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Abstract: We consider the homogenization theory for Hamilton–Jacobi equations on the one-
dimensional flat torus in connection to the isospectrality problem of Schrödinger operators. In
particular, we link the equivalence of effective Hamiltonians provided by the weak KAM theory with
the class of the corresponding operators exhibiting the same spectrum.
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1. Introduction

Let us consider the one-dimensional flat torus T := R/2πZ and two functions
V, A ∈ C∞(T;R) and define H(x, p) := 1

2 |p + A(x)|2 + V(x). Consider the Hamilton–
Jacobi equation

1
2
|P +∇xS(P, x) + A(x)|2 + V(x) = H(P), P ∈ R, (1)

where the convex map P 7→ H(P) is the effective Hamiltonian (see, e.g., [1–8]), whereas S
is a viscosity solution, in this case unique (see [5,9–11] and references therein). We recall
the following inf-sup formula:

H(P) = inf
v∈C1,1(T)

sup
x∈T

1
2
|P +∇xv(x) + A(x)|2 + V(x). (2)

The target of this paper is to study the functions H with the same effective Hamiltonian

H1 = H2 (3)

in connection to the class of Schrödinger operators

Ĥ :=
1
2
(−ih̄∇x + A(x))2 + V(x) (4)

and related isospectral problem

Spec(Ĥ1) = Spec(Ĥ2) ∀ 0 < h̄ ≤ 1, (5)

In order to do so, we make use of the inf-sup Formula (2) together with the well known
Bohr–Sommerfeld rules on the (discrete) spectrum of (4), which we here recall in Section 2.2,
to prove the main result of the paper.

More precisely, the objective is to show that the (semiclassical) isospectrality condition
implies a constraint on the related two effective Hamiltonians.

The content of our main result is the following:
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Theorem 1. Let Hα(x, p) := 1
2 |p+ Aα(x)|2 +Vα(x) with α = 1, 2 such that max V1 = max V2

and
∫
T A1(x)dx =

∫
T A2(x)dx. If

Spec(Ĥ1) = Spec(Ĥ2) ∀ 0 < h̄ ≤ 1, (6)

then
H1(P) = H2(P) ∀P ∈ R. (7)

Conversely, if (7) holds true, then Spec(Ĥ1) = Spec(Ĥ2) mod O(h̄2) for E > min H, i.e., the
two spectrums are close up to a remainder of order O(h̄2).

The assumptions on V and A are not restrictive, since these are in fact necessary
conditions to have the equality (7), as shown in Remark 1.

We recall that in Section 4 of [7] a result is shown on the link between the homoge-
nization theory of the Hamilton–Jacobi equation and the spectrum of the Hill operator
− 1

2
d2

dx2 + V(x), namely when h̄ = 1. In this setting, the authors proved that the isospectral-
ity implies the same ‘viscous’ effective Hamiltonian Hvisc, namely the function such that

− ∆xw(P, x) +
1
2
|P +∇xw(P, x)|2 + V(x) = Hvisc(P), P ∈ R, (8)

for a unique C2 - function w : R×T→ R. Moreover, in [7] and [12], various results on the
inverse problem in the theory of periodic homogenization of Hamilton–Jacobi equations
are shown.

Our Theorem 1 provides a further link between the homogenization theory and
spectral problem, for a larger class of Hamiltonians and by using other arguments with
respect to the paper [7]. Moreover, the second statement in Theorem 1 shows that the
effective Hamiltonian can also be associated to the equivalent class of operators with the
same spectrum mod O(h̄2) above the energy value min H.

We now recall Theorem 5.2 in [13], which works in one dimension and under some
nondegeneracy conditions on the Hamiltonian dynamics, showing that for such isospectral
operators there exists (locally in a neighborhood of energies) a symplectic map ψ : R×T→
R×T such that

H2 = H1 ◦ ψ . (9)

With respect to this observation, we also underline a symplectic invariance property of
H in arbitrary dimension n. As shown in [14], for the whole time one Hamiltonian flows
ϕ ≡ ϕ1 : Tn ×Rn → Tn ×Rn with C1-regularity, we have the invariance

H ◦ ϕ = H. (10)

Unluckily, the equality (9) cannot be applied to recover the equivalence of effective Hamil-
tonians (10) since it is well known that a symplectic map could not be (in general) a
Hamiltonian flow.

Our paper is the first attempt (in the simple one dimensional case) to provide a direct
connection between the Hamilton–Jacobi homogenization and the inverse spectral problem
for operators of kind (4) without passing through equation (8) but taking into account only
(1). We hope that the full generalization of Theorem 1 towards the n-dim case and arbitrary
smooth potentials can be given by following the same ideas of the current paper, by using
more general tools of spectral theory in place of Bohr–Sommerfeld rules that work only in
a integrable setting such as our one dimensional case.

The fact that the isospectrality in Theorem 1 is for all the values 0 < h̄ ≤ 1 is not a
restrictive assumption. Indeed, this can be found for example also in the work [13], as well
as in [15] where such a semiclassical isospectrality is considered for quantum integrable
Ψdo and related to the convex hull of the image of the classical momentum map.
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We remind that the original idea to apply techniques of Weak KAM theory into the
framework of quantum mechanics goes back to L.C. Evans [1,2] in order to study certain
semiclassical approximation problems of Schrödinger eigenfunctions as h̄→ 0.

The work [16] deals with some inverse spectral results for operators of kind ∆x + Q(x),
namely the Laplacian for an Hermitian line bundle L plus a potential function Q on a
manifold M. In particular, it is shown that the spectra Spec(Q;∇, L) when ∇ ranges over
all the translation invariant connections uniquely determines the potential Q. Notice that
in our paper we consider operators such as −h̄2∆x/2− ih̄A(x) · ∇x + Q(x) for 0 < h̄ ≤ 1,
hence we deal with the family of connections given by h̄∇x on T.

On the link between the Schrödinger spectral problem and KAM tori into the phase
space, we recall that, in [17] for Schrödinger operators on Tn and under the assumptions of
the KAM Theorem, the authors provided semiclassical expansions for the eigenfunctions
and eigenvalues.

We underline that a complete study of the link between the effective Hamiltonian,
viscosity solutions of Hamilton–Jacobi equation and Schrödinger eigenvalue problem
should also involve the phase space analysis of eigenfunctions (and energy quasimodes). In
this direction, some preliminary results for the n-dim case have been obtained [18–20]. For
the time evolution of WKB-type wave functions, we address the reader to the works [21–23]
(and references therein).

To conclude, we underline that, for the class of one-dimensional Hamiltonians in
Theorem 1, we have

H(P) = H(P + Ā), ∀P ∈ R, Ā :=
1

2π

∫
T

A(y) dy, (11)

(see Lemma 1). Moreover,

H(P) = H(−P) ∀P ∈ R, (12)

namely forH there is a symmetry property with respect to the map P 7→ −P. This can be
easily seen thanks to (19). In higher dimensions, we stress the meaningful open problem to
write the effective Hamiltonian H as the composition of a more generalH with other kinds
of symmetries realized by translations or more general volume preserving maps. This use of
symmetry properties should clarify the general study of the homogenization for Hamilton–
Jacobi equations and the isospectrality of the corresponding Schrödinger operators.

2. Preliminaries and Settings
2.1. Hamilton–Jacobi Equation

In this section, we recall standard results about Hamilton–Jacobi equation and effective
Hamiltonian on Tn ×Rn.

Let H be a Tonelli Hamiltonian, namely H ∈ C2(Tn × Rn;R) is such that the map
p 7→ H(x, p) is convex with positive definite Hessian and in addition H(x, p)/‖p‖ → +∞
as ‖p‖ → +∞.

For any P ∈ Rn, it is known that there exists a unique real number c = H̄(P) such that
the problem on Tn:

H(x, P +∇xS ) = c, (13)

has a solution S = S(P, x) in the viscosity sense (see, e.g., [5] and references therein).
Moreover, as shown in [5], any viscosity solution is also a weak KAM solution of negative
type and belongs to C0,1(Tn;R). Furthermore, as shown in [24], any viscosity solution S
exhibits C1,1

loc-regularity outside the closure of its singular set Σ(S) and Tn\Σ(S) is an open
and dense subset of Tn.

The function H is called the effective Hamiltonian. It is a convex function and can be
represented or approximated in various ways (see, e.g., [1–7]).
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In particular (see [14,25] and references therein), we have a useful inf-sup formula.
Let v ∈ C1,1(Tn) and Γ := {(x,∇xv(x)) ∈ Tn ×Rn | x ∈ Tn}, denote by G the set of all Γ.
The effective Hamiltonian can be represented by the formula

H(P) = inf
Γ∈G

sup
(x,p)∈Γ

H(x, p + P). (14)

Moreover, such a value equals the Mather α(H) function (see [5,8]).
As shown in Proposition 1 of [14], for any fixed time one Hamiltonian flows ϕ ≡ ϕ1 :

Tn ×Rn → Tn ×Rn with C1-regularity, we have the following invariance property:

H ◦ ϕ = H. (15)

In the mechanical caseH(x, p) := 1
2 |p|2 + V(x), we have

H(P) = inf
v∈C1,1(Tn)

sup
x∈Tn

1
2
|P +∇xv(x)|2 + V(x) (16)

and it is easily seen that H(0) = max V. The so-called viscous version of the Hamilton–
Jacobi equation

− ∆xw(P, x) +
1
2
|P +∇xw(P, x)|2 + V(x) = Hvisc(P), P ∈ Rn, (17)

has a unique C2-solution w : Rn ×Tn −→ R (see Theorem 5 in [26]).
As shown in [6], in the one-dimensional setting, the effective Hamiltonian can be

given by the inversion of the map

E 7→ J (E) :=
1

2π

∫ 2π

0

√
2(E−V(x)) dx, E ≥ max V, (18)

namely

H(P) =
{

max V if |P| ≤ J (max V),
J −1(P) otherwise.

(19)

In Lemma 1, we show the effective Hamiltonian for H(x, p) := 1
2 |p + A(x)|2 + V(x) =

H(x, p + A(x)), which turns out to be directly related to formula (19).

2.2. Bohr–Sommerfeld Rules

The leading term of the Weyl Law (see [27]) for the number of the eigenvalues smaller
than E (which is here supposed to be greater than max V) is given by

J (E) := Vol{(x, p) ∈ T×R : H(x, p) ≤ E}. (20)

The so-called Bohr–Sommerfeld rules (see [28–30]) in our one-dimensional and periodic
setting take the form

Sh̄(Eh̄,`) = 2πh̄ ` for ` = 1, 2, . . . (21)

where Eh̄,` are the eigenvalues of − 1
2 h̄2∆x + V(x), and

Sh̄(E) ∼
∞

∑
j=0

h̄j Sj(E) = 2πJ0(E) +
1
2

h̄πµ(E) +O(h̄2), (22)

where
J0(E) =

∫
γE

pdx (23)

is the Action integral for the classical curve γE at energy E and positive momentum, i.e.,
p > 0. When E > max V, it is easily seen that
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J0(E) = J (E) (24)

as given above. In particular, the value µ(E) is the Maslov index of γE seen as a La-
grangian submanifold of T×R. Moreover, for any fixed constant a ∈ R and the translated
HamiltonianH(x, p + a), we have that the related action is modified as

J (a)
0 (E) = J0(E)− a. (25)

As shown in Proposition 5.2 of [28], the semiclassical series in (21) is locally uniform in E,
which implies that the remainder vanishes as an O(h̄2) term when E is in a fixed, bounded
interval. Thus, the above equalities (21) and (22) imply that two systems with the same
Bohr–Sommerfeld rules necessarily have the same effective Hamiltonian. This fact is one
of the main ingredients used in the proof of Theorem 1.

3. Results

In this section, we provide two preliminary results and then we show the proof of
Theorem 1.

Lemma 1. Let V, A ∈ C∞(T;R), Ā := 1
2π

∫
T A(y) dy. The effective Hamiltonian of H(x, p) :=

1
2 (p + A(x))2 + V(x) is linked to the effective Hamiltonian of H(x, p) := 1

2 p2 + V(x) in the
following way

H(P) = H(P + Ā) ∀P ∈ R. (26)

Furthermore,
min
P∈R

H(P) = max
x∈T

V(x). (27)

Proof. We begin by recalling that

H(P) = inf
v∈C1,1(T)

sup
x∈T

1
2
|P +∇xv(x) + A(x)|2 + V(x). (28)

On the one-dim flat torus T, we can write A(x) = Ā +∇xφ(x) and define u(x) := v(x) +
φ(x) so that

H(P) = inf
u∈C1,1(T)

sup
x∈T

1
2
|P + Ā +∇xu(x)|2 + V(x) (29)

namely we have
H(P) = H(P + Ā). (30)

whereH is explicitly shown in (19). To conclude,

min
P∈R

H(P) = min
P∈R
H(P + Ā) = min

Q∈R
H(Q) = max

x∈T
V(x). (31)

Remark 1. In view of the above lemma, we have that max V1 = max V2 and
∫
T A1(x)dx =∫

T A2(x)dx are necessary conditions for the equality

H1(P) = H2(P), ∀P ∈ R. (32)

Indeed, minP∈R H(P) = maxx∈T V(x) implies that the maximum of V must be the same same.
Moreover, H(P) = H(P + Ā) and, thus, recalling (19), H is a constant function on the interval
I := [−Ā−J (max V),−Ā + J (max V)]. As a consequence, (32) could be fulfilled if I1 = I2.
On the other hand, the two functions must be the same also outside I and this gives the equality of
functions J1 = J2. We conclude that it must be Ā1 = Ā2.
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Lemma 2. Let us define Ĥ := 1
2 (−ih̄∇x + A(x))2 + V(x) and Ĝ := 1

2 (−ih̄∇x + Ā)2 + V(x)
where Ā := 1

2π

∫
T A(y) dy. Then,

Spec(Ĥ) = Spec(Ĝ) ∀ 0 < h̄ ≤ 1, (33)

Proof. Define the unitary operator on L2(T)

(Uϕ)(x) := e−
i
h̄ φ(x)ϕ(x) (34)

where φ ∈ C∞(T;R) is such that A(x)− Ā = ∇φ(x). This provides the unitary conjugation

U† ◦ Ĥ ◦U = Ĝ. (35)

The proof of this fact can be done by taking the orthogonal set ek(x) := eik·x with k ∈ Z and
then computing the action of the operators on the righthand side and also on the lefthand
side of (35) on ek, to check the equality.

Now, easily observe that, since the functions H(x, p) := 1
2 |p + A(x)|2 + V(x) and

G(x, p) := 1
2 |p+ Ā|2 +V(x), have compact sub-level sets in T×R, then both the spectrums

of Ĥ and Ĝ are discrete (see, e.g., [27] with a more general class of Ψdo on manifolds).
Whence, the unitary equivalence (35) directly implies the same spectrum.

Remark 2. The unitary conjugation (35) still holds true for operators of this kind on Sobolev space
W2,2(R;C) and suitable assumptions on smooth V and A (see, e.g., Section 1 of [31]). However, we
stress that on R one can always write A(x) = ∇xφ(x), whereas on T we must take into account a
possible nonzero Ā. This makes not trivial our study on the equivalence of effective Hamiltonians,
as well as the use of these operators.

Proof of Theorem 1. As a consequence of Lemmas 1 and 2, in what follows, we can con-
sider only the case A(x) = Ā.

In view of (21) and (22), we can write

2πJ (Eh̄,`)− 2πĀ +
1
2

h̄πµ(Eh̄,`) +O(h̄2) = 2πh̄ `. (36)

Recalling (18) and (19), we have

H(J (E)) = E ∀E ≥ max V. (37)

and thus the equality
H(J (E)− Ā + Ā) = E. (38)

reads, thanks to (26),
H(J (E)− Ā) = E. (39)

As a consequence, for any Eh̄,` > max V we have µ(Eh̄,`) = 0 and

H(h̄ `− rh̄,`) = Eh̄,`, rh̄,` = O(h̄2). (40)

Notice in particular that the remainder rh̄,` depends from Ā.
Any vector P ∈ R in a bounded interval can be approximated by a sequence of kind

`j h̄j where j→ +∞, `j → +∞ and h̄j → 0+.
We now remind the continuity of the map P 7−→ H(P) for any P ∈ R and the

continuity of P 7−→ ∇H(P) for those P such that H(P) ≥ min H + ε for some fixed ε > 0.
In particular, notice that min H = max V.

In what follows, we consider

Ω := {P ∈ R | H(P) > min H + ε; |∇H(P)| < λ } (41)
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for some fixed λ > 0 large enough (recall that H is a convex map).
Thus, we can use the values Eh̄,` of the spectrum to recover the value H(P). Namely,

H(P) = lim
j→+∞

H(`j h̄j) (42)

= lim
j→+∞

H(`j h̄j − rh̄j
+ rh̄j

) (43)

= lim
j→+∞

Eh̄j ,`j
+ Rh̄j ,`j

. (44)

The above remainder is defined as

Rh̄,` := H(`h̄)− H(`h̄− rh̄,`). (45)

We recall that rh̄,` = O(h̄2) when Eh̄,` lies in a bounded interval. Moreover, the sequence
`j h̄j also lies in a bounded interval since we assume that P ∈ R belongs to a fixed bounded
interval. The continuity of ∇H with its uniformly boundedness on the prescribed set of P
and the previous observations ensure that

Rh̄,` ≤ sup
0≤α≤1

|∇H(α[`h̄] + (1− α)[`h̄− rh̄)]| |rh̄|

≤ ‖∇H‖C0(Ω′) |rh̄|. (46)

The above convex combination belongs, for any j, to a suitable large bounded set Ω′ ⊇ Ω
since ∀P ∈ Ω we have `j h̄j → P and rh̄j ,`j

→ 0 as j→ +∞. The limit (44) together with (46)
allow recovering

H(P) = lim
j→+∞

Eh̄j ,`j
. (47)

Since we are assuming that for two potentials with the same maximum we have Schrödinger
operators with the same spectrum, we necessarily have the same equality (47). For any
fixed P as prescribed above we have

H1(P) = H2(P). (48)

We recall that H(P) = H(P − Ā) and H(P) = max V when |P| ≤ J (max V) (see
Section 2.1). Thus, we also have the equivalence of the minimum points of the two effec-
tive Hamiltonians.

To conclude, in order to prove that

Spec(Ĥ1) = Spec(Ĥ2) mod O(h̄2) (49)

for E > min H, we simply use the equivalence (48) and recall (40). Applying again the
estimate (46), we have the remainder O(h̄2).

Funding: This research received no external funding

Acknowledgments: We are grateful to F. Cardin for the many useful discussions about the Hamilton–
Jacobi equation. We thank S. Graffi, A. Parmeggiani and T. Paul for the useful discussions on the
semiclassical spectral problem and Bohr–Sommerfeld rules.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Evans, L.C. Towards a Quantum Analog of Weak KAM Theory. Commun. Math. Phys. 2004, 244, 311–334. [CrossRef]
2. Evans, L.C. Further PDE methods for weak KAM theory. Calc. Var. 2009, 35, 435–462. [CrossRef]
3. Evans, L.C.; Gomes, D. Effective Hamiltonians and averaging for Hamiltonian dynamics I. Arch. Ration. Mech Anal. 2001, 157,

1–33. [CrossRef]

http://doi.org/10.1007/s00220-003-0975-5
http://dx.doi.org/10.1007/s00526-008-0214-1
http://dx.doi.org/10.1007/PL00004236


Symmetry 2021, 13, 1196 8 of 8

4. Evan, L.C.; Gomes, D. Effective Hamiltonians and averaging for Hamiltonian dynamics II. Arch. Rational Mech. Anal. 2002, 161,
271–305. [CrossRef]

5. Fathi, A. The Weak KAM Theorem in Lagrangian Dynamics; Cambridge University Press: Cambridge, MA, USA, 2010.
6. Gomes, D.; Iturriaga, R.; Morgado, H.S.; Yu, Y. Mather measures selected by an approximation scheme. Proc. AMS 2010, 138,

3591–3601. [CrossRef]
7. Luo, S.; Tran, H.V.; Yu, Y. Some Inverse Problems in Periodic Homogenization of Hamilton-Jacobi Equations. Arch. Ration. Mech.

Anal. 2016, 221, 1585–1617. [CrossRef]
8. Sorrentino, A. Lecture Notes on Mather’s Theory for Lagrangian Systems. Publ. Mat. Urug. 2016, 16, 169–192. Available online:

http://pmu.uy/pmu16/pmu16-0169.pdf (accessed on 1 July 2021).
9. Bardi, M.; Capuzzo-Dolcetta, I. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations; Springer:

Berlin/Heidelberg, Germany, 2009.
10. Cannarsa, P.; Sinestrari, C. Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control; Birkhäuser: Boston, MA, USA,

2004.
11. Crandall, M.G.; Evans, L.C.; Lions, P.-L. Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math.

Soc. 1984, 282, 487–502. [CrossRef]
12. Tran, H.V.; Yu, Y. A rigidity result for effective Hamiltonians with 3-mode periodic potentials. Adv. Math. 2018, 334, 300–321.

[CrossRef]
13. Ngoc, S.V. Symplectic inverse spectral theory for pseudodifferential operators. In Geometric Aspects of Analysis and Mechanics; Ban,

E.P.v., Ed.; Progress in Mathematics Volume 292; Birkhäuser Boston: Boston, MA, USA, 2011; pp. 353–372.
14. Bernard, P.; Santos, J. A geometric definition of the Aubry-Mather set. J. Topol. Anal. 2010, 2, 385–393. [CrossRef]
15. Pelayo, A.; Polterovich, L.; Ngoc, S.V. Semiclassical quantization and spectral limits of pseudodifferential and Berezin-Toeplitz

operators. Proc. Lond. Math. Soc. 2014, 109, 676–696 [CrossRef]
16. Gordon, C.S.; Guerini, P.; Kappeler, T.; Webb, T. Inverse spectral results on even dimensional tori. Ann. Inst. Fourier Grenoble 2008,

58, 2445–2501 [CrossRef]
17. Asch, J.; Knauf, A. Quantum transport on KAM tori. Commun. Math. Phys. 1999, 205, 113–128. [CrossRef]
18. Cardin, F.; Zanelli, L. The geometry of the semiclassical Wave Front Set for Schrödinger eigenfunctions on the torus. Math. Phys.

Anal. Geom. 2017, 20, 10. [CrossRef]
19. Parmeggiani, A.; Zanelli, L. Wigner measures supported on weak KAM tori. J. D’Analyse Math. 2014, 123, 107–137. [CrossRef]
20. Zanelli, L. Schrödinger spectra and the effective Hamiltonian of the weak KAM theory on the flat torus. J. Math. Phys. 2016, 57, 8.

[CrossRef]
21. Graffi, S.; Zanelli, L. The geometric approach to the Hamilton-Jacobi equation and global parametrices for the Schrödinger

propagator. Rev. Math. Phys. 2011, 23, 969–1008. [CrossRef]
22. Markowich, P.; Paul, T.; Sparber, C. On the dynamics of Bohmian measures. Arch. Ration. Mech. Anal. 2012, 205, 1031–1054.

[CrossRef]
23. Paul, T.; Zanelli, L. On the dynamics of WKB wave functions whose phase are weak KAM solutions of H-J equation. J. Fourier

Anal. Appl. 2014, 20, 1291–1327. [CrossRef]
24. Rifford, L. On Viscosity Solutions of Certain Hamilton-Jacobi Equations: Regularity Results and Generalized Sard’s Theorems.

Commun. Partial. Equ. 2008, 33, 517–559. [CrossRef]
25. Contreras, G.; Iturriaga, R.; Paternain, G.P.; Paternain, M. Lagrangian graphs, minimizing measures and Mañe critical values.

Geom. Funct. Anal. 1998, 8, 788–809. [CrossRef]
26. Gomes, D.A. A stochastic analogue of Aubry-Mather theory. Nonlinearity 2002, 15, 581–603. [CrossRef]
27. Guillemin, V.; Sternberg, S. Semi-Classical Analysis; International Press of Boston, Inc.: Boston, MA, USA, 2013.
28. Ngoc, S.V. Quantum Monodromy and Bohr-Sommerfeld Rules. Lett. Math. Phys. 2001, 55, 205–217.
29. de Verdiére, Y.C. Bohr-Sommerfeld Rules to All Orders. Ann. Henri Poincaré 2005, 6, 925–936. [CrossRef]
30. de Verdiére, Y.C.; Parisse, B. Singular Bohr-Sommerfeld Rules. Commun. Math. Phys. 1999, 205, 459–500.
31. Avron, J.; Herbst, I.; Simon, B. Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 1978, 45, 847–883.

[CrossRef]

http://dx.doi.org/10.1007/s002050100181
http://dx.doi.org/10.1090/S0002-9939-10-10361-X
http://dx.doi.org/10.1007/s00205-016-0993-z
http://pmu.uy/pmu16/pmu16-0169.pdf
http://dx.doi.org/10.1090/S0002-9947-1984-0732102-X
http://dx.doi.org/10.1016/j.aim.2018.06.017
http://dx.doi.org/10.1142/S1793525310000343
http://dx.doi.org/10.1112/plms/pdu015
http://dx.doi.org/10.5802/aif.2420
http://dx.doi.org/10.1007/s002200050670
http://dx.doi.org/10.1007/s11040-017-9241-5
http://dx.doi.org/10.1007/s11854-014-0015-8
http://dx.doi.org/10.1063/1.4960741
http://dx.doi.org/10.1142/S0129055X11004497
http://dx.doi.org/10.1007/s00205-012-0528-1
http://dx.doi.org/10.1007/s00041-014-9356-z
http://dx.doi.org/10.1080/03605300701382522
http://dx.doi.org/10.1007/s000390050074
http://dx.doi.org/10.1088/0951-7715/15/3/304
http://dx.doi.org/10.1007/s00023-005-0230-z
http://dx.doi.org/10.1215/S0012-7094-78-04540-4

	Introduction
	Preliminaries and Settings
	Hamilton–Jacobi Equation
	Bohr–Sommerfeld Rules

	Results
	References

