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Abstract We formulate Friedmann’s equations as second-
order linear differential equations. This is done using tech-
niques related to the Schwarzian derivative that selects the
β-times tβ := ∫ t a−2β , where a is the scale factor. In partic-
ular, it turns out that Friedmann’s equations are equivalent to
the eigenvalue problems

O1/2� = �

12
�, O1a = −�

3
a,

which is suggestive of a measurement problem. Oβ(ρ, p)
are space-independent Klein–Gordon operators, depending
only on energy density and pressure, and related to the Klein–
Gordon Hamilton–Jacobi equations. The Oβ ’s are also inde-
pendent of the spatial curvature, labeled by k, and absorbed
in
� = √

ae
i
2

√
kη.

The above pair of equations is the unique possible linear
form of Friedmann’s equations unless k = 0, in which case
there are infinitely many pairs of linear equations. Such a
uniqueness just selects the conformal time η ≡ t1/2 among
the tβ ’s, which is the key to absorb the curvature term. An
immediate consequence of the linear form is that it reveals a
new symmetry of Friedmann’s equations in flat space.

1 Introduction

Unlike other fundamental laws of Nature, Einstein’s field
equations [1]

Rμν − 1

2
Rgμν + �gμν = 8πG

c4 Tμν, (1.1)

are non-linear. A great simplification of Eq. (1.1) has been
derived by Friedmann [2,3], whose equations are funda-
mental in modern cosmology. These equations encode the
essence of general relativity, therefore they are crucial not
only for understanding the dynamics of the Universe, but
also to deepen other fundamental questions of Nature, such
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as relations, yet to be discovered, between general relativ-
ity and quantum mechanics, which is described by a linear
equation.

A problem with Friedmann’s equations is that, despite the
simplification of Eq. (1.1), the first one is highly non-linear.
In particular, due to the term k/a2, the problem seems par-
ticularly stringent in the case of non flat space. On the other
hand, non-linearity is the main obstacle for a quantization
of gravity. Non-linearity of the first Friedmann equation is
also one of the reasons why a more systematic analysis of
Friedmann’s equations in their general form is still lacking,
and they are frequently considered in the simplest case of
barotropic fluids, with a constant barotropic index. It is then
clear that a linear form of Friedmann’s equations would be
of considerable interest in several contexts.

Here we show that the structure of Friedmann’s equa-
tions hides an underlying linearity and can be formulated
in the form of a pair of linear second-order differential equa-
tions. It turns out that the two linear equations correspond
to the unique possible linear form, unless k = 0, that gives
infinitely many pairs of linear versions of Friedmann’s equa-
tions. Remarkably, as we will see, an immediate consequence
of the linear form is that it reveals a new symmetry of Fried-
mann’s equations in flat space. Another feature of the for-
mulation is that the uniqueness of the linear form in the case
k �= 0 naturally selects the conformal time and leads to a
reformulation of Friedmann’s equations in the form of two
coupled space-independent Klein–Gordon equations. Such
operators are also independent of space curvature that, in this
formulation, is absorbed in the Klein–Gordon wave-function.
The linear form of Friedmann’s equations also shows that the
cosmological constant plays the role of eigenvalues of the
Klein–Gordon operators. As a result, the outcome resembles
a measurement problem so that suggesting a possible relation
with multiuniverse theory.

The above analysis is related to the identification of the
cosmological constant with the Wheeler–DeWitt quantum
potential, that plays the role of intrinsic energy [4], and that
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as been derived in the context of the geometrical formula-
tion of the quantum Hamilton–Jacobi theory [5–14]. Even in
the present investigation the two Klein–Gordon equations are
related to the quantum Hamilton–Jacobi theory and, in par-
ticular, there is a relation between their associated quantum
potentials.

The strategy of the present investigation is to first intro-
duce linear combinations of Friedmann’s equations, with the
condition that they can be expressed in terms of Schwarzian
derivatives. This naturally introduces the β-times tβ :=∫ t a−2β . Then, using the chain rule for the Schwarzian
derivative, the curvature term k/a2 is absorbed by exponenti-
ating the conformal time η ≡ t1/2. The result is a Schwarzian

equation for ei
√
kη. On the other hand, any Schwarzian’s

equation is solved by the ratio of two linearly independent
solutions of the associated second-order linear differential
equation. Together with the second Friedmann equation, such
an equation provides the promised linear form.

2 Schwarzian form of Friedmann’s equations

Let us consider the Friedmann–Lemaître–Robertson–Walker
(FLRW) line element

ds2 = −dt2 + a2(t)
[ dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)
]
,

(2.1)

where k is either +1, 0 and −1 for spatially closed, flat and
open universes, respectively. In the FLRW background the
curvatures read

R 0
0 = 3ä

a
,

R k
j =

(
ä

a
+ 2ȧ2

a2 + 2k

a2

)

δ k
j ,

R = 6

(
ä

a
+ ȧ2

a2 + k

a2

)

, (2.2)

and the spatial scalar curvature is

3R = 6
k

a2 . (2.3)

Assuming that the energy momentum tensor is the one of an
ideal perfect fluid

T ν
μ = Diag(−ρ, p, p, p), (2.4)

with ρ and p the energy density and pressure density, respec-
tively, we get, from Einstein’s equations, Friedmann’s equa-
tions

ȧ2

a2 = 1

3
(8πGρ + �) − k

a2 , (2.5)

and

ä

a
= −4πG

3
(ρ + 3p) + �

3
, (2.6)

where � is the cosmological constant. Taking the time deriva-
tive of (2.5) and replacing ä/a by the right-hand side of (2.6)
leads to the continuity equation

ρ̇ + 3H(ρ + p) = 0, (2.7)

with H = ȧ/a the Hubble parameter.
Friedmann’s equations have two nice properties that fol-

low by considering the linear combination of their left-hand
sides

Xβ(a) := ä

a
+ (β − 1)

(
ȧ

a

)2

. (2.8)

The first property is that Xβ satisfies the relation

(β − γ )Xα(a) + (γ − α)Xβ(a) + (α − β)Xγ (a) = 0.

(2.9)

Furthermore, Xβ vanishes for a = t1/β . Both properties are
related to the Möbius symmetry of the Schwarzian derivative.
To show this let us first introduce the β-times, tβ , by

ṫβ := a1/δ(β), (2.10)

with δ(β) fixed by requiring that

Xβ(a) = δ

[ ...
t β

ṫβ
+ (δβ − 1)

(
ẗβ
ṫβ

)2
]

, (2.11)

be proportional to the Schwarzian derivative of tβ

{tβ, t} =
...
t β

ṫβ
− 3

2

(
ẗβ
ṫβ

)2

. (2.12)

This condition gives δ = −1/(2β) so that

tβ(t) =
∫ t

0
dt ′a−2β. (2.13)

We then have Xβ(a) = − {
tβ, t

}
/(2β), that is

ä

a
+ (β − 1)

(
ȧ

a

)2

= − 1

2β
{tβ, t}. (2.14)

Since the Schwarzian derivative (2.12) is invariant under the
PSL(2,C) linear fractional transformations

tβ −→ t ′β = Atβ + B

Ctβ + D
, (2.15)

it follows that

Xβ(a′) = Xβ(a), (2.16)

where a′ is the transformation of a induced by (2.15), that is
(we set AD − BC = 1)

a −→ a′ = a(Ctβ + D)1/β . (2.17)
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Let us consider the identity

ṫ1/2
β

d

dt

1

ṫβ

d

dt
ṫ1/2
β ψβ =

(
d2

dt2 + 1

2
{tβ, t}

)

ψβ. (2.18)

Inspection of the left-hand side shows that the linear span
of the two linearly-independent functions ψβ = ṫ−1/2

β and

ψD
β = ṫ−1/2

β tβ is the kernel of the operator in round brackets.
It follows that solving the Schwarzian equation {tβ, t} =
2Uβ is equivalent to solve the associated second-order linear
differential equation

( d2

dt2 +Uβ

)
φβ = 0. (2.19)

In particular, since

ψβ = aβ, ψD
β = aβ tβ, (2.20)

it follows that the solution of the Schwarzian equation is

tβ = ψD
β

ψβ

. (2.21)

By construction it is clear that (2.21) is still valid even if ψβ

and ψD
β are replaced by their arbitrary linearly independent

combinations
(

ψD
β

′

ψ ′
β

)

=
(
A B
C D

) (
ψD

β

ψβ

)

, (2.22)

showing that such an arbitrariness corresponds to the Möbius
invariance of the Schwarzian derivative (2.15). This means
that Möbius transformations are related to the boundary con-
ditions of the Schwarzian and linear equations. Let us stress
that (2.18) implies that expressing the time derivative in terms
of tβ trivializes the equation. Actually, we have

ṫ1/2
β

d

dt

1

ṫβ

d

dt
ṫ1/2
β ψβ = ṫ3/2

β

d2

dt2
β

φβ = 0, (2.23)

so that φβ = Atβ+B, where A �= 0 and B are constants. This
is a key point for the trivialization of the quantum Hamilton–
Jacobi equation [4–14].

The above analysis shows that Friedmann’s equations can
be expressed in terms of Schwarzian derivatives. In particu-
lar, by (2.5), (2.6) and (2.14), we have

1

2
{tβ, t} = Vβ(ρ, p) − β2 �

3
+ β(β − 1)

k

a2 , (2.24)

where

Vβ(ρ, p) = −4

3
πGβ [(2β − 3)ρ − 3p] , (2.25)

that satisfies the relation

Vα

α
= α − γ

β − γ

Vβ

β
+ α − β

γ − β

Vγ

γ
. (2.26)

3 A new symmetry from the linear form

Here we show that in the case of flat space, the linear
form of Friedmann’s equations reveals an interesting new
symmetry. Let us start by noticing that since for any pair
(α, β) ∈ C

2\{0, 0}, α �= β, Xα(a) is not proportional to
Xβ(a), it follows that Friedmann’s equations in flat space
have the canonical eigenvalue form

(
Oα 0
0 Oβ

)

�αβ = �

3

(
α2 0
0 β2

)

�αβ, (3.1)

where

�αβ =

⎛

⎜
⎜
⎝

aαtα
aα

aβ tβ
aβ

⎞

⎟
⎟
⎠ , (3.2)

and

Oβ(ρ, p) := d2

dt2 + Vβ(ρ, p), (3.3)

are the space-independent Klein–Gordon operators. Also
note that for each β there is a dual canonical equation, the
one with label −β, with has the same eigenvalue �β2/3. It
follows that the set of all possible canonical forms (3.1) can
be grouped in the eigenvalue problems

(
O−β 0

0 Oβ

)

�−ββ = β2 �

3
�−ββ. (3.4)

The above shows that, in the case of flat space, there are
infinitely main pairs of linear differential equations which
are equivalent to Friedmann’s equations (2.5) and (2.6). On
the other and, they are related in a non-linear way since are
satisfied by different powers of a. It is precisely this non-
linearity that implies a non-trivial symmetry. In fact, we can
map one equation to another simply taking powers of a. In
particular, note that the map a → aα corresponds to tβ →
tαβ . By ṫβ = a−2β , we have ṫαβ = (ṫβ)α , implying

{tαβ, t} = α{tβ, t} − 1

2
α(α − 1)

(
ẗβ
ṫβ

)2

. (3.5)

This can be also checked by observing that such a relation is
equivalent to the identity

Vαβ −(αβ)2 �

3
= αVβ − αβ2 �

3

−1

3
α(α − 1)β2(8πGρ + �). (3.6)

On the other hand, by

Vαβ(ρ, p) = Vβ(α2ρ, αp − α(α − 1)ρ), (3.7)
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it follows that all the canonical eigenvalues equations (3.1)
are related by

a −→ aα,

ρ −→ α2ρ,

p −→ αp − α(α − 1)ρ,

� −→ α2�,

(3.8)

which are equivalent to the following transformations

a −→ aα,

ρ −→ α2ρ + (α2 − 1)
�

8πG
,

p −→ αp − α(α − 1)ρ + (1 − α2)
�

8πG
,

� −→ �.

(3.9)

Finally note that since any pair (3.1) is equivalent to Fried-
mann’s equations, it follows that (3.8) and (3.9) are symme-
tries of the Friedmann equations with k = 0.

4 Absorbing the curvature by exponentiation

Note that any pair of equations (2.24) with distinct val-
ues of β ∈ C\{0} is equivalent to Friedmann’s equations.
Furthermore, the chain rule of the Schwarzian derivative
{ f, x} = (∂x y)2{ f, y} + {y, x} implies

{tα, tβ} =
(
dtγ
dtβ

)2

{tα, tγ } + {tγ , tβ}, (4.1)

which is equivalent to

XαβXβγ + Xαγ Xγβ = XγβXβγ , (4.2)

where Xαβ := {tα, tβ}. In the theorem of section 9.2 of [11]
it has been shown that a related cocycle condition determines
the Schwarzian derivative. It is worth recalling that (4.1) char-
acterizes the stress tensor of 2D CFT and the quantum poten-
tial [11].

An immediate consequence of Eq. (2.24) is that the con-
formal time

η ≡ t1/2 =
∫ t

0

dt ′

a
, (4.3)

satisfies the equation

{η, t} = 4

3
πG(2ρ + 3p) − �

6
− k

2
η̇2. (4.4)

Now note that the chain rule of the Schwarzian derivative
implies the identity

{ei
√
kη, t} = {η, t} + k

2
η̇2, (4.5)

which is the relation used in the exponential map z → ez in
the radial quantization of 2D CFT. It follows that the spatial

curvature term in (4.4) can be absorbed by the exponentiation
η → e±i

√
kη in the Schwarzian derivative, equivalent to

a −→ a√
k

exp(∓i
√
kη). (4.6)

We then have

{e±i
√
kη, t} = 4

3
πG(2ρ + 3p) − �

6
, (4.7)

which is invariant under the Möbius transformations

ei
√
kη −→ Aei

√
kη + B

Cei
√
kη + D

. (4.8)

It follows that one can solve the non-linear problem (4.4) by
taking the logarithm of the solution of (4.7), which in turn
determines a. On the other hand, Eq. (4.7) is equivalent to
the eigenvalue problem
[
d2

dt2 + 2

3
πG(2ρ + 3p)

]

ψ = �

12
ψ. (4.9)

A key point is that in the case k �= 0, this equation and (2.6)
are the unique solution to the problem of finding a linear form
of Friedmann’s equations. The reason is that any other linear
form should correspond to adding Eq. (2.6) to (4.9). On the
other hand, this would break its linear form. Also note that
a key point is to absorb the curvature term by exponentia-
tion. On the other hand, by the chain rule of the Schwarzian
derivative, it follows that the exponentiation of tβ gives a
term proportional to ˙tβ2, so that the curvature term can be
obtained only by exponentiating η. It is then interesting that
the solution of the problem just selects the conformal time
among all tβ -times.

Two linearly independent solutions of (4.9) are

φ = √
a exp

(

− i

2

√
kη

)

, φD = √
a exp

(
i

2

√
kη

)

,

(4.10)

which are hyperbolic functions when k = −1. As a check
note that replacing (4.10) in (4.9) yields

1

2

(
ȧ

a

)2

− ä

a
= 4

3
πG(2ρ + 3p) − �

6
− k

2a2 . (4.11)

Linear combinations reproducing the solutions ψ1/2 = √
a

and ψD
1/2 = √

aη in the k → 0 limit are

ψ = √
a cos

(√
k

2
η

)

, ψD = 2

√
a√
k

sin

(√
k

2
η

)

, (4.12)

so that

a = ψ2 + k

4
ψD2

. (4.13)

Solving the eigenvalue problem (4.9) gives ψ and ψD as
functions of ρ, p and �, that by (4.13) fix a.
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Let us introduce the wave-function

� = √
ae

i
2

√
kη, (4.14)

so that, for k �= −1,

a = |�|2. (4.15)

We then have that the Friedmann equations are equivalent
to the following coupled space-independent Klein–Gordon
eigenvalue problems

O1/2� = �

12
�, (4.16)

O1a = −�

3
a, (4.17)

that resembles a measurement problem, so that suggesting a
possible role of the multiuniverse theory. Note that, depend-
ing on the boundary conditions, the solutions of (4.16) will be
a linear combination of � and of a linear independent one,

that is �D = √
ae− i

2

√
kη. In the case of (4.17) a solution

which is linearly independent of a is a
∫ t a−2.

Note that for k = 0, 1, Eq. (4.17) can be equivalently
written in the form O1|�|2 = −�

3 |�|2. Let us write (4.16)
and (4.17) in the explicit form
[
d2

dt2 + 2

3
πG(2ρ + 3p)

]

� = �

12
�, (4.18)

[
d2

dt2 + 4πG

3
(ρ + 3p)

]

a = −�

3
a. (4.19)

Equation (4.13) shows that the k-dependence of a is deter-
mined by the initial conditions for �. In this respect, observe
that while the left-hand side of (4.5) is invariant under Möbius
transformations of ei

√
kη, both terms in the right-hand side

undergo non-trivial transformations, an issue related to the
quantum Hamilton–Jacobi equation. To show this, let us first
define

Q[ f ] := 1

f

d2 f

dt2 = −1

2

{∫ t

f −2, t

}

. (4.20)

Next, note that by (4.5) and (4.7) it follows that

− k

4
η̇2 + 2

3
πG(2ρ + 3p) − �

12
− 1

2
{η, t} = 0, (4.21)

can be interpreted as the space-independent Klein–Gordon
Hamilton–Jacobi equation [12] associated to (4.18), with

Q[|�|] = −V1/2(ρ, p) + �

12
+ kδk1

4|�|4 , (4.22)

playing the role of quantum potential. In this case the cur-
vature term does not contribute to (4.22) when � in (4.14)
is real, that is for k = −1 and k = 0, so that in these cases
the content of Q[|�|] is the same of (4.18). In this respect
note that, depending on the boundary conditions, one can
consider complex solutions of (4.18) by taking linear combi-
nations of � and �D . This is related to the Einstein paradox

[11]. Since a is real, it follows that also its quantum potential
has the same content of (4.19)

Q[a] = −V1(ρ, p) + �

3
. (4.23)

The fastest way to proceed is to first consider the case k �=
−1, so that a = |�|2 and we can then use the identity

Q[|�|] = 1

2

[

Q[|�|2] − 1

2|�|4
(
d|�|2
dt

)2
]

, (4.24)

that is

− V1/2(ρ, p) + �

12
+ k

4a2 = 1

2

[

−V1(ρ, p) + �

3
− 1

2

ȧ2

a2

]

,

(4.25)

then note that it extends to the case k = −1 because coin-
cides with Eq. (2.5). This shows that (4.19) fixes the quantum
potential associated to (4.18).
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