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1 Introduction

Two of the main facts of the global �nancial crises are the dramatic increase in un-

certainty occurred starting in 2007 and the spectacular drop in the federal funds rate

engineered by the Federal Reserve in the attempt of slowing down the fall of real GDP

in the United States. According to Jurado, Ludvigson, and Ng (2015), the 2007-09

recession represents the most striking episode of heightened uncertainty in the post-

WWII period. The Federal Reserve slashed the e¤ective federal funds rate by more

than 500 basis points in the period July 2007-December 2008 before hitting the zero

lower bound and moving to unconventional policies. But how e¤ective is expansionary

monetary policy in presence of high uncertainty?

A recent strand of the empirical literature points to a weak impact of monetary

policy shocks on real activity in presence of high uncertainty (see, among others, Eick-

meier, Metiu, and Prieto (2016), Aastveit, Natvik, and Sola (2017), and Pellegrino

(2017a,b)).1 This paper�s contribution to the literature is twofold. First, it o¤ers

fresh empirical estimates on the nonlinear macroeconomic e¤ects of monetary policy

shocks in presence of high uncertainty by estimating a medium-scale Threshold VAR

(TVAR) model. High and low uncertainty states are identi�ed by appealing to the

macroeconomic uncertainty indicator recently proposed by Jurado, Ludvigson, and Ng

(2015). Such indicator, constructed via a data-rich strategy involving more than 130

time-series, can be interpreted as a broad measure of macroeconomic uncertainty that

is likely to proxy the type of uncertainty that households and �rms consider when de-

termining their optimal consumption, investment, and pricing plans. Second, and more

importantly, we o¤er a new-Keynesian interpretation of the impulse responses produced

by our TVAR. We do so by estimating key-structural parameters of the state-of-the-

art medium-scale new-Keynesian model by Altig, Christiano, Eichenbaum, and Lindé

(2011) in a state-contingent fashion to replicate the impulse responses of the "data", i.e.,

those coming from the TVAR model. The estimation of the Altig, Christiano, Eichen-

baum, and Lindé (2011) model, which is an evolution of the Christiano, Eichenbaum,

and Evans (2005) and Smets and Wouters (2007) workhorse frameworks, is conducted

1A related paper is Tillmann (2017), who shows that monetary policy shocks lead to a signi�cantly
smaller increase in long-term bond yields in presence of high policy uncertainty. This literature focuses
on uncertainty as a conditioning element. A di¤erent literature scrutinizes the e¤ects of monetary
policy shocks and the role of systematic monetary policy in recessions and expansions - see, e.g.,
Mumtaz and Surico (2015), Tenreyro and Thwaites (2016), and Caggiano, Castelnuovo, and Nodari
(2017). For an empirical paper dealing with uncertainty shocks in di¤erent monetary policy regimes,
see Caggiano, Castelnuovo, and Pellegrino (2017).
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by appealing to the Bayesian minimum-distance estimator recently proposed by Chris-

tiano, Trabandt, and Walentin (2011). This empirical step is implemented to unveil

changes in the values of structural parameters which are crucial for the medium-scale

DSGE model to replicate our state-dependent TVAR impulse responses. Importantly,

the Altig, Christiano, Eichenbaum, and Lindé (2011) nests two cases. In the �rst one

�rms�capital is homogeneous and, therefore, immediately transferrable from a �rm to

another in response to a shock. This case is very standard in the literature. The second

one is a case in which capital is �rm-speci�c and, therefore, �rms cannot adjust their

level of capital in the short-run. As shown by Altig, Christiano, Eichenbaum, and Lindé

(2011), �rm-speci�c capital helps their estimated DSGE model to match the persistence

of aggregate in�ation without imposing an implausibly high degree of price stickiness

(see also Eichenbaum and Fisher (2007)).2

Our results are the following. First, we �nd monetary policy shocks to exert a

statistically and economically weaker e¤ect on output and other real activity indicators

when uncertainty is high. This result, which is obtained with a medium-scale VAR and

the use of Jurado et al.�s (2015) state-of-the-art macroeconomic uncertainty indicator,

con�rms the ones previously put forth by Eickmeier, Metiu, and Prieto (2016), Aastveit,

Natvik, and Sola (2017), and Pellegrino (2017a,b) on the weak in�uence of unexpected

policy easings in periods of heightened uncertainty. With respect to these contributions,

we use a larger scale VAR model, which is informationally richer and, therefore, less

likely to deliver inconsistent responses due to informational insu¢ ciency (Forni and

Gambetti (2014)). Moreover, the use of the uncertainty indicator constructed by Jurado

et al. (2015), which is based on a large set of macroeconomic and �nancial indicators,

ensures that the de�nition of uncertainty we consider is a broad one, and therefore

captures di¤erent types of uncertainty considered by agents in the economic system

(say, the one surrounding future technological evolutions, �scal and monetary policy, the

stock market, and so on). Finally, the identi�cation assumptions behind the estimation

of the e¤ects of monetary policy shocks in our VAR - i.e., those behind a triangular

2The key contribution of �rm-speci�c capital in this set up is that it implies strong e¤ects on
output by monetary policy shocks in presence of a reasonable frequency with which �rms -reoptimize
prices. While sticking to �rm-speci�c capital for comparability reasons with Altig et al. (2011), it is
important to stress that alternative mechanisms are able to generate a similar result. A non-exhaustive
list includes �rm- and sector-speci�c labor, strategic complementarities due to an elasticity of �rm
demand that is increasing in the �rm�s price, sector-speci�c frequency of price changes, intermediate
inputs, rational inattention, and state-dependent pricing. In general, any mechanism that causes a
�rm�s marginal cost to increase with its output would be able to deliver the result delivered by �rm-
speci�c capital. For a discussion, see Altig et al. (2011).
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economy - are fully consistent with the structure of Altig et al.�s DSGEmodel, something

which is clearly desirable for our exercise. Going back to our impulse responses, we �nd

the response of in�ation to be positive and statistically signi�cant only in presence of

high uncertainty. This result, coupled with the one on the response of output, points

to a trickier in�ation-output trade-o¤ to deal with when uncertainty is high.

Second, we �nd the model developed by Altig, Christiano, Eichenbaum, and Lindé

(2011) to possess a remarkably good ability to �t our state-contingent responses no

matter what the level of uncertainty is. This is due to the �exibility of our estimation

strategy, which allows the structural parameters of the DSGE model to take state-

contingent values in the estimation phase. In particular, our results point to a steeper

new-Keynesian Phillips curve (NKPC) as the key ingredient to match the TVAR im-

pulse responses in uncertainty times. This result, which is obtained with a full-system

estimation of a medium-scale DSGE model, echoes the one in Vavra (2014b), who fo-

cuses on a single equation estimation of a battery of new-Keynesian Phillips curves.

In his paper, the slope of the supply curve is in�uenced by a Calvo parameter whose

value may depend on the level of uncertainty. With respect to Vavra (2014b), we

show that a purely macro-related approach dealing with a DSGE model that features

�rm-speci�c capital is able to generate a worsening of the in�ation-output trade-o¤

in uncertain times. Importantly, we �nd that the change in this trade-o¤ occurs for

state-contingent estimates of the Calvo parameter whose values are close to the recent

evidence on price duration based on micro data (see Nakamura and Steinsson (2008),

Eichenbaum, Jaimovich, and Rebelo (2011), and Kehoe and Midrigan (2015)). This is

due to the connection between the value of the Calvo parameter and that of the slope

of the Phillips curve. Such connection is much tighter in models with homogeneous

capital than in models with �rm speci�c capital. The latter ones are able to generate

a �atter slope of the Phillips curve conditional on the same calibration of the Calvo

parameter, a �exibility which is picked up by the data when it comes to replicating

impulse responses to a monetary policy shocks in presence of high and low uncertainty.

Our empirical �ndings are important from a modeling standpoint. First, empiri-

cally credible DSGE models are often used to perform policy exercises which aim at

understanding the role of monetary policy for the stabilization of the business cycle.

Our results point to the need of using di¤erent calibrations to study the e¤ects of mon-

etary policy shocks in normal times vs. periods of heightened uncertainty. Second,

Vavra (2014b) estimates a battery of new-Keynesian Phillips curves whose structural

parameters depend on the level of uncertainty present in the economic system. He

4



shows that �rm-level volatility may importantly in�uence the role played by macro-

economic shocks to the in�ation-output trade-o¤ faced by policymakers by a¤ecting

the slope of the new Keynesian Phillips curve. Our state-dependent estimates of the

medium-scale DSGE model we work with supports this view, therefore stressing the

relevance of modeling the interaction between uncertainty and price setting decisions

when it comes to understanding the role of the former for the evolution of in�ation and

real activity. This mechanism adds to precautionary savings and real-option e¤ects for

the transmission of uncertainty shocks (see Fernández-Villaverde, Guerrón-Quintana,

Kuester, and Rubio-Ramírez (2015) and Basu and Bundick (2017) for the former chan-

nel, Bloom (2009) and Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2016)

for the latter). Our paper, which is admittedly silent as regards these two channels,

points to a state-contingent calibration of the Calvo parameter and, therefore, a di¤er-

ent price �exibility at a macroeconomic level as an important mechanism to understand

the di¤erent e¤ects of monetary policy shocks in presence of high/low uncertainty. Our

�ndings are also important from a policy perspective, in that they point to a di¤erent

ability of exploiting the in�ation-output trade-o¤ in periods of high vs. low uncertainty

by monetary policy makers.

The paper develops as follows. Section 2 discusses the relation with the literature.

Section 3 presents the non-linear VAR model employed and documents our results on

the uncertainty-dependent consequences of monetary policy shocks from this relatively

unrestricted framework. Section 4 brie�y presents the Altig et al. (2011) model, de-

scribes the econometric strategy adopted to estimate the DSGEmodel, and discusses the

regime-dependent estimation results. Section 5 investigates the sources of the di¤erent

monetary transmission mechanism during uncertain times via counterfactual exercises.

Section 6 concludes. Our Appendix documents the robustness of our empirical results.

2 Connections with the literature

Our paper connects to recent contributions in the literature on the interrelations be-

tween uncertainty and monetary policy. Various alternative theoretical mechanisms

could be at play when it comes to understanding how uncertainty can a¤ect monetary

policy�s e¤ectiveness. One advocates the real option e¤ect originating in presence of

�xed costs or partial irreversibilities. Bloom�s (2009) and Bloom et al.�s (2016) (re-

spectively) partial and general equilibrium real �rm-level models feature non-convex

adjustment costs in capital and labor and a time-varying second moment of the tech-
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nology process. They �nd that during phases of heightened uncertainty �rms�inaction

regions expand as the real-option value of waiting increases. As a result, �rms and,

on aggregate, the economic system become less responsive to stimulus policies. As

pointed out by Bloom (2014), higher precautionary savings in response to a spike in

uncertainty could also make aggregate demand less sensitive to variations in policy

variables. Another way to model the interaction between uncertainty and policy has

to do with the uncertainty-dependent �rm-price setting behavior in presence of either

menu costs of changing prices or information frictions as in Vavra (2014a) and Baley

and Blanco (2015). Both papers work with price-setting calibrated general equilibrium

menu cost models. For example, Vavra�s (2014a) model suggests that greater uncer-

tainty induces �rms to change prices more frequently, hence lowering the real e¤ects

of monetary shocks. In the most realistically calibrated version of his model, he �nds

that the cumulative output reaction to monetary policy shocks is 45% larger at the

10th percentile of volatility than at the 90th percentile. In the same model, the price

level reacts 36% more on impact at the 90th percentile. Our contribution adds to this

literature by focusing on the interaction between uncertainty and price stickiness at a

macroeconomic level with an estimated medium-scale model of the business cycle of the

type employed by central banks.

The closest paper to ours is probably Bachmann, Born, Elstner, and Grimme (2013).

They investigate whether uncertainty can reduce the e¤ectiveness of monetary policy

shocks through a greater frequency of price adjustments in a small-scale New Keynesian

business cycle model. They capture the change in the frequency of price adjustments via

a one-o¤ change in the Calvo parameter, calibrated on the basis of their microeconomic

analysis. Their results suggest that uncertainty in�uences the real e¤ects of monetary

policy shocks only to a negligible extent. Our study di¤ers from theirs mainly along two

dimensions. First, we estimate the DSGE model we work with to match the di¤erent

dynamic responses in the data during uncertain and tranquil times as captured by an

unrestricted VAR model. This is important to understand what parts of the model one

should tweak to replicate the empirical facts, something which is of obvious relevance

when it comes to employing this model to conduct policy analysis in presence of di¤erent

levels of uncertainty. For instance, we �nd that a lower degree of policy inertia in

uncertain times plays a non-negligible role in shaping such responses. Second, we work

with a medium-scale new-Keynesian model featuring the bells and whistles that one

needs to generate hump-shaped responses of real variables and an inertial response of

in�ation to the monetary policy shock (Christiano, Eichenbaum, and Evans (2005),
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Smets and Wouters (2007), Altig, Christiano, Eichenbaum, and Lindé (2011)). In

particular, Altig, Christiano, Eichenbaum, and Lindé (2011) show that the presence of

�rm speci�c capital can reconcile in�ation inertia with a reasonable calibration of the

Calvo parameter, something which is not possible in presence of homogeneous capital.

Another study closely related to ours is Vavra (2014b). He estimates a state-

dependent new-Keynesian Phillips curve (NKPC) à la Galì and Gertler (1999) and

shows that its slope is increasing in uncertainty, particularly with microeconomic un-

certainty. He also �nds that when his estimation is interpreted structurally through

the lens of the Calvo new-Keynesian model, it implies an implausible large di¤erence

of the frequency of price adjustment between uncertain and tranquil times (something

required in order to match the variation in aggregate price �exibility). He therefore

argues that models where uncertainty is just allowed to a¤ect aggregate price �exibility

through its e¤ect on frequency are likely to provide a lower bound on the actual impor-

tance of uncertainty in the data. Our empirical strategy tackles these issues. First, as

pointed out above, we allow uncertainty to in�uence the calibration of the economy in a

broader manner than just via pricing decisions. Second, we show that the �rm-speci�c

capital version of the Altig et al. (2011) model is empirically relevant in breaking the

tight link between aggregate price �exibility and the frequency of adjustment which

forces models with homogeneous capital to assume an implausibly high degree of price

stickiness to replicate in�ation persistence at a macroeconomic level.

To the best of our knowledge, this work is the �rst paper employing a nonlinear VAR

framework to estimate a new-Keynesian model with a minimum-distance approach in

a state-dependent fashion. We see this approach as a natural extension of the mini-

mum distance approach implemented by, among others, Christiano, Eichenbaum, and

Evans (2005), Boivin and Giannoni (2006), DiCecio (2009), Altig, Christiano, Eichen-

baum, and Lindé (2011), and Cecioni and Neri (2011). Given that our analysis delivers

a regime-contingent estimation of a DSGE model, our methodological approach nat-

urally relates to the Markov-Switching DSGE approach empirical literature that has

developed over the past few years - see, among others, Liu, Waggoner, and Zha (2011),

Bianchi (2012), Bianchi (2013), Bianchi (2016), Foerster, Rubio-Ramírez, Waggoner,

and Zha (2016), and Bianchi and Melosi (2017). Our approach is computationally easy

and fast to implement. Moreover, it enables a researcher to identify the regimes of

interest by focusing on an observable transition indicator - in our application, macro-

economic uncertainty as estimated by Jurado, Ludvigson, and Ng (2015). Hence, our

application facilitates the identi�cation of the relationship between our regime-speci�c
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empirical results and the predictions coming from the theory. Admittedly, our approach

assumes that agents believe the state they are in to be absorbing, something which can

be questioned in presence of past realizations of di¤erent regimes. Moreover, it is worth

stressing that agents in our framework are rational regarding their policy functions, but

are myopic as far as future regimes are concerned. This modeling assumption is tanta-

mount to that of anticipated utility à la Kreps (1998) often entertained by the learning

literature as regards agents dealing with Markov decision problems with unknown prob-

abilities. Interestingly, Cogley and Sargent (2008) study several consumption-smoothing

examples and show that the anticipated-utility approximation outperforms the rational

expectations one.

More broadly, our paper is related to other recent approaches that estimate DSGE

models by allowing for parameters instabilities. Hofmann, Peersman, and Straub (2012)

and Giraitis, Kapetanios, Theodoridis, and Yates (2014) estimate NewKeynesian DSGE

models via an impulse response matching procedure which appeals to a time-varying

coe¢ cient-VAR.3 Consequently, they can obtain time-varying estimate of each of the

structural parameters of the model. A related strategy is that of identifying subsam-

ples on the basis of statistical or economic criteria (e.g., a break in a policy regime)

and allow for subsample-speci�c estimates of the DSGE model. Contributions follow-

ing this strategy are Boivin and Giannoni (2006) and Inoue and Rossi (2011). A direct

approach to estimate time-varying structural parameters is that of estimating nonlin-

ear models via the particle �lter approach as in Villaverde and Rubio-Ramírez (2007,

2008). Another strategy is that of estimating DSGE models with likelihood-based tech-

niques and rolling (or recursive) windows. Canova (2009), Canova and Ferroni (2012),

Castelnuovo (2012a), and Doko-Tchatoka, Haque, Groshenny, and Weder (2017) are

examples of this approach. The main di¤erence between our approach and the ones in

the papers cited above is that ours relates the instability of the structural parameters

to the pre-identi�ed source of interest, which is, movements in uncertainty.

Before moving to the rest of the paper, it is worth stressing the following. The

structural model by Altig et al. (2011) we use in our analysis is solved up to a �rst

3Notice that Giraitis, Kapetanios, Theodoridis, and Yates (2014) use indirect inference to estimate
the DSGE model parameters, i.e., they match the impulse responses of the VAR estimated with actual
data with those of the VAR estimated with pseudo-data generated with the DSGE model itself. This
strategy requires the DSGE model to have a number of structural shocks at least as large as the
number of endogenous variables modeled with the auxiliary VAR. This is a necessary condition to
avoid stochastic singularity when estimating the VAR. Our application prevents us to use indirect
inference because the number of modeled variables with the VAR (ten) is larger than the number of
shocks in Altig et al.�s (2011) DSGE model (three).
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order approximation. Hence, by construction, uncertainty plays no role, because it

cannot in�uence agents� behavior. One would need to work with (at least) a third

order approximation of the model for time-varying uncertainty to enter agents�policy

functions and a¤ect the transmission of monetary policy shocks (see, e.g., Andreasen

(2012) and the literature cited therein).4 Andreasen, Fernández-Villaverde, and Rubio-

Ramírez (2017) show the stability of the pruned approximation up to a third order

approximation and provide closed-form expressions for �rst and second unconditional

moments and impulse response functions. This result implies that GMM estimation

and impulse-response matching for DSGE models approximated up to third order be-

comes feasible. Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017) provide a

foundation for indirect inference and simulated-method of moments. By conditioning

on the �rst-approximation of the model, our investigation provides a �rst exploration

on the ability of a state-of-the-art, widely employed DSGE framework like Altig et al.

(2011) to match impulse responses in two di¤erent states of the economy (uncertain and

tranquil times), and on the parametric instabilities required by this very same model to

achieve this goal. We believe this analysis to be important in light of the wide number

of linearized models which are still used in a variety of central banks around the world

(Lindé, Smets, and Wouters (2016)). We leave the estimation of the third order approx-

imated version of the model and the investigation on the role of the Phillips curve and

other structural parameters in matching the TVAR impulse responses in such a version

of the model to future research.
4With second order solutions, uncertainty would a¤ect the steady states with no impact on the

transmission of shocks. This statement is conditional on approximations in which the exogenous state
variables are treated as the endogenous ones. Benigno, Benigno, and Nisticò (2013) follow a di¤erent
strategy and approximate the exogenous state variables with conditionally-linear stochastic processes
where either variances or standard deviations of the primitive shocks are modelled through stochastic
linear processes. They show that a second-order approximation of the policy rules is su¢ cient for
time-varying volatility to a¤ect the endogenous variables of the system. A trade-o¤ between generality
of the solution and computational complexity is in place here. For a discussion, see Benigno, Benigno,
and Nisticò (2013).
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3 Empirical evidence on the uncertainty-dependent
consequences of monetary policy shocks

3.1 Nonlinear empirical methodology

3.1.1 The Threshold VAR

We investigate the uncertainty-conditional impact of monetary policy shocks by working

with a two-regimes Threshold VAR model. Following Tsay (1998), the reduced form

nonlinear VAR model we estimate is the following:

Yt =

8<:�
U+

PL
j=1B

U
j Yt�j + u

U
t

��� zt�1 � �
�T+

PL
j=1B

T
j Yt�j + uTt

��� zt�1 < � (1)

E(ujt) = 0; E(u
j
tu
j0
t ) = 


j; j 2 fU; Tg (2)

where Yt is a set of endogenous variables, � is a vector of constants, Bj is a matrix

of coe¢ cients, ut is a vector of residuals whose variance-covariance matrix is 
, and the

super-scripts U and T indicate the uncertain and tranquil times regimes, respectively.

The two regimes are identi�ed on the basis of the threshold variable z, which is a

stationary proxy for uncertainty. A value of the threshold variable greater than or equal

to (smaller than) the threshold value � implies that the economy behaves according to

the uncertain (tranquil) times regime. This model allows, without requiring, for di¤erent

dynamics of the economy in the two regimes.

The vector of endogenous variables Yt embeds the same variables as in Altig et al.�s

(2011) VAR, i.e., Yt = [4pIt;4yt �4ht; �t; ht; cut; yt � ht � wt; ct � yt; it � yt; rt; pt +
yt � mt]

0, where 4pIt stands for the growth rate of the relative price of investment,
4yt �4h for the di¤erence between the growth rate of real GDP per capita and the
growth rate of hours worked per capita, which is, the growth rate of productivity, �t
is the GDP de�ator quarterly in�ation rate, cut stands for capacity utilization, yt � wt
represents the di¤erence between log-real GDP per capita and the per capita real wage,

ct and it respectively stand for per-capita consumption and investment, rt is the net

nominal interest rate, and pt + yt�mt is the log of money velocity, mt being the log of

the nominal stock of money. We use an updated version of the original dataset by Altig

et al. (2011). As in their paper, all data were taken from the FRED Database available

through the Federal Reserve Bank of St. Louis�s website. Data transformations in the

VAR were performed to ensure stationarity of the modeled variable.
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Uncertainty, which is the threshold variable dictating the switch from a regime to

another, is not modeled in our VAR. This means that uncertainty cannot react to

monetary policy shocks, an assumption that enables us to compute impulse responses

to a monetary policy shock in a conditionally-linear fashion, therefore retaining all the

properties associated to impulse responses in linear VARs. Hence, one could associate

our baseline responses to "deep regimes", i.e., regimes the economic system is very

unlikely to escape.5 These responses, which do not allow for an endogenous response of

uncertainty to monetary policy shocks, provide an upper bound for the di¤erence in the

real e¤ectiveness of a monetary policy shock between uncertain and tranquil times (for a

discussion, see Pellegrino (2017a)). Importantly, the decision to focus on this approach is

justi�ed by its consistency with the linearized DSGE model by Altig et al. (2011), which

we will use to capture the TVAR state-contingent impulse responses by admitting for

di¤erent estimates of key structural parameters. Our Appendix shows that computing

Generalized IRFs à la Koop, Pesaran, and Potter (1996) - which take into account the

endogeneity of the threshold variable - deliver qualitatively similar dynamics to those

produced by the conditionally linear approach. As discussed in Section 2, an alternative

would be to model di¤erent dynamics conditional on a time-varying endogenous process

for uncertainty in DSGE model approximated at a third-order. We do not entertain

this alternative here for two reasons. First, a nonlinear framework featuring endogenous

uncertainty would be complicated to solve and estimate. Second, as pointed out by

Christiano (2004), �rm-speci�c capital - which is useful for us because of our intention

of matching in�ation dynamics without forcing the Calvo parameter to take implausibly

large values - substantially complicates the computation of the equilibrium values of

the endogenous variables of the system. This is due to the fact that, given that the

capital stock is a state variable for an individual �rm, the distribution of capital across

�rms matters for determining aggregate equilibrium outcomes. Hence, in a nonlinear

framework, one should keep track of the evolution of that distribution over time. The

choice of sticking to a linearized framework enables us to avoid facing the problem of

computing such distribution and keeping track of its evolution. Finally, given that our

goal here is to investigate the ability of a state-of-the-art model like Altig et al.�s to

�t the data in two distinct regimes, our assumption is that rational agents here do

not take into account the distribution over future regimes and, therefore, do not form

5For studies entertaining this assumption in the context of �scal spending shocks and uncertainty
shocks, see - respectively - Auerbach and Gorodnichenko (2012) and Caggiano, Castelnuovo, and
Groshenny (2014).
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expectations accordingly. One can interpret rational agents in our models as facing a

degenerate distribution of realizations of future regimes pointing to absorbing states,

i.e., agents assume the regime they �nd themselves in to be in place forever. This

assumption is entertained in order to facilitate the estimation of the key parameters of

the model.6

3.1.2 Empirical model: Speci�cation

We study U.S. quarterly data, period: 1960Q3-2008Q2. The construction of the data

closely follows Altig et al. (2011).7 The proxy for uncertainty is the macroeconomic

uncertainty index recently developed by Jurado, Ludvigson, and Ng (2015). This index

measures uncertainty by computing the common factor of the time-varying volatility of

the estimated h-steps-ahead forecast errors of a large number of economic time series.

The index is based on information contained in 132 macroeconomic and 147 �nancial

indicators. Hence, it is informative on the unpredictable component of the economy

as a whole, something which is likely to proxy well the uncertainty that agents in the

economic system consider when determining their plans.8 The beginning of the sam-

ple is due to the availability of the index, while the end of the sample is justi�ed by

our willingness to avoid dealing with the acceleration of the �nancial crisis occurred

in September 2008 with Lehman Brothers�bankruptcy, which would probably require

modeling a third regime. This choice also enables us to avoid dealing with the identi�-

6Admittedly, our regimes alternate at regular intervals and, in some cases, are characterized by
relatively short spells. This implies that a formally more consistent approach would be that of using
a Markov-switching DSGE approach as in Liu, Waggoner, and Zha (2011), Bianchi (2012), Bianchi
(2013), Bianchi (2016), Foerster, Rubio-Ramírez, Waggoner, and Zha (2016), and Bianchi and Melosi
(2017). However, this would render the estimation of the medium scale model we work with compu-
tationally challenging. Moreover, Markov-switching models typically feature a latent switching factor.
Di¤erently, we focus on an "observable" proxy of uncertainty. An alternative would be to tweak the
de�nition of regimes to render the switches less frequent. Still, even if switches were low probability
events, one would need to estimate the model by allowing for expectations to account for future changes
in regimes. For earlier attempts along this line, see Cagliarini and Kulish (2013), Kulish and Pagan
(2017), and Kulish, Morley, and Robinson (2017). Moreover, tweaking the de�nition of regimes would
add a degree of arbitrariness to the empirical analysis. We leave this step to future research.

7All the data are downloaded from the FRED Database available through the Federal Reserve
Bank of St. Louis. The mnemonic names of the series downloaded and used are the following:
GDP, GDPC96, PCDG, GPDI, PCND, PCESV, GCE, MZMSL, CNP16OV, CUMFNS, FEDFUNDS,
HOANBS, COMPNFB and CONSDEF. Notice that, di¤erently from Altig et al. (2011, footnote 16),
we preferreed CUMFNS to CUMFN (as the latter is available from 1972 only). We use the relative price
of investment goods available on FRED Database (mnemonic: PIRIC, for more details see DiCecio
(2009)).

8We use the JLN index referring to a forecasting horizon equal to three months, which is consistent
with a one-quarter-ahead forecast. We take quarterly averages of the monthly series.
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cation of unconventional monetary policy shocks.

Our TVAR is estimated by conditional least squares as in Tsay (1998). We use two

lags.9 Restrictions are required to identify the monetary policy shock. As suggested

by Altig et al. (2011), the presence of a source of long-run growth in the DSGE model

we will use to interpret our TVAR responses makes it desirable to sharpen the identi�-

cation of monetary policy shocks by contemporaneously identifying neutral technology

and capital embodied shocks (for a discussion, see Christiano, Trabandt, and Walentin

(2011)). To do so, we use the following mix of long-run and short-run restrictions: (i)

neutral and capital embodied shocks are the only shocks that a¤ect productivity in

the long run; (ii) the capital embodied shock is the only shock that a¤ects the price

of investment goods in the long run; and (iii) monetary policy shocks do not contem-

poraneously a¤ect aggregate quantities and prices. In order to deal with this mix of

long-run and short-run restrictions we adopt the instrumental variable (IV) approach

proposed by Shapiro and Watson (1988). Our Appendix documents the robustness of

our impulse responses to monetary policy shocks identi�ed with a standard Cholesky

decomposition of the covariance matrix of the estimated VAR residuals.

A crucial choice is that of the value of the threshold �. To maximize the precision

of the estimates in the two regimes and, at the same time, minimize the probability

of �nding di¤erent dynamics due to small-sample issues in one of the two regimes, we

choose the value of the threshold � to be the median of the uncertainty proxy in our

sample.10 Figure 1 depicts the uncertain and tranquil regimes conditional on this choice.

Much (but not all) of the periods identi�ed as uncertain times (periods represented by

grey vertical bars and characterized by a level of uncertainty above the threshold, which

is identi�ed by the horizontal line in the Figure) coincide with recessionary times. This

is in line with Jurado et al.�s (2015) �nding that the economy is less predictable in

recessions than it is in normal times.

It is important to investigate whether our nonlinear speci�cation is supported by

the data. To this end, we provide the results from two nonlinear tests for threshold

behavior at the multivariate level. Given that our baseline Threshold-VAR features

a regime-dependent VCV matrix, we follow Galvão (2006) and Metiu, Hilberg, and

9Akaike, Hannan-Quinn and Schwartz criteria support a choice of L = 3; 1; 1, respectively for a
standard linear VAR based on the same data (up to a maximum lag equal to 8). We choose to use two
lags. Christiano, Trabandt, and Walentin (2011) adopt the same lag order for their quarterly sample
similar to ours.
10Our results are robust to estimating the threshold value as in Tsay (1998) with a trimming equal

to 20% and the correction proposed by Balke (2000). This evidence is available in our Appendix.
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Grill (2015) in using the bounded supLM (BLM) and supWald (BW) statistics. These

statistics uses asymptotic bounds (1=2ln(ln(n))) and the maximum value of a Wald

and LM statistic over a grid of possible values for the threshold value as proposed by

Altissimo and Corradi (2002). The BLM and BW statistics are respectively given by:

BLM =
1

2ln(ln(n))

�
sup

�L����U
n

�
SSRlin � SSRnlin(�)

SSRlin

�� 1
2

and (3)

BW =
1

2ln(ln(n))

�
sup

�L����U
n

�
SSRlin � SSRnlin(�)

SSRnlin(�)

�� 1
2

, (4)

where SSRlin is the total sum of squared residuals (SSR), computed as in Tsay

(1998), under the null of a nested linear VAR , and SSRnlin(�) is the SSR under the

TVAR alternative hypothesis.11 The TVAR is chosen over the Linear VAR whenever

BLM > 1 (BW > 1). This model selection rule ensures that type I and type II

errors are asymptotically zero. In our case, we have both BLM(= 1:65) > 1 and

BW (= 1:80) > 1. This evidence supports the choice of working with a nonlinear model

for modeling the data belonging to the vector Yt:

3.2 Empirical results

Figures 2 and 3 depict the state-conditional impulse responses to an unexpected one

percentage point reduction of the federal funds rate and the corresponding 90% con�-

dence bands.12 The left column shows the response of the economy during uncertain

times, while the right one the response during tranquil times.13 The imposition of the

same reduction of the federal funds rate in the two states of interest is justi�ed by our

willingness of computing macroeconomic responses to the very same policy move across

states. The transmission of monetary policy shocks turns out to be state- speci�c along

11The values of � used are the actual values of the threshold variable inside the non-trimmed region.
Our choice of the trimming is 20%.
12Our bootstrapped con�dence bands are based over 1; 000 bootstrap realizations for the impulse

responses, which are used to compute the bootstrapped estimate of the standard errors of the impulse
response functions. As in Altig, Christiano, Eichenbaum, and Lindé (2011), the con�dence bands are
constructed by considering the point estimates of the impulse response �1.64 times the bootstrapped
estimate of the standard errors.
13Following Altig et al. (2011), the set of impulse responses recovered on the basis of the vector

Yt are transformed in a di¤erent set that matches the DSGE model-consistent objects. In particular,
we recover the following ten variables: output, MZM growth, in�ation, federal funds rate, capacity
utilization, average hours, real wage, consumption, investment, and velocity.
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six dimensions. First, real activity indicators such as real GDP, consumption, invest-

ment, and hours worked display a lower peak response and persistence in uncertain

times. Second, in�ation raises quicker in uncertain times. This is signalled by a sig-

ni�cant increase in in�ation after roughly one year from the shock when uncertainty is

high, while no signi�cant response of in�ation in tranquil times is detected.14 Third,

the interest rate drop is less persistent during uncertain times. Fourth, capacity uti-

lization experiences a bigger (and signi�cant) increase during uncertain times. Fifth,

both the increase in the growth rate of money, which points to the presence of a liq-

uidity e¤ect, and the fall in money velocity are less persistent during uncertain times.

Sixth, the increase in real wage is more sustained during tranquil times (even though

its response is not precisely estimated).15 Our Appendix documents the outcome of a

formal test which points to statistically relevant di¤erences between state-conditional

responses.16 As regards the con�dence bands, notice that those associated to uncer-

tain times are narrower for two reasons. First, uncertain times are characterized by a

higher volatility of the macroeconomic indicators modeled with our VAR, something

which brings relevant information and works in favor of augmenting the precision of

our estimates. Second, our exercise contrasts the e¤ects of an equally-sized reduction

of the federal funds rate in the two di¤erent regimes. This reduction is equivalent to a

shock of 1.25 standard deviations in uncertain times, and of 3.90 standard deviations

in normal times, whose computation is possible thanks to the fact that the covariance

matrix of our model is regime-speci�c and, therefore, accommodates shocks featuring

regime-speci�c sizes. Hence, the impact of the normalization of the size of the shock

in the two regimes works in favor of narrowing the bands relatively more in uncertain

times.17 When experimenting with a �xed variance-covariance matrix, which controls

14If anything, tranquil times are associated to the price puzzle (Eichenbaum (1992)). As far as we
know, ours is the �rst paper to notice the absence of a price puzzle in uncertain times and its presence
in tranquil times. We plan to investigate the structural drivers of this fact in future research.
15The response of the relative price of investment is not shown because it is unimportant to match

model-based responses to a monetary policy shock. According to our VAR, its response is insigni�cant
in both regimes.
16The test is based on a t-statistic for the statistical di¤erence between regime-dependent re-

sponses, taken to be indipendent (as estimated on two di¤erent samples). In particular, fol-
lowing ACEL, we can compute bootstrapped standard deviations of the IRFs, for each vari-
able and for each horizons ahead. Then the test-statistic is as follow: t � stat = (IRFUt;i �
IRFTt;i)=(

q
(st:dev:(IRFUt;i))

2 + (st:dev:(IRFTt;i))
2), where IRF regimet;i represents the point estimated

IRF for regime U or T . t = 0; :::; 19 represents the horizon ahead to which the response is referred and
i = 1; :::; 10 denotes the variable whose IRFs are referred.
17Notice that, given that we compute conditionally-linear impulse responses, the normalization of

the size of the shock does not alter the moments associated to such responses.
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for the latter reason behind the narrower bands in uncertain times, we still �nd that

such bands are narrower than in tranquil times.

Our evidence, which is obtained with the medium-scale VAR à la Altig, Christiano,

Eichenbaum, and Lindé (2011) and it is conditional on a state-of-the-art indicator of

macroeconomic uncertainty recently proposed by Jurado, Ludvigson, and Ng (2015),

corroborates that put forth in previous contributions such as Eickmeier, Metiu, and

Prieto (2016), Aastveit, Natvik, and Sola (2017), and Pellegrino (2017a,b). It also cor-

roborates the theoretical predictions by Vavra (2014a) and Baley and Blanco (2015)

about the lower real e¤ectiveness of monetary policy shocks induced by the higher

price �exibility in presence of high uncertainty. About this latter point, our empiri-

cal contribution suggests that Vavra�s and Baley and Blanco�s theoretical predictions,

which hinge upon microeconomic indicators of uncertainty, hold true even when using

a macroeconomic indicator of uncertainty. Hence, what our empirical results suggest is

that Vavra�s and Baley and Blanco�s models pass also a test conducted with macroeco-

nomic data.

The stylized fact identi�ed in our TVAR empirical analysis is robust to a variety

of perturbations of our baseline model. The list includes: i) monetary policy shocks

identi�ed via a standard recursive identi�cation scheme à la Christiano, Eichenbaum,

and Evans (1999); ii) a constant covariance matrix of the estimated residuals; iii) a

di¤erent proxy for uncertainty, i.e., the interquartile range of sales growth as in Bloom,

Floetotto, Jaimovich, Saporta-Eksten, and Terry (2016); iv) the use of the Jurado,

Ludvigson, and Ng (2015) index computed at a longer forecasting horizon, i.e., one-

year ahead; v) a version of the model in which the threshold is estimated; vi) the

computation of GIRFs à la Koop, Pesaran, and Potter (1996), which endogenize both

uncertainty and its evolution in response to a monetary policy shock. For the sake of

brevity, the documentation of these checks is con�ned in our Appendix.

An important note regards the response of in�ation in this VAR. As mentioned

above, the response of in�ation in tranquil times is found to be statistically insigni�cant.

However, looking at the point estimates, tranquil times are actually associated to the

price puzzle (Eichenbaum (1992)). As far as we know, ours is the �rst paper to notice the

absence of a price puzzle in uncertain times and its presence in tranquil times. However,

it is well known that standard DSGE frameworks relying on a "demand channel" for

the transmission of monetary policy shocks have hard times in replicating the positive

response of in�ation to a monetary policy shock (Boivin and Giannoni (2006), Rabanal

(2007), Castelnuovo (2012b)). In fact, more than a genuine fact, the price puzzle
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could indeed be interpreted as a signal pointing to VAR misspeci�cation. If the true

data-generating process is not consistent with the model of Altig et al. (2011), the

identifying assumptions in this stage of the analysis are called into question. A possible

consequence is that the estimated impulse response functions are inconsistent, which,

in turn, implies that the minimum distance estimation we conduct in the next Section

of this paper could produce inconsistent parameters estimates. To tackle this issue, we

follow Sims (1992) and add commodity prices to the vector of variables modeled by

Altig et al. (2011).18 Our Appendix shows that our impulse responses are robust to

the inclusion of commodity prices in the vector.

4 NewKeynesian interpretation of the stylized facts

4.1 The Altig et al. (2011) framework

The impulse responses presented in the previous Section point to di¤erent macroeco-

nomic e¤ects of uncertainty shocks in uncertain vs. tranquil times. This Section aims

at interpreting such state-conditional responses through the lens of the state-of-the-

art new-Keynesian DSGE model by Altig, Christiano, Eichenbaum, and Lindé (2011).

This model, which builds on the previous medium-scale DSGE frameworks proposed by

Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007), is particu-

larly suited for our purposes for two reasons. First, its timing restrictions are consistent

with those imposed on our TVAR to identify monetary policy shocks. This implies that

its impulse responses to a monetary policy shock can legitimately be compared with

the state-conditional responses produced with our TVAR, something that enables us to

estimate the structural parameters of the DSGE model via direct inference.19 Second,

18We add commodity prices in growth rates to line up with the modeling choice by Altig et al.
(2011), who work with stationarized variables in their VAR. Our results are unchanged when we model
commodity prices in log-levels. An alternative would be to add data on in�ation expectations coming
from the Survey of Professional Forecasters or Greenbook data, as done by Castelnuovo and Surico
(2010). However, this would imply a loss of 10 years of observations, which is the reason why we stick
to the more common commodity prices modeling solution.
19Notice that VAR and DSGE-based responses are fully comparable since we match the responses of

the linearized version of our microfounded model to the conditionally-linear responses of each regime
of our VAR. This is feasible for two reasons. First, the variable we employ to determine the regimes of
our TVAR, i.e., uncertainty, is modeled neither in our TVAR nor in the DSGE model we work with.
Second, since the Altig et al. (2011) model admits a Structural VAR representation (see Section 9 of
Altig et al.�s (2011) Appendix), our Structural TVAR can be seen, for each regime, as a �nite-lag VAR
representation for the DSGE model describing that particular regime. Conditional on state-speci�c
linear responses, the size/sign of the shock does not matter for the shape of responses and hence for
DSGE estimation purposes.
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this model features �rm-speci�c capital. As shown by Altig, Christiano, Eichenbaum,

and Lindé (2011), �rm-speci�c capital is a crucial ingredient to reconcile the micro

evidence on the frequency of price adjustment and the macro one on in�ation persis-

tence. As we will see later, this ingredient turns out to be crucial also to explain the

relationship between uncertainty and the slope of the Phillips curve without appealing

to implausible calibrations of the Calvo parameter.

Altig. et al. (2011) is a dynamic, stochastic general equilibrium one-sector model

featuring both nominal and real rigidities. The list of rigidities include Calvo-type

sticky prices and wages, backward dynamic indexation, habit formation in consumption,

investment adjustment costs, variable capital utilization, and a cost channel of monetary

policy due to working capital, i.e., �rms must borrow to pay wages to workers before the

goods market opens. The model features three shocks, i.e., a monetary policy shock, a

neutral technology shock, and an investment-speci�c technology shock. The monetary

policy shock exerts a temporary e¤ect on the level of output, while the two technology

shocks have a permanent impact on the level of productivity. The model rationalizes

liquidity holding (cash balances) via a transaction cost function which is decreasing in

the amount of cash balances held. Given that the model is well-known, we refer the

reader to the original article by Altig et al. (2011) for details, and we present here just

the parts that are crucial for our analysis.

This model features equilibrium linearized expressions which are identical for two

di¤erent versions of the way in which capital is modeled, i.e., homogeneous vs. �rm-

speci�c. However, the slope of the Phillips curve is characterized by di¤erent convo-

lutions depending on the way capital is treated. Consider the following expression for

aggregate in�ation dynamics:

��̂t = E[���̂t+1 + 
ŝt p 
t] (5)

where bx � (x�x)=x, x is a generic variable whose steady-state value is x, �t denotes
in�ation, st identi�es the economy-wide average marginal cost of production in units

of the �nal good, 
t represents the information set including the current realization

of the technology shocks but - given the recursive structure of the economic system

- not the monetary policy shock, and � stands for households� discount factor. In

this expression, the slope of the Phillips curve 
 is a reduced-form coe¢ cient whose

convolution of structural parameters reads:
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 =
(1� �p)(1� ��p)

�p
� (6)

where �p denotes the Calvo-probability for a �rm to not reoptimize its price in a

period, and � is the parameter that dictates the in�uence of the way in which capital

is modeled on the slope of the Phillips curve.

As shown by Altig et al. (2011), if capital is homogeneous, eq. (6) features � = 1.

In this case, 
 coincides with the slope of the New Keynesian Phillips Curve in standard

new Keynesian models.20 If instead capital is �rm-speci�c, � turns out to be a nonlinear

function of the parameters of the model, i.e., � = �(�a; �f ) < 1, where �a regulates

the curvature of the capacity utilization adjustments costs function, and �f stands

for the elasticity of substitution among intermediate goods in the production process.

The dependence of � on these structural parameters is due to the fact that, in the

�rm-speci�c version of the model, a �rm�s marginal costs depends positively on its

own output level. To �x ideas, suppose an expansionary monetary policy shock hits

the economic system. After the shock, �rms�demand increases. As a consequence,

marginal costs go up. Optimizing �rms, which react to this shock by increasing their

price, experience a fall in demand, which goes to sticky price �rms. Hence, �exible

price �rms aim at getting rid of capital, which should be reallocated to sticky price

�rms. Capital reallocation does occur in the homogenous capital world. Di¤erently, in

the �rm-speci�c version of the model, capital is not tradable. Hence, the only way for

an optimizing �rm (that is losing demand) to deal with the shock is by reducing the

capital utilization rate, which reduces the �rm�s marginal costs of production. Assume

that capital utilization does not adjust much due to adjustments costs. Then, the

shadow value of capital related to optimizing �rms drops. This implies that future

expected marginal costs will decrease, something which puts a downward pressure on

optimizing �rms�s prices. In equilibrium, prices (and, therefore, in�ation) do not move

much even if marginal costs and output move around. This is the reason why in�ation

moves around less in presence of �rm-speci�c capital, something which renders in�ation

more persistent all else being equal (Calvo stickiness included). Hence, 
 is low, and

the model is able to replicate the mild relationship between changes in in�ation and

marginal costs documented in Altig et al. (2011). This mechanism is stronger the more

20To be sure, eq. (5) represents the NKPC in presence of full backward indexation, i.e., it models
the relation between ��̂t � �E��̂t+1 and ŝt , rather than that between �̂t � �E�̂t+1 and ŝt. Hence,

 represents the sensitivity of the change in in�ation to marginal cost. Notice that eq. (5) can be
rewritten as �̂t = 1

1+� �̂t�1 + E[
�
1+� �̂t+1 +



1+� ŝt p 
t].

19



elastic �rms�demand curve is (i.e., the lower �f is) and the more costly it is for a �rm to

vary capital utilization (i.e., the larger �a is). Wrapping up, 
 is the smaller the larger

is �a and the lower is �f . Notice, �nally, that other things equal, a smaller estimated 


implies a bigger �p.

Going back to expression (5), notice that the di¤erent convolutions of the slope

parameter 
 do not a¤ect the rational expectations solution of the model. Given that

the two versions of the model are observationally equivalent, their impulse responses

to identi�ed shocks are exactly the same. However, the consequences of the very same

impulse responses for the estimation of the Calvo parameter, which one can obtain by

backing out its value conditional on the estimation of the slope of the Phillips curve

and the estimation/calibration of �a and �f , can be very di¤erent. We discuss the

implications of the state-conditional estimation of this model in the next Section.

The model is closed by assuming that the central bank sets the policy rate as sug-

gested by the following Taylor rule:21

bRt = �r bRt�1 + (1� �R)(��Etb�t+1 + ��y�byt) + "Rt (7)

where R̂t denotes the deviation in percentage points of the nominal interest rate from

its steady state value, Etb�t+1 and�byt denote percentage deviations of expected in�ation
and the growth rate of output from their steady state values, and "Rt represents the i.i.d.

monetary policy shock. The choice of modeling the systematic relationship between the

policy rate and the growth rate of output is justi�ed by the fact that this variable is

observable, which does not require the estimation of latent factors as the output gap.

Moreover, Ascari, Castelnuovo, and Rossi (2011) estimate di¤erent version of a small-

scale new-Keynesian model and show that a Taylor rule similar to the one used here

�ts the U.S. data better than a battery of alternative rules. Christiano, Trabandt, and

Walentin (2011) postulate a Taylor rule according to which policymakers systematically

respond to output. Our results are robust to the employment of an alternative policy

rule in which the systematic response to output is modeled.

21Altig et al. (2011) close their model by assuming a process for the money growth rate which is
shocked to simulate the e¤ects of a monetary policy shock. An unexpected increase in the growth rate
leads to an excess of liquidity which brings the nominal interest rate down and, therefore, stimulates
consumption and investment decisions and has a temporary e¤ect on aggregate output and in�ation.
Our results are robust to employing a money growth rule as in Altig et al. (2011).
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4.2 Minimum-distance estimation strategy

We estimate Altig et al.�s (2011) model by IRFs matching, i.e., by choosing the values of

the structural parameters of the DSGE model that minimize a measure of the distance

between our TVAR impulse responses and the DSGE model-based ones. With respect

to Altig et al. (2011), who employ a classical approach, we employ the Bayesian IRFs

matching estimation approach recently proposed by Christiano, Trabandt, andWalentin

(2011). This enables us to impose economically sensible prior densities on the structural

parameters while asking the data to shape the posterior density of the estimated model.

Our application represents a twist of Christiano et al.�s (2011) methodological proposal,

in that we rely on a nonlinear TVAR model and conduct a state-dependent Bayesian

estimation of the DSGE model we are interested in.

Our state-dependent Bayesian minimum distance estimator works as follows. Denote

by c i the vector in which we stack the TVAR estimated impulse responses over a 20-
quarter horizon to a monetary policy shock for regime i = U; T .22 When the number of

observations per each regime ni is large, standard asymptotic theory suggests that:

c i a� N( 
�
�i0
�
;Vi(�i0; n

i)); for i = U; T (8)

where �i0 denotes the true vector of structural parameters that we estimate (i = U; T )

and  
�
�i
�
denotes the model-implied mapping from a vector of parameters to the

analog impulse responses in c i. We treat c i as our observed data.23 To compute

the posterior density for �i given c i using Bayes�rule, we �rst need to compute the
likelihood of c i conditional on �i. Given (8), the approximate likelihood of c i as a
function of �i reads as follows:

f(c ij�i) = � 1

2�

�Ni

2 ��Vi(�i0; n
i)
��� 1

2�exp
�
�1
2

�c i � ��i��0Vi(�i0; n
i)�1

�c i � ��i���
(9)

where N i denotes the number of elements in c i and Vi(�i0; n
i) is treated as a �xed

22For a paper proposing information criteria to select the responses that produce consistent estimates
of the true but unknown structural parameters and those that are most informative about DSGE model
parameters, see Hall, Inoue, Nason, and Rossi (2012).
23Notice that, given that the "data" are represented solely by impulse responses to selected shocks,

this is a limited-information approximate likelihood approach. As the DSGE model assumes that a

monetary policy shock has no e¤ects on the relative price of investment, the vector c i includes 193
elements, namely 10 (i.e. the number of variables except the price of investment) times 20 (number of
responses) minus 7 (contemporaneous responses to the monetary policy shock that are required to be
zero by our identi�cation assumption).
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value.24 We use a consistent estimator of Vi. Because of small sample-related consider-

ations, such estimator features only diagonal elements (see Christiano, Trabandt, and

Walentin (2011) and Guerron-Quintana, Inoue, and Kilian (2017)). In our case, Vi

is a regime-dependent diagonal matrix with the variances of the c i�s along the main
diagonal.25 This choice is widely adopted in the literature and allows one to put more

weight in replicating VAR-based responses with relatively smaller con�dence bands.

Treating eq. (9) as the likelihood function of c i, it follows that the Bayesian posterior
of �i conditional on c i and Vi is:

f(�ijc i) = f(c ij�i)p(�i)
f(c i) (10)

where p(�i) denotes the priors on �i and f(c i) is the marginal density of c i. The
mode of the posterior distribution of �i is computed by maximizing the value of the

numerator in (10). The posterior distribution of �i is computed using a standardMarkov

Chain Monte Carlo (MCMC) algorithm.

We estimate 9 structural parameters per each regime i, i.e., �i =
�

; �L; b; �; �a; S

00; ��; ��y; �R
�
.

These parameters are the slope of the NKPC 
, the inverse of the labor supply elasticity

�L, the degree of habit formation b, the interest rate semi-elasticity �, the parameter

regulating the curvature of the capacity adjustment costs function �a, the parame-

ter regulating the investment adjustment cost function S 00, and the parameters of the

Taylor rule ��, ��y, and �R which - respectively - capture the systematic response to

in�ation and output growth and the degree of interest rate smoothing. Following Altig

et al. (2011), we calibrate the price markup to a value that works in favor of solving

the micro�macro pricing puzzle in their model (�f = 1:01). Moreover, we follow Chris-

tiano, Trabandt, and Walentin (2011) and estimate the inverse labor supply elasticity,

�L, rather than the Calvo parameter controlling for the degree of wage stickiness (which

as the authors we �x to �w = 0:75).
26

Our priors are reported in Table 1. When available, we use the same priors as in

Christiano et al. (2011) for comparability reasons. For the parameters 
 and �, we

24To be sure, the likelihood function is regime-speci�c.
25Denoting by Ŵi the bootstrapped variance-covariance matrix of VAR-based impulse responses b i

for regime i, i.e., 1
M

PM
j=1( 

i
j � � 

i
)( ij � � 

i
)0 (where  ij denotes the realization of b i in the jth - out

of M = 1; 000 bootstrap replications - and � 
i
denotes the mean of  ij), V

i is based on the diagonal
of the matrix Ŵi.
26This choice allows us to indirectly capture the in�uence of uncertainty on the precautionary labor

supply of individuals.
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take as prior means the values estimated by Altig et al. (2011) conditional on impulse

responses to a monetary policy shock, and we use di¤use priors. Regarding the output

growth parameter in the Taylor rule, we borrow the prior from Ascari, Castelnuovo,

and Rossi (2011), which estimate a Taylor rule similar to ours in a small-scale DSGE

framework. The remaining parameters of the model are calibrated as in Altig et al.

(2005, 2011), again for comparability reasons.27

Notice that the use of the same priors for both regimes clearly works against �nding

regime-dependent parameter estimates. In general, the use of priors can hide identi�-

cation issues even in population, which tend to be severe for a IRFs matching approach

(see Canova and Sala (2009)). However, in our case, lack of identi�cation would work

against us and return parameter estimates which are similar between regimes. We an-

ticipate that our results point to di¤erent sets of estimates between the two regimes,

an evidence that speaks in favor of identi�cation in our exercise.

4.3 Regime-speci�c estimation results

Overall �t of the model. Our regime-dependent model-based responses are reported
in Figures 2 and 3 along with the VAR-based responses. The model captures remark-

ably well the unrestricted dynamics of the economy in both regimes. Most of the DSGE

impulse responses lie within the 90% con�dence bands of the TVAR impulse responses.

The model is able to replicate the smaller peak reactions of real variables during un-

certain times as well as the fact that they are shorter-lived than responses in tranquil

times. Moreover, the model is able to capture the faster increase in in�ation during

uncertain times as well as the lower persistence of the interest rate drop, the behavior

of money growth and the behavior of real wages. One exception is the response of

capacity utilization, which is clearly underestimated by the DSGE model in uncertain

times, while it is much better captured by the model in normal times. The di¢ culty

of the model of replicating the facts mimics the �nding in Altig et al. (2011) in their

linearized analysis.28 Interestingly, the model perfectly replicates the response of in-

�ation in uncertain times. Overall, however, the model appears to assign a di¤erent

macroeconomic power to monetary policy shocks in the two regimes.

27A short description of these parameters as well as their �xed values can be found in Table A2 in
the Appendix.
28As pointed out by Christiano et al. (2011), the capacity utilization numbers processed by the VAR

are for the manufacturing sector. Hence, these data are likely to be in�uenced by the durable part
of manufacturing, which may overstate the response of capacity utilization in general in the economic
system after a monetary policy shock.
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Structural parameters between uncertain and tranquil times. Table 1 (last
two columns) presents the parameters estimates for both regimes.29 In spite of the use

of common priors, the estimated parameters appear to be di¤erent between regimes.

Turning to the estimated parameters, the slope of the Phillips curve 
 is increasing in

uncertainty, a result fully consistent with the empirical results by Vavra (2014b). This

means that, in presence of heightened uncertainty, the trade-o¤ between output and

in�ation worsens, as prices rise faster after a monetary policy shock during uncertain

times. The microeconomic implication for pricing behavior are postponed to the next

Section.

The inverse labor supply elasticity �L is estimated to be lower during uncertain

times, implying a consumption-compensated labor supply elasticity for the household

higher during uncertain times. Following Christiano, Trabandt, and Walentin (2011) we

interpret �L as dictating the elasticity with which di¤erent members of the households

enter or leave employment in response to shocks.30 Under this interpretation, when �L
is low it means that there is a large number of household members close to indi¤erent

between working and not working, so that a small change in the real wage is followed by

a large labor supply response. Under the same interpretation, the disutility of working

for a household member is lower during uncertain times. This result may be indirectly

capturing a higher precautionary labor supply in place due to high uncertainty (see Basu

and Bundick (2017)). Furthermore, these estimates also imply a higher slope of the

wage in�ation NKPC during uncertain times (see Christiano, Trabandt, and Walentin

(2011)). The interest semielasticity of money demand � is higher during uncertain

times. This parameter helps matching the di¤erent responses of money velocity to a

monetary policy shock. The elasticity of capital utilization with respect to the rental

rate of capital 1=�a is higher during uncertain times, meaning that it is less costly to

vary capital utilization in uncertain times. This parameter is trying to capture the

bigger response of capacity utilization observed in our VAR during uncertain times,

but it is unable to properly �t it and the model-implied response is far below the lower

29Allowing private sector parameters to di¤er across regimes is in line with the literature. For
instance, Canova (2009) and Inoue and Rossi (2011) �nd that changes in the private sectors�coe¢ cients
is a possible driver of the Great Moderation, while Canova and Menz (2011) and Castelnuovo (2012a)
�nd such changes to be relevant as regards the role of money in the post-WWII sample.
30Christiano et al. (2011) interpret hours worked in the model as capturing the number of people

working in the economy. Accordingly, 1=�L has not to be interpreted as the Frisch elasticity, which
instead captures the percent change in a person�s labor supply in response to a change in the real wage
holding the marginal utility of consumption �xed. As stressed by Christiano et al. (2011), the Frisch
elasticity in the micro data and the labor supply elasticity in the macro data are two di¤erent concepts.
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bound of the con�dence bound for the the VAR-response. The elasticity of investment

with respect to a 1 percent temporary increase in the current price of installed capital

1=S 00is counter-intuitively higher during uncertain times. A reason why the model �ts

particularly poorly investment and capital utilization in uncertain times might be given

by the neglected modelling of investment non-convex adjustment costs, which are more

relevant in presence of high uncertainty and which may in�uence the aggregate level

dynamics of investment (Bloom (2009)). The VAR-based responses may indeed capture

the fact that, during uncertain times, due to non-convex and irreversible adjustment

costs in investment, �rms prefer to meet a surge in demand throughout an increase

in capital services, rather than an increase in investment. Finally, not all estimated

parameters are found to be state-dependent. The degree of habits in consumption is

found to be basically the same in the two regimes. Given the di¤erence between the

prior mean on the parameter b (0.75) and its posterior means, which read 0.82 and

0.86 in the uncertain and tranquil regime, this result does not seem to be driven by

an identi�cation issue. We see this evidence as pointing to the di¤erences commented

above as being facts and not artifacts due to our estimation strategy.

Moving to the estimated policy rule, we �nd that the uncertainty regime is associated

with a weaker response to in�ation, a more aggressive response to output growth, and

a lower degree of interest rate smoothing. This result squares well with the �ndings

recently documented by Gnabo and Moccero (2015). They estimate a Taylor rule

with real time data in which the policy parameters are allowed to take di¤erent values

depending on the level of risk associated with the in�ation outlook and the evolution

of �nancial markets. They also �nd a stronger response to real activity and a lower

degree of interest rate smoothing in presence of high uncertainty, while their response

to in�ation is found to be less dependent to uncertainty than ours. Overall, their uni-

equational approach with real time data produces results which are quite in line with

those obtained by our multivariate framework, something which we see as reassuring as

regards the sensibility of our novel empirical approach.

Our �ndings are robust to the following list of checks, all referring to estimated

models: i) a price mark-up determined by the data; ii) an estimated degree of price

indexation; iii) a Taylor rule featuring output in levels instead of in growth rates; iv)

a Taylor rule featuring a degree of interest rate smoothing of order two as in Coibion

and Gorodnichenko (2012); v) a money growth rule replacing our baseline Taylor rule.

These robustness checks are discussed and documented in our online Appendix.31

31A warning is in order here. Suppose the true DGP is a non-linear model in which uncertainty plays
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Model microeconomic implications. We expect that a higher estimate of the
slope of the NKPC for the uncertain time regime should depend on a higher frequency of

price adjustments during uncertain times (Vavra (2014a) and Baley and Blanco (2015)),

which in our model should be re�ected in a lower estimate of the Calvo probability �p.

Although this happens by construction in the homogenous capital version of the model

(see equation 6), this is not necessarily true as regards the �rm-speci�c capital model.

Interestingly, from Table 2 we can observe that also for the �rm-speci�c capital model

our estimates imply a lower �p during uncertain times. The average time between price

re-adjustment predicted by the estimated model varies from 3.5 quarters in uncertain

times to 29.6 quarters in tranquil times for the homogenous capital model, and from

2.2 to 6 quarters for the �rm-speci�c capital model.

Altig et al. (2011) exploit micro-data evidence to discriminate between the homo-

geneous capital model and the �rm-speci�c one. They �nd that the latter is the one

matching the frequencies of price adjustment coming from �rm-level data. How does

our state-contingent evidence square with the one coming from studies relying on micro

data? Bils and Klenow (2004) �nd evidence in favor of frequent price changes - once

every 4.3 months - once sales are left out of the data. However, as shown by Nakamura

and Steinsson (2008), the same data point to adjustments every 7-11 months once price

cuts are removed. Eichenbaum, Jaimovich, and Rebelo (2011) show that, while prices

change in general every two weeks, modal prices are much more inertial and change

about every year. Kehoe and Midrigan (2015) focus on regular price changes, i.e., the

slow-moving trend which one can identify by controlling for temporary price increases

and decreases. They �nd that regular prices are updated every 14.5 months, which is,

about every 5 quarters. These papers provide a range between slightly more than a

quarter and almost �ve quarters. Interestingly, this micro evidence is of help to dis-

criminate between the homogeneous capital model and the �rm-speci�c capital one even

when a state-dependent estimation like ours is undertaken. The homogeneous capital

model returns an implied price duration in uncertain times equal to three quarters, an

evidence in line with the micro data. However, the same model-based moment in tran-

quil times reads 30 quarters, a duration which is just at odds with the micro evidence

cited above. Di¤erently, the �rm-speci�c capital model implies price durations of about

a role per se because it a¤ects the function relating states at time t to states at time t+ 1. In a world
like this, one would like to disentangle the role of structural parameters in matching the asymmetric
transmission of monetary policy shocks accounting for the role played by variations in uncertainty.
This can be done by using the techniques recently developed by Andreasen, Fernández-Villaverde, and
Rubio-Ramírez (2017). We see this investigation as material for future research.
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two quarters (uncertain times) and six quarters (tranquil times). This �gures are much

more in line with the extant micro evidence. Indeed, the average of the price durations

in the �rm-speci�c model - four quarters - is very close to that proposed by Nakamura

and Steinsson (2008), who �nd it to range between 3 and 4 quarters, Eichenbaum,

Jaimovich, and Rebelo (2011), who �nd it to be about one year, and Kehoe and Midri-

gan (2015), who �nd it to be of about 5 quarters. Hence, a state-dependent analysis

like ours con�rms that �rm-speci�c capital is essential to get the frequency of price ad-

justment right in a medium-scale DSGE model featuring Calvo prices.32 Importantly,

our nonlinear analysis unveils that the failure of models with homogeneous capital to

get such frequency right comes from tranquil times, i.e., periods characterized by low

uncertainty which are associated with a slope of the NKPC which implies absurdly

large values of the Calvo parameters. Di¤erently, a model with homogeneous capital

performs much better in uncertainty times - according to our empirical estimates, the

price duration in uncertain times is slightly larger than three quarters. It is important

to notice that, in uncertain times, prices are found to be more �exible conditional on

the �rm-speci�c capital model.

A note is in order here. As shown above, �rm-speci�c capital helps us to obtain state-

speci�c estimates of the Calvo probabilities that are, when taken on average between

regimes, closer to those coming from studies using microeconomic data. However, it

would be interesting to know whether the implications on our state-contingent estimates

are close to state-contingent estimates at a microeconomic level. Unfortunately, state-

dependent micro evidence is scarce. Vavra (2014b) and Bachmann et al. (2013) provide

preliminary evidence which points to a moderate decrease in stickiness in uncertain

times. If this evidence is correct, our model - while working in the right direction -

probably overestimates the impact of the change in the frequency of price adjustment

driven by an increase in uncertainty.

32Of course, one should bear in mind that the comparison between the estimate values of the Calvo
parameter in these frameworks and the information coming from micro data should be drawn carefully.
In fact, the DSGE model we work with features full dynamic indexation of prices to past in�ation,
i.e., prices change every quarters for each producers - a fraction �p because producers reoptimize and
a fraction (1� �p) because of indexation. Hence, even if �rms change prices, this does not mean that
they are re-optimimizers. Indeed, they could be re-setters.
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5 The main drivers behind the di¤erence between
uncertain and tranquil times

This Section aims at identifying what the most important drivers are behind the state-

speci�c macroeconomic impact of monetary policy shocks. To this aim, we propose a

counterfactual exercise that replaces, for each structural parameter we focus on, the

estimated parameters values for uncertain times with the ones for tranquil times. To be

sure, the way in which the exercise is designed is such that, if we replaced all estimated

parameters contemporaneously, by construction we would move from the DSGE model-

consistent responses estimated under uncertainty to those estimated under tranquil

times.33

Figures 4 and 5 report results focusing on the responses of output, in�ation and

the policy rate. Three comments are in order. First, the higher slope of the NKPC

during uncertain times is important in explaining much of the reduced e¤ectiveness

of monetary shocks during these times. If uncertain times were characterized by the

same slope estimated for tranquil times, output would experience a bigger and more

persistent response to monetary policy shocks in combination with a �atter response of

in�ation and a more persistent fall of the nominal interest rate. Second, households-

related parameters (�, b, ") during uncertain times do not in�uence, if not marginally,

the e¤ectiveness of monetary policy with respect to tranquil times, while �rms-related

parameters - i.e., �a and S 00 - positively a¤ects it. Third, systematic monetary policy

during uncertain times works in favor of reducing the impact of monetary policy shocks

on real activity. In contrast, the central bank controls in�ation more e¤ectively. The

lower degree of interest rate smoothing during uncertain times plays a big role as regards

the lower policy e¤ectiveness in the short run.

Our counterfactual simulations point to the higher slope of the NKPC 
 as the

crucial parameter behind the di¤erent power of monetary policy shocks in in�uencing

in�ation and output in the two uncertainty regimes. Since the slope of the NKPC

determines the in�ation-output volatility trade-o¤ faced by central banks and a¤ects

the relative response of in�ation and output to an unanticipated monetary policy shock,

this means that the policy trade-o¤ worsens during uncertain times. In other words, a

given percent increase in output due to a monetary policy shock has to be accompanied

33To be sure, given that �rm-speci�c capital in this framework implies a link between structural
parameters (mostly, 
, �f and �a) and the Calvo parameter �p, it is technically not correct to say that
we change one parameter at a time "all else being equal", because when we change the value of one of
the parameters listed above we implicitely allow for a change in the value of �p.
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by a higher in�ation rate, something that the monetary authority may not be willing

to tolerate. This may be the rationale for the less gradual and more active conduct of

monetary policy we �nd during uncertain times.

6 Conclusion

This paper estimates a nonlinear VAR model and documents that monetary policy

shocks have milder real e¤ects and stronger in�ationary ones in periods of high macro-

economic uncertainty than in normal times. Then, it exploits this evidence to estimate

a medium-scale DSGE model featuring �rm-speci�c capital via a Bayesian direct in-

ference approach. The DSGE model is shown to possess enough �exibility - due to a

state-speci�c set of estimates of some key-structural parameters - to capture the macro-

economic dynamics generated by a monetary policy shock. In particular, a steeper slope

of the Phillips curve is shown to be the main driver of the state-contingent responses

generated by the model. The relevance of �rm-speci�c capital arises when contrasting

the estimates of the Calvo parameter and the implied price durations to recent �ndings

based on micro data. Firm-speci�c capital enables the model to return reasonable es-

timates in uncertain times and tranquil times. Di¤erently, a version of the model with

homogeneous capital returns an implausibly long price duration in tranquil times.

From a modeling standpoint, our �ndings point to the need of working out mecha-

nisms which can explain a positive relation between the level of uncertainty and the slope

of the Phillips curve. Given the role played by such a slope in in�uencing the in�ation-

output volatility trade-o¤, our results open the way to studies aiming at understanding

optimal monetary policy in regimes characterized by di¤erent levels of uncertainty.
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Uncertain times Tranquil times
Calvo probability (�p)

Homogenous capital model 0.71 0.97
Firm-speci�c capital model 0.54 0.83

Price duration ( 1
1��p

)

Homogenous capital model 3.47 29.62
Firm-speci�c capital model 2.19 5.95

Table 2: Regime-dependent implied Calvo parameter and average time (quar-
ters) between reoptimization.
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Figure 1: Uncertain and tranquil times. Red dashed line: Uncertainty indicator by
Jurado, Ludvigson, and Ng (2015). Black solid horizontal line: Threshold value. Grey
vertical bars: NBER recessions.
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Figure 2: TVAR-based regime-dependent responses for the uncertain and
tranquil times regimes (�rst set of parameters). Red dotted and solid lines:
Point estimates and 90 percent bootstrapped con�dence bands for the IRFs conditional
to a uncertain times regime. Blue solid lines and grey areas: Point estimates and 90
percent bootstrapped con�dence bands for the IRFs conditional to a tranquil times
regime. DSGE model estimates conditional on the estimated parameter values.
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Figure 3: TVAR-based regime-dependent responses for the uncertain and
tranquil times regimes (second set of parameters). Red dotted and solid lines:
Point estimates and 90 percent bootstrapped con�dence bands for the IRFs conditional
to a uncertain times regime. Blue solid lines and grey areas: Point estimates and 90
percent bootstrapped con�dence bands for the IRFs conditional to a tranquil times
regime. DSGE model estimates conditional on the estimated parameter values.
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Figure 4: Role of structural parameters for the state-contingent IRFs pro-
duced by the DSGE model (�rst set of parameters). Red solid lines with
circles: Baseline DSGE-based IRFs conditional to a uncertain times regime. Blue
solid lines with diamonds: Baseline DSGE-based IRFs conditional to a tranquil times
regime. Magenta dashed-dotted lines: Counterfactual DSGE-based IRFs conditional to
the uncertain times regime.
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Figure 5: Role of structural parameters for the state-contingent IRFs pro-
duced by the DSGE model (�rst set of parameters). Red solid lines with
circles: Baseline DSGE-based IRFs conditional to a uncertain times regime. Blue
solid lines with diamonds: Baseline DSGE-based IRFs conditional to a tranquil times
regime. Magenta dashed-dotted lines: Counterfactual DSGE-based IRFs conditional to
the uncertain times regime.
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Appendix of the paper "Uncertainty-dependent Ef-
fects of Monetary Policy Shock: A New Keynesian
Interpretation" by Efrem Castelnuovo and Giovanni
Pellegrino

This Appendix is structured as follows. First, we document the robustness of our

nonlinear VAR evidence to a variety of perturbations. Second, we o¤ers detail on the

algorithm to compute the Generalized Impulse Response Functions (GIRFs). Third, we

formally show that our state-conditional impulse responses are di¤erent between states.

Finally, we document the robustness of the change of the slope of the new-Keynesian

Phillips curve (NKPC) to a battery of changes of the estimated DSGE model.

TVAR evidence: Robustness

Recursive identi�cation. Our baseline analysis employs the identi�cation strat-

egy followed by Altig, Christiano, Eichenbaum, and Lindé (2011), i.e., a mix of long-

and short-run restrictions from which monetary policy shocks are derived. A popular

alternative is that of imposing the short-run restrictions implied by the Cholesky de-

composition of the variance-covariance (VCV) matrix of the estimated residuals. This

identi�cation relies on exclusion restrictions, i.e., monetary policy shocks do not con-

temporaneously a¤ect in�ation and real activity indicators. At the same time, such

aggregates are allowed to contemporaneously in�uence the policy rate. Notice that

these restrictions are consistent with the recursive DSGE model by Altig et al. (2011).

Figure A1 shows the impulse response functions of a TVAR where shocks were recov-

ered according to this assumption. For the sake of brevity, we focus on the responses

of output, in�ation, and the federal funds rate. As shown by the Figure, the responses

of this check lay well inside the con�dence bands associated to our baseline case.

Constant VCV matrix. Our baseline Threshold-VAR models a regime-dependent
VCV matrix. One could think that this favors di¤erences between regimes because of

the possibility of a state-contingent impulse vector. We check for this possibility by

adopting a constant VCV matrix. Again, Figure A1 shows that our baseline results are

robust.

Alternative proxy for uncertainty: IQR of sales growth. In the baseline

analysis we use the macroeconomic uncertainty indicator proposed by Jurado, Ludvig-

son, and Ng (2015). Our choice is justi�ed by the way in which this indicator is con-
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structed, i.e., by employing a large number of macroeconomic and �nancial indicators

whose future realizations, which are uncertain, are likely to a¤ect households�and �rms�

decisions. Of course, di¤erent measures of uncertainty may lead to di¤erent results. It

is then of interest to check if our results are speci�c to the employment of the Jurado et

al. (2015) measure or if, instead, are robust to sensible alternatives. To this end, we run

a check with a micro-level measure of uncertainty, i.e., the interquartile range (IQR) of

sales growth. This is a cross sectional �rm-level measure of uncertainty constructed by

Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2016).1 The choice of this

measure is motivated by its connection with idiosyncratic (i.e., �rm-speci�c) shocks,

which are likely to be relevant for understanding price setting decisions at a micro-level

(see, e.g., Vavra (2014) and the literature cited therein). Given that price-setting be-

havior may be behind the di¤erent slope of the NKPC found in our baseline exercise,

it would be reassuring to know that our results are robust to the employment of this

measure of uncertainty. The IRFs documented in Figure A1 con�rm that our results

are robust to the identi�cation of uncertainty and tranquil times operated via the IQR

of sales growth.

JLN index conditional on a one-year forecast horizon. The JLN index used in
our analysis refers is constructed by referring to a three-month forecast horizon. Agents�

decisions may be determined on the basis of a di¤erent horizon. We then recompute

our impulse responses by conditioning on the version of the JLN index computed by

considering a one-year horizon. Figure A1 shows that our results are robust to this

variation of the baseline exercise.

Estimated threshold. The threshold value of the uncertainty index used in our
baseline exercise to separate uncertain and tranquil times is the median value of the

(JLN) uncertainty measure. The idea was to minimize the probability of �nding di¤erent

dynamics due to small-sample issues in one of the two regimes. Of course, one could

wonder how robust our results are to estimating the threshold value. Figure A1 shows

that results are robust when the threshold value is estimated by minimizing the AIC

as in Tsay (1998). Following Balke (2000), the possible threshold values were restricted

so that at least 20% of the observations plus the number of parameters of a standard

linear VAR (for an individual equation) were present in each regime.

Generalized Impulse Response Functions. Our baseline TVAR analysis as-

1This measure is constructed on the basis of data regarding 2,465 publicly quoted �rms spanning
all the sectors of the economy. This uncertainty measure, which can be downloaded from the web-
site http://www.stanford.edu/~nbloom/RUBC.zip, is available starting from 1962Q1. We Hodrick-
Prescott �lter this uncertainty index (lambda=1,600) to remove its low-frequency component.
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sumes that uncertainty does not respond to monetary policy shocks at all times. This

assumption makes our TVAR consistent with the linearized DSGE model we estimate

(in a regime-speci�c manner) in the second part of the paper. However, Pellegrino

(2017a) �nds that uncertainty can indeed respond to monetary policy shocks (for a

similar result obtained with European data, see Pellegrino (2017b)). We then present a

check in which uncertainty is modeled as an endogenous variable in the vector. Specif-

ically, we include our threshold variable, i.e., the JLN uncertainty indicator, among

the endogenous variables of the TVAR and order it last in Y. Technically, the result

is a Self Exciting (SE-) TVAR model in which the regime is allowed to change after

the shock to the extent that uncertainty reacts to the monetary shock. This is a fully

nonlinear model that implies the computation of Generalized IRFs (GIRFs) à la Koop,

Pesaran, and Potter (1996). GIRFs allow responses to depend on the starting condition

(or initial history) at the time of the shock, in addition to the size and sign of the shock.

The point estimates for the regime-dependent GIRFs are computed as the average of all

the history-conditional GIRFs referring to a particular regime. In the �gure regimes are

de�ned on the basis of initial histories with uncertainty in its top or bottom decile and

hence correspond to an "extreme events" logic (see, e.g., Auerbach and Gorodnichenko

(2012) and Caggiano, Castelnuovo, and Groshenny (2014)). The following Section of

this Appendix o¤ers details on the algorithm employed to compute our GIRFs.

Figure A1 reports the estimated GIRFs. When we acknowledge for the endogenous

role of uncertainty, the regime-dependent responses for uncertain and tranquil times

become closer between them, consistently with what found by Pellegrino (2017a,b).

However, we still �nd a clear di¤erence in the GIRFs corresponding to deep regimes,

which is exactly the point of our TVAR analysis.

Commodity prices. The possibility of a misspeci�ed VAR not containing enough
information as regards future in�ationary pressures is investigated by adding commodity

prices to the VAR as suggested by Sims (1992). This is an important check, in light

of the price puzzle evidence we �nd in tranquil times. We then add commodity prices

to the Altig et al.�s (2011) vector and order it �rst.2 We model commodity prices in

growth rates to line up with Altig et al. (2011), who model the variables in their VAR

as I(0) processes. However, our results are unchanged when modeling commodity prices

in log-levels. Figure A2 shows that our results are robust to the inclusion of commodity

prices in our vector.

2We employ the Producer Price Index for All Commodities (PPIACO) downloadable from the
Federal Reserve Bank of St. Louis�website.
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Generalized Impulse Response Functions for the SE-TVAR

The algorithm employed to compute the GIRFs and their con�dence intervals is a mod-

i�ed version of the one proposed Koop, Pesaran, and Potter (1996). In particular, we

consider orthogonalized residuals and give them an interpretation as structural shocks

as in Kilian and Vigfusson (2011) and Fazzari, Morley, and Panovska (2014).

Following Koop, Pesaran, and Potter (1996), the theoretical GIRFs of the vec-

tor of endogenous variables Y, h periods ahead, for a starting condition $t�1 =

fYt�1; :::;Yt�Lg , and a structural shock in date t, �t, can be expressed as:

GIRFY;t(h; �t; $t�1) = E [Yt+h j �t; $t�1]� E [Yt+h j $t�1] ; h = 0; 1; : : : ; H

where E[�] stands for the expectation operator. The algorithm to estimate the state-
conditional GIRFs follows the steps described below:

1. we pick an initial condition $t�1 = fYt�1; :::;Yt�Lg, i.e., the historical values
for the lagged endogenous variables at a particular date t = L + 1; : : : ; T . The

lagged value of the threshold variable ythrest�1 , which belongs to the vector Yt�1,

determines the starting regime i = 1; 2 of the model;

2. we randomly draw (with repetition) two sequences of (n-dimensional) residuals

f"it+hg, h = 0; 1; ::H = 19 , from the empirical distributions d(0; b
i), whereb
i is the estimated VCV matrix for regime i = 1; 2. In order to preserve the

contemporaneous structural relationships among variables, residuals are assumed

to be jointly distributed, so that if a date t�s residual is drawn, all n residuals for

such date are collected. The sequence s of residuals f"t+hgs employed to iterate
the system will be a combination of the two previous sequences (see the following

point);

3. conditional on $t�1 and on the estimated nonlinear VAR model, we employ

f"t+hgs to simulate the evolution of the vector of endogenous variables over the
following H periods when a structural shock �t is imposed to "st . In particu-

lar, depending on the regime i = 1; 2 in which the system starts the iteration, we

Cholesky-decompose b
i= CiC
0
i , where Ci is a regime-dependent lower-triangular

matrix. Then, we recover the structural innovation associated to "st via the sys-

tem ust = C
�1
i "st , and add a quantity � < 0 to the scalar element of u

s
t that refers

to the variable we want to shock (the federal funds rate), i.e. ust;ffr, to simulate

an expansionary shock. We then move again to the residual associated with the
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structural shock "s;�t = Ciu
s;�
t to proceed with the iteration. We account for the

possibility of a switch in regime during the iteration by selecting, per each future

period h, "st+h from f"it+hg, t+ h, h = 1; ::H, according to the regime i = 1; 2 in

which the resulting path �nds itself at time t + h. The so obtained path, which

is in�uenced by the shock �, is termed Ys;�
t+h;

4. conditional on $t�1 , on the estimated nonlinear VAR model, and on the very

same f"t+hgs employed in the previous step, we simulate the evolution of the
vector of endogenous variables over the following H periods to obtain the path

Ys
t+h for h = 0; 1 : : : H . Notice that, in this simulation, � = 0. Hence, in iterating

the system, the two paths Ys
t+h and Y

s;�
t+h are di¤erent because of the absence of

the shock at this step vs. its presence in the previous step;

5. we compute the di¤erence between the previous two paths for each horizon and

for each variable, i.e. Ys;�
t+h �Ys

t+h for h = 0; 1 : : : ; H;

6. we repeat steps 2-5 for a number S = 500 of di¤erent extractions for the residuals,

then take the average values across s. Notice that this computation is performed

by sticking to the same starting quarter t�1. This enables us to obtain a consistent
point estimate of the GIRFs for each given starting quarter in our sample , i.e.
\GIRF Y;t(�t; $t�1) =

n bE [Yt+h j �t; $t�1]� bE [Yt+h j $t�1]
o19
h=0
. If a given initial

condition$t�1 leads to an explosive response - namely, if such response is explosive

for most of the sequences of residuals drawn f"t+hgs, in the sense that the response
of the shocked variable diverges instead than reverting to zero -, such response is

discarded and not considered for state-conditional responses at the next step;3

7. these history-dependent GIRFs are then averaged over a particular subset of initial

conditions of interest to produce our state-dependent GIRFs. To do so, an initial

condition $t�1 = fYt�1; :::; Yt�Lg is classi�ed to belong to the �uncertain times�
state if ythrest�1 > �1, and to the �tranquil times�state if ythrest�1 < �2, where �2 < �1
are threshold values identifying the �rst and ninth deciles of the empirical density

of uncertainty in our sample, and t = L + 1; : : : ; T . In this way we obtain our
\GIRF Y;t(�t; uncertain times) and \GIRF Y;t(�t; tranquil times).

3This is a theoretical case. We veri�ed that, as regards our empirical application, this case does not
apply.
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Statistical evidence on the di¤erence between state-dependent
IRFs

The test is based on a t-statistic for the statistical di¤erence between regime-dependent

responses, taken to be independent (as estimated on two di¤erent samples). In partic-

ular, following ACEL, we can compute bootstrapped standard deviations of the IRFs,

for each variable and for each horizons ahead. Then the test-statistic is as follow:

t�stat = (IRFUt;i�IRF Tt;i)=(
q
(st:dev:(IRFUt;i))

2 + (st:dev:(IRF Tt;i))
2), where IRF regimet;i

represents the point estimated IRF for regime U or T , t = 0; :::; 19 represents the hori-

zon ahead to which the response is referred, and i = 1; :::; 10 denotes the variable whose

IRFs are referred.

Figure A3 depicts the outcome of this test. As it is evident, the state-dependent

IRFs are di¤erent between regimes.

DSGE evidence: Robustness

We perform two variations as regards the price setting-related parameters in the DSGE

models, and two related to the way in which we model the systematic monetary policy

conduct.

Estimated markup. Our baseline results point to changes in the slope of the

NKPC as crucial to replicate the reduced impact on real activity and the larger one on

prices during uncertain times. The variation of such slope is determined by a reduction

in price stickiness as captured by the Calvo parameter. However, this parameter is

the only price-setting parameter that we allowed to di¤er between regimes (the other

parameters being calibrated as in Altig et al., 2011). In the attempt of checking other

price setting-related parameters, we take to the data a version of the model in which

the markup is also estimated. Allowing this parameter to vary between regimes allows

for the price elasticity of demand to be regime-speci�c. For instance, Eichenbaum and

Fisher (2007) argue that departing from the assumption that monopolistically compet-

itive �rms face a constant elasticity of demand is important in order to obtain plausible

degrees of in�ation inertia with models featuring a Calvo-type of friction. Table A1

documents our results.4 In particular, we �nd a lower desired price markup during

uncertain times. However, this additional estimated parameter hardly in�uences our

estimates of the slope of the NKPC in the two regimes under scrutiny.

4The slight discrepancy between the moments reported in this Table as regards the baseline case
and those reported in Table 1 in the text are due to the fact that, for our robustness checks, we decided
to work with the Laplace approximation of the posterior density in order to save computational time.
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Estimated price indexation. Another robustness check regards the estimation
of the fraction of �rms that index to past in�ation. We �nd that this fraction is higher

during uncertain times, when, according to our model, �rms optimally change prices

also more frequently. Interestingly, Fernández-Villaverde and Rubio-Ramírez (2008)

�nd that periods of high price rigidities are also periods of low indexation, and vice-

versa. Our regime-dependent estimation enables us to extend this reasoning to periods

characterized by high vs. low uncertainty.

Taylor rule with a richer smoothing structure. Our baseline Taylor rule spec-
i�cation features a lag of the policy rate. This has been shown to be relevant to capture

the policy gradualism by the Federal Reserve (English, Nelson, and Sack (2003), Castel-

nuovo (2003)). However, recent research conducted by Coibion and Gorodnichenko

(2012) and Ascari, Castelnuovo, and Rossi (2011) points to the empirical relevance of

a richer dynamic structure for the federal funds rate. To this end, we re-estimate our

model by replacing our baseline policy rule the following speci�cation:

R̂t = �1;RR̂t�1 + �2;RR̂t�2 + (1� �1;R � �2;R)(��Et�̂t+1 + ��y�ŷt) + "Rt (1)

which features an interest rate smoothing structure of order two. Table A1 shows

the implications for the estimation of the DSGE model of using a rule like this. The

monetary authority is still found to govern the interest rate with much less inertia dur-

ing uncertain times (the sum of the interest smoothing parameters is smaller during

uncertain times than in tranquil times, 0:79 versus 0:89). Further, the monetary au-

thority is still found to react less aggressively to expected in�ation and to output growth

during uncertain times than tranquil times. Again, our main result on a steeper slope

of the NKPC survives this modi�cation of the baseline set up.

Money growth rate rule. Finally, we estimate a di¤erent version of the model
featuring a money growth rule instead of a Taylor rule (a similar exercise can be found

in Altig et al., 2011). We work with the following rule:

x̂M;t = �M x̂M;t�1 + �M"M;t; �M > 0; (2)

where x̂M;t denotes the percentage deviation of the growth rate of money, xM;t =

Mt=Mt�1, from its steady state value and where "M;t represents the i.i.d. monetary

policy shock with unitary variance. In this case, the VAR-based responses b i that we
use in the estimation procedure are the responses to a one standard deviation shock to

the federal funds rate. Then, after the estimation, we rescale the DSGE model-based
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responses to obtain a comparable 1% expansionary shock to the federal funds rate in

both regimes.5 We �nd the transmission of monetary policy shocks to be very similar to

the one found in the baseline estimation. The corresponding parameters estimates are

shown in Table A1. Our baseline results are robust also to this alternative speci�cation

of the policy rule.
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Figure A1: TVAR: Robustness checks. Areas within red solid lines (grey areas):
90% bootstrapped con�dence bands for the baseline VAR-based IRFs conditional to
uncertain times (tranquil times). Red (blue) lines with di¤erent markers: VAR-based
IRFs conditional to a uncertain times (tranquil times) regime for several alternative
TVAR speci�cations.
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Parameters in �cal Description Calibration Source
� Discount factor 1.03-0.25 ACEL(2005,2011)
� Capital share 0.36 ACEL(2005,2011)
� Depreciation rate 0.025 ACEL(2005,2011)
 L Labor disutility 1 ACEL(2005,2011)
�w Wage markup 1.05 ACEL(2005,2011)
�� SS Gross investment technology growth 1.0042 ACEL(2005,2011)
�z SS Gross neutral technology growth 1.00013 ACEL(2005,2011)
x SS Gross growth rate of money 1.017 ACEL(2005,2011)
� SS Velocity 0.45 ACEL(2005,2011)
� SS transactions technology value 0.036 ACEL(2005,2011)
�w Wage stickiness 0.75 CTW(2011)
�f Price markup 1.01 ACEL(2011)

Table A2: DSGE model: Calibrated parameters. Values borrowed from Altig
et al. (2005, 2011). SS stands for steady state. ACEL stands for Altig, Christiano,
Eichenbaum, and Lindé. CTW stands for Christiano, Trabandt, and Walentin.
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