇u0|

2 as h → ∞. Then, by Reshetnyak’s continuity theorem (see e.g. [41, Theorem

1.1]) we get

GΩ0(u0) = lim
h
GΩ0(uh)

in particular

Gϕ,Ω((u0)|Ω) = lim
h
Gϕ,Ω((uh)|Ω) = lim

h
GΩ((uh)|Ω)

≥ inf
{
GΩ(u) : u ∈ W1,1

0 (Ω) + ϕ
}

and the conclusion follows. �

3.1. A fundamental inequality. This subsection is devoted to proving the fundamental inequal-

ity (3.24), which will be useful when dealing with comparison principles for minimizers of the

functional GΩ. This inequality is a generalization of the well known inequality for the perimeters

that can be found, for the Euclidean case, in [1, Proposition 3.38 (d)] and has been extended for

perimeters in the Heisenberg case in [38]. We underline also that, when dealing with Sobolev

function with given boundary datum, this inequality turns out to be an equality whose proof is

quite straightforward (see [37, Lemma 5.1]).

We state the inequality in a quite general setting that includes the case of functionals that are

not necessarily obtained by means of a relaxing argument but also fits to the relaxed functional

considered in this paper. To this aim, we consider an open bounded subset of A ⊂ Rn with

Lipschitz boundary, and two functions fi, i = 1, 2 such that

i) f1 : A × R × Rn → R is a Carathéodory function,

ii) f2 : Rn → [0,+∞) is convex, positively homogeneous of degree 1, and f2(ξ) = 0 if and

only if ξ = 0.
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Then we define the functional FA : BV(A)→ R ∪ {+∞} by

FA(u) =

∫
A

f1(x, u,∇u) dLn +

∫
A

f2

(
dDsu
d|Dsu|

)
d|Dsu|

Theorem 3.8. Let A ⊆ Rn be an open and bounded set with Lipschitz boundary and let f1 : A ×

R × Rn → R and f2 : A → [0,+∞) be two functions satisfying respectively assumptions i), ii)

above. Then, for any u1, u2 ∈ BV(A), we have

FA(u1 ∨ u2) + FA(u1 ∧ u2) ≤ FA(u1) + FA(u2) . (3.24)

Proof. Let us define

X B
∫

A
f1 (x, u1 ∨ u2,∇(u1 ∨ u2)) dLn +

∫
A

f1 (x, u1 ∧ u2,∇(u1 ∧ u2)) dLn,

Y B
∫

A
f2

(
dDs(u1 ∨ u2)
d|Ds(u1 ∨ u2)|

)
d|Dc(u1 ∨ u2)| +

∫
A

f2

(
dDs(u1 ∧ u2)
d|Ds(u1 ∧ u2)|

)
d|Dc(u1 ∧ u2)|,

Z B
∫

A
f2

(
dDs(u1 ∨ u2)
d|Ds(u1 ∨ u2)|

)
d|D j(u1 ∨ u2)| +

∫
A

f2

(
dDs(u1 ∧ u2)
d|Ds(u1 ∧ u2)|

)
d|D j(u1 ∧ u2)| .

Observe that (3.24) will follow if we show that

X + Y + Z ≤ FA(u1) + FA(u2). (3.25)

Without loss of generality, we may assume that u1 = ũ1 on A \ S u1 and u2 = ũ2 on A \ S u2 .

Setting

A+ B (A \ (S u1 ∪ S u2)) ∩ {u1 ≥ u2}, A− B (A \ (S u1 ∪ S u2)) ∩ {u1 < u2}

we have (see e.g. [1, Example 3.100])

∇(u1 ∨ u2) = ∇u1 χA+
+ ∇u2 χA− Ln-a.e. in A

∇(u1 ∧ u2) = ∇u2 χA+
+ ∇u1 χA− Ln-a.e. in A ,

where χE denotes the characteristic function of a set E, and similarly

Dc(u1 ∨ u2) = Dcu1 A+ + Dcu2 A−;

Dc(u1 ∧ u2) = Dcu2 A+ + Dcu1 A−.
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Therefore

X =

∫
A+

f1 (x, u1,∇u1) dLn +

∫
A−

f1 (x, u2,∇u2) dLn

+

∫
A+

f1 (x, u2,∇u2) dLn +

∫
A−

f1 (x, u1,∇u1) dLn

=

∫
A\(S u1∪S u2 )

f1 (x, u1,∇u1) dLn +

∫
A\(S u1∪S u2 )

f1 (x, u2,∇u2) dLn

=

∫
A

f1 (x, u1,∇u1) dLn +

∫
A

f1 (x, u2,∇u2) dLn.

(3.26)

and

Y =

∫
A+

f2

(
dDcu1

d|Dcu1|

)
d|Dcu1| +

∫
A−

f2

(
dDcu2

d|Dcu2|

)
d|Dcu2|

+

∫
A+

f2

(
dDcu2

d|Dcu2|

)
d|Dcu2| +

∫
A−

f2

(
dDcu1

d|Dcu1|

)
d|Dcu1|

=

∫
A\(S u1∪S u2 )

f2

(
dDsu1

d|Dsu1|

)
d|Dcu1| +

∫
A\(S u1∪S u2 )

f2

(
dDsu2

d|Dsu2|

)
d|Dcu2|

=

∫
A

f2

(
dDsu1

d|Dsu1|

)
d|Dcu1| +

∫
A

f2

(
dDsu2

d|Dsu2|

)
d|Dcu2|,

(3.27)

where to obtain the last equality in (3.26) and in (3.27), we used the fact that Ln(S u1 ∪ S u2) = 0

(see [1, Proposition 3.64]) and the fact that, since u1, u2 ∈ BV(A), then |Dcu1|(S u2) = |Dcu2|(S u1) =

0.1

Recall that, by [1, Eq. (3.90)], one has

D ju1 = (u+
1 − u−1 )ν1H

n−1 Ju1

D ju2 = (u+
2 − u−2 )ν2H

n−1 Ju2 ,

where ν1, ν2 are the unit normals to the (n− 1)-rectifiable sets Ju1 , Ju2 . Without loss of generality,

we may assume that u+
1 ≥ u−1 and ν1 = ν2,Hn−1-a.e. on Ju1∩Ju2; in this way, the (n−1)-rectifiable

set T B Ju1 ∪ Ju2 is associated with the unit normal νT defined by

νT B ν1 on Ju1 , νT B ν2 on T \ Ju1 .

We extend u±1 : Ju1 → R and u±2 : Ju2 → R to the whole T by setting

u±1 B

u±1 on Ju1

0 on T \ Ju1 ,
u±2 B

u±2 on Ju2

0 on T \ Ju2 .

1This last fact follows from Proposition 3.92 item c) and Remark 2.50 in [1]
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In this way one has

D j(u1 + u2) = (u+
1 − u−1 + u+

2 − u−2 ) νT H
n−1 T .

By [1, Theorem 3.99], |u1 − u2| ∈ BV(A) and

D j(|u1 − u2|) = (|u+
1 − u+

2 | − |u
−
1 − u−2 |) νT H

n−1 T. (3.28)

We can then write

D j(u1 ∨ u2) = D j
(

u1+u2
2 + |u1−u2 |

2

)
= 1

2 D j (u1 + u2) + 1
2 D j (|u1 − u2|)

D j(u1 ∧ u2) = D j
(

u1+u2
2 −

|u1−u2 |

2

)
= 1

2 D j(u1 + u2
)
− 1

2 D j (|u1 − u2|) .

By using this decomposition and (3.28), we have

Z =

∫
T

f2

(
dD j(u1 ∨ u2)
d|D j(u1 ∨ u2)|

)
d|D j(u1 ∨ u2)| +

∫
T

f2

(
dD j(u1 ∧ u2)
d|D j(u1 ∧ u2)|

)
d|D j(u1 ∧ u2)|

=
1
2

∫
T

f2
((

u+
1 − u−1 + u+

2 − u−2 + |u+
1 − u+

2 | − |u
−
1 − u−2 |

)
νT

)
dHn−1

+
1
2

∫
T

f2
((

u+
1 − u−1 + u+

2 − u−2 − |u
+
1 − u+

2 | + |u
−
1 − u−2 |

)
νT

)
dHn−1.

(3.29)

Let for shortness α, β : T → R be the functions defined by

α B u+
1 − u−1 + u+

2 − u−2 + |u+
1 − u+

2 | − |u
−
1 − u−2 |,

β B u+
1 − u−1 + u+

2 − u−2 − |u
+
1 − u+

2 | + |u
−
1 − u−2 |.

To estimate Z, we are going to split T into several regions. Set

T ′ B {x ∈ T : u+
2 (x) ≥ u−2 (x)}, and T ′′ B {x ∈ T : u+

2 (x) < u−2 (x)}.

Then, taking into account that u−1 ≤ u+
1 on T , one can easily check that both α and β are positive

on T ′. Being f2 positively homogeneous, then one has

1
2

∫
T ′

f2(ανT ) dHn−1 +
1
2

∫
T ′

f2(βνT ) dHn−1 =
1
2

∫
T ′

(α + β) f2(νT ) dHn−1

=

∫
T ′

(u+
1 − u−1 ) f2(νT ) dHn−1 +

∫
T ′

(u+
2 − u−2 ) f2(νT ) dHn−1

=

∫
T ′

f2((u+
1 − u−1 )νT ) dHn−1 +

∫
T ′

f2((u+
2 − u−2 )νT ) dHn−1.

(3.30)

We now subdivide T ′′ into the union of the following disjoint subsets:

T ′′++ B {x ∈ T ′′ : u+
1 (x) ≥ u+

2 (x), u−1 (x) ≥ u−2 (x)}, T ′′−− B {x ∈ T ′′ : u+
1 (x) < u+

2 (x), u−1 (x) < u−2 (x)}

T ′′+− B {x ∈ T ′′ : u+
1 (x) ≥ u+

2 (x), u−1 (x) < u−2 (x)}, T ′′−+ B {x ∈ T ′′ : u+
1 (x) < u+

2 (x), u−1 (x) ≥ u−2 (x)}.
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Notice that, for every x ∈ T ′′++, one has α(x) = 2(u+
1 (x) − u−1 (x)) and β(x) = 2(u+

2 (x) − u−2 (x)),

conversely, for every x ∈ T ′′−−, one has α(x) = 2(u+
2 (x)−u−2 (x)) and β(x) = 2(u+

1 (x)−u−1 (x)). Using

this information, we easily obtain

1
2

∫
T ′′++∪T ′′−−

f2(ανT ) dHn−1 +
1
2

∫
T ′′++∪T ′′−−

f2(βνT ) dHn−1

=

∫
T ′′++∪T ′′−−

f2((u+
1 − u−1 )νT ) dHn−1 +

∫
T ′′++∪T ′′−−

f2((u+
2 − u−2 )νT ) dHn−1.

(3.31)

We now consider T ′′+−. The estimate on T ′′−+ can be done in a completely analogous way. We first

write T ′′+− = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where

Γ1 B {x ∈ T ′′+− : u+
1 (x) ≥ u−2 (x), u+

2 (x) ≥ u−1 (x)}, Γ2 B {x ∈ T ′′+− : u+
1 (x) ≥ u−2 (x), u+

2 (x) < u−1 (x)}

Γ3 B {x ∈ T ′′+− : u+
1 (x) < u−2 (x), u+

2 (x) ≥ u−1 (x)}, Γ4 B {x ∈ T ′′+− : u+
1 (x) < u−2 (x), u+

2 (x) < u−1 (x)}.

Notice that, for every x ∈ T ′′+−, one has that α(x) = 2(u+
1 (x) − u−2 (x)) and β(x) = 2(u+

2 (x) − u−1 (x))

and, by construction, α is positive on Γ1 ∪ Γ2 and strictly negative on Γ3 ∪ Γ4, while β is positive

on Γ1 ∪ Γ3 and strictly negative on Γ2 ∪ Γ4. Using the positive homogeneity of f2, we get

1
2

∫
Γ1

f2(ανT ) dHn−1 +
1
2

∫
Γ1

f2(βνT ) dHn−1

=

∫
Γ1

(u+
1 − u−2 ) f2(νT ) dHn−1 +

∫
Γ1

(u+
2 − u−1 ) f2(νT ) dHn−1

=

∫
Γ1

(u+
1 − u−1 ) f2(νT ) dHn−1 +

∫
Γ1

(u+
2 − u−2 ) f2(νT ) dHn−1

=

∫
Γ1

f2((u+
1 − u−1 )νT ) dHn−1 +

∫
Γ1

f2((u+
2 − u−2 )νT ) dHn−1.

(3.32)

Taking into account that α and β are strictly negative on Γ4, we also have

1
2

∫
Γ4

f2(ανT ) dHn−1 +
1
2

∫
Γ4

f2(βνT ) dHn−1

=

∫
Γ4

(u−2 − u+
1 ) f2(−νT ) dHn−1 +

∫
Γ4

(u−1 − u+
2 ) f2(−νT ) dHn−1

=

∫
Γ4

(u−1 − u+
1 ) f2(−νT ) dHn−1 +

∫
Γ4

(u−2 − u+
2 ) f2(−νT ) dHn−1

=

∫
Γ4

f2((u+
1 − u−1 )νT ) dHn−1 +

∫
Γ4

f2((u+
2 − u−2 )νT ) dHn−1.

(3.33)

Recall that, by (3.1), the map f2 is positive, and therefore, for any 0 ≤ λ1 ≤ λ2 and any x ∈ R2n,

one has f2(λ1x) ≤ f2(λ2x). We can make the estimate on Γ2, taking into account that α is positive
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and β is strictly negative:

1
2

∫
Γ2

f2(ανT ) dHn−1 +
1
2

∫
Γ2

f2(βνT ) dHn−1

=

∫
Γ2

(u+
1 − u−2 ) f2(νT ) dHn−1 +

∫
Γ2

(u−1 − u+
2 ) f2(−νT ) dHn−1

=

∫
Γ2

(u+
1 − u−1 + u−1 − u−2 ) f2(νT ) dHn−1 +

∫
Γ2

(u−1 − u−2 + u−2 − u+
2 ) f2(−νT ) dHn−1

≤

∫
Γ2

f2((u+
1 − u−1 )νT ) dHn−1 +

∫
Γ2

f2((u+
2 − u−2 )νT ) dHn−1,

(3.34)

where in the last inequality we used the fact that (u−1 − u−2 )|T ′′+− < 0 and (u−2 − u+
2 )|T ′′ > 0. Analo-

gously, for Γ3, we have

1
2

∫
Γ3

f2(ανT ) dHn−1 +
1
2

∫
Γ3

f2(βνT ) dHn−1

=

∫
Γ3

(u−2 − u+
1 ) f2(−νT ) dHn−1 +

∫
Γ3

(u+
2 − u−1 ) f2(νT ) dHn−1

=

∫
Γ3

(u−2 − u+
2 + u+

2 − u+
1 ) f2(−νT ) dHn−1 +

∫
Γ3

(u+
2 − u+

1 + u+
1 − u−1 ) f2(νT ) dHn−1

≤

∫
Γ3

f2((u+
2 − u−2 )νT ) dHn−1 +

∫
Γ3

f2((u+
1 − u−1 )νT ) dHn−1,

(3.35)

where in the last inequality we have used the fact that (u−2 − u+
2 )|T ′′ > 0 and (u+

2 − u+
1 )|T ′′+− ≤ 0.

Combining (3.32), (3.34), (3.35) and (3.33) one obtains

1
2

∫
T ′′+−

f2(ανT ) dHn−1 +
1
2

∫
T ′′+−

f2(βνT ) dHn−1

≤

∫
T ′′+−

f2((u+
2 − u−2 )νT ) dHn−1 +

∫
T ′′+−

f2((u+
1 − u−1 )νT ) dHn−1.

(3.36)

In a completely analogous fashion, we can also write

1
2

∫
T ′′−+

f2(ανT ) dHn−1 +
1
2

∫
T ′′−+

f2(βνT ) dHn−1

≤

∫
T ′′−+

f2((u+
2 − u−2 )νT ) dHn−1 +

∫
T ′′−+

f2((u+
1 − u−1 )νT ) dHn−1.

(3.37)

As a direct consequence of (3.31), (3.36) and (3.37), we then have

1
2

∫
T ′′

f2(ανT ) dHn−1 +
1
2

∫
T ′′

f2(βνT ) dHn−1

≤

∫
T ′′

f2((u+
2 − u−2 )νT ) dHn−1 +

∫
T ′′

f2((u+
1 − u−1 )νT ) dHn−1.

(3.38)
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The thesis is then obtained by combining (3.26), (3.27), (3.29), (3.30) and (3.38). �

Remark 3.9. The functional GΩ considered in the present paper is a special case of the func-

tional FA where the set Ω ⊂ R2n plays the role of A, f1(x, u, ξ) = g(ξ + X∗(x)) and f2(ξ) = g∞(ξ).

Proposition 3.6 shows that GΩ is the relaxation of a functional defined in W1,1(Ω). We notice that

in this particular case the proof of Theorem 3.8 could be simplified by a relaxation argument.

Corollary 3.10. Let Ω ⊆ R2n be an open and bounded set with Lipschitz boundary and let

g : Ω→ [0,+∞) be a convex function satisfying (3.1). Then, for every ϕ1, ϕ2 ∈ L1(∂Ω) and every

u1, u2 ∈ BV(Ω) one has

GΩ,ϕ1∨ϕ2(u1 ∨ u2) + GΩ,ϕ1∧ϕ2(u1 ∧ u2) ≤ GΩ,ϕ1(u1) + GΩ,ϕ2(u2). (3.39)

Proof. Let u1, u2 ∈ BV(Ω) and ϕ1, ϕ2 ∈ L1(∂Ω).

First of all Theorem 3.8 and Remark 3.6 imply

GΩ(u1 ∨ u2) + GΩ(u1 ∧ u2) ≤ GΩ(u1) + GΩ(u2). (3.40)

Fix any bounded open and Lipschitz set Ω0 c Ω. By [23, Theorem 2.16], we can find w1,w2 ∈

W1,1(Ω0 \Ω) with w1 |∂Ω = ϕ1 and w2 |∂Ω = ϕ2. Set now

v1 B

w1 on Ω0 \Ω

u1 on Ω
and v2 B

w2 on Ω0 \Ω

u2 on Ω.

By [1, Theorem 3.84], v1, v2 ∈ BV(Ω0) and, moreover, if νΩ denotes the exterior normal to Ω,

one has

Dvi = Dui Ω + Dwi (Ω0 \Ω) + (wi − ui)νΩH
2n−1 ∂Ω, for i = 1, 2,

from which we can compute, up to |Dsv|-negligible sets, the polar vector:

dDsvi

d|Dsvi|
=


dDsui

d|Dsui|
on Ω

0 on Ω0 \Ω

(wi − ui)
|wi − ui|

νΩ on ∂Ω.
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Then, using the previous expression, the fact that g∞ is homogeneous and the definition of wi,

we get

GΩ0(vi) =

∫
Ω0

g(∇vi + X∗) dL2n +

∫
Ω0

g∞
(

dDsvi

d|Dsvi|

)
d|Dsvi|

= GΩ(ui) + GΩ0\Ω
(wi) +

∫
∂Ω

g∞((wi − ui) ⊗ νΩ) dH2n−1

= GΩ(ui) + GΩ0\Ω
(wi) +

∫
∂Ω

g∞((ϕi − ui) ⊗ νΩ) dH2n−1

= GΩ0\Ω
(wi) + GΩ,ϕi(ui), for i = 1, 2.

Similarly, using Remark 2.3 we also have

GΩ0(v1 ∨ v2) = GΩ0\Ω
(w1 ∨ w2) + GΩ,ϕ1∨ϕ2(u1 ∨ u2) and

GΩ0(v1 ∧ v2) = GΩ0\Ω
(w1 ∧ w2) + GΩ,ϕ1∧ϕ2(u1 ∧ u2).

Taking into account that (3.39) is an equality when the maps are Sobolev (see [37, Lemma 5.1]),

we can then conclude combining the previous identities with Theorem 3.8 to get

GΩ,ϕ1∨ϕ2(u1 ∨ u2) + GΩ,ϕ1∧ϕ2(u1 ∧ u2)

= GΩ0(v1 ∨ v2) + GΩ0(v1 ∧ v2) − GΩ0\Ω
(w1 ∨ w2) − GΩ0\Ω

(w1 ∧ w2)

≤ GΩ0(v1) + GΩ0(v2) − GΩ0\Ω
(w1) − GΩ0\Ω

(w2) = GΩ,ϕ1(u1) + GΩ,ϕ2(u2). �

3.2. The set of minimizers and comparison principles. Given a bounded open set Ω ⊂ R2n

with Lipschitz regular boundary and a function ϕ ∈ L1(∂Ω) we define

Mϕ B arg min
u
Gϕ,Ω(u) .

We have already proved that Mϕ ⊂ BV(Ω) is nonempty.

Using Theorem 3.8 and Corollary 3.10, the proof of Proposition 3.11 below is completely anal-

ogous to [38, Proposition 4.3] and we omit it.

Proposition 3.11. Let ϕ1, ϕ2 ∈ L1(∂Ω) be such that ϕ1 ≤ ϕ2 H
2n−1-a.e. on ∂Ω and assume that

u1 ∈Mϕ1 and u2 ∈Mϕ2 . Then (u1 ∨ u2) ∈Mϕ2 and (u1 ∧ u2) ∈Mϕ1 .

In [35] (see also [38]), it has been proved that the set of minimizers of a superlinear convex

functional has a maximum u (resp. a minimum u) defined as the pointwise supremum (infimum)

of the minimizers. These special minimizers are then used to prove one-sided Comparison Prin-

ciples.
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Proposition 3.12. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary and let

ϕ ∈ L1(∂Ω). Then, there exists u, u ∈Mϕ such that the inequalities

u ≤ u ≤ u, L2n-a.e. in Ω (3.41)

hold for any u ∈Mϕ.

Proof. We start by proving that Mϕ is bounded in BV(Ω). Define J B minu∈BV(Ω)Gϕ,Ω(u) < +∞.

By (3.4) and denoting by C̃ = supΩ |X∗| we get

|Du|(Ω) =

∫
Ω

|∇u| dL2n + |Dsu|(Ω)

≤C
∫

Ω

g(∇u + X∗) dL2n + C̃|Ω| +
∫

Ω

d|Dsu|

≤C
∫

Ω

g(∇u + X∗) dL2n + C̃|Ω| + C
∫

Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| + C

∫
∂Ω

g∞((ϕ − u|∂Ω)νΩ) dH2n−1

=CJ + C̃|Ω|, ∀u ∈Mϕ,

(3.42)

where |Ω| B L2n(Ω). Moreover, by [23, Theorem 1.28 and Remark 2.14] there exists c = c(n) >

0 such that
‖u‖L1(Ω) ≤ |Ω|

1/2n‖u‖L2n/(2n−1)(Ω)

≤ c |Ω|1/2n

(
|Du|(Ω) +

∫
∂Ω

|u| dH2n−1
)

≤ c|Ω|1/2n

(
|Du|(Ω) +

∫
∂Ω

|ϕ − u|∂Ω| dH2n−1 +

∫
∂Ω

|ϕ| dH2n−1
)

= c|Ω|1/2n

(
|Du|(Ω) +

∫
∂Ω

|(ϕ − u|∂Ω)νΩ| dH2n−1 +

∫
∂Ω

|ϕ| dH2n−1
)

≤ c|Ω|1/2n

(
C

∫
Ω

g(∇u + X∗) dL2n + C̃|Ω| + C
∫

Ω

g∞
(

dDsu
d|Dsu|

)
|Dsu|(Ω)

+ C
∫
∂Ω

g∞((ϕ − u|∂Ω)νΩ) dH2n−1 +

∫
∂Ω

|ϕ| dH2n−1
)

= c|Ω|1/2n

(
CJ + C̃|Ω| +

∫
∂Ω

|ϕ| dH2n−1
)
, ∀u ∈Mϕ,

where in the second last inequality we argued as in (3.42). This, together with (3.42), implies

that Mϕ is bounded in BV(Ω).

Therefore, by [1, Theorem 3.23], Mϕ is pre-compact in L1(Ω), i.e., for every sequence (uh) in

Mϕ there exist u ∈ BV(Ω) and a subsequence (uhk) such that uhk → u in L1(Ω). By (3.21), Gϕ,Ω
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is lower semicontinuous with respect to the L1-convergence, hence we have also

Gϕ,Ω(u) ≤ lim inf
k→∞

Gϕ,Ω(uhk) = J,

so that u ∈Mϕ. We have proved that Mϕ is compact in L1(Ω). Now, the functional

BV(Ω) 3 u 7−→ I(u) B
∫

Ω

u dL2n

is continuous in L1(Ω), hence it admits maximum u and minimum u in Mϕ: let us prove that u, u

satisfy (3.41) for any u ∈Mϕ.

Assume by contradiction there exists u ∈Mϕ such that Ω′ B {z ∈ Ω : u(z) > u(z)} has strictly

positive measure. Then, by Corollary 3.11, u ∨ u is in Mϕ. Moreover∫
Ω

(u ∨ u) dL2n =

∫
Ω′

u dL2n +

∫
Ω\Ω′

u dL2n >

∫
Ω

u dL2n

yielding a contradiction. The fact that u ≥ u follows in a similar way. �

The following result is a Comparison Principle inspired by the results obtained in [35] for

superlinear functionals in Sobolev spaces and it can be proved exactly as in [38, Theorem 4.5].

Theorem 3.13. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary; let ϕ, ψ ∈

L1(∂Ω) be such that ϕ ≤ ψH2n−1-a.e. on ∂Ω. Consider the functions u, u ∈Mϕ and w, w ∈Mψ

such that2

u ≤ u ≤ u L2n-a.e. in Ω, ∀u ∈Mϕ

w ≤ w ≤ w L2n-a.e. in Ω, ∀w ∈Mψ .
(3.43)

Then

u ≤ w and u ≤ w L2n-a.e. in Ω (3.44)

and, in particular,

u ≤ w L2n-a.e. in Ω, ∀u ∈Mϕ

u ≤ w L2n-a.e. in Ω, ∀w ∈Mψ.

Upon observing that Gϕ+α,Ω(u + α) = Gϕ,Ω(u) ∀ u ∈ BV(Ω), the following result can be

proved exactly as in [38, Corollary 4.6].

2The existence of u, u, w, w is guaranteed by Proposition 3.12.



24 S. DON, L. LUSSARDI, A. PINAMONTI, AND G. TREU

Corollary 3.14. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary and ϕ, ψ ∈

L∞(∂Ω); let u, u ∈Mϕ and w,w ∈Mψ be as in (3.43). Then, for every α ∈ R, one has

u + α, u + α ∈Mϕ+α

u + α ≤ u ≤ u + α L2n-a.e. in Ω, ∀u ∈Mϕ+α

(3.45)

and

‖u − w‖L∞(Ω) ≤ ‖ϕ − ψ‖L∞(∂Ω)

‖u − w‖L∞(Ω) ≤ ‖ϕ − ψ‖L∞(∂Ω).
(3.46)

In particular, the implications

u|∂Ω = ϕ, w|∂Ω = ψ ⇒ ‖u − w‖L∞(Ω) = ‖ϕ − ψ‖L∞(∂Ω),

u
|∂Ω

= ϕ, w
|∂Ω

= ψ ⇒ ‖u − w‖L∞(Ω) = ‖ϕ − ψ‖L∞(∂Ω).
(3.47)

hold.

We recall below some notations introduced in [38], that will be useful also in the proof of the

main theorem of the present paper. Given a subset Ω ⊂ R2n, a function u : Ω → R, a vector

τ ∈ R2n and ξ ∈ R we set

Ωτ B {z ∈ R2n : z + τ ∈ Ω}

uτ(z) B u(z + τ), z ∈ Ωτ

u∗τ,ξ(z) B uτ(z) + 2 〈τ∗, z〉 + ξ, z ∈ Ωτ .

It is easily seen that, given Ω open and u ∈ BV(Ω), then both uτ and u∗τ,ξ belong to BV(Ωτ).

Moreover, if Ω is bounded with Lipschitz regular boundary one has also

(u∗τ,ξ)|∂(Ωτ) = (u|∂Ω)τ + 2 〈τ∗, ·〉 + ξ = (u|∂Ω)∗τ,ξ . (3.48)

Remark 3.15. The family of functions u∗τ,ξ has a precise meaning from the viewpoint of Heisen-

berg groups geometry. Indeed, it is a matter of computations to observe that the t-subgraph

Et
u∗τ,ξ

of u∗τ,ξ coincides with the left translation (−τ, ξ) · Et
u (according to the group law) of the

t-subgraph Et
u of u by the element (−τ, ξ) ∈ Hn. We address the interested reader to [38, 40] for

further informations.

Lemma 3.16. Let Ω ⊂ R2n be a bounded open set with Lipschitz regular boundary, ϕ ∈ L1(∂Ω),

τ ∈ R2n and ξ ∈ R. Then

Gϕ∗τ,ξ ,Ωτ
(u∗τ,ξ) = Gϕ,Ω(u), ∀u ∈ BV(Ω) .
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Proof. Using e.g. [1, Remark 3.18], we get Duτ = `τ#(Du), where `τ is the translation z 7→ z − τ

and `τ# denotes the push-forward of measures via `τ. In particular

∇uτ = (∇u)τ = ∇u ◦ `−1
τ , Dsuτ = `τ#(Dsu) and

dDsuτ
d|Dsuτ|

=
dDsu
d|Dsu|

◦ `−1
τ

hence

Du∗τ,ξ =
(
∇u ◦ `−1

τ + 2τ∗
)
L2n + `τ#(Dsu) .

Therefore
Gϕ∗τ,ξ ,Ωτ

(u∗τ,ξ)

=

∫
Ωτ

g((∇u ◦ `−1
τ ) + 2τ∗ + X∗) dL2n +

∫
Ωτ

g∞
(

dDsu
d|Dsu|

◦ `−1
τ

)
d|`τ#(Dsu)|

+

∫
∂Ωτ

g∞((ϕ∗τ,ξ − (u∗τ,ξ)|∂Ωτ
)νΩτ

) dH2n−1.

We now use (3.48) and the equality

2τ∗ + X∗(z) = 2(τ + z)∗ = (X∗ ◦ `−1
τ )(z), ∀z ∈ R2n

to get, with a change of variable,

Gϕ∗τ,ξ ,Ωτ
(u∗τ,ξ)

=

∫
Ωτ

|∇u + X∗| ◦ `−1
τ dL2n +

∫
Ωτ

g∞
(

dDsu
d|Dsu|

◦ `−1
τ

)
d|`τ#(Dsu)| +

∫
∂Ωτ

g∞
((
ϕ − u|∂Ω

)
τνΩτ

)
dH2n−1

=

∫
Ω

|∇u + X∗| dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞((ϕ − u|∂Ω)νΩ) dH2n−1

=Gϕ,Ω(u) .
�

Corollary 3.17. If the same assumptions of Lemma 3.16 hold and if u and u are as in Proposition

3.12, then (u)∗τ,ξ, (u)∗τ,ξ ∈Mϕ∗τ,ξ
and

(u)∗τ,ξ ≤ u ≤ (u)∗τ,ξ L2n-a.e. in Ωτ,∀u ∈Mϕ∗τ,ξ
.

The next proposition states that, whenever we fix an affine boundary datum L, the functional

GL,Ω admits as unique minimizer the function L itself.

Proposition 3.18. Let L : R2n → R be given by L(z) := 〈a, z〉 + b with a ∈ R2n and b ∈ R and

assume g satisfies assumptions (A) and (B). Then L is the unique solution of the problem

min{GL,Ω(u) : u ∈ BV(Ω)}. (3.49)
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Proof. We divide the proof in several steps.

Step 1. We claim there exists p : R2n → R2n such that p(z) ∈ ∂g(z) for any z ∈ R2n and with the

property that ∫
Ω

〈p(X∗), σu〉 d|Du| =
∫
∂Ω

u|∂Ω〈p(X∗), νΩ〉 dH2n−1, (3.50)

for any u ∈ BV(Ω). If g ∈ C2(R2n) formula (3.50) with p = ∇g follows using the Gauss-Green

formula and the fact that, since div X∗ = 0, also div∇g(X∗) = 0. We claim that (3.50) holds

true again with p = ∇g if g ∈ C1(R2n). Consider the convolutions gh B ρh ∗ g where ρh is a

convolution kernel, i.e. ρh ∈ C∞c (B(0, 1/h)), ρh ≥ 0 and
∫
R2n ρh = 1. Then gh ∈ C∞(R2n) and

∇gh → ∇g uniformly on compact sets. It is now sufficient to pass to the limit in∫
Ω

〈∇gh(X∗), σu〉 d|Du| =
∫
∂Ω

u|∂Ω〈∇gh(X∗), νΩ〉 dH2n−1

using the Dominated Convergence Theorem. Finally we prove that (3.50) holds true for any

convex function g : R2n → R and for a suitable choice of p. We are going to use the Yosida

approximation; see [39, Sec. IV.1] (see also [2, Theorem 2.1]) for details. Precisely, for any

λ > 0 and for any z ∈ R2n let

Jλ(z) = min
y∈R2n

{
1

2λ
‖y − z‖2 + g(y)

}
,

and

gλ(z) = g(Jλ(z)) +
1

2λ
‖z − Jλ(z)‖2

Then gλ ∈ C1,1(R2n) and for any z ∈ R2n there holds ∇ fλ(z) = Aλ(z) where Aλ is the Yosida

approximation of the maximal monotone operator A = ∂g, Aλ(z) B λ−1(z− Jλ(z)). Moreover, as λ

decreases to zero, gλ increases to g, and for any z ∈ R2n, ‖Aλ(z)‖ → ‖∂0g(z)‖ and Aλ(z)→ ∂0g(z),

where ∂0g(z) denotes the element of minimal norm of the closed convex set ∂g(z). Finally, since

g has linear growth we have ‖∂0g(z)‖ ≤ c for some c > 0 and for every z ∈ R2n. The thesis now

follows by taking p : R2n → R2n defined by p(z) B ∂g0(z) and using the Dominated Convergence

Theorem to pass to the limit in∫
Ω

〈Aλ(X∗), σu〉 d|Du| =
∫
∂Ω

u|∂Ω〈Aλ(X∗), νΩ〉 dH2n−1

as λ→ 0, obtaining (3.50).

Step 2. We claim that for any w, z ∈ R2n we have

g∞(w) ≥ 〈p(X∗(z)),w〉. (3.51)
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Indeed, by convexity, for any t > 0

g(tw + X∗(z))
t

≥
g(X∗(z))

t
+ 〈p(X∗(z)),w〉,

and the conclusion follows letting t → ∞ and using Remark 3.5.

Step 3. We claim that u = 0 is a solution of the problem

min{G0,Ω(u) : u ∈ BV(Ω)}.

Let u ∈ BV(Ω). Combining the convexity of g with (3.50) and (3.51) we obtain

G0,Ω(u) ≥
∫

Ω

g(X∗) dL2n +

∫
Ω

〈p(X∗),∇u〉 dL2n +

∫
Ω

〈p(X∗),
dDsu
d|Dsu|

〉 d|Dsu|

+

∫
∂Ω

g∞(−u|∂ΩνΩ) dH2n−1

=

∫
Ω

g(X∗) dL2n +

∫
Ω

〈p(X∗), σu〉 d|Du| +
∫
∂Ω

g∞(−u|∂ΩνΩ) dH2n−1

≥

∫
Ω

g(X∗) dL2n +

∫
∂Ω

u|∂Ω〈p(X∗), νΩ〉 dH2n−1 −

∫
∂Ω

u|∂Ω〈p(X∗), νΩ〉 dH2n−1

=

∫
Ω

g(X∗) dL2n

= G0,Ω(0)

(3.52)

which ends the proof of the minimality of u = 0.

Step 4. We claim now that if Ω = BR(0) then u = 0 is the unique solution of the problem

min{G0,Ω(u) : u ∈ BV(Ω)}.

Let u ∈ BV(Ω) be another minimizer, i.e. G0,Ω(u) = G0,Ω(0) = m. By convexity we have

m ≤ G0,Ω

(u
2

)
=

∫
Ω

g
(
1
2
∇u + X∗

)
dL2n +

1
2

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

1
2

∫
∂Ω

g∞(−u|∂ΩνΩ) dH2n−1

≤
1
2

∫
Ω

g(∇u + X∗) dL2n +
1
2

∫
Ω

g(X∗) dL2n +
1
2

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu|

+
1
2

∫
∂Ω

g∞(−u|∂ΩνΩ) dH2n−1

=
1
2

m +
1
2

m = m.
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As a consequence we get

g
(
∇u + X∗

2
+

X∗

2

)
=

g(∇u + X∗) + g(X∗)
2

, L2n-a.e. on Ω.

Using assumption (A), we conclude that

∇u = λaX∗, L2n-a.e. on Ω

for some measurable function λa : Ω→ R. Rewriting (3.52) and using (3.51) we then obtain

m =

∫
Ω

g (∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞(−u|∂ΩνΩ) dH2n−1

≥

∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

〈
p(X∗),

dDsu
d|Dsu|

〉
d|Dsu| +

∫
∂Ω

g∞(−u|∂ΩνΩ) dH2n−1

≥

∫
Ω

g(X∗) dL2n +

∫
∂Ω

(u|∂Ω〈p(X∗), νΩ〉 + g∞(−u|∂ΩνΩ)) dH2n−1

≥

∫
Ω

g(X∗) dL2n

= m.

This means that

g∞
(

dDsu
d|Dsu|

)
=

〈
p(X∗),

dDsu
d|Dsu|

〉
, |Dsu|-a.e. on Ω (3.53)

and

u|∂Ω〈p(X∗), νΩ〉 + g∞(−u|∂ΩνΩ) = 0, H2n−1-a.e. on Ω. (3.54)

Combining assumption (B) with (3.53), we immediately deduce that

dDsu
d|Dsu|

= λs X∗

|X∗|
, |Dsu|-a.e. on Ω

for some measurable function λs : Ω → R. From (3.54) we get u|∂Ω = 0. Indeed, at any point of

∂Ω where u∂Ω > 0, condition (3.54) implies

g∞(−νΩ) = 〈p(X∗),−νΩ〉

which means, thanks to assumption (B), that νΩ is parallel to X∗, and this is impossible since

Ω = BR(0), namely X∗ ⊥ νΩ everywhere on ∂Ω. By means of the same argument we can also

exclude u|∂Ω < 0. Therefore, we can say that

σu = λX∗, |Du|-a.e. on Ω

for some measurable function λ : Ω→ R. Lemma (2.5) gives the conclusion.



LIPSCHITZ MINIMIZERS OF FUNCTIONALS 29

Step 5. Now we prove that u = 0 is the unique solution of the problem

min{G0,Ω(u) : u ∈ BV(Ω)}

for a general Ω. Indeed, let u ∈ BV(Ω) be such that G0,Ω(u) = G0,Ω(0). Let R > 0 be such that

Ω ⊂⊂ BR(0). Let u0 : BR(0)→ R be given by

u0(z) B
{

u(z) if z ∈ Ω

0 otherwise.

Then,

G0,BR(0)(u0) =

∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞(−u|∂ΩνΩ) dH2n−1

+

∫
BR(0)\Ω

g(X∗) dL2n

= G0,Ω(u) + G0,BR(0)\Ω(0)

= G0,BR(0)(0),

Where in the last equality we used G0,Ω(u) = G0,Ω(0). Hence, by step 3 we get u0 = 0 from which

the conclusion.

Step 6. We conclude the proof proving that u = L is the unique solution of the problem

min{GL,Ω(u) : u ∈ BV(Ω)}.

Let Ωa B Ω − a∗/2, u ∈ BV(Ω) and ua : Ω → R be given by ua(z) B u(z + a∗/2) − L(z). Then

ua ∈ BV(Ωa). Hence we get, using step 2,

GL,Ω(u) =

∫
Ω

g(∇u + X∗) dL2n +

∫
Ω

g∞
(

dDsu
d|Dsu|

)
d|Dsu| +

∫
∂Ω

g∞((L − u|∂Ω)νΩ) dH2n−1

=

∫
Ωa

g(∇ua + X∗) dL2n +

∫
Ωa

g∞
(

dDsua

d|Dsua|

)
d|Dsua| +

∫
∂Ωa

g∞(−(ua)|∂ΩνΩ) dH2n−1

= G0,Ωa(ua) ≥ G0,Ωa(0)

=

∫
Ωa

g(X∗) dL2n =

∫
Ω

g(a + X∗) dL2n

= GL,Ω(L)

which says that u = L is a minimizer. Uniqueness easily follows by the fact that the equality

GL,Ω(u) = GL,Ω(0) implies, using the previous estimate, G0,Ωa(ua) = G0,Ωa(0) which in turn yields

ua = 0 from step 4. In order to conclude the proof it is sufficient to observe that ua = 0 means

u = L. �
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Corollary 3.19. Let Ω ⊂ R2n be a bounded open set with Lipschitz boundary, ϕ ∈ L1(∂Ω) and

L : R2n → R be an affine function, i.e., L(z) = 〈a, z〉 + b for some a ∈ R2n, b ∈ R.

(1) Assume that ϕ ≤ L H2n−1-a.e. on ∂Ω. Then, for any u ∈Mϕ, we have u ≤ L L2n-a.e. in

Ω.

(2) Assume that that ϕ ≥ L H2n−1-a.e. on ∂Ω. Then, for any u ∈ Mϕ, we have u ≥ L

L2n-a.e. in Ω.

Proof. Both claims follow immediately from Theorem 3.13 when we observe that the set ML

consists of just one element that is L itself, so that, following the notations of Proposition 3.12,

L = L = L. �

4. The Bounded Slope Condition

We recall the well-known definition of a boundary datum satisfying the Bounded Slope Con-

dition (see [28]). We also refer to [24] for some classical results.

Definition 4.1. We say that a function ϕ : ∂Ω → R satisfies the bounded slope condition with

constant Q > 0 (Q-B.S.C. for short or simply B.S.C. when the constant Q does not play any role)

if for every z0 ∈ ∂Ω, there exist two affine functions w+
z0

and w−z0
such that

w−z0
(z) ≤ ϕ(z) ≤ w+

z0
(z) ∀z ∈ ∂Ω, (4.1)

w−z0
(z0) = ϕ(z0) = w+

z0
(z0) (4.2)

Lip(w−z0
) ≤ Q and Lip(w+

z0
) ≤ Q, (4.3)

where Lip(w) denotes the Lipschitz constant of w.

Moreover, we denote by f1 and f2 the functions defined, respectively, by f1(z) B supz0∈∂Ω w−z0
(z)

and f2(z) B infz0∈∂Ω w+
z0

(z). We underline that f1 is convex, f2 is concave and they are both

Lipschitz continuous with Lipschitz constant not greater than Q.

The following result can be proved exactly as in [38, Lemma 6.2].

Lemma 4.2. Let Ω ⊂ R2n be an open bounded set with Lipschitz regular boundary; assume that

ϕ ∈ L1(∂Ω) satisfies the Q-B.S.C. Then, if u ∈ BV(Ω) is a minimizer of Gϕ,Ω, the following facts

hold.

(1) u|∂Ω = ϕ;

(2) f1 ≤ u ≤ f2 L
2n-a.e. in Ω;

(3) u is also a minimizer of GΩ in BV(Ω).
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The following fact is inspired by [38, Remark 6.4].

Remark 4.3. If Ω′ ⊂ Ω are open bounded domains with Lipschitz regular boundary and u ∈

BV(Ω).

Write Γ B ∂Ω′ ∩Ω and ∂Ω = ∆1 ∪ ∆2, where

∆1 B ∂Ω ∩ ∂Ω′ and ∆2 B ∂Ω \ ∂Ω′ .

Notice that ∂Ω′ = Γ∪∆1. We also denote by ui, uo : Γ→ R the “inner” and “outer” (with respect

to Ω′) traces of u on Γ, i.e.,

ui B (u|∂Ω′) Γ and uo B (u
|∂(Ω\Ω′)) Γ .

We use the notation Gu,Ω′ to denote the functional Guo,Ω′ . Let us prove that, if u is a minimizer of

Gϕ,Ω with ϕ = u|∂Ω, then u is also a minimizer of Gu,Ω′ . Assume by contradiction that u is not a

minimizer of Gu,Ω′; then, there exists v ∈ BV(Ω′) such that

0 < Gu,Ω′(u) − Gu,Ω′(v)

= GΩ′(u) − GΩ′(v) +

∫
Γ

g∞((uo − ui)νΩ′) dH2n−1

−

∫
Γ

g∞((uo − v|∂Ω′)νΩ′) dH2n−1 −

∫
∆1

g∞((ϕ − v|∂Ω′)νΩ) dH2n−1

(4.4)

where we used inequality (3.3). We would reach a contradiction if we show that the function

w ∈ BV(Ω) defined by

w B v on Ω′, w B u on Ω \Ω′

satisfies Gϕ,Ω(u) − Gϕ,Ω(w) > 0.

Let us compute

Gϕ,Ω(u) = GΩ(u) = GΩ′(u) + GΩ\Ω′(u) +

∫
Γ

g∞
(

dDsu
d|Dsu|

)
d|Dsu|

= GΩ′(u) + GΩ\Ω′(u) +

∫
Γ

g∞((uo − ui)νΓ) dH2n−1

and

Gϕ,Ω(w) = GΩ′(v) + GΩ\Ω′(u) +

∫
Γ

g∞
(

dDsw
d|Dsw|

)
d|Dsw| +

∫
∂Ω

g∞((ϕ − w|∂Ω)νΩ) dH2n−1

= GΩ′(v) + GΩ\Ω′(u) +

∫
Γ

g∞(uo − v|∂Ω′)νΩ′) dH2n−1 +

∫
∆1

g∞(ϕ − v|∂Ω)νΩ) dH2n−1 .
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Therefore
Gϕ,Ω(u) − Gϕ,Ω(w)

=GΩ′(u) − GΩ′(v) +

∫
Γ

(
g∞((uo − ui)νΩ′) − g∞(uo − v|∂Ω′)νΩ′)

)
dH2n−1

−

∫
∆1

g∞((ϕ − v|∂Ω′)νΩ) dH2n−1 > 0,

where we used (4.4) and u|∂Ω′ = ui.

We are now in position to prove our main result, whose proof is actually very similar to the

one given in [38].

Theorem 4.4. Let Ω ⊂ R2n be open, bounded and with Lipschitz regular boundary, let ϕ : ∂Ω→

R satisfy the Q-B.S.C. for some Q > 0 and let g : R2n → R be a convex function with linear

growth satisfying conditions (A) and (B). Then, the minimization problem

min
{
GΩ : u ∈ BV(Ω), u|∂Ω = ϕ

}
(4.5)

admits a unique solution û. Moreover, û is Lipschitz continuous and Lip(û) ≤ Q = Q(Q,Ω).

Proof. We divide the proof into several steps.

Step 1. We denote by u the (pointwise a.e.) maximum of the minimizers of Gϕ,Ω in BV (see

Proposition 3.12). Lemma 4.2 implies that f1 ≤ u ≤ f2 L
2n-a.e. in Ω and u = ϕ = f1 = f2 on ∂Ω,

where f1 and f2 are defined as in Definition 4.1; in particular, u is also a minimizer for (4.5).

Let τ ∈ R2n be such that Ω ∩ Ωτ , ∅; following the notations introduced before Lemma 3.16,

we consider the function u∗τ,0, which we denote by u∗τ to simplify the notation. Consider the set

Ω ∩ Ωτ. By Remark 4.3, u is a minimizer of Gu,Ω∩Ωτ
and, by Corollary 3.17 and Remark 4.3, u∗τ

is a minimizer of Gu∗τ,Ω∩Ωτ
. Let z ∈ ∂(Ω ∩Ωτ), then either z ∈ ∂Ω or z ∈ ∂Ωτ.

If z ∈ ∂Ω, then z + τ ∈ Ω and the inequality (36) in [38, Lemma 6.3 ] implies that

u(z) − Q|τ| ≤ u(z + τ) ≤ u(z) + Q|τ| . (4.6)

Otherwise, z ∈ ∂Ωτ and z = (z + τ) − τ ∈ Ω, and Lemma 4.2 implies again (4.6).

So we have proved that (4.6) holds for any z ∈ ∂(Ω ∩Ωτ), hence

u(z) − Q|τ| + 2〈τ∗, z〉 ≤ u(z + τ) + 2〈τ∗, z〉 ≤ u(z) + Q|τ| + 2〈τ∗, z〉 .

Setting M B Q + 2 supz∈Ω |z|, one has

u(z) − M|τ| ≤ u∗τ(z) ≤ u(z) + M|τ| for any z ∈ ∂(Ω ∩Ωτ)
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and, by Corollary 3.14,

u(z) − M|τ| ≤ u∗τ(z) ≤ u(z) + M|τ| for L2n-a.e. z ∈ Ω ∩Ωτ .

This is equivalent to

u(z) − M|τ| − 2〈τ∗, z〉 ≤ u(z + τ) ≤ u(z) + M|τ| − 2〈τ∗, z〉 for L2n-a.e. z ∈ Ω ∩Ωτ

and, setting K B M + 2 supz∈Ω |z|,

u(z) − K|τ| ≤ u(z + τ) ≤ u(z) + K|τ| for L2n-a.e. z ∈ Ω ∩Ωτ.

Step 2. We claim that the inequality |u(z) − u(z̄)| ≤ K|z − z̄| holds for any Lebesgue points z, z̄

of u. We define τ B z̄ − z; then Ω ∩Ωτ , ∅ and, arguing as in Step 1, we obtain

|u(z′ + τ) − u(z′)| ≤ K|τ| for L2n-a.e. z′ ∈ Ω ∩Ωτ.

Let ρ > 0 be such that B(z, ρ) ⊂ Ω ∩Ωτ and B(z̄, ρ) ⊂ Ω ∩Ωτ; then

|u(z) − u(z̄)| =

∣∣∣∣∣∣limρ→0

(?
B(z,ρ)

u(z′)dz′ −
?

B(z̄,ρ)
u(z′)dz′

)∣∣∣∣∣∣
≤ lim
ρ→0

?
B(z,ρ)
|u(z′) − u(z′ + τ)| dz′ ≤ K|z − z̄|.

Step 3. We have proved that u, the maximum of the minimizer ofGϕ,Ω, has a representative that

is Lipschitz continuous on Ω, with Lipschitz constant not greater than K = Q + 4 supz∈Ω |z|. The

same argument leads to prove that u, the minimum of the minimizers ofGϕ,Ω, has a representative

that is Lipschitz continuous on Ω, with Lipschitz constant not greater than K. The uniqueness

criterion in Proposition 3.4 (with p = 1) implies that u = u L2n-a.e. on Ω. If u is another

minimizer of Gϕ,Ω, we have by Proposition 3.12 that u ≤ u ≤ u L2n-a.e. on Ω. This concludes

the proof. �

5. The superlinear growth case

In this section we consider the functional defined in (3.15) by

GΩ(u) B
∫

Ω

g(∇u + X∗) dL2n, u ∈ ϕ + W1,1
0 (Ω) (5.1)

where ϕ satisfies, as in the previous sections, the Bounded Slope Condition of order Q and g has

superlinear growth.

Our aim is to show that, for the functional GΩ defined in (5.1), we can get both regularity and

uniqueness results using again the Bounded Slope Condition and arguing with the same approach

that we used for the BV case.
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Theorem 5.1. Let g : R2n → R be a convex function satisfying condition (A) and let ϕ : Ω → R

satisfy the Bounded Slope Condition of order Q on the boundary of Ω. Assume also that g has

superlinear growth, i.e., g(ξ) ≥ ψ(|ξ|) for a suitable ψ : [0,+∞)→ R such that

lim
t→+∞

ψ(t)
t

= +∞.

Then the functional

GΩ(u) =

∫
Ω

g(∇u + X∗) dL2n, u ∈ ϕ + W1,1
0 (Ω) (5.2)

has a unique Lipschitz minimizer, i.e.: there exists u ∈ ϕ + W1,∞
0 (Ω) such that GΩ(u) ≤ GΩ(v) for

every v ∈ ϕ + W1,1
0 (Ω).

Proof. The superlinearity of g and the lower semicontinuity of GΩ imply the existence of u0 ∈

ϕ + W1,1
0 (Ω) such that GΩ(u0) ≤ GΩ(u) for every u ∈ ϕ + W1,1

0 (Ω).

In the same spirit of the previous sections, we denote by Mϕ = {v ∈ ϕ + W1,1
0 (Ω) : GΩ(v) ≤

GΩ(u),∀u ∈ ϕ + W1,1
0 (Ω)}. Thanks to the superlinearity of g we can argue as in the proof of

Proposition 3.12 to state that there exist two functions u, u ∈Mϕ such that for every u ∈Mϕ

u(x) ≤ u(x) ≤ u(x) for a.e. x ∈ Ω.

We remark that the results contained in sections 3 and 4 can be restated replacing the space

BV(Ω) with ϕ + W1,1
0 (Ω). All the proofs in fact can be repeated and simplified dropping both the

terms where Ds appears and those that take into account the jumps at the boundary. Hence we

can conclude that u ∈ ϕ + W1,∞
0 (Ω), where K = Q + 2 maxΩ |z|. Proposition 3.4 then leads to

uniqueness of minimizers. �
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