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Abstract. We investigate a class of spectral multipliers for an Ornstein–Uhlenbeck
operator L in Rn, with drift given by a real matrix B whose eigenvalues have nega-
tive real parts. We prove that if m is a function of Laplace transform type defined
in the right half-plane, then m(L) is of weak type (1, 1) with respect to the in-
variant measure in Rn. The proof involves many estimates of the relevant integral
kernels and also a bound for the number of zeros of the time derivative of the
Mehler kernel, as well as an enhanced version of the Ornstein–Uhlenbeck maximal
operator theorem.

1. Introduction

Given a measure space (X,µ) and a self-adjoint operator L on L2(X,µ), an im-
portant issue in harmonic analysis concerns the boundedness of the operator m(L),
where m : R→ C is a Borel function. If E denotes a spectral resolution of L on R,
one can define m(L) for many functions m as

m(L) =

∫
R
m(ν) dE(ν).

Great efforts have been devoted to finding minimal assumptions on the multiplier m
that will ensure the boundedness of m(L) on the Lebesgue spaces Lp(X,µ), both in
a strong and in a weak sense, when p 6= 2.

A few years ago, the authors started a program concerning harmonic analysis in
the Ornstein–Uhlenbeck setting. In this framework, (X,µ) is the Euclidean space
Rn equipped with a Gaussian measure dγ∞, known as the invariant measure and
defined in Section 2. Further, L is replaced by the Ornstein–Uhlenbeck operator L,
defined as

Lf = −1

2
tr
(
Q∇2f

)
− 〈Bx,∇f〉 , f ∈ S(Rn), (1.1)

where ∇ and ∇2 denote the gradient and the Hessian, respectively. In this formula,
Q and B are real n × n matrices; Q is symmetric and positive definite, and the
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eigenvalues of B all have negative real parts. The space Lp(Rn, dγ∞) will be written
simply Lp(γ∞).

Since in general L has no self-adjoint or normal extension to L2(γ∞), one cannot
invoke spectral theory to define m(L). Notice that self-adjointness and normality
may fail also for the Ornstein–Uhlenbeck semigroup (Ht)t>0, generated by L, which
was first introduced in [OU]. The focus in this paper is on multipliers of Laplace
transform type. This class of multipliers was introduced some fifty years ago by E.
M. Stein in [St], in the context of the Littlewood–Paley theory for a sublaplacian on
a connected Lie group G.

A function m of a real variable λ > 0 is said to be of Laplace transform type if

m(λ) = λ

∫ +∞

0

ϕ(t)e−tλ dt = −
∫ +∞

0

ϕ(t)
d

dt
e−tλ dt, λ > 0, (1.2)

for some ϕ ∈ L∞(0,+∞). Observe that such a function m can be extended to an
analytic function in the half-plane <z > 0. Thus we pay the price of a rather strong
condition on m, to prove, in return, a multiplier theorem for an operator L which is
not necessarily normal. Observe that one obtains as m(L) the imaginary powers Liγ
of L, with γ ∈ R \ {0}, by choosing ϕ(t) = const. t−iγ.

The exact definition of m(L) for functions m of this type will be given in Section 3.
Here we present only a heuristic deduction of the kernel of m(L). If we simply replace
λ by L in the last expression in (1.2), we would get

m(L) = −
∫ +∞

0

ϕ(t)
d

dt
e−tL dt. (1.3)

Here e−tL = Ht is the Ornstein-Uhlenbeck semigroup, whose kernel is the Mehler
kernel Kt(x, u) described in Section 2. We point out that the term kernel in this
paper always refers to integration with respect to dγ∞. Thus for each f ∈ S(Rn)
and all t > 0

Htf(x) =

∫
Kt(x, u) f(u) dγ∞(u) .

This makes it plausible that the off-diagonal kernel of m(L) is

Mϕ(x, u) = −
∫ +∞

0

ϕ(t) ∂tKt(x, u) dt. (1.4)

We will verify this formula later, though after splitting the integral and under some
restrictions. It will lead to an expression for the kernel in terms of Q and B.

From now on, we assume that m is of Laplace transform type.
In the standard case Q = I and B = −I, the operator L is self-adjoint, and the

Lp(dγ∞) boundedness of m(L) follows for all 1 < p < ∞ from a general result due
to Stein [St, Ch. 4]. Moreover, J. Garćıa-Cuerva, G. Mauceri, J. L.Torrea and the
third author proved in this case the weak type (1, 1) of m(L) with respect to dγ∞ ; see
[GMST2, Theorem 3.8]. For more recent results in the standard case, also involving
the Gaussian conical square function, we refer to [K1, K2]; see also [W1, W2], where
the author investigates multiplier theorems for systems of Ornstein–Uhlenbeck op-
erators. For an overview of this topic, we refer to Bogachev’s survey [Bo] and the
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references therein. Very recently, several interesting results in a nonsymmetric but
normal Ornstein–Uhlenbeck context have appeared in [ABQR].

In the general case, when L is given by (1.1), the strong Lp(γ∞) boundedness of
m(L) follows for 1 < p < ∞ from [CaD, Prop. 3.8]. In this paper, we consider the
endpoint case p = 1, where the strong boundedness does not hold.

Our main result is the following.

Theorem 1.1. If the function m is of Laplace transform type, then the multiplier
operator m(L) associated to a general Ornstein–Uhlenbeck operator L is of weak type
(1, 1) with respect to the invariant measure dγ∞.

Thus we shall prove the inequality

γ∞{x ∈ Rn : m(L) f(x) > Cα} ≤ C

α
‖f‖L1(γ∞), α > 0, (1.5)

for all functions f ∈ L1(γ∞), with C = C(n,Q,B). Our theorem extends Theorem
3.8 in [GMST2] to the framework of a general, not necessarily normal, Ornstein–
Uhlenbeck operator.

For a detailed study of exponential and Moser integral inequalities in the Gaussian
framework we refer to [CiMP1, CiMP2, CiMP3].

What follows next is a plan of the proof of Theorem 1.1, together with a description
of the structure of the paper.

In Section 2, we introduce some terminology and recall from the authors’ earlier
papers [CCS1, CCS2, CCS3] a few estimates which are essential in our approach.
Section 3 gives a rigorous definition of the multiplier operator, and in Subsection 3.2
we split this operator by splitting the integrals in (1.2) and (1.3) into parts taken
over t < 1 and t > 1. The part corresponding to t < 1 is further split into a
local and a global part. Then in Section 4 the time derivative ∂tKt of the Mehler
kernel is computed and estimated. This leads in Section 5 to some estimates for the
kernels of the different parts of the operator. There we also introduce some technical
simplifications that will reduce the complexity of the proof of Theorem 1.1. This
proof is given in the remaining sections, in the following way.

The operator part with t > 1 is dealt with in Section 6. Section 7 gives the proof
for the local part mentioned above, with standard Calderón-Zygmund techniques.
The remaining, global part is more delicate. For its kernel we will have a bound∫ 1

0

|∂tKt(x, u)| dt ≤
∑∣∣∣∣∫ ∂tKt(x, u) dt

∣∣∣∣ ,
where the integrals in the sum are taken between consecutive zeros of ∂tKt. There-
fore, we will need an estimate of the number of zeros of ∂tKt(x, u) as t runs through
the interval (0, 1]. This number turns out to be controlled by a constant depending
only on n, as verified in Section 8. We can then complete the proof of the weak
type (1, 1) in Section 9. There we also need an enhanced version of the Ornstein–
Uhlenbeck maximal operator theorem (see [CCS2, Theorem 1.1]). Its proof is given
in the Appendix (Section 10).
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We will write C < ∞ and c > 0 for various constants, all of which depend only
on n, Q and B, unless otherwise explicitly stated. If a and b are positive quantities,
a . b or equivalently b & a means a ≤ Cb. When a . b and also b . a, we write
a ' b. By N we denote the set of all nonnegative integers. If A is a real n×n matrix,
we write ‖A‖ for its operator norm on Rn with the Euclidean norm | · | . We will
adopt the dot notation for differentiation with respect to the time variable t, writing
K̇t = ∂tKt.

The authors would like to thank Andrea Carbonaro for several helpful discussions.

2. Preliminaries

In this section we collect some results from [CCS1, CCS2, CCS3] related to the
Mehler kernel of a general Ornstein–Uhlenbeck semigroup.

2.1. Some matrices and estimates.
In terms of the two real n×n matrices Q and B introduced in Section 1, we define

for t ∈ (0,+∞] the matrix

Qt =

∫ t

0

esB QesB
∗
ds. (2.1)

Since Q is real, symmetric and positive definite, and the eigenvalues of B have
negative real parts, this integral is convergent and the matrix Qt is symmetric and
positive definite and thus invertible, for all 0 < t ≤ ∞.

It will be convenient to write

|x|Q = |Q−1/2
∞ x|, x ∈ Rn,

which is a norm on Rn, and |x|Q ' |x|. Further, we let R(x) denote the (positive
definite) quadratic form

R(x) =
1

2
|x|2Q =

1

2

〈
Q−1
∞ x, x

〉
, x ∈ Rn.

The invariant measure is given by

dγ∞(x) = exp(−R(x)) dx.

Notice that dγ∞ is not normalized.
We will also use the one-parameter group of matrices

Dt = Q∞ e
−tB∗ Q−1

∞ , t ∈ R, (2.2)

introduced in [CCS2]. We proved in [CCS2, Lemma 2.1] that

Dt = etB +Qt e
−tB∗ Q−1

∞ , t > 0. (2.3)

By means of a Jordan decomposition of B∗, the following estimates were proved in
[CCS2, Lemma 3.1]

ect |x| . |Dt x| . eCt |x| and e−Ct |x| . |D−t x| . e−ct |x|,
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holding for t > 0 and all x ∈ Rn. The same bounds are true with Dt replaced by
e−tB or e−tB

∗
; in particular,

ect |x| . |e−tB x| . eCt |x| and e−Ct |x| . |etB x| . e−ct |x| (2.4)

for t > 0 and x ∈ Rn.
From these inequalities one deduces (see [CCS2, Lemma 3.2])

‖Q−1
t ‖ ' (min(1, t))−1, (2.5)

‖Q−1
t −Q−1

∞ ‖ . t−1 e−ct. (2.6)

Finally, we recall the following lemma, proved in [CCS3, Lemma 2.3].

Lemma 2.1. Let x ∈ Rn and |t| ≤ 1. Then

|x−Dt x| ' |t| |x|.

2.2. Spectrum and generalized eigenspaces of L.
Let λ1, . . . , λr be the eigenvalues of B. It is known that the spectrum of L is{

−
r∑
i=1

ni λi : ni ∈ N, i = 1, . . . , r

}
⊂ {z ∈ C : <z > 0} ∪ {0},

see [MPP, Theorem 3.1].
Each point λ in this set is an eigenvalue of L. The corresponding generalized eigen-

functions, i.e., the functions annihilated by (L−λ)k for some k ∈ N, are polynomials,
see [LB, Theorem 9.3.20]. For each λ they form a finite-dimensional space, and these
generalized eigenspaces together span a dense subspace of L2(γ∞). In particular, 0
is an eigenvalue of L. The corresponding eigenspace, which we denote by E0, is of
dimension 1 and consists of the constant functions. As shown in [CCS4, Lemma 2.1],
this eigenspace is orthogonal to all other generalized eigenfunctions of L. We denote
by L2

0(γ∞) the orthogonal complement of E0 in L2(γ∞).

2.3. The Mehler kernel. For x, u ∈ Rn and t > 0 the Mehler kernel Kt is given
by (see [CCS2, formula (2.6)])

Kt(x, u) =
(det Q∞

det Qt

)1/2

eR(x) exp
[
−1

2

〈
(Q−1

t −Q−1
∞ )(u−Dt x) , u−Dt x

〉]
. (2.7)

It is convenient to use this expression for Kt when t ≤ 1. But for t > 1, we will
use the following alternative, which can be obtained from [CCS2, first formula in the
proof of Proposition 3.3],

Kt(x, u) =
(detQ∞

detQt

)1/2

eR(x) exp
[
−1

2

〈
Q−1
t etB(D−t u− x), Dt (D−t u− x)

〉]
. (2.8)

For 0 < t ≤ 1 we have the following estimates, proved in [CCS2, (2.10)]

eR(x)

tn/2
exp

(
−C |u−Dt x|2

t

)
. Kt(x, u) .

eR(x)

tn/2
exp

(
−c |u−Dt x|2

t

)
. (2.9)
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When t ≥ 1 one has instead (see [CCS2, (2.11)])

eR(x) exp
[
− C |D−t u− x|2Q

]
. Kt(x, u) . eR(x) exp

[
− 1

2
|D−t u− x|2Q

]
. (2.10)

2.4. Polar coordinates. We will use a variant of polar coordinates first introduced
in [CCS1]. Fix β > 0 and consider the ellipsoid

Eβ = {x ∈ Rn : R(x) = β} .
Any x ∈ Rn, x 6= 0, can be written uniquely as

x = Ds x̃ ,

for some x̃ ∈ Eβ and s ∈ R. We call (s, x̃) the polar coordinates of x.
The Lebesgue measure in Rn is given in terms of (s, x̃) by

dx = e−s trB |Q1/2Q−1
∞ x̃|2

2 |Q−1
∞ x̃|

dSβ(x̃) ds , (2.11)

where dSβ denotes the area measure of Eβ. See [CCS2, Proposition 4.2] for a proof.

3. Definition and splitting of the multiplier operator

3.1. Definition of the multiplier operator. We use the definition described in
Cowling et al. [CDMY, Section 2], which goes back to McIntosh [M]. The starting-
point in this paper is an operator T defined on a Hilbert (or Banach) space, which
will be L2

0(γ∞) in our case. This operator is to be densely defined and one-to-one
with dense range, and its spectrum must be contained in a closed sector

Sω = {z ∈ C : |argz| ≤ ω} ∪ {0},
for some ω ∈ (0, π/2). Further, the resolvent of T should satisfy the estimate

‖(T − zI)−1‖ ≤ C |z|−1, z ∈ C \ Sω, (3.1)

for some constant C, where we refer to the operator norm on L2
0(γ∞).

Therefore, we define the operator T as the restriction of L to L2
0(γ∞). We will

prove Theorem 1.1 with L replaced by T . The theorem then follows, since L vanishes
on E0.

From the preceding section, it is clear that T has all the properties required in
[CDMY] mentioned above, except possibly the inequality (3.1). We shall now verify
(3.1).

According to [CFMP1, Theorem 1 and Remark 6], there exists an angle θ2 ∈
(0, π/2) such that the semigroup

(
e−tT

)
t>0

is a contraction on L2
0(γ∞) for each t in

the sector Sθ2 . Then (3.1) follows from some well-known arguments for bounded
analytic semigroups (see [EN, Ch. II, Section 4.a]). Anyway, we give a concise proof.

Fix a θ ∈ (0, θ2); like θ2 this θ will only depend on n, Q and B. If z is on the
negative real axis, the contraction property implies

(T − zI)−1 =

∫ +∞

0

e−t(T−zI) dt = eiθ
∫ +∞

0

e−te
iθT ete

iθzI dt, (3.2)
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where we moved the path of integration to the ray eiθ R+ in C. Here we want to let
z = reiϕ, with r > 0 and ϕ ∈ (π/2− θ/2, π]. Then

0 < θ/2 < θ + ϕ− π/2 ≤ θ + π/2 < π

and so

<(t eiθz) = t r cos(θ + ϕ) = −t r sin(θ + ϕ− π/2) < −c t r.
For such z the second integral in (3.2) converges, and by analyticity it equals e−iθ (T−
zI)−1. Thus

‖(T − zI)−1‖ ≤
∫ +∞

0

e−ctr dt ≤ C

|z|
,

which proves (3.1) for z in the upper half-plane, with ω = π/2− θ/2. To deal with
the case when z is in the lower half-plane, it is enough to take the complex conjugate
of the equation (3.2) and repeat the argument, because T is real. We have thus
verified (3.1).

Since 0 is not in the spectrum of T , we have the following improvement of (3.1):

‖(T − zI)−1‖ ≤ C (1 + |z|)−1, z ∈ C \ Sω. (3.3)

The function m is of Laplace transform type and thus defined and analytic in the
right half-plane. Moreover, it is bounded on any sector Sφ with 0 < φ < π/2. The
definition ofm(T ) in [CDMY] goes via a complex integral involving the resolvent of T .
To make this integral convergent, we multiply the function m(z) by ψ(z) = 1/(1+z2),
following [CDMY]. With ω ∈ (0, π/2) fulfilling (3.3), we fix a ν ∈ (ω, π/2) and let Γ
be the path

Γ(t) = |t| eiν sgn t, −∞ < t <∞.
Now define

(ψm)(T ) =
1

2πi

∫
Γ

ψ(z)m(z) (zI − T )−1 dz,

which is a convergent integral because of (3.3), and let

m(T ) = ψ(T )−1(ψm)(T ). (3.4)

Proposition 3.1. Let λ 6= 0 be a generalized eigenvalue of T with generalized
eigenspace Eλ. Then the restriction to Eλ of m(T ) (defined above) coincides with
the restriction to Eλ of the integral

−
∫ +∞

0

ϕ(t)
d

dt
e−tT dt.

.

Notice that this is the integral from (1.3), and that its restriction to the finite-
dimensional, T -invariant subspace Eλ makes perfect sense. Further, m(T ) is deter-
mined by these restrictions, since the Eλ together span L2

0(γ∞) and m(T ) is bounded
on L2

0(γ∞), as proved by [CaD, Lemma 3.7].
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Proof. Observe first that T
∣∣
Eλ

= λI +Rλ, where Rλ a nilpotent operator on Eλ. For

z ∈ C \ {λ} this leads to

(zI − T )−1
∣∣
Eλ

= ((z − λ)I −Rλ)
−1 = (z − λ)−1

(
I − Rλ

z − λ

)−1

=
∑

0

1

(z − λ)j+1
Rj
λ,

where the sum is finite. Thus

(ψm)(T )
∣∣
Eλ

=
1

2πi

∫
Γ

ψ(z)m(z) (zI − T )−1
∣∣
Eλ
dz

=
1

2πi

∑
0

∫
Γ

ψ(z)m(z)
1

(z − λ)j+1
dz Rj

λ

=
∑

0

1

j!
(ψm)(j)(λ)Rj

λ

=
∑
i, k

1

i! k!
ψ(i)(λ)m(k)(λ)Ri+k

λ

=
∑
i

1

i!
ψ(i)(λ)Ri

λ

∑
k

1

k!
m(k)(λ)Rk

λ

= ψ(T )
∑
k

1

k!
m(k)(λ)Rk

λ.

From (3.4) and (1.2), we conclude that

m(T )
∣∣
Eλ

=
∑
k

1

k!
m(k)(λ)Rk

λ

= −
∑
k

1

k!

∫ +∞

0

ϕ(t)

(
∂

∂λ

)k
d

dt
e−λt dt Rk

λ

= −
∫ +∞

0

ϕ(t)
d

dt

∑
k

1

k!

(
∂k

∂λk
e−λt

)
dt Rk

λ.

Here the sum equals∑
k

e−λt
1

k!
(−t)k Rk

λ = e−λt e−tRλ = e−tT ,

and the proposition follows. �

3.2. Splitting of the multiplier operator. Given ϕ ∈ L∞(0,+∞), we will restrict
the integral in (1.2) to various intervals. For ε > 0 we let

mε(λ) = −
∫ +∞

ε

ϕ(t)
d

dt
e−λt dt.
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However, replacing ε by 0, we also define

m0(λ) = −
∫ 1

0

ϕ(t)
d

dt
e−λt dt,

and observe that

m(T ) = m1(T ) +m0(T ).

Then (1.4) hints that mε(T ) and m0(T ) should have off-diagonal kernels

Mε(x, u) = −
∫ +∞

ε

ϕ(t) K̇t(x, u) dt (3.5)

and

M0(x, u) = −
∫ 1

0

ϕ(t) K̇t(x, u) dt. (3.6)

As will be verified in Section 5, (3.5) is correct for any ε > 0, and we use it in
Section 6 to control m1(T ). But (3.6) is problematical on the diagonal x = u, and
we need to consider separately the global and local parts, defined as follows.

First we introduce a global and a local region, having some overlap, by setting

G =

{
(x, u) ∈ Rn × Rn : |x− u| > 1

1 + |x|

}
and

L =

{
(x, u) ∈ Rn × Rn : |x− u| < 2

1 + |x|

}
.

Let further η ≥ 0 be a smooth function on Rn × Rn, such that η(x, u) = 1 if
(x, u) /∈ G and η(x, u) = 0 if (x, u) /∈ L. This function shall also satisfy∣∣∇x η(x, u)

∣∣+
∣∣∇u η(x, u)

∣∣ . |u− x|−1, (x, u) ∈ G ∩ L. (3.7)

The global part of m0(T ) is defined by

m0(T )globf(x) =

∫
M0(x, u) (1− η(x, u)) f(u) dγ∞(u), f ∈ C∞0 (Rn). (3.8)

Our estimate in Proposition 5.4(i) below will show that this integral converges. The
local part of m0(T ) is

m0(T )loc = m0(T )−m0(T )glob;

It will be seen to have off-diagonal kernel M0(x, u) η(x, u), in Section 7.

4. The time derivative of the Mehler kernel

We compute the derivative K̇t = ∂tKt(x, u) and estimate it for small and large t.
As a preparation, we work out the t derivatives of some of the matrices introduced
in the previous section.
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Lemma 4.1. For all t > 0 one has

Q̇t = etB QetB
∗
; (4.1)

d

dt
Q−1
t = −Q−1

t Q̇tQ
−1
t = −Q−1

t etB QetB
∗
Q−1
t ; (4.2)

d

dt
detQt = detQt tr(Q−1

t Q̇t) = detQt tr(Q−1
t etBQetB

∗
); (4.3)

Ḋt = −Q∞B∗ e−tB
∗
Q−1
∞ = −Q∞B∗Q−1

∞ Dt. (4.4)

Proof. The equality (4.1) trivially follows from (2.1). To obtain (4.2), one differen-
tiates the equation QtQ

−1
t = I and applies (4.1). Since Qt is nonsingular, Jacobi’s

formula implies (4.3) (see [B, Fact 10.11.19]). Finally, we obtain the two equalities
in (4.4) from (2.2). �

It will be convenient to have two different expressions for the t derivative of the
Mehler kernel, as follows.

Lemma 4.2. For all (x, u) ∈ Rn × Rn and t > 0, we have

K̇t(x, u) = Kt(x, u)Nt(x, u),

where the function Nt is given by

Nt(x, u) = −1

2
tr
(
Q−1
t etB QetB

∗)
+

1

2

∣∣Q1/2 etB
∗
Q−1
t (u−Dt x)

∣∣2
+
〈
Q∞B

∗Q−1
∞ Dt x , (Q−1

t −Q−1
∞ ) (u−Dt x)

〉
, (4.5)

and also by

Nt(x, u) =− 1

2
tr
(
Q−1
t etB QetB

∗)
+

1

2

∣∣Q1/2 etB
∗
Q−1
t etB (D−t u− x)

∣∣2
−
〈
Q−1
t B etB (D−t u− x) , etB (D−t u− x)

〉
−
〈
Q−1
t etB Q∞B

∗Q−1
∞ D−t u , e

tB (D−t u− x)
〉

−
〈
B∗Q−1

∞ D−t u , D−t u− x
〉

=: It + IIt(x, u) + IIIt(x, u) + IVt(x, u) + Vt(x, u). (4.6)

Proof. Differentiating (2.7) with respect to t and applying Lemma 4.1, one obtains

K̇t(x, u) =

Kt(x, u)
[
− 1

2
tr
(
Q−1
t etB QetB

∗)
+

1

2

〈
Q−1
t etB QetB

∗
Q−1
t (u−Dt x) , u−Dt x

〉
+
〈
(Q−1

t −Q−1
∞ )Q∞B

∗Q−1
∞ Dt x , (u−Dt x)

〉 ]
,

from which (4.5) follows.
Next, we differentiate (2.8), applying (4.3) to the first factor, and then use (2.3)

to rewrite the matrix Dt in the exponent. The result will be

K̇t(x, u) = Kt(x, u)
{
− 1

2
tr
(
Q−1
t etB QetB

∗)
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+
d

dt

[
−1

2

〈
Q−1
t etB (D−t u− x) , (etB +Qt e

−tB∗ Q−1
∞ )(D−t u− x)

〉]}
. (4.7)

The derivative here consists of two terms, the first term being

d

dt

[
− 1

2

〈
Q−1
t etB (D−t u− x) , etB (D−t u− x)

〉 ]
=

1

2

〈
Q−1
t etB QetB

∗
Q−1
t etB (D−t u− x) , etB (D−t u− x)

〉
−
〈
Q−1
t B etB (D−t u− x) , etB (D−t u− x)

〉
−
〈
Q−1
t etB Q∞B

∗Q−1
∞ D−t u , e

tB (D−t u− x)
〉
,

where we applied (4.2) and (4.4) with t replaced by −t. Notice that we have arrived
at the terms IIt, IIIt and IVt in (4.6).

In the second term coming from the derivative in (4.7), we observe some cancella-
tion; the term equals

d

dt

[
−1

2

〈
D−t u− x , Q−1

∞ (D−t u− x)
〉]

= −
〈
D−t u− x , B∗Q−1

∞ D−t u
)〉

= Vt(x, u),

where we used again (4.4). Summing up, we obtain (4.6), and the lemma is proved.
�

Lemma 4.3. Let x, u ∈ Rn. Then for 0 < t ≤ 1

|Nt(x, u)| . 1

t
+
|u−Dt x|2

t2
+ |x| |u−Dt x|

t
(4.8)

and for t ≥ 1

|Nt(x, u)| . |D−t u− x| |D−t u|+ e−ct |D−t u− x|2 + e−ct. (4.9)

Proof. For 0 < t ≤ 1, (4.8) follows from (4.5), by means of (2.5) and (2.6).
When t ≥ 1 we get, starting from (4.6) and using (2.4) and (2.5),

|It| =
1

2

∣∣∣ tr(Q−1
t etB QetB

∗
)
∣∣∣ . e−ct.

Similarly, we have

|IIt(x, u)| = 1

2

∣∣∣Q1/2 etB
∗
Q−1
t etB (D−t u− x)

∣∣∣2 . e−ct |D−t u− x|2,

and also

|IIIt(x, u)| . e−ct |D−t u− x|2 .
Proceeding as above, we further obtain

|IVt(x, u)|+ |Vt(x, u)| . |D−tu− x| |D−tu|,
and (4.9) is proved. �

5. On the multiplier kernel

In this section, we estimate some parts of the multiplier kernel and verify their
relevance for the corresponding parts of the operator. We also state some facts that
will simplify the proofs to come.
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5.1. Estimates of kernels. Without loss of generality, it will be assumed from
now on that

‖ϕ‖∞ ≤ 1.

We first invoke a lemma from [CCS3, Lemma 5.1 and Remark 5.5].

Lemma 5.1. Let δ > 0. For σ ∈ {1, 2, 3} and x, u ∈ Rn, one has∫ +∞

1

exp
(
−δ |D−t u− x|2

)∣∣D−t u∣∣σ dt . 1 + |x|σ−1,

where the implicit constant may depend on δ, in addition to n, Q and B.

Proposition 5.2. (i) The integral (3.5) defining Mε converges absolutely for any
ε > 0 and all x, u ∈ Rn. Moreover,

|M1(x, u)| . eR(x), x, u ∈ Rn, (5.1)

and for 0 < ε < 1

|Mε(x, u)| . ε−C eR(x) (1 + |x|), x, u ∈ Rn. (5.2)

(ii) For any ε > 0, any f ∈ L2
0(γ∞) and a.a. x ∈ Rn,

mε(T )f(x) =

∫
Mε(x, u) f(u) dγ∞(u). (5.3)

Proof. Aiming at (i), we begin by estimating the kernel K̇t(x, u) = Kt(x, u)Nt(x, u).
For 1 < t < +∞ we use (2.10) and (4.9). Then we can neglect the factors |D−t u−x|
in Nt(x, u) by also reducing slightly the positive coefficient in front of the same factor
in the exponent in (2.10). As a result,

|K̇t(x, u)| . eR(x) exp
(
−c|D−t u− x|2

)
(|D−t u|+ e−ct), t > 1. (5.4)

Lemma 5.1 now implies (5.1).
For 0 < t < 1 we use instead (2.9) and (4.8), and now we can neglect all powers

of |u−Dt x|2/t in Nt(x, u). This leads to

|K̇t(x, u)| . eR(x) t−n/2 exp

(
−|u−Dt x|2

t

) (
t−1 + |x|t−1/2

)
. eR(x) (1 + |x|) t−n/2−1.

(5.5)
Integrating over ε < t < 1 and combining the result with (5.1), we arrive at (5.2).
The claimed convergence is now clear, so (i) is verified.

For item (ii), we need the following lemma.

Lemma 5.3. Let f ∈ L2
0(γ∞) and x ∈ Rn. Then for any t > 0

∂t

∫
Kt(x, u) f(u) dγ∞(u) =

∫
K̇t(x, u) f(u) dγ∞(u).

Proof. This is easily verified by integrating
∫
K̇τ (x, u) f(u) dγ∞(u) from τ = t0 to

τ = t for some t0 ∈ (0, t). Then one swaps the order of integration and differentiates
with respect to t. To justify this swap, (5.5) is enough for τ < 1. For τ > 1, one
estimates the quantity |D−t u| in (5.4) by |D−t u − x| + |x| and cancels |D−t u − x|
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against the exponential. It follows that |K̇t(x, u)| . eR(x) (1+ |x|). Since the measure
dγ∞ is finite, these estimates allow us to apply Fubini, and the lemma is proved. �

To verify item (ii) in the proposition, we observe that because of (5.2), the right-
hand side of (5.3) defines for each x a functional on L2

0(γ∞), whose norm is locally
uniformly bounded for x ∈ Rn. Further, the operator mε(T ) is bounded on the same
space (see [CaD, Lemma 3.7]). Since the generalized eigenspaces Eλ together span
L2

0(γ∞), it is enough to verify (5.3) on each Eλ.
So let f ∈ Eλ for some λ. Since e−tT f(x) =

∫
Kt(x, u)f(u) dγ∞(u), Proposition 3.1

and Lemma 5.3 imply

mε(T )f(x) = −
∫ ∞
ε

ϕ(t) ∂t

∫
Kt(x, u)f(u) dγ∞(u) dt

= −
∫ ∞
ε

ϕ(t)

∫
K̇t(x, u)f(u) dγ∞(u) dt.

Switching the order of integration, we conclude the proof of (ii). �

Proposition 5.4. (i) The integral (3.6) defining M0 converges for all x 6= u, and

M0(x, u) . eR(x) (1 + |x|)C |x− u|−C , x 6= u. (5.6)

(ii) For any f ∈ L2
0(γ∞) and a.a. x /∈ supp f ,

m0(T )f(x) =

∫
M0(x, u) f(u) dγ∞(u).

Proof. SinceM0 and m0(T ) only depend on the restriction of ϕ to the interval (0, 1),
we can assume in this proof that ϕ vanishes for t ≥ 1.

To verify (i), consider the first inequality in (5.5). We have |u−Dt x| ≥ |u− x| −
|x−Dt x|, and Lemma 2.1 says that |x−Dt x| . t|x|. Thus |u−Dt x| ≥ |u− x|/2
if t < c|u− x|/|x| for some c > 0, and we conclude that for 0 < t < 1 ∧ c|u− x|/|x|

|K̇t(x, u)| . eR(x) exp

(
−c |u− x|

2

t

)
(1 + |x|) t−C . eR(x) (1 + |x|) |u− x|−2C . (5.7)

We use this inequality to integrate |K̇t(x, u)| over 0 < t < 1 ∧ (c|u − x|/|x|). For
the integral over c|u− x|/|x| < t < 1, notice that (5.5) yields |K̇t(x, u)| . eR(x) (1 +
|x|) t−C . In this way, (i) follows.

To prove (ii), we will let ε → 0 in (5.3), and start by considering the right-hand
side.

Because of (5.7), we see from (3.5) and (3.6) that, with ϕ supported in [0, 1], one
has Mε(x, u) → M0(x, u) as ε → 0, for any x 6= u. In the integral in the right-
hand side of (5.3), we thus have pointwise convergence, and |f(u)| dγ∞(u) is a finite
measure. Further, the estimate in (i) holds also forMε, uniformly in ε. By bounded
convergence, we conclude∫

Mε(x, u)f(u) dγ∞(u)→
∫
M0(x, u)f(u) dγ∞(u), ε→ 0,
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for x /∈ supp f . Moreover, the left-hand integral here is a function of x which
stays locally bounded in the complement of supp f , uniformly in ε. So we also have
convergence in the sense of distributions in Rn \ supp f .

To deal with the left-hand side of (5.3), we claim that mε(T )f → m0(T )f in the
sense of distributions in Rn, as ε→ 0. This will end the proof of (ii).

With ν, Γ and ψ(z) = 1/(1 + z2) as in Section 3, we have

mε(T ) = (1 + T 2)
1

2πi

∫
Γ

mε(z)

1 + z2
(zI − T )−1 dz.

To prove the claim, we let f ∈ L2(γ∞) and take g ∈ C∞0 (Rn). It is enough to
verify that

〈mε(T )f, g〉 → 〈m(T )f, g〉, ε→ 0,

with the scalar products taken in L2(γ∞). Notice that it does not matter whether
we consider the convergence of the functions mε(T )f or the measures mε(T )f dγ∞.
We have

〈mε(T )f, g〉 =

〈
(1 + T 2)

1

2πi

∫
Γ

mε(z)

1 + z2
(zI − T )−1f dz, g

〉
=

1

2πi

∫
Γ

mε(z)

1 + z2

〈
(zI − T )−1f , (1 + (T ∗)2) g

〉
dz, (5.8)

where T ∗ is the adjoint of T in L2(γ∞), so that (1 + (T ∗)2) g is another test function
in C∞0 (Rn). Now mε(z) = z

∫∞
ε
ϕ(t) e−tz dt tends to m(z) for each nonzero z ∈ Γ.

For such z we also have the bound |mε(z)| ≤ ‖ϕ‖∞ |z|/<z . 1. In the last integral in
(5.8), the integrand thus converges pointwise, and it is also dominated by constant
times

1

1 + |z|2
‖(zI − T )−1f‖L2(γ∞) ‖(1 + (T ∗)2) g‖L2(γ∞),

which is integrable along Γ because of (3.3). The dominated convergence theorem
now implies the claim and completes the proof of Proposition 5.4. �

5.2. Simplifications. The preceding estimates allow some observations that will
simplify the proof of Theorem 1.1.

In (1.5) we take f ≥ 0 such that ‖f‖L1(γ∞) = 1. This allows us to assume that α
in the same estimate is large, in particular α > 2, since dγ∞ is finite.

Further, we can focus mainly on points x in the ellipsoidal annulus

Cα =

{
x ∈ Rn :

1

2
logα ≤ R(x) ≤ 2 logα

}
.

To justify this, we will follow closely the arguments in [CCS3, Section 6]. The first

observation is that the set of points x for which R(x) > 2 logα can be neglected,
because its dγ∞ measure is no larger than C/α.

The following proposition deals with the remaining part of the complement of Cα.
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Proposition 5.5. Let x ∈ Rn satisfy R(x) < 1
2

logα, where α > 2. Then for all
u ∈ Rn ∣∣Mglob

0 (x, u)
∣∣+
∣∣M1(x, u)

∣∣ . α.

Thus we need to take the region {x : R(x) < 1
2

logα} into account only when

considering m0(T )loc.

Proof. Assume R(x) < 1
2

logα. The estimate forM1 follows immediately from (5.1).
If (x, u) ∈ G, (5.6) implies

M0(x, u) . eR(x) (1 + |x|)C . α.

The proposition is verified. �

6. The weak type (1, 1) for large t

Proposition 6.1. For any f ∈ L1(γ∞) such that ‖f‖L1(γ∞) = 1 and any α > 2,

γ∞ {x ∈ Cα : |m1(T )f(x)| > α} . 1

α
√

logα
.

In particular, the operator m1(T ) is of weak type (1, 1) with respect to the invariant
measure dγ∞.

The estimate in this proposition means that for large α one has a slightly stronger
estimate than the classical weak type (1, 1) bound. This phenomenon was already
observed for the Ornstein–Uhlenbeck maximal operator in [CCS2, Section 6] and for
the first-order Riesz transforms in [CCS3, Proposition 7.1]).

Proof. We will first use our polar coordinates to deduce a sharper version of the
estimate (5.1) in Proposition 5.2(i). If x ∈ Cα and u 6= 0, we can write x = Ds x̃ and
u = Dσ ũ with x̃, ũ ∈ E(logα)/2 and s ≥ 0, σ ∈ R.

Applying [CCS2, Lemma 4.3 (i)], we obtain

|D−t u− x| = |Dσ−t ũ−Ds x̃| & |x̃− ũ|.
Thus (2.10) implies

Kt(x, u) . eR(x) exp
(
− c |x̃− ũ|2

)
exp

(
− c |D−t u− x|2

)
,

for some c.
Using this estimate instead of (2.10), one can follow the proof of (5.1) with an

extra factor exp (−c |x̃− ũ|2). The result will be∣∣M1(x, u)
∣∣ . eR(x) exp

(
− c

∣∣x̃− ũ∣∣2), x ∈ Cα.

We can now finish the proof of Proposition 6.1 by means of the following lemma,
which is the case σ = 1 of [CCS3, Lemma 7.2].

Lemma 6.2. Let f ≥ 0 be normalized in L1(γ∞). For α > 2

γ∞

{
x = Ds x̃ ∈ Cα : eR(x)

∫
exp

(
− c

∣∣x̃− ũ∣∣2) f(u) dγ∞(u) > α

}
.

C

α
√

logα
.

�
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7. The local region

To prove the weak type (1,1) of the operator m0(T )loc, we first show that its off-
diagonal kernel is M0(x, u) η(x, u), as hinted at the end of Subsection 3.2, where
also η is defined. According to Proposition 5.4(ii), m0(T ) has off-diagonal kernel
M0(x, u). The definition (3.8) ofm0(T )glob says that its kernel isM0(x, u) (1− η(x, u)).
Thus the off-diagonal kernel of m0(T )loc = m0(T )−m0(T )glob is

Mloc
0 (x, u) :=M0(x, u) η(x, u) = −

∫ 1

0

ϕ(t) K̇t(x, u) dt η(x, u). (7.1)

We will now verify Calderón-Zygmund estimates for this kernel, and start by
recalling a result proved in [CCS3].

Lemma 7.1. [CCS3, Lemma 8.1] Let p, r ≥ 0 with p+ r/2 > 1, and (x, u) ∈ L with
x 6= u. Then for δ > 0∫ 1

0

t−p exp

(
−δ |u−Dt x|2

t

)
|x|r dt . C(δ, p, r) |u− x|−2p−r+2,

where C(δ, p, r) may also depend on n, Q and B.

We will use expressions for some derivatives of Kt taken from [CCS3, Lemmata 4.1
and 4.2]. First,

∂x` Kt(x, u) = Kt(x, u)P`(t, x, u),

where

P`(t, x, u) = 〈Q−1
∞ x , e`〉+

〈
Q−1
t etB e` , u−Dt x

〉
. (7.2)

Further,

∂u` Kt(x, u) = −Kt(x, u)
〈
Q−1
t etB (D−t u− x) , e`

〉
. (7.3)

The following three technical lemmata give expressions and estimates for derivatives
of K̇t.

Lemma 7.2. For x, u ∈ Rn and t > 0, one has

(i) ∂x` K̇t(x, u) = Kt(x, u)S`(t, x, u);

(ii) ∂u` K̇t(x, u) = Kt(x, u)R`(t, x, u),

where the factors S`(t, x, u) and R`(t, x, u) are given by

S`(t, x, u) = Nt(x, u)P`(t, x, u)−
〈
Q−1
t etB QetB

∗
Q−1
t etB e` , u−Dt x

〉
+
〈
Q−1
t B etB e` , u−Dt x

〉
−
〈
Q−1
t etB e` , Q∞B

∗ e−tB
∗
Q−1
∞ x

〉
, (7.4)

and

R`(t, x, u) = −Nt(x, u)
〈
Q−1
t etB (D−t u− x) , e`

〉
+
〈
Q−1
t etB QetB

∗
Q−1
t etB (D−t u− x) , e`

〉
−
〈
Q−1
t B etB (D−t u− x) , e`

〉
−
〈
Q−1
t etB Q∞B

∗ Q−1
∞ D−t u , e`

〉
. (7.5)
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Proof. To prove (i), we start by observing that

∂x` K̇t(x, u) = ∂t (Kt(x, u)P`(t, x, u))

=Kt(x, u)Nt(x, u)P`(t, x, u) +Kt(x, u) ∂t P`(t, x, u)

=Kt(x, u)Nt(x, u)P`(t, x, u) +Kt(x, u) ∂t
(〈
Q−1
t etB e` , u−Dt x

〉)
,

where we used (7.2). Applying (4.2) and (4.4) to the last derivative here, one arrives
at (7.4), and (i) is verified.

To prove (ii), we proceed similarly, using (7.3) to write

∂u`K̇t(x, u) = −Kt(x, u)Nt(x, u)
〈
Q−1
t etB (D−t u− x) , e`

〉
−Kt(x, u) ∂t

(〈
Q−1
t etB (D−t u− x) , e`

〉)
.

As in the case of (i), this leads to (7.5) and (ii). �

To bound S` and R`, we recall from [CCS3, formula (4.5)] that

|P`(t, x, u)| . |x|+ |u−Dt x|/t, 0 < t ≤ 1. (7.6)

Lemma 7.3. One has for 0 < t ≤ 1 and all x, u ∈ Rn

|S`(t, x, u)| . |x| |u−Dt x|2

t2
+
|u−Dt x|3

t3
+ |x|2 |u−Dt x|

t
+
|u−Dt x|

t2
+
|x|
t
.

Proof. We first bound the product Nt(x, u)P`(t, x, u) appearing in (7.4). Because of
(4.8) and (7.6), we have for 0 < t ≤ 1∣∣Nt(x, u)P`(t, x, u)

∣∣ . (
1

t
+
|u−Dt x|2

t2
+ |x| |u−Dt x|

t

) (
|x|+ |u−Dt x|

t

)
.
|x|
t

+
|u−Dt x|

t2
+ |x| |u−Dt x|2

t2
+
|u−Dt x|3

t3
+ |x|2 |u−Dt x|

t
.

Estimating also the other terms in (7.4), one arrives at the lemma. �

Lemma 7.4. For t ∈ (0, 1]

|R`(t, x, u))| . |u−Dt x|
t2

+
|u−Dt x|3

t3
+ |x| |u−Dt x|2

t2
+
|x|
t
.

Proof. For t ∈ (0, 1] we have by (7.5) and (4.8)∣∣R`(t, x, u)
∣∣ . ∣∣Nt(x, u)

∣∣ |u−Dt x|
t

+
|u−Dt x|

t2
+
|u−Dt x|

t
+
|u|
t

.

(
1

t
+
|u−Dt x|2

t2
+ |x| |u−Dt x|

t

)
|u−Dt x|

t
+
|u−Dt x|

t2
+
|x|
t
.

Here we estimated |u|/t by |u−Dt x|/t2 + |x|/t. The lemma follows. �

Proposition 7.5. For (x, u) ∈ L, with x 6= u, one has∫ 1

0

∣∣K̇t(x, u)
∣∣ dt . eR(x) |u− x|−n.
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Proof. From (2.9) and (4.8) we obtain∫ 1

0

∣∣K̇t(x, u)
∣∣ dt

. eR(x)

∫ 1

0

t−
n
2 exp

(
−c |Dt x− u|2

t

) (
1

t
+
|u−Dt x|2

t2
+ |x| |u−Dt x|

t

)
dt

. eR(x)

∫ 1

0

t−
n
2 exp

(
−c |Dt x− u|2

t

) (
1

t
+
|x|√
t

)
dt.

Because of Lemma 7.1, the last integral is controlled by eR(x) |u − x|−n, and the
proposition is proved. �

Proposition 7.6. For any x 6= u, the following estimates hold:∣∣Mloc
0 (x, u)

∣∣ . eR(x) |u− x|−n; (7.7)∣∣∇xMloc
0 (x, u)

∣∣ . eR(x) |u− x|−n−1; (7.8)∣∣∇uMloc
0 (x, u)

∣∣ . eR(x) |u− x|−n−1. (7.9)

Proof. Multiplying the estimate of Proposition 7.5 by η(x, u) and using (7.1), we get
(7.7).

In order to prove (7.8), we observe that (7.1) and (3.7) lead to∣∣∂x`Mloc
0 (x, u)

∣∣ . ∫ 1

0

∣∣ϕ(t) ∂x` K̇t(x, u)
∣∣ dt η(x, u) +

∣∣M0(x, u)
∣∣ |x− u|−1. (7.10)

The last term here satisfies the desired estimate because of (7.7). Using Lemma
7.2(i) and then (2.9) and Lemma 7.3, we can estimate the first term by∫ 1

0

∣∣Kt(x, u)S`(t, x, u)
∣∣ dt

. eR(x)

∫ 1

0

t−
n
2 exp

(
−c |u−Dt x|2

t

)
×

(
|x| |u−Dtx|2

t2
+
|u−Dtx|3

t3
+ |x|2 |u−Dtx|

t
+
|u−Dtx|

t2
+
|x|
t

)
dt

. eR(x)

∫ 1

0

t−
n
2 exp

(
−c |u−Dt x|2

t

)(
|x|
t

+
1

t
√
t

+
|x|2√
t

)
dt.

Lemma 7.1 says that the last expression is controlled by eR(x) |u− x|−n−1, and (7.8)
is proved.

The verification of (7.9) is analogous. Indeed, (7.10) remains valid for derivatives
with respect to u, and from Lemma 7.4 it follows that R`(t, x, u) is controlled by
the right-hand side in Lemma 7.3. This implies (7.9) and ends the proof of Proposi-
tion 7.6. �

We now arrive at the goal of this section.
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Proposition 7.7. The operator m0(T )loc is of weak type (1, 1) with respect to the
invariant measure dγ∞.

Proof. Proposition 7.6 means that the off-diagonal kernelMloc
0 (x, u) of m0(T )loc sat-

isfies standard Calderón-Zygmund bounds. Thus it is enough to verify that m0(T )loc

is bounded on L2(γ∞). For m0(T ), which is of Laplace type, the L2 boundedness
follows from [CaD, Lemma 3.7]. We remark that this boundedness also follows from
some results in [CFMP1] and [CFMP2], which can be applied here since [MPRS,
Lemma 2.2] exhibits a linear change of coordinates in Rn reducing the setting to the
case where Q = I and Q∞ is a diagonal matrix.

To go from m0(T ) to m0(T )loc, we need the following lemma which gives a partition
of Rn into cubes of local size. It is a rather standard construction; cf. [GMST1,
Lemma 2.4] or [S, Lemma 4].

Lemma 7.8. One can cover Rn by a sequence of cubes Qj which are pairwise disjoint
except for boundaries and have the properties stated below. We let cj be the center
of Qj, and 2Qj denotes the concentric cube scaled by a factor 2.

(1) For each j
1

16(1 + |cj|)
< diamQj ≤

1

4(1 + |cj|)
(2) For any A > 0, the balls B(cj, A/(1 + |cj|)) have bounded overlap, with a

bound that depends only on A and n.
(3) If x ∈ 2Qj and u ∈ Qj, then |x− u| ≤ 1/(1 + |x|) and thus η(x, u) = 1.
(4) If u ∈ Qj and x /∈ B(cj, 45/(1 + |cj|)), then |x − u| ≥ 2/(1 + |x|) and thus

η(x, u) = 0.

Before proving this lemma, we use it to finish the proof of Proposition 7.7, by
deducing the L2 boundedness of m0(T )loc from that of m0(T ).

We split a given function f ∈ L2(γ∞) as f =
∑
fj with fj = f χQj . Item (3) of

the lemma shows that m0(T )globfj = 0 in 2Qj, so that m0(T )locfj = m0(T )fj in 2Qj.
The weak type bound for m0(T ) thus implies that

‖χ2Qj m0(T )locfj‖1,∞ . ‖fj‖1, (7.11)

where we refer to the measure dγ∞.
Item (4) of the lemma shows that m0(T )locfj is supported in B(cj, 45/(1 + |cj|)).

But if x ∈ B (cj, 45/(1 + |cj|)) \ 2Qj and u ∈ Qj, then |u − x| ' 1/(1 + |cj|), and
(7.7) says that

∣∣Mloc
0 (x, u)

∣∣ . eR(x) (1 + |cj|)n. We conclude that
∣∣m0(T )locfj(x)

∣∣ is

no larger than const.eR(x) times the mean value of the function
∣∣fj(u) e−R(u)

∣∣ in Qj.
Since the density of the invariant measure is essentially constant in B(cj, 45/(1 +
|cj|)), this easily implies that the restriction of m0(T )loc is bounded from L1(Qj)
into L1,∞(B (cj, 45/(1 + |cj|))) \ 2Qj, with respect to the measure dγ∞. Thus we can
suppress the factor χ2Qj in (7.11).

The bounded overlap in Lemma 7.8(2) will now allow us to add the functions
m0(T )locfj(x) in L1,∞(γ∞) and control the quasinorm of the sum in terms of the
norm of f =

∑
fj in L1(γ∞). The proposition is proved, modulo Lemma 7.8. �
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Proof of Lemma 7.8 We start with the lattice of unit cubes with vertices in Zn.
These cubes are repeatedly split into 2n subcubes in the obvious way. This splitting
is continued as long as the cubes satisfy diamQ > 1/[4(1 + |cQ|)], where cQ is the
center of the cube Q. When we arrive at a cube for which diamQ ≤ 1/[4(1 + |cQ|)],
this cube will be selected as one of the cubes Qj in the sequence to be constructed,
and it is not split any further. It is easy to see that this leads to a sequence (Qj)j
giving a partition of Rn, and the right-hand inequality in item (1) will be satisfied.

To verify the left-hand estimate of item (1), assume that the selected cube Qj

arose from splitting the cube Q′ with center c′. Then

|cj − c′| =
1

2
diamQj ≤

1

8(1 + |cj|)
≤ 1

8
≤ 1

8 diamQ′
,

the last step since diamQ′ = 2 diamQj < 1. It follows that

1 + |cj| ≥ 1 + |c′| − |cj − c′| >
1

4 diamQ′
− 1

8 diamQ′
=

1

16 diamQj

,

and item (1) is proved.
We move to the bounded overlap in item (2). Fix x ∈ Rn, and assume that the

ball B(cj, A/(1 + |cj|)) contains x. Then

1 + |x| ≤ 1 + |cj|+ |x− cj| ≤ 1 + |cj|+
A

1 + |cj|
≤ (1 + A)(1 + |cj|),

so that 1/(1 + |cj|) ≤ (A+ 1)/(1 + |x|). Swapping x and cj in this argument, we also
get 1/(1 + |x|) ≤ (A+ 1)/(1 + |cj|). In view of item (1) then

Qj ⊂ B(x, |x− cj|+ diamQj) ⊂ B

(
x,

A+ 1

1 + |cj|

)
⊂ B

(
x,

(A+ 1)2

1 + |x|

)
.

Again because of item (1), the volume of Qj satisfies

|Qj| &
1

(1 + |cj|)n
&

1

(A+ 1)n(1 + |x|)n
,

with implicit constants depending only on the dimension. Since the Qj are pairwise
disjoint, comparison of volumes gives a bound on the number of possible Qj here,
and item (2) follows.

Let now x and u be as in item (3). Then 1 + |x| ≤ 1 + |cj|+ |x− cj| ≤ 1 + |cj|+
diamQj ≤ 2(1 + |cj|), and so

|x− u| ≤ |x− cj|+ |u− cj| ≤ diamQj +
1

2
diamQj ≤

3

8 (1 + |cj|)
<

1

1 + |x|
.

This implies item (3), since here η(x, u) = 1 by the definition of η.
Let finally x and u be as in item (4). Assume first that |x| ≥ |cj|/2. Then

1 + |cj| ≤ 2(1 + |x|), and

|x− u| ≥ |x− cj| − |u− cj| ≥
45

1 + |cj|
− 1

4 (1 + |cj|)
≥ 2

1 + |x|
.
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Assume next that |x| < |cj|/2. Then 45/(1 + |cj|) < |x − cj| ≤ 3|cj|/2, so that
|cj|+ |cj|2 > 30 and |cj| > 5. We get

|x− u| ≥ |x− cj| − |u− cj| >
|cj|
2
− 1

4 (1 + |cj|)
> 2 ≥ 2

1 + |x|
,

and item (4) is verified. �

8. An auxiliary bound for 0 < t ≤ 1

In this section, we verify a bound on the number of zeros of the t derivative of
Kt in the interval (0, 1], which will be used in the next section to control the kernel

Mglob
0 .

Proposition 8.1. For (x, u) ∈ Rn × Rn, the number of zeros in I = (0, 1] of the
function t 7→ K̇t(x, u) is bounded by a positive integer depending only on n.

Proof. Instead of K̇t(x, u) we consider Nt(x, u) = 2(detQt)
2Nt(x, u), since the three

kernels K̇t(x, u), Nt(x, u) and Nt(x, u) have exactly the same zeros in I. From (4.5)
we have

Nt(x, u) =− (detQt) tr
(
(detQt)Q

−1
t etB QetB

∗)
(8.1)

+
〈
QetB

∗
(detQt)Q

−1
t (u−Dt x) , etB

∗
(detQt)Q

−1
t (u−Dt x)

〉
− 2(detQt)

〈
Q∞B

∗Q−1
∞ Dt x ,

(
(detQt)Q

−1
t − (detQt)Q

−1
∞
)

(u−Dt x)
〉

;

notice that here we have placed a factor detQt at each occurrence of Q−1
t .

We split the argument into several claims.
Denote by λj, j = 1, . . . , J , the eigenvalues of B. Notice that <λj < 0 for each j

and that the nonreal eigenvalues come in conjugate pairs.

Claim 8.2. The function t 7→ Nt(x, u) is a finite linear combination, with coeffi-

cients depending on (x, u), of terms which are given by a product of type
∏J

j=1 e
mjλjt

multiplied by a polynomial in t with complex coefficients. Here mj ∈ Z. Further,
the quantities |mj| and the degrees of the polynomials are all bounded by a constant
depending only on n.

Proof. Inspection shows that the last two terms in (8.1) are sums of scalar products
of vectors given by multiplying x or u from the left by various combinations of the
matrices etB, etB

∗
, Dt, Qt and (detQt)Q

−1
t , the constant matrices B∗, Q, Q∞ and

Q−1
∞ , and the scalar factor detQt. The first term in (8.1) is instead the trace of the

product of some of these matrices, multiplied by detQt. Let us examine precisely
how the matrices listed here depend on t.

We pass from Rn to Cn and make a Jordan decomposition of B via a change
of coordinates in Cn. Each Jordan block is of the form λj(I + R), where R is
a supertriangular and thus nilpotent matrix and I is the identity matrix, of some
dimension. Then exp(tλj(I+R)) = eλjtP (t), where P (t) is a matrix with polynomial
entries in t. To arrive at exp(tB), we put these blocks together and then change
coordinates back. The result will be that in the coordinates we had before, each
entry of the matrix exp(tB) is a sum over j of terms of type eλjtp(t), where p(t) is a
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complex polynomial that may depend on j and on the entry considered. The same
will be true for the entries of its adjoint exp(tB∗). From (2.2) we then see that Dt

is of the same form but with e−λjt instead of eλjt. Considering the integral in (2.1),
we see that the matrix Qt has similar entries, now with terms e(λj+λj′ )tp(t). Since
the entries of the matrix (detQt)Q

−1
t are given by minors of Qt, they will be a sum

of terms which are like those described in Claim 8.2. Finally, the scalar detQt also
has the same structure.

Claim 8.2 now follows, since the bound on the |mj| and the degrees of the poly-
nomials is easily verified. �

We observe that Claim 8.2 implies that Nt(x, u) can be extended to an entire
function in t, and so the number of zeros in (0, 1] is finite.

Claim 8.3. The function t 7→ Nt(x, u), t > 0, is for each (x, u) a solution of a linear
ordinary differential equation in t, with real coefficients independent of t, x and u.
The order of this differential equation is bounded by a constant depending only on n.

Proof. The preceding claim says that Nt(x, u) is a sum of terms given by a function
of (x, u) times an expression

exp

(∑
j

mjλjt

)
P (t),

where the coefficients of the polynomial P (t) may be complex. As a function of t,
each such expression is annihilated by a linear differential operator with constant
complex coefficients. The product of these operators will clearly annihilate Nt(x, u).
It also follows that the order of this product operator is bounded by a constant
depending only on n. The claim is verified, except that we found a differential
operator with complex coefficients. But Nt(x, u) is real-valued, so one can simply
delete the imaginary parts of all the coefficients of the operator. �

We write the equation found in Claim 8.3 as P(D)Nt(x, u) = 0, where D = d/dt
and P is a real polynomial with leading coefficient 1.

Proposition 8.1 is thus reduced to showing that the number of zeros of a real-
valued solution of the equation P(D)φ = 0 in I = (0, 1] is bounded by a constant
depending only on the degree of P .

We factorize P(D) into the commuting product of first-order operators of the form

Tλ = D − λ
and second-order operators of the form

Sλ,µ = (D − λ)2 + µ,

with λ ∈ R and µ > 0.
Our next claim deals with these factors of P(D).

Claim 8.4. Let λ ∈ R and µ > 0, and let J ⊂ R be a closed interval of length less
than 1/

√
µ. Assume φ ∈ C2(J) is a real-valued function. If Sλ,µ φ does not vanish

in the interior J◦ of J , then φ has at most two zeros in J . Further, if Sλ,µφ has at
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most k zeros in J , then φ has at most 2k + 2 zeros in the same interval. The same
statements hold with Sλ,µ replaced by Tλ.

Proof. To prove the first assertion about Sλ,µ , we may take λ = 0 since

S0,µ φ(t) = e−λt Sλ,µ
(
eλt φ(t)),

and we will write Sµ for S0,µ. The same trick applies to Tλ.
Assuming that Sµ φ 6= 0 in J◦, we may as well take Sµ φ > 0 there. We assume by

contradiction that t1 < t2 < t3 are three zeros of φ in J . Then φ′′(t2) = Sµ φ(t2) > 0.
We may assume φ′(t2) ≥ 0, since otherwise we consider instead the function φ(−t)
in the interval −J . For t > t2 sufficiently close to t2 we then have

φ(t) = φ′(t2)(t− t2) +
1

2
φ′′(t2)(t− t2)2 + o

(
(t− t2)2

)
> 0.

Since φ(t3) = 0, the maximal value M of φ in the interval [t2, t3] must be assumed
at some point tM ∈ (t2, t3). Clearly M > 0 and φ′(tM) = 0. An integration by parts
yields

M =

∫ tM

t2

φ′(t) dt = (t− t2)φ′(t)|tMt2 −
∫ tM

t2

(t− t2)φ′′(t) dt

= −
∫ tM

t2

(t− t2)φ′′(t) dt.

Since here −φ′′(t) = µφ(t)− Sµ φ(t) < µφ(t) ≤ µM we conclude that

M ≤ µM

∫ tM

t2

(t− t2)dt = µM
(tM − t2)2

2
≤ 1

2
µM |J |2.

This leads to the contradiction |J | ≥
√

2/µ, which proves the first assertion of the
claim. The second assertion follows from the first, applied in each of the intervals
obtained by deleting from J the zeros of φ.

For Tλ it is enough to apply Rolle’s theorem to T0 = D. �

Conclusion of the proof of Proposition 8.1. By Claim 8.3 we know that Nt(x, u)
satisfies a differential equation in t of the form

K∏
i=1

Pi(D) Nt(x, u) = 0,

where each Pi(D) is some Tλi or Sλi,µi , with λi ∈ R and µi > 0 in the case of Sλi,µi .
We can assume that none of the operators Pi(D) can be deleted in this equation.

Choose a natural number κ such that κ2 is larger than all the µi appearing here.
Then split [0, 1] into κ closed subintervals of length 1/κ, and let J be one of these
subintervals. Observe that Claim 8.4 applies to J , since 1/κ < 1/

√
µi for each i.

Set for m ∈ {2, 3, . . . , K}

N (m)
t (x, u) =

K∏
i=m

Pi(D) Nt(x, u),
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and N (K+1)
t (x, u) = Nt(x, u).

We will prove by induction that the function t 7→ N (m)
t (x, u) has at most 2m − 2

zeros in J , for m ∈ {2, 3, . . . , K + 1}. Here we fix (x, u). Proposition 8.1 will then
follow from the case m = K + 1.

Starting with m = 2, we have P1(D)N (2)
t (x, u) = 0, andN (2)

t (x, u) is not identially
0 for all t. By means of a conjugation with the factor eλ1t as in the proof of Claim 8.4,

we can assume that λ1 = 0. If P1(D) is T0 = D, then N (2)
t (x, u) is a nonzero

constant, and if P1(D) = S0,µ1 we assume that t = t0 ∈ J is a zero of N (2)
t (x, u).

Then N (2)
t (x, u) is proportional to sin

(
(t− t0)

√
µ1

)
and can have no other zero in

J , because |J | < 1/
√
µ

1
. The first induction step is verified.

Assume the induction step holds for m. Then Pm(D)N (m+1)
t (x, u) = N (m)

t (x, u)
has at most 2m − 2 zeros in J , and Claim 8.4 implies that the number of zeros of

N (m+1)
t (x, u) in J is at most 2(2m − 2) + 2 = 2m+1 − 2. The induction is complete,

and so is the proof of Proposition 8.1. �

9. Estimates in the global region for small t

In this section we estimate the operator mglob
0 (T ) with kernel

−
∫ 1

0

ϕ(t)K̇t(x, u)
(
1− η(x, u)

)
dt.

We shall need the following theorem. In order not to burden the exposition, we
postpone its proof to the appendix.

Theorem 9.1. The maximal operator defined by

Sglob
0 f(x) =

∫
sup

0<t≤1
Kt(x, u)

(
1− η(x, u)

)
|f(u)| dγ∞(u)

is of weak type (1, 1) with respect to the invariant measure dγ∞.

This is a sharpened version of the weak type (1, 1) estimate for the corresponding
part of the maximal operator treated in [CCS2], since the supremum in t is now
placed inside the integral. As a consequence, we can prove the following result,
which will complete the proof of Theorem 1.1.

Proposition 9.2. The operator mglob
0 (T ) is of weak type (1, 1) with respect to the

invariant measure dγ∞.

Proof of Proposition 9.2. Let N(x, u) be the number of zeros in (0, 1) of the function
t 7→ K̇t(x, u). Proposition 8.1 says that N(x, u) ≤ N̄ for some constant N̄ ≥ 1
that is independent of (x, u) ∈ Rn × Rn. We denote these zeros by t1(x, u) < · · · <
tN(x,u)(x, u), and set t0(x, u) = 0, tN(x,u)+1(x, u) = 1. Since Kt(x, u) vanishes at
t = 0, it follows from the fundamental theorem of calculus that∫ 1

0

∣∣∣K̇t(x, u)
∣∣∣ dt =

N(x,u)∑
i=0

∣∣∣∣∣
∫ ti+1(x,u)

ti(x,u)

K̇t(x, u)dt

∣∣∣∣∣
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=

N(x,u)∑
i=0

∣∣Kti+1(x,u)(x, u)−Kti(x,u)(x, u)
∣∣

≤ 2

N(x,u)+1∑
i=0

Kti(x,u)(x, u) . N̄ sup
0<t≤1

Kt(x, u).

This inequality implies∣∣∣mglob
0 (T )f(x)

∣∣∣ ≤ ∫ ∫ 1

0

∣∣∣K̇t(x, u)
∣∣∣ dt (1− η(x, u)) |f(u)| dγ∞(u)

. N̄

∫
sup

0<t≤1
Kt(x, u) (1− η(x, u)) |f(u)| dγ∞(u),

and Theorem 9.1 yields

γ∞

{
x :
∣∣∣mglob

0 (T )f(x)
∣∣∣ > α

}
.

1

α

∫
|f(u)| dγ∞(u).

�

10. Appendix: Proof of Theorem 9.1

In the proof of this theorem, we take f ≥ 0 normalized in L1(γ∞). All the
simplifications introduced in Subsection 5.2 will apply. In particular, we let α be
large, and we need only consider points x in Cα. We will write x and u 6= 0 as
x = Ds x̃ and u = Dσ ũ, respectively, where x̃, ũ ∈ Eβ with β = (logα)/2 and
s ≥ 0, σ ∈ R.

Lemma 10.1. Assume that (x, u) ∈ G and x ∈ Cα. Then

sup
0<t≤1

Kt(x, u) . eR(x) min
(
|ũ− x̃|−n, |x|n

)
.

Proof. For the first bound, we use [CCS2, Lemma 4.3(i)] to get |Dt x− u| & |x̃− ũ|,
which by (2.9) yields

sup
0<t≤1

Kt(x, u) . eR(x) sup
0<t≤1

t−n/2 exp

(
−c |x̃− ũ|

2

t

)
. eR(x) |x̃− ũ|−n.

To get the second bound, we deduce from the definition of G and Lemma 2.1 that

|x|−1 . |x− u| ≤ |x−Dt x|+ |Dt x− u| . t|x|+ |Dt x− u|.

Thus |x|−1 . t|x| or |x|−1 . |Dt x−u|. In the first case, t−n/2 . |x|n, and the desired
estimate is immediate from (2.9). In the second case,

Kt(x, u) . eR(x) t−
n
2 exp

(
− c

t|x|2

)
. eR(x) |x|n.

The lemma is proved. �
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To continue the proof of Theorem 9.1, we conclude from Lemma 10.1 that for
x ∈ Cα

Sglob
0 f(x) . eR(x)

∫
min

(
|ũ− x̃|−n, |x|n

)
f(u) dγ∞(u) = A(x) +B(x),

where

A(x) = |x|n eR(x)

∫
{u: |x|≤|ũ−x̃|−1}

f(u) dγ∞(u)

and

B(x) = eR(x)

∫
{u: |x|>|ũ−x̃|−1}

|ũ− x̃|−n f(u) dγ∞(u).

We will show that

γ∞ {x ∈ Cα : A(x) > α} . α−1 (10.1)

and

γ∞ {x ∈ Cα : B(x) > α} . α−1. (10.2)

Starting with (10.1), we first observe that A(x̃) < α for x̃ ∈ Eβ with β = (logα)/2,
because

A(x̃) ≤ |x̃|n eR(x̃)

∫
Rn
f(u) dγ∞(u) . (logα)n

√
α < α ,

and α is large. Further, x = Ds x̃ ∈ Cα implies 0 < s . 1 in view of [CCS2, formula
(4.3)]. Let

E0
β = {x̃ ∈ Eβ : A(Ds x̃) > α for some s > 0 with Ds x̃ ∈ Cα},

and define for x̃ ∈ E0
β

s0(x̃) = inf{s : Ds x̃ ∈ Cα and A(Ds x̃) > α}.

Then 0 < s0(x̃) . 1 and A(Ds0(x̃) x̃) = α. Moreover, if A(Ds x̃) > α for some
Ds x̃ ∈ Cα, then x̃ ∈ E0

β and s > s0(x̃). In the set Cα, the expression (2.11) for the

Lebesgue measure yields dx '
√

logα dSβ ds, and so

γ∞ {x ∈ Cα : A(x) > α} .
√

logα

∫
E0
β

∫ C

s0(x̃)

e−R(Ds x̃) ds dSβ(x̃).

We now write R(Ds x̃) = R(Ds0(x̃) x̃) + R(Ds x̃) − R(Ds0(x̃) x̃) and apply the Mean
Value Theorem to the difference here, observing that ∂sR(Ds x̃) ' |Ds x̃|2 ' logα
because of [CCS2, formula (4.3)]. This leads to

γ∞ {x ∈ Cα : A(x) > α} .
√

logα

∫
E0
β

e−R(Ds0(x̃) x̃)

∫ ∞
s0(x̃)

e−c(s−s0(x̃)) logα ds dSβ(x̃)

.
1√

logα

∫
E0
β

e−R(Ds0(x̃) x̃) dSβ(x̃).
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Now we use the equality A(Ds0(x̃) x̃) = α, the definition of A(x) and the fact that
|Ds0(x̃) x̃| '

√
logα to see that the last expression is at most

1

α
(logα)

n−1
2

∫
E0
β

∫
{u: |ũ−x̃|.(logα)−1/2}

f(u) dγ∞(u) dSβ(x̃) =

1

α
(logα)

n−1
2

∫
f(u)

∫
{x̃: |ũ−x̃|.(logα)−1/2}

dSβ(x̃) dγ∞(u) .
1

α

∫
f(u) dγ∞(u) =

1

α
.

This proves (10.1), and we move to (10.2). Here we similarly have B(x̃) < α for
x̃ ∈ Eβ, and we can define E0

β and s0(x̃) as above, replacing A(.) by B(.). The rest
of the argument is only slightly different from that for (10.1); we now have

γ∞{x ∈ Cα : B(x) > α} . 1√
logα

∫
E0
β

exp
(
−R(Ds0(x̃) x̃)

)
dSβ(x̃)

.
1

α

1√
logα

∫
E0
β

∫
{u: |ũ−x̃|&(logα)−1/2}

|ũ− x̃|−nf(u) dγ∞(u) dSβ(x̃)

=
1

α

1√
logα

∫
f(u)

∫
{x̃: |ũ−x̃|&(logα)−1/2}

|ũ− x̃|−n dSβ(x̃) dγ∞(u) .
1

α
.

This is (10.2), and Theorem 9.1 is proved.

In order to prove Proposition 9.2, Theorem 9.1 is enough, as we saw in the preced-
ing section. However, we take the opportunity to give the following related result,
which strengthens Theorem 9.1 and also Theorem 1.1 in [CCS2] and may be of
independent interest.

Theorem 10.2. The operator Sglob defined by

Sglobf(x) =

∫
sup

0<t<∞
Kt(x, u) (1− η(x, u))|f(u)| dγ∞(u), f ∈ L1(Rn),

is of weak type (1, 1) for the measure dγ∞.

This result is a consequence of Theorem 9.1 and the following proposition.

Proposition 10.3. The operator S∞, defined by

S∞f(x) =

∫
sup
t≥1

Kt(x, u) |f(u)| dγ∞(u),

satisfies the inequality

γ∞{x : S∞f(x) > α} . 1

α
√

logα
(10.3)

for all normalized functions f in L1(γ∞) and all α > 2.

Proof. Let t ≥ 1. The simplifications in Subsection 5.2 apply again, since Kt(x, u) .
eR(x) < α if R(x) < (logα)/2. For x ∈ Cα, a combination of (2.10) and [CCS2,
Lemma 4.3(i)] implies

Kt(x, u) . eR(x) exp
(
− c

∣∣ũ− x̃∣∣2),
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where we use polar coordinates with β = (logα)/2. The proposition now follows
from Lemma 6.2. �

Remark 10.4. The inequality (10.3), which is sharp as verified in [CCS2, Propo-
sition 6.2], is slightly stronger than the weak type (1, 1) estimate in Theorem 10.2.

The corresponding estimate for the operator Sglob
0 is false, since f approximating a

point mass at 0 gives a counterexample.

Remark 10.5. In the case Q = I and B = −I an estimate similar to Lemma 10.1
with a kernel M controlling from above the Mehler kernel Kt in the global region, has
recently been proved in [Br] (see, in particular, Definition 3.2 and Proposition 3.4
therein). An earlier result of this type may be found in [MPS, Proposition 2.1].
These estimates are sharp for significant values of (x, u), whereas our Theorem 10.2
is simpler, and sufficient for our needs. Moreover, Proposition 10.3 is stronger than
the analogous bounds in [Br] and [MPS].
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[CFMP1] R. Chill, E. Fašangová, G. Metafune and D. Pallara, The sector of analyticity of the
Ornstein–Uhlenbeck semigroup in Lp spaces with respect to invariant measure, J. Lond.
Math. Soc. 71, (2005), 703–722.
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