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ON TRACE THEOREMS FOR SOBOLEV SPACES

PIER DOMENICO LAMBERTI - LUIGI PROVENZANO

We survey a few trace theorems for Sobolev spaces on N-dimensional
Euclidean domains. We include known results on linear subspaces, in par-
ticular hyperspaces, and smooth boundaries, as well as less known results
for Lipschitz boundaries, including Besov’s Theorem and other character-
izations of traces on planar domains, polygons in particular, in the spirit of
the work of P. Grisvard. Finally, we present a recent approach, originally
developed by G. Auchmuty in the case of the Sobolev space H1(Ω) on a
Lipschitz domain Ω, and which we have further developed for the trace
spaces of Hk(Ω), k ≥ 2, by using Fourier expansions associated with the
eigenfunctions of new multi-parameter polyharmonic Steklov problems.

1. Introduction

The purpose of the present paper is twofold. First, we survey a few known
and less known results on the traces of functions of the Sobolev space W k,p(Ω),
k ∈N and 1≤ p < ∞, when Ω is a smooth or non-smooth open set in RN , N ≥ 2.
Second, for bounded open sets Ω with Lipschitz boundaries, that is, open sets
of class C0,1, we provide an explicit description of the trace spaces of W k,2(Ω),
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which extends to arbitrary values of k ≥ 2 the results proved in [26] for k = 2
and based on new Steklov-type problems for polyharmonic operators. In the
sequel, the spaces W k,2(Ω) will also be denoted by Hk(Ω).

Recall that if Ω is a bounded open set in RN with Lipschitz boundary, there
exists a linear and continuous operator Γ from W k,p(Ω) to (Lp(∂Ω))k defined
by Γ(u) = (γ0(u), ...,γk−1(u)), where γ0(u) is the trace of u and γ j(u) is the j-th
normal derivative of u for j = 1, ...,k−1. In particular, for u ∈Ck(Ω), we have
γ0(u) = u|∂Ω

and γ j(u) = ∂ ju
∂ν j for all j = 1, ...,k− 1, where ν denotes the outer

unit normal to ∂Ω. The vector Γ(u) is called the total trace of u.
Important problems in the theory of Sobolev spaces include the description

of the trace spaces γ j(W k,p(Ω)) for j = 0, ...,k− 1, and the description of the
total trace space Γ(W k,p(Ω)). From a historical point of view, this problem
finds its roots back at least in 1906 with the publication of the paper [24] where
J. Hadamard provided his famous counterexample which pointed out the need
to clarify which conditions on the datum g guarantee that the solution v to the
Dirichlet problem {

∆v = 0, in Ω,
v = g, on ∂Ω,

has square summable gradient. Note that, in the framework of Sobolev spaces,
this problem can be reformulated as the problem of finding necessary and suffi-
cient conditions on g such that g = γ0(u) for some u ∈ H1(Ω).

Conclusive results are available for smooth domains, and are nowadays
classical. The standard approach consists in flattening the boundary of Ω by
means of suitable local diffeomorphisms. Hence the problem is recast to that
of describing the trace spaces of W k,p(RN) on N− 1-dimensional hyperplanes
which can be identified with RN−1. A first classical method for describing the
trace spaces of W k,p(RN) on RN−1 in the case p = 2 is via Fourier Transform,
see e.g., [27, 29] and Theorem 3.1. This method was already used in [31].
If p 6= 2 this approach is no more applicable. In this case, the description
of the trace spaces relies on a method originally developed by E. Gagliardo
in [19] for the case k = 1 in order to extend results obtained in [1, 30, 32]
for p = 2. See Theorems 3.4, 3.5. This method involves the use of Besov
spaces Bs

p(RN−1), s > 0, which are equivalent for non-integer s to the fractional
Sobolev spaces W s,p(RN−1) appearing in [19]. Applications of this method for
k ≥ 2 can be found in [14, 22, 29]. If the domain is sufficiently smooth, the
definition of Besov spaces can be transplanted from RN−1 to ∂Ω, providing
well-defined function spaces Bs

p(∂Ω) at the boundary of Ω. As a matter of

fact, it turns out that γ j(W k,p(Ω)) = Bk− j−1/p
p (∂Ω) for all j = 0, ...,k− 1 and

Γ(W k,p(Ω)) = ∏
k−1
j=0 Bk− j−1/p

p (∂Ω) for p 6= 1, see Theorem 3.4.
However, when Ω is an arbitrary bounded open set with Lipschitz boundary,
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there is no such simple description and not many results are available in the
literature. We collect some of them in this paper. First of all, we note that a
complete description of the traces of all derivatives up to the order k− 1 of a
function u ∈W k,p(Ω) is due to O. Besov who provided an explicit but quite
technical representation theorem, see [7, 8], see also [9] and Theorem 4.1.
Simpler descriptions are not available with the exception of a few special cases.
For example, when Ω is a curvilinear polygon in R2 with smooth edges, the
trace spaces are described by using the classical trace spaces on each side of the
polygon complemented with suitable compatibility conditions at the vertexes.
This approach has been discussed by P. Grisvard in the celebrated monographs
[22, 23], see Theorems 4.2 and 4.3. In [23] one can also find a few related results
on three-dimensional polyhedra. For more general planar domains and p = 2,
k = 2, another description, given in terms of simple compatibility conditions is
provided in [21], see Theorem 4.4. Theorem 4.4 is extended to the case p 6= 2 in
[17] and to the case N = 3, p 6= 2 in [20], see Theorem 4.6. Moreover, necessary
conditions for traces of functions in W k,p(Ω) for all k ≥ 2 are given in [20].

We note that our list of results is not exhaustive and we refer to the recent
monograph [28] which treats the trace problem in presence of corner or conical
singularities in R3, as well as further results on N-dimensional polyhedra. We
also quote the fundamental paper [25] by V. Kondrat’ev for a pioneering work
in this type of problems.

A recent approach to trace spaces has been developed for k = 1, p = 2 by G.
Auchmuty in [4] where an alternative equivalent description of the trace space
γ0(H1(Ω)) is given in terms of Fourier series associated with the eigenfunc-
tions of the classical Steklov problem (10) for the Laplace operator (see also
[33] for related results). This method has been employed in [26] for the case
k = 2, where new families of multi-parameter biharmonic Steklov problems
have been introduced with the specific purpose of describing the traces of func-
tions in H2(Ω). We emphasize the fact that the description of the trace spaces
γ0(H2(Ω)) and γ1(H2(Ω)) and of the total trace space Γ(H2(Ω)) given in [26]
is valid for arbitrary bounded open sets with Lipschitz boundaries in RN and
any N ≥ 2.

In the present paper we generalize the result of [26] to the case k ≥ 2.
Following [26], we provide decompositions of the space Hk(Ω) of the form
Hk(Ω) = Hk

0,`(Ω)+Hk
`(Ω) for all ` = 0, ...,k− 1. The spaces Hk

0,`(Ω) are the
subspaces of Hk(Ω) of those functions u such that γ`(u) = 0. The spacesHk

`(Ω)
are associated with families of polyharmonic Steklov problems which we in-
troduce in (17), and admit Fourier bases of Steklov eigenfunctions, see The-
orem 4.10. Under the sole assumption that Ω is of class C0,1 we use those
bases to define in a natural way k spaces at the boundary which we denote
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by Hk−`−1/2
A (∂Ω) for all ` = 0, ...,k− 1 (see (20) for precise definition) and

prove that γ`(Hk(Ω)) = γ`(Hk
`(Ω)) = Hk−`−1/2

A (∂Ω) for all ` = 1, ...,k− 1,
see Theorem 4.11. It follows in particular that, if one wishes to define the
space Hk−1/2(∂Ω) as γ0(Hk(Ω)), our result gives an explicit description of
Hk−1/2(∂Ω).

It turns out that the analysis of problems (17) provides further information
on the total trace Γ(Hk(Ω)). In particular Γ(Hk(Ω)) ⊂ ∏

k−1
`=0 Hk−`−1/2

A (∂Ω).
The inequality is in general strict if we assume that Ω is only of class C0,1,
see [26] for the case k = 2. Moreover, we provide sufficient conditions for a k-
tuple in ∏

k−1
`=0 Hk−`−1/2

A (∂Ω) to belong to Γ(Hk(Ω)), see Theorem 4.12, see also
Corollary 4.14 for k = 2. If Ω is smooth, we recover the classical result, namely
Γ(Hk(Ω)) = ∏

k−1
`=0 Hk−`−1/2

A (∂Ω) and in particular the spaces Hk−`−1/2
A (∂Ω)

coincide with the classical trace spaces.
This paper is organized as follows. In Section 2 we introduce some nota-

tion and discuss a few preliminary results on the notion of trace. In Section
3 we review the classical trace theorems on smooth domains. In particular, in
Subsection 3.1 we present the approach via Fourier Transform, while in Subsec-
tion 3.2 we discuss Gagliardo’s approach and the corresponding use of Besov
spaces. In Section 4 we review a few results on Lipschitz domains. In particu-
lar, in Subsection 4.1 we state Besov’s Theorem. In Subsection 4.2 we collect a
few results on curvilinear polygons in R2 and more general planar domains. In
Subsection 4.3 we briefly describe the approach of G. Auchmuty for the trace
space of H1(Ω) and we announce our results for the general case of Hk(Ω) with
k ≥ 2 based on new Steklov problems for polyharmonic operators.

2. Preliminaries on the notion of trace

Let Ω be an open set in RN , 1 ≤ p < ∞ and k ∈ N. By W k,p(Ω) we denote the
Sobolev space of functions u ∈ Lp(Ω) with all weak derivatives of any order up
to k in Lp(Ω). The space W k,p(Ω) is endowed with the norm

‖u‖W k,p(Ω) :=
(

∑
|α|≤k
‖Dαu‖p

Lp(Ω)

) 1
p

.

We denote by W k,p
0 (Ω) the closure of C∞

c (Ω) with respect to ‖ · ‖W k,p(Ω), where
C∞

c (Ω) is the space of functions in C∞(Ω) with compact support in Ω.

2.1. Traces of functions on a N−1 dimensional subspace

Following [14], we describe here a general explicit definition of the trace T (u)
of a function u ∈ L1

loc(RN) on a N−1-dimensional subspace of RN , say RN−1,
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which will be later applied to functions u ∈W k,p(RN). To do so, we represent
each point x of RN as x = (x′,xN), with x′ = (x1, ...,xN−1) ∈ RN−1. Note that
the space RN−1 is identified with the subspace of RN of all points (x′,xN) ∈ RN

such that xN = 0.
For a continuous function u, the trace of u on RN−1 is defined in a natural

way as the restriction of u on RN−1, namely T (u) := u|RN−1 = u(x′,0), x′ ∈RN−1.
On the other hand, this definition does not make sense for an arbitrary function
u∈ L1

loc(RN) since it is defined up to a set of zero Lebesgue measure. As in [14],
we state the requirements which need to be fulfilled by a meaningful definition
of the trace g of a function u ∈ L1

loc(RN):

i) g ∈ L1
loc(RN−1).

ii) f ,g ∈ L1
loc(RN−1) are traces of a function u ∈ L1

loc(RN) if and only if they
are equivalent on RN−1.

iii) If g ∈ L1
loc(RN−1) is the trace of u ∈ L1

loc(RN) and v is equivalent to u on
RN , then g is also the trace of v.

iv) If u is continuous, then u(x′,0) is the trace of u.

The following definition, given in [14, §5], fulfills all the requirements above.

Definition 2.1. Let u ∈ L1
loc(RN) and g ∈ L1

loc(RN−1). We say that the function
g is a trace of the function u and we write g = T (u), if there exists a function
h ∈ L1

loc(RN) equivalent to u on RN and

h(·,xN)→ g(·) in L1
loc(RN−1) as xN → 0.

Other equivalent definitions of traces can be found e.g., in [29]. We have
the following theorem on the existence of the traces of functions and of their
derivatives.

Theorem 2.2. Let k ∈ N and 1 ≤ p < ∞. Then the traces T (Dαu) on RN−1 of
all weak partial derivatives Dαu with |α| ≤ k−1 exist and belong to Lp(RN−1)
for all u ∈W k,p(RN).

Theorem 2.2 is usually proved by establishing that the restriction of smooth
functions to RN−1 defines a linear continuous operator which admits a unique
extension to the whole of W k,p(RN) which satisfies the requirements of Defini-
tion 2.1.

Of particular interest is the description of the total trace Γ(u) of a function
u ∈W k,p(RN) on RN−1, which is defined as the k-tuple

Γ(u) := (γ0(u),γ1(u), ...,γk−1(u)) , (1)
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where γ0(u) = T (u) and γ j(u) = T ( ∂ ju
∂x j

N
) for j = 1, ...,k− 1. We note that

T (Dαu) = Dα ′T ( ∂ αN u
∂xαN

N
), where α = (α ′,αN) with α ′ ∈ NN−1

0 . This motivates

the fact that we are interested only in the weak derivatives in the direction xN .
The following theorem holds.

Theorem 2.3. The map Γ : W k,p(RN)→ (Lp(RN−1))k is a linear continuous
operator such that

Γ(u) =
(

u|RN−1 ,
∂u

∂xN |RN−1

, ...,
∂ k−1u
∂xk−1

N |RN−1

)
for all u ∈Ck

c(RN).

2.2. Traces of functions on the boundary of an open set

We recall now the notion of trace when RN is replaced by Ω and RN−1 is
replaced by ∂Ω, where Ω ⊂ RN is a bounded domain, i.e., a bounded con-
nected open set, and ∂Ω is its boundary. To do so, we need to describe suitable
classes of domains. We recall the following definition where we use the clas-
sical Schauder norm ‖ · ‖Ck,γ with the understanding that for γ = 0 it coincides
with the usual ‖ · ‖Ck .

Definition 2.4. Let Ω⊂ RN be a bounded domain. We say that Ω is a bounded
domain of class Ck,γ for some k ∈ N0 and 0≤ γ ≤ 1 if there exist ρ > 0, s,s′ ∈
N with s ≤ s′, a family

{
Vj
}s

j=1 of bounded open cuboids of the form Vj =

(a1 j,b1 j)×·· ·× (aN j,bN j) and a family
{

R j
}s

j=1 of isometries in RN such that

i) Ω ⊂ ∪s
j=1V ρ

j and Ω∩V ρ

j 6= /0 for all j = 1, ...,s, where V ρ

j is defined by
V ρ

j =
{

x ∈Vj : dist(x,∂Vj)> ρ
}

;

ii) ∂Ω∩Vj 6= /0 for j = 1, ...,s′ and ∂Ω∩Vj = /0 for j = s′+1, ...,s;

iii) for j = 1, ...,s

R j(Vj) =
{

x ∈ RN : ai j < xi < bi j, i = 1, ...,N
}

and
R j(Ω∩Vj) =

{
x ∈ RN : aN j < xN < ϕ j(x′),x′ ∈Wj

}
,

where x′=(x1, ...,xN−1), Wj =
{

x′ ∈ RN−1 : ai j < xi < bi j, i = 1, ...,N−1
}

and ϕ j are functions of class Ck,γ defined on W j (it is meant that for j =
s′+1, ...,s then ϕ j(x′) = bN j for all x′ ∈W j) such that ‖Dαϕ j‖Ck,γ (W j)

≤M
for all |α| ≤ k. Moreover, for j = 1, ...,s′ it holds

aN j +ρ ≤ ϕ j(x′)≤ bN j−ρ.
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We say that Ω is a bounded domain of class Ck if it is of class Ck,γ with γ = 0.

Assume now that Ω is a bounded domain of class C0,1. For a fixed j ≤
s′ as in Definition 2.4, consider the set R j(∂Ω∩Vj). This set has the form{

x ∈ RN : xN = ϕ j(x′),x′ ∈Wj
}

. Note that by applying to the set R j(Ω∩Vj) the
map Φ j defined by Φ j(x′,xN) = (x′,xN −ϕ j(x′)), we have that Φ j ◦R j(∂Ω∩
Vj) =

{
x ∈ RN : xN = 0,x′ ∈Wj

}
. Thus we can give the following.

Definition 2.5. We say that g is the trace of a function u∈ L1(Ω∩Vj) on ∂Ω∩Vj

if g ◦ R(−1)
j ◦Φ

(−1)
j is the trace of u ◦ R(−1)

j ◦Φ
(−1)
j on RN−1 in the sense of

Definition 2.1.

By using a suitable partition of unity, we can give a definition of trace of
a function u ∈ L1(Ω) on ∂Ω. Indeed, for all j = 1, ...,s there exist a partition
of unity given by functions ψ j ∈C∞

c (RN) such that |ψ j(x)| ≤ 1 for all x ∈ RN ,
suppψ j ⊂ Vj for all j = 1, ...,s, ∑

s
j=1 ψ j = 1 on Ω. Thus, a function u can be

decomposed as ∑
s
j=1 u jψ j and its trace on ∂Ω can be defined by means of the

following

Definition 2.6. Assume that a function u ∈ L1(Ω) is written in the form u =

∑
s
j=1 u j where suppu j ∈Vj and u j ∈ L1(Ω∩Vj). If the functions g j are traces of

the functions u j on ∂Ω∩Vj in the sense of Definition 2.5, then the function g =

∑
s
j=1 g j is said to be the trace of the function u on ∂Ω, and we write g = T (u).

We note that the previous definitions are well-posed and we refer to [14, §2]
for more details.

We introduce now the total trace operator on Ω in analogy with Definition
1. We recall that if Ω is of class C0,1 then a outer unit normal ν is defined
almost everywhere on ∂Ω. (Note that by using a suitable partition of unity as
above, it is possible to define a L∞ vector field on Ω which coincides almost
everywhere with the normal vector field on ∂Ω, see e.g., [22, §1.5].) For a
function u ∈W k,p(Ω) we define the total trace as

Γ(u) := (γ0(u),γ1(u), ...,γk−1(u)) , (2)

where γ0(u) = T (u) and γ j(u) = ∑|α|= j
j!

α!T (D
αu)να for j = 1, ...,k− 1. For

simplicity, we will often write, with abuse of notation, γ j(u) = ∂ ju
∂ν j for j =

1, ...,k−1.
We have the following.

Theorem 2.7. Let Ω be a bounded domain in RN of class C0,1. Then the map
Γ : W k,p(Ω)→ (Lp(∂Ω))k is a bounded linear operator such that

Γ(u) =
(

u|∂Ω
,

∂u
∂ν |∂Ω

, ...,
∂ k−1u
∂νk−1 |∂Ω

)
,
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for all u ∈Ck(Ω).

We refer e.g., to [29] for a proof of Theorem 2.7.
We conclude this subsection by recalling a characterization of the spaces

W k,p
0 (Ω) by means of the corresponding traces.

Theorem 2.8. Let Ω be a bounded domain in RN of class C0,1, 1≤ p < ∞ and
u ∈W k,p(Ω). Then T (Dαu) = 0 for all |α| ≤ k−1 if and only if u ∈W k,p

0 (Ω).

In particular, if Ω is of class C0,1 then u∈W 1,p
0 (Ω) if and only if u∈W 1,p(Ω)

and T (u) = 0. Moreover, u ∈W 2,p
0 (Ω) if and only if u ∈W 2,p(Ω) and Γ(u) = 0

when Ω is of class C0,1 (see [29, Thm. 4.12]). More generally, if the domain Ω

is sufficiently regular, the space W k,p
0 (Ω) can be characterized by means of Γ.

Namely, we have the following

Theorem 2.9. Let Ω be a bounded domain in RN of class Ck,1, 1≤ p < ∞ and
u ∈W k,p(Ω). Then Γ(u) = 0 if and only if u ∈W k,p

0 (Ω).

We refer to [22, Thm. 1.5.1.5] or [29, Thm. 4.13] for the proof.

3. Classical Trace Theorems: smooth case

This section is devoted to a short review of classical trace theorems. The focus
is on the description of the total trace space Γ(W k,p(Ω)) defined by

Γ(W k,p(Ω)) :=
{

Γ(u) : u ∈W k,p(Ω)
}
.

3.1. Trace spaces via Fourier Transform

As is customary, we denote the Sobolev spaces W k,2(Ω) and W k,2
0 (Ω) also by

Hk(Ω) and Hk
0(Ω), respectively.

Recall that when Ω =RN , the spaces Hk(Ω) can be equivalently defined via
Fourier Transform since Hk(RN) is the space of functions u ∈ L2(RN) such that

(∫
RN

(1+ |ξ |2)k|û(ξ )|2dξ

) 1
2

(3)

is finite. Here û denotes the Fourier Transform F [u] of a function u ∈ L2(RN)
defined by

û(ξ ) = F [u](ξ ) = (2π)−
N
2

∫
RN

u(x)e−ix·ξ dx.
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Recall that the left-hand side of (3) defines a norm in Hk(RN) equivalent to
the standard one since

‖u‖2
Hk(RN) = ∑

|α|≤k

∫
RN
|Dαu|2dx =

∫
RN

∑
|α|≤k
|ξ α |2|û(ξ )|2dξ .

The previous definitions extend to the case of non-integer order of smooth-
ness and allow to define the whole scale of spaces Hs(RN), s > 0 simply by
replacing k by s in (3).

We have the following

Theorem 3.1. Let k ∈ N. Then

Γ(Hk(RN)) =
k−1

∏
j=0

Hk− j− 1
2 (RN−1).

In particular, there exists C > 0 such that

‖Γ(u)‖
∏

k−1
j=0 Hk− j− 1

2 (RN−1)
≤C‖u‖Hk(RN) ,

for all u ∈ Hk(RN). Moreover there exists a linear and continuous operator

E :
k−1

∏
j=0

Hk− j− 1
2 (RN−1)→ Hk(RN)

such that if u ∈ Hk(RN), u = Eg with g ∈∏
k−1
j=0 Hk− j− 1

2 (RN−1), then g = Γ(u).

We note that proving Trace Theorems consists of proving two statements:
an embedding and an extension theorem. In this case, the proof of the em-
bedding Γ(Hk(RN)) ⊂∏

k−1
j=0 Hk− j−1/2(RN−1) is straightforward. For example,

for γ0(u) = T (u) it is sufficient to write for a function u ∈ C∞
c (RN), T u(x′) =

u(x′,0) = F (−1)[û](x′,0). Fubini-Tonelli’s Theorem, Hölder’s inequality and
standard manipulations allow to prove quite easily that ‖T (u)‖

Hk− 1
2 (RN−1)

≤

C‖u‖Hk(RN). The result is extended to Hk(RN) by standard approximation.
As for the extension theorem, starting from an element g belonging to the

space ∏
k−1
j=0 Hk− j−1/2(RN−1), one constructs explicitly a function u ∈ Hk(RN)

which turns out to have total trace g on RN−1. Namely, if g = (g0, ...,gk−1) ∈
∏

k−1
j=0 Hk− j−1/2(RN−1), we define

u(x′,xN) = F
(−1)
ξ ′

[
k−1

∑
j=0

x j
N
j!

Fξ ′ [g j](ξ
′)h(xN

√
1+ |ξ ′|2)

]
,
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for some h ∈C∞
c (R), 0 ≤ h(t) ≤ 1 and h(t) = 1 for |t| ≤ 1. Here ξ ′ is defined

by ξ ′ = (ξ1, ...,ξN−1) and the Fourier Transform Fξ ′ and its inverse are taken
with respect to the variable ξ ′ ∈ RN−1. We refer to [29, §2.5] for the details of
the proof of Theorem 3.1.

Note that the space Hs(RN) is defined for any s ∈ R by replacing k by s in
(3). It is then possible to extend the validity of Theorem 3.1 to the case non-
integer s ∈ R, as long as s > 1

2 . In this case one sees that

Γ(Hs(RN)) =
[s− 1

2 ]

∏
j=0

Hs− j− 1
2 (Ω),

and the other statements of Theorem 3.1 remain valid.

3.2. Gagliardo’s method and Besov spaces

In the case of a bounded domain Ω in RN the trace spaces of W k,p(Ω) can
described by means of Gagliardo-Slobodeckij norms which can also be encoded
in the Besov spaces Bs

p(∂Ω). We begin by recalling the definition of the Besov
spaces in RN . For ` ∈ N and h ∈ RN we define the difference of order ` of a
function f with step h as

∆
`
hu(x) :=

`

∑
j=0

(−1)`− j
(
`

j

)
u(x+ jh).

Definition 3.2. Let s > 0 and 1 ≤ p < ∞. Let σ ∈ N, σ > s. A function u ∈
L1

loc(RN) belongs to the Besov space Bs
p(RN) if

‖u‖Bs
p(RN) := ‖u‖Lp(RN)+ |u|Bs

p(RN) < ∞ ,

where

|u|Bs
p(RN) :=

(∫
RN

‖∆σ

h u‖p
Lp(RN)

|h|sp+N dh

) 1
p

.

We remark that Definition 3.2 does not depend on the choice of σ ∈ N,
σ > s, see e.g., [14, §5.3].

We recall that when s > 0 is not an integer number, the space Bs
p(RN) co-

incides with the Gagliardo-Slobodeckij space W s,p(RN) which is defined as the
space of functions in W [s],p(RN) such that

|Dαu|W s−[s],p(RN) :=
∫
RN

∫
RN

|Dαu(x)−Dαu(y)|p

|x− y|p(s−[s])+N
dxdy < ∞,
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for all α ∈ NN
0 with |α| = [s], where [s] is the integer part of s. The space

W s,p(RN) is endowed with the norm

‖u‖W s,p(RN) :=
(
‖u‖p

W [s],p(RN)
+ ∑
|α|=[s]

∫
RN

∫
RN

|Dαu(x)−Dαu(y)|p

|x− y|p(s−[s])+N
dxdy

) 1
p

,

and the quantity | · |W s−[s],p(RN) is often called Gagliardo semi-norm. We refer to
[16] for more information on fractional Sobolev spaces defined on more general
open sets of RN . We also remark that for all s > 0 and for p = 2, the space
Bs

2(RN) coincides with the space Hs(RN) defined via Fourier Transform as in
(3) with k replaced by s, and that the two corresponding norms are equivalent.

We now define the Besov spaces Bs
p(∂Ω) on ∂Ω. To do so, we use similar

arguments and notation as in Subsection 2.2.

Definition 3.3. Let k ∈ N, 1 ≤ p < ∞ and let Ω be a bounded domain of class
Ck. Let s < k. We say that g ∈ Bs

p(∂Ω) if

‖g‖Bs
p(∂Ω) :=

(
s′

∑
j=1
‖(gψ j)◦R(−1)

j ◦Φ
(−1)‖Bs

p(Φ j◦R j(∂Ω∩Vj))

) 1
p

< ∞.

Definition 3.3 does not depend on the particular choice of the cuboids Vj

and of the partition of unity ψ j, see [14, Ch. 5, Rem. 19]. For more details on
Definition 3.3 and for more information on Besov spaces on smooth boundaries,
we refer to [14, §5]. We remark that the norm of Bs

p(∂Ω) when 0 < s < 1
and Ω ⊂ RN is a bounded domain of class C0,1 can be given either by using
Definition 3.3 or equivalently by setting

‖u‖W s,p(∂Ω) :=
(
‖u‖p

Lp(∂Ω)+
∫

∂Ω

∫
∂Ω

|u(x)−u(y)|p

|x− y|sp+N−1 dσ(x)dσ(y)
) 1

p

, (4)

see e.g., to [22]. In fact, the norm (4) is the one which originally appears in the
paper of E. Gagliardo [19] where the following theorem was proved for k = 1.
For the proof of Theorem 3.4 in the case k≥ 2, we refer to [14, 29] for 1< p<∞

and to [14] for p = 1.

Theorem 3.4. Let k ∈ N and let Ω be a bounded domain in RN of class Ck,1.
Then

Γ(W k,p(Ω)) =
k−1

∏
j=0

B
k− j− 1

p
p (∂Ω), 1 < p < ∞,

and

Γ(W k,1(Ω)) =
k−2

∏
j=0

Bk− j−1
1 (∂Ω)×L1(∂Ω).
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Moreover, Γ is a continuous operator between W k,p(Ω) and the corresponding
total trace space.

We note that for k = 1 the regularity assumptions on Ω in the previous the-
orem can be relaxed. In fact, the original result proved by Gagliardo in [19] for
k = 1 requires that Ω is of class C0,1 and reads as follows

Theorem 3.5. Let Ω be a bounded domain in RN of class C0,1. Then

γ0(W 1,p(Ω)) = B
1− 1

p
p (∂Ω), 1 < p < ∞,

and
γ0(W 1,1(Ω)) = L1(∂Ω).

Moreover, γ0 is a continuous operator between W 1,p(Ω) and the corresponding
trace space.

It is interesting to observe that for p= 1 the extension operator from L1(∂Ω)
to W 1,1(Ω) provided in [19] is nonlinear, see [15] for further results in this
direction.

We observe that the previous theorem does not make any essential use of the
Besov norm itself since the Gagliardo-Slobodeckij norm is enough for stating
it. Indeed, since the codimension of the manifold ∂Ω is one, only fractional
orders of smoothness are involved in the statement. However, Besov spaces play
a crucial role in describing the trace spaces on sub-manifolds of codimension
larger than one in which case integer orders of smoothness may appear. The
following theorem is a special case of a result proved by O. Besov in [5, 6]
which provides the original and main justification for the introduction of Besov
spaces in the literature. To give an idea of this, we state Besov’s trace Theorem
in its simplest form for the trace Tm(u) on the subspace Rm of RN for a function
u defined in RN . Here the definition of Tm(u) can be given as in Definition 2.1
with m replacing N−1. Note that, apart from the special case when p = 1 and
k = N−m, a necessary and sufficient condition for the existence of Tm(u) for
u ∈W k,p(RN) is that pk > N−m.

Theorem 3.6. Let k,m ∈ N, 1≤ m < N and 1≤ p < ∞. Then

Tm(W k,p(RN)) = B
k−N−m

p
p (Rm), if pk > N−m,

and
Tm(W N−m,1(RN)) = L1(Rm).

Moreover, Tm is a continuous operator between W k,p(RN) and the correspond-
ing trace spaces.

We refer to [14, Ch. 5] for a detailed proof. Note that using Besov spaces is
essential in the previous theorem when k− N−m

p ∈ N.
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4. Trace Theorems: Lipschitz case

When Ω is an arbitrary domain in RN of class C0,1 there is not a description
of Γ(W k,p(Ω)) as simple as the one given by Theorem 3.4. Actually, in this
case the definition of the spaces Bs

p(Ω) is problematic when s > 1 and not many
results are available in the literature. We shall present a few of them in the
present section.

4.1. Besov’s Theorem

Let Ω be a bounded domain in RN of class C0,1. Thus, there exist s,s′ ∈N, open
cuboids Vj, isometries R j and Lipschitz functions ϕ j : Wj → R as in Definition
2.4. Let us denote by M j the Lipschitz constant of ϕ j, for all j = 1, ...,s. We
introduce a few more definitions. For h > 0, we denote by Ah

j the cone

Ah
j :=

{
x = (x′,xN) ∈ RN : xN > M j|x′|, |x|< h

}
for all j = 1, ...,s. We may assume, possibly choosing a different isometry R j,
that

(∂Ω∩Vj)+R(−1)
j (Ah

j)⊂Ω

and that ((∂Ω∩Vj)+R(−1)
j (Ah

j))∩Ω coincides with a sufficiently small neigh-
borhood of some point of ∂Ω. We also set

A j :=
{

x = (x′,xN) ∈ RN : |xN |> (M j + ε)|x′|, for some ε > 0
}
,

∂Vj(x) := R(−1)
j (R j(∂Ω∩Vj)∩ (x−A j)),

and
Ω

h
j :=

{
x ∈Ω : dist(x,∂Vj ∩Ω)< h

}
,

for all j = 1, ...,s. We state the following theorem, which is proved in [9,
Ch.V, §20]

Theorem 4.1. Let Ω be a bounded domain in RN of class C0,1 and let k ∈ N.
Then, for any u ∈W k,p(Ω) and any α ∈ NN

0 with |α| ≤ k−1 there exist traces
of the derivatives Dαu for which we have

s′

∑
j=1

(
∑

|α|≤k−1

∫
∂Ω∩V j

|Dα u|pdσ

) 1
p

+
s′

∑
j=1

(
∑

|α|≤k−1

∫
Ωh

j

∫
∂V j(x)

∫
∂V j(x)

∣∣∣∣∣∣
Dα

x

(
∑|β |≤k−1(D

β
y u(y)(x− y)β −Dβ

z u(z)(x− z)β )/β !
)

dist(x,∂Ω∩Vj)
k+2 N−1

p −|α|

∣∣∣∣∣∣
p

×dσ(y)dσ(z)dx

) 1
p

≤C‖u‖W k,p(Ω), (5)
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where h > 0 is a sufficiently small number and the constant C > 0 does not
depend on u.

Conversely, suppose that a set {gα}|α|≤k−1, gα ∈ Lp(∂Ω) is such that the
left-hand side of (5) with Dβ u replaced by gβ is finite. Then, there exists
u ∈W k,p(Ω) for which T (Dαu) exist for all |α| ≤ k− 1, T (Dαu) = gα and
‖u‖W k,p(Ω) is estimated by a constant independent on u times the left-hand side
of (5), with Dβ u replaced by gβ .

4.2. Polygons and planar sets

Simpler descriptions of the trace spaces of W k,p(Ω) are available when Ω is a
polygon in R2. We say that a bounded domain Ω in R2 is a curvilinear polygon
of class Ck,γ for some k ∈N0, 0≤ γ ≤ 1, if ∂Ω =

⋃n
j=1 Γ j, Γi∩Γ j = /0 for i 6= j,

Γ j ∩Γ j+1 = V j for j = 1, ...,n− 1, Γn ∩Γ1 = Vn and Γi ∩Γ j = /0 in the other
cases, where Γ j ⊂ R2 are curves of class Ck,γ called sides of the polygon, and
V j ∈ R2 are the vertexes of the polygon.

Theorem 3.4 is easily seen to hold with Γ replaced by Γ|Γ j
, i.e., the restric-

tion to Γ j of the total trace operator Γ defined by (2), and ∂Ω replaced by Γ j,
see e.g., [22, §1.5].

However, in many applications the knowledge of the traces on all the sides
Γ j is not sufficient, and one looks for the image of W k,p(Ω) on the whole of ∂Ω

through the operator Γ. To do so, compatibility conditions at the vertexes are
possibly needed, as highlighted e.g., in [22, 23]. For W 1,p(Ω), 1 < p < ∞, we
have the following theorem from [22, Thm. 1.5.2.3].

Theorem 4.2. Let Ω be a curvilinear polygon in R2 of class C1 with boundary
∂Ω =

⋃n
j=1 Γ j and let 1 < p < ∞. Then T is a linear and continuous mapping

with continuous inverse from W 1,p(Ω) to the subspace of ∏
n
j=1 B1−1/p

p (Γ j) of

functions (g1, ...,gn) ∈∏
n
j=1 B1−1/p

p (Γ j) satisfying:

i) no extra conditions, when 1 < p < 2;

ii) g j(V j) = g j+1(V j) for all j = 1, ...,n, with the convention that gn+1 = g1,
when 2 < p < ∞;

iii)
∫ δ j

0
|g j+1(x j(σ))−g j(x j(−σ))|2

σ
dσ < ∞ for all j = 1, ...,n, when p = 2, where

x j(σ) denotes the point on ∂Ω at arc-length distance σ from V j, and δ j > 0
is such that, when |σ | ≤ δ j, then x j(σ) ∈ Γ j if σ > 0 and x j(σ) ∈ Γ j+1 if
σ < 0.

The result for W k,p(Ω) for 1 < p < ∞ is stated in [22, Thm. 1.5.2.8] and
reads as follows.
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Theorem 4.3. Let Ω be a curvilinear polygon in R2 of class C∞ with boundary
∂Ω =

⋃n
j=1 Γ j and let 1 < p < ∞. Then Γ is a linear and continuous mapping

with continuous inverse from W k,p(Ω) to the subspace of

n

∏
j=1

k−1

∏
i=0

B
k−i− 1

p
p (Γ j)

given by those elements ((g(1)0 , ...,g(1)k−1), ...,(g
( j)
0 , ...,g( j)

k−1), ...,(g
(n)
0 , ...,g(n)k−1)) of

the space ∏
n
j=1 ∏

k−1
i=0 Bk−i−1/p

p (Γ j) defined by the following conditions: let L
be any linear differential operator with coefficients of class C∞ of order m ≤
k− 2

p ; denote by Pj,i the differential operator tangential to Γ j such that L =

∑i≥0 Pj,i
∂ j

∂ν l
j
, where ν j denotes the outer unit normal to Γ j; then

i) ∑i≥0(Pj,ig
( j)
i )(V j) = ∑i≥0(Pj,ig

( j+1)
i )(V j) for m < k− 2

p ;

ii)
∫ δ j

0

∣∣∣∑i≥0

(
(Pj,ig

( j)
i )(x j(−σ))− (Pj+1,ig

( j+1)
i )(x j(σ))

)∣∣∣2 dσ

σ
< ∞ for p = 2

and m = k−1.

For the proofs of Theorems 4.2 and 4.3 we refer to [22, 23]. A few infor-
mation on the compatibility conditions on the edges and the vertexes of three-
dimensional polyhedra are available in [23]. For a more detailed analysis on
trace spaces on domains with corner and conical singularities in R3 and for
trace spaces on N-dimensional polyhedra we also refer to the monograph [28].

A characterization of the range of Γ(H2(Ω)) = (γ0(H2(Ω)),γ1(H2(Ω))) in
terms of compatibility conditions in the case when Ω ⊂ R2 is just of class C0,1

has been given in [21]. It is stated as follows.

Theorem 4.4. Let Ω be a bounded domain in R2 of class C0,1 and let g0 ∈
H1(∂Ω), g1 ∈ L2(∂Ω). Then there exists u ∈H2(Ω) such that (g0,g1) = Γ(u) if
and only if

(∂tg0)ν−g1t ∈
(
B

1
2
2 (∂Ω)

)2
, (6)

where t denotes the positively oriented unit tangent vector to ∂Ω.

Note that in the case of a smooth set, the vectors ν and t are linearly inde-
pendent at every point of ∂Ω, thus one recovers the characterization given in
Theorem 3.4 with k = 2, p = 2, N = 2. As pointed out in [21], the compatibility
conditions (6) are equivalent to those of Theorem 4.3 when k = 2, p= 2. In [17],
Theorem 4.4 is extended to the case 1 < p < ∞. An equivalent characterization
of the range of Γ on W 2,p(Ω) when Ω ⊂ R2 is a Lipschitz domain is given in
[20]. Namely, we have the following.
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Theorem 4.5. Let Ω be a bounded domain in R2 of class C0,1 and let g0 ∈
W 1,p(∂Ω), g1 ∈ Lp(∂Ω). Then there exists u ∈W 2,p(Ω) such that (g0,g1) =
Γ(u) if and only if

(∂tg0)t +g1ν ∈
(
B

1− 1
p

p (∂Ω)
)2
. (7)

We refer to [20] for further discussions on Theorem 4.5. Exploiting con-
dition (7) allows to provide a characterization of Γ(W 1,p(Ω)) also for N = 3.
Indeed, the following theorem is proved in [10].

Theorem 4.6. Let Ω be a bounded domain in R3 of class C0,1 and let g0 ∈
W 1,p(∂Ω), g1 ∈ Lp(∂Ω). Then there exists u ∈W 2,p(Ω) such that (g0,g1) =
Γ(u) if and only if

∇∂Ωg0 +g1ν ∈
(
B

1− 1
p

p (∂Ω)
)3
, (8)

where ∇∂Ωg denotes the tangential gradient of g on ∂Ω.

Necessary conditions for the traces of functions in W k,p(Ω) for all k ≥ 2,
1 < p < ∞ are given in [20]. These conditions are also sufficient for p = 2
and N = 2, thus recovering Theorem 4.4. In [20] the authors present a general
scheme to write necessary conditions which turn out to be of the form (6), (7),
(8) and write the condition for k = 3 only. We refer to [20, Thm. 3.4] for the
precise statement.

4.3. Auchmuty’s method

In this subsection we present a recent approach for describing the traces of func-
tions in Hk(Ω) on the boundary of a Lipschitz domain Ω of RN . The trace spaces
are defined by means of Fourier series associated with the eigenfunctions of
families of Steklov-type problems for the polyharmonic operator (−∆)k. The
definitions of the trace spaces coincide with the classical ones when the domain
is sufficiently smooth.

This approach has been developed by G. Auchmuty [3, 4] for the trace
space Γ(H1(Ω)) = T (H1(Ω)), which is known to coincide with H1/2(∂Ω) :=
B1/2

2 (∂Ω), see Theorem 3.4. It has been recently extended in [26] in order to
characterize Γ(H2(Ω)) when Ω ⊂ RN is a bounded Lipschitz domain. We will
describe here how the results of [26] apply in general for any k ≥ 2.

4.3.1. Case k = 1

We find it convenient to describe the original method of Auchmuty for k = 1
first. On a bounded domain Ω in RN of class C0,1 we consider the following
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variational eigenvalue problem∫
Ω

∇u ·∇ϕdx = σ

∫
∂Ω

uϕdx , ∀ϕ ∈ H1(Ω), (9)

in the unknowns u ∈ H1(Ω) (the eigenfunction) and σ ∈ R (the eigenvalue).
Problem (9) is the weak formulation of the well-known Steklov eigenvalue prob-
lem, namely {

∆u = 0, in Ω,
∂u
∂ν

= σu, on ∂Ω.
(10)

We recall that a function u ∈ H1(Ω) is called harmonic if∫
Ω

∇u ·∇ϕdx = 0 ,

for all ϕ ∈ H1
0 (Ω). We denote by H1(Ω) the space of all harmonic functions in

H1(Ω). We consider on H1(Ω) the scalar product

〈u,v〉H1
∂
(Ω) :=

∫
Ω

∇u ·∇vdx+
∫

∂Ω

uvdσ , ∀u,v ∈ H1(Ω), (11)

which induces on H1(Ω) the equivalent norm

‖u‖2
H1

∂
(Ω) :=

∫
Ω

|∇u|2dx+
∫

∂Ω

u2dσ , ∀u ∈ H1(Ω). (12)

Thus, we have the following decomposition of the space H1(Ω)

H1(Ω) = H1
0 (Ω)⊕H1(Ω),

where the sum is orthogonal with respect to (11).
We have the following theorem on the spectrum of problem (9), the proof of

which can be found in [3].

Theorem 4.7. Let Ω be a bounded domain in RN of class C0,1. The eigenval-
ues of problem (9) have finite multiplicity and are given by a non-decreasing
sequence of non-negative real numbers σ j defined by

σ j = min
U⊂H1(Ω)\H1

0 (Ω)
dimU= j

max
u∈U
u6=0

∫
Ω
|∇u|2dx∫

∂Ω
u2dσ

,

where each eigenvalue is repeated according to its multiplicity. The first eigen-
value σ1 = 0 has multiplicity one and the corresponding eigenfunctions are
the constant functions on Ω. Moreover, there exists a Hilbert basis

{
u j
}∞

j=1
of H1(Ω) of eigenfunctions u j. Finally, by normalizing the eigenfunctions u j

with respect to (12), the functions û j :=
√

1+σ jT (u j) define a Hilbert basis of
L2(∂Ω) with respect to its standard scalar product.
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We call a Steklov expansion on Ω an expression of the form

u =
∞

∑
j=1

a ju j, (13)

where a j := 〈u,u j〉H1
∂
(Ω) for all u ∈ H1(Ω).

From Theorem 4.7 we deduce that a Steklov expression of the form (13)
represents a function inH1(Ω) if and only if ∑

∞
j=1 a2

j < ∞.
We recall from Theorem 4.7 that

{
û j
}∞

j=1 with û j :=
√

1+σ jT (u j) is a
orthonormal basis of L2(∂Ω). By the continuity of the trace operator T we have
that

T (u) =
∞

∑
j=1

〈u,u j〉H1
∂
(Ω)√

1+σ j
û j , ∀u ∈ H1(Ω).

Hence, if g = T (u) for some u ∈H1(Ω), then g has a Steklov expansion on ∂Ω

analogous to (13), namely

g =
∞

∑
j=1

g jû j, (14)

where g j = 〈g, û j〉L2(∂Ω). Recall that a generic function g defined on ∂Ω belongs
to L2(∂Ω) if and only if g can be written as in (14) for some g j ∈ R satisfying
∑

∞
j=1 g2

j < ∞. This motivates the following definition in [4].

Definition 4.8. For all s≥ 0 we define Hs
A(∂Ω) as the subspace of all functions

g ∈ L2(∂Ω) with Steklov expansions as in (14) satisfying

∞

∑
j=1

(1+σ j)
2sg2

j < ∞.

According to Definition 4.8 we define an inner product and the associated
norm on Hs

A(∂Ω):

〈 f ,g〉Hs
A(∂Ω) :=

∞

∑
j=1

(1+σ j)
2sg j f j ,

‖g‖2
Hs

A(∂Ω) :=
∞

∑
j=1

(1+σ j)
2sg2

j .

An extension operator E : H1/2
A (∂Ω)→H1(Ω) is defined in a natural way by

setting

Eg =
∞

∑
j=1

√
1+σ jg ju j. (15)

We have the following theorem.
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Theorem 4.9. If s = 1
2 then Hs

A(∂Ω) = T (H1(Ω))

To prove the inclusion H1/2
A (∂Ω) ⊂ T (H1(Ω)) it is sufficient to show that

for any u ∈ H1/2
A (∂Ω) there exists u ∈ H1(Ω) such that T (u) = g. This is done

by using the extension operator (15) and by setting u = Eg ∈ H1(Ω). It is
standard to prove that T (u) = g. Proving the reverse inclusion consists in prov-
ing that T (u) ∈ H1/2

A (∂Ω) whenever u ∈ H1(Ω). This is done by noting that
u = w+ v with w ∈ H1

0 (Ω) and v ∈ H1(Ω). Thus T (u) = T (v). It is then suffi-
cient to write the Steklov expansions for v and T (v) and to check the summabil-
ity conditions for the Steklov coefficients. We refer to [4] for a detailed proof.

In particular, from Theorem 3.4 it follows that the space H1/2
A (∂Ω) coin-

cides with the classical Sobolev space of fractional order H1/2(∂Ω). We do not
know whether the spaces Hs

A(∂Ω) provide trace spaces for higher order Sobolev
spaces, in other words, if they coincide with Hs(∂Ω) for s 6= 1

2 .
In Definition 4.8 the asymptotic behaviour of the eigenvalues σ j as j→ ∞

plays a crucial role. In view of this, we recall that in the case of smooth domains,
Steklov eigenvalues satisfy the following Weyl’s asymptotic law

σ j ∼
2π

ω

1
N−1

N−1

(
j
|∂Ω|

) 1
N−1

, as j→+∞,

where ωN−1 denotes the volume of the unit ball in RN−1. Hence we can identify
the space H1/2

A (∂Ω) with the space of sequences{
(s j)

∞
j=1 ∈ R∞ : ( j

1
2(N−1) s j)

∞
j=1 ∈ l2

}
. (16)

Note the natural appearance of the exponent 1
2 in (16). It remarkable that, ‘mu-

tatis mutandis’, the summability condition in (16) is already present in [24, For-
mula (3)] for the case of the unit disk of the plane.

4.3.2. Case k ≥ 2

Let Ω be a bounded domain in RN of class C0,1 and k ≥ 2 be fixed. We
consider the following family of variational eigenvalue problems indexed by
` ∈ {0, ...,k−1}:∫

Ω

Dku : Dk
ϕdx+

k−1

∑
j=0,
j 6=`

β
(`)
j

∫
∂Ω

∂ ju
∂ν j

∂ jϕ

∂ν j dσ = σ
(`)
∫

∂Ω

∂ `u
∂ν`

∂ `ϕ

∂ν`
dσ , (17)

∀ϕ ∈ Hk(Ω), in the unknowns u ∈ Hk(Ω), σ (`) ∈ R, where β
(`)
j > 0 are fixed

constants for all j = 0, ...,k−1, j 6= `. Here Dku : Dkϕ := ∑|α|=k DαuDαϕ . For
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simplicity, we will set β
(`)
j = 1 for all j, ` = 0, ...,k− 1, j 6= `. All the results

which we present remain valid for different positive values of β
(`)
j . On Hk(Ω)

we consider the scalar product

〈u,v〉Hk
∂
(Ω) :=

∫
Ω

Dku : Dkvdx+
k−1

∑
j=0

∫
∂Ω

∂ ju
∂ν j

∂ jϕ

∂ν j dσ , ∀u,v ∈ Hk(Ω) (18)

which induces the norm

‖u‖2
Hk

∂
(Ω)

:=
∫

Ω

|Dku|2dx+
k−1

∑
j=0

∫
∂Ω

(
∂ ju
∂ν j

)2

dσ , ∀u ∈ Hk(Ω). (19)

It is easy to see that the norm (19) is equivalent to the standard norm of Hk(Ω).
For all ` = 0, ...,k−1 we denote by Hk

`,0(Ω) the closed subspace of Hk(Ω)
defined by

Hk
0,`(Ω) :=

{
u ∈ Hk(Ω) : γ`(u) = 0

}
,

and by Hk
`(Ω) the orthogonal complement of Hk

0,`(Ω) in Hk(Ω) with respect to
(18), namely

Hk
`(Ω) :=

{
u ∈ Hk(Ω) : 〈u,v〉Hk

∂
(Ω) = 0 ,∀v ∈ Hk

0,`(Ω)
}
.

We are ready to state the following theorem.

Theorem 4.10. Let Ω be a bounded domain in RN of class C0,1. The eigenval-
ues of problem (17) have finite multiplicity and are given by a non-decreasing
sequence of non-negative real numbers σ

(`)
j defined by

σ
(`)
j = min

U⊂Hk(Ω)\Hk
0,`(Ω)

dimU= j

max
u∈U
u6=0

∫
Ω
|Dku|2dx+∑

k−1
j=0
j 6=`

∫
∂Ω

(
∂ ju
∂ν j

)2
dσ

∫
∂Ω

(
∂ `u
∂ν`

)2
dσ

,

where each eigenvalue is repeated according to its multiplicity. Moreover, there
exists a Hilbert basis {u(`)j }∞

j=1 of Hk
`(Ω) of eigenfunctions u(`)j . Finally, by

normalizing the eigenfunctions u(`)j with respect to (19), the functions û(`)j :=√
1+σ

(`)
j γ`(u

(`)
j ) define a Hilbert basis of L2(∂Ω) with respect to its standard

scalar product.

We refer to [26] for the proof of Theorem 4.10 in the case k = 2. The proof
for k ≥ 3 is similar.
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We note that in the case k = 2, ` = 0 the first eigenvalue σ
(0)
1 = 0 has mul-

tiplicity one and the corresponding eigenfunctions are the constant functions
on Ω, while for ` = 1 the first eigenvalue σ

(1)
1 is positive. For k ≥ 3 it is not

straightforward to study the kernel of the operator. In fact all eigenfunctions
corresponding to an eigenvalue σ (`) = 0 are of the form u = ∑|α|≤k−1 aαxα for
some aα ∈ R and satisfy ∂ ju

∂ν j = 0 on ∂Ω for all j = 1, ...,k−1, j 6= `. The fact
that these conditions are satisfied by certain functions may depend also on Ω

when k ≥ 3. A simple example is Ω =
{

x ∈ RN : |x|< 2
}

and u(x) = 2−|x|2

which is an eigenfunction corresponding to σ
(1)
1 = 0 when k = 3.

For all `= 0, ...,k−1 we define the spaces

Hk−`− 1
2

A (∂Ω)=

{
g ∈ L2(∂Ω): g =

∞

∑
j=1

g jû
(`)
j such that

∞

∑
j=1

(1+σ
(`)
j )g2

j < ∞

}
(20)

which should not be confused with the spaces Hs
A(∂Ω) in Definition 4.8. These

spaces are endowed with a natural scalar product and an induced norm defined
by

〈 f ,g〉
H

k−`− 1
2

A (∂Ω)
:=

∞

∑
j=1

(1+σ
(`)
j )g j f j

‖g‖2

H
k−`− 1

2
A (∂Ω)

:=
∞

∑
j=1

(1+σ
(`)
j )g2

j ,

and allow to describe the trace spaces of Hk(Ω). Namely, we have the following.

Theorem 4.11. Let Ω be a bounded domain in RN of class C0,1. Then

γ`(Hk(Ω)) = γ`(Hk
`(Ω)) = Hk−`− 1

2
A (∂Ω),

for all `= 0, ...,k−1.
If Ω is of class Ck,1, then

Γ(Hk(Ω)) =
k−1

∏
`=0

Hk−`− 1
2

A (∂Ω),

and in particular

Hk−`− 1
2

A (∂Ω) = Hk−`− 1
2 (∂Ω),

for all `= 0, ...,k−1.

We note that the definition of the spaces Hk−`−1/2
A (∂Ω) require that Ω is of

class C0,1, which is a minimal assumption for the validity of Theorem 4.10. On
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the other hand, for the classical definition of the trace spaces Hk−`−1/2(∂Ω) via
Fourier analysis or Besov spaces we need Ω to be at least of class Ck−l−1,1. We
refer to [26] for the proof of Theorem 4.11 in the case k = 2. The proof for k≥ 3
can be carried out by following the same lines.

Theorem 4.11 implies that for a domain of class C0,1

Γ(Hk(Ω))⊂
k−1

∏
`=0

Hk−`− 1
2

A (∂Ω). (21)

This provides a necessary condition for an element g∈ (L2(∂Ω))k to be the total
trace Γ(u) of some u ∈ Hk(Ω). This condition is not in general sufficient. In
fact, as pointed out in [26] in the case k = 2, the inclusion (21) is in general strict,
if the domain is not of class Ck,1. It has been shown in [26], as one expects, that
further compatibility conditions are required. These compatibility conditions
can be written in a compact implicit from, as stated in the next theorem.

Theorem 4.12. Let Ω be a bounded domain in RN of class C0,1. Let (g(0), ...,
g(k−1)) ∈∏

k−1
`=0 Hk−`−1/2

A (∂Ω) be given by

g(`) =
∞

∑
j=1

g(`)j û(`)j ,

with ∑
∞
j=1(1+σ

(`)
j )(g(`)j )2 < ∞, for all ` = 0, ...,k− 1. Then (g(0), ...,g(k−1))

belongs to Γ(Hk(Ω)) if and only if for some ` ∈ {0, ...,k−1}(
∞

∑
j=1

√
1+σ

(`)
j g(`)j γm(u

(`)
j )−g(m)

)k−1

m=1

∈ Γ(Hk
0,`(Ω)). (22)

The proof is carried out by noting that, if (g(0), ...,g(k−1)) belongs to the
space Γ(Hk(Ω)), then g(`) = γ`(u`+u0,`), where u0,` ∈Hk

0,`(Ω) and u` =∑
∞
j=1(1

+σ
(`)
j )g(`)j u(`)j . We deduce that γm(u`)−g(m) =−γm(u0,`) for all m= 1, ...,k−1,

m 6= `, and therefore the validity of (22).
We remark that it is sufficient that (22) holds for just one ` ∈ {0, ...,k−1}.

If this is true, then (22) holds for all ` ∈ {0, ...,k−1}. Note that the problem is
reduced by one dimension by condition (22) because the entry corresponding to
the index m = ` in the left-hand side of (22) is zero.

Condition (22) is quite implicit, however it is possible to re-formulate it in
a more explicit, recursive way. In fact, we note that (22) allows to reduce the
study of Γ(Hk(Ω)) to the study of Γ(Hk

0,`(Ω)) for some ` ∈ {0, ...,k−1}. Then,
we may replace through all Subsection 4.3.2 the space Hk(Ω) by Hk

0,`(Ω) and
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perform the same analysis. In particular, we can introduce families of poly-
harmonic Steklov-type problems as in (17), where the variational problem is
taken in Hk

`,0(Ω), and replace ` by some `′ 6= ` in the right-hand side of the
equality in (17). Associated with this family of problems, we find suitable
spaces defined on the boundary of Ω which allow to describe the trace spaces
γ`′(Hk

0,`(Ω)) for all `′ 6= ` by means of Fourier series. As in Theorem 4.12, a
description of Γ(Hk

0,`(Ω)) is deduced from the knowledge of γ`′(Hk
0,`(Ω)) and

Γ(Hk
0,`(Ω)∩Hk

0,`′(Ω)). Thus, the problem is reduced again by one dimension,
namely, it is reduced to the study of Γ(Hk

0,`(Ω)∩Hk
0,`′(Ω)). This process stops

after k−1 steps.
To clarify the ideas, we will briefly describe the case k = 2, for which nec-

essary and sufficient conditions are deduced.
For `= 0,1, we denote by B2

0,`(Ω) the orthogonal complement of H2
0 (Ω) =

H2
0,0(Ω)∩H2

0,1(Ω) in H2
0,`(Ω) with respect to the quadratic form (18) (with k =

2), namely

B2
0,`(Ω) :=

{
u ∈ H2

0,`(Ω) : 〈u,ϕ〉H2
∂
(Ω) = 0 ,∀ϕ ∈ H2

0 (Ω)
}
.

Note that B2
0,`(Ω) is the subspace of the biharmonic functions in H2(Ω) with

γ`(u) = 0. Recall that the biharmonic functions in H2(Ω) are defined as those
functions u ∈ H2(Ω) such that

∫
Ω

D2u : D2ϕdx = 0 for all ϕ ∈ H2
0 (Ω). There-

fore, we have
H2

0,`(Ω) = H2
0 (Ω)⊕B2

0,`(Ω),

where the sum is orthogonal with respect to (18). Next, we consider the follow-
ing family of auxiliary variational eigenvalue problems indexed by `,m∈ {0,1},
` 6= m: ∫

Ω

D2w : D2
ϕdx = η

`,m
∫

∂Ω

∂ mw
∂νm

∂ mϕ

∂νm dσ , ∀ϕ ∈ H2
0,`(Ω), (23)

in the unknowns w ∈ H2
0,`(Ω) and η`,m ∈ R. We have the following theorem.

Theorem 4.13. Let Ω be a bounded domain in RN of class C0,1, `,m ∈ {0,1},
` 6= m. The eigenvalues of problem (23) have finite multiplicity and are given by
a non-decreasing sequence of non-negative real numbers η

`,m
j defined by

η
`,m
j = min

W⊂H2
0,`(Ω)\H2

0 (Ω)

dimW= j

max
w∈W
w6=0

∫
Ω
|D2w|2dx∫

∂Ω

(
∂ mw
∂νm

)2
dσ

,

where each eigenvalue is repeated according to its multiplicity. Moreover, there
exists a Hilbert basis {w`,m

j }∞
j=1 of B2

0,`(Ω) of eigenfunctions w`,m
j . Finally, by
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normalizing the eigenfunctions w`,m
j with respect to (19), the functions ŵ`,m

j :=√
1+η

`,m
j γm(w

`,m
j ) define a Hilbert basis of L2(∂Ω) with respect to its standard

scalar product.

We refer to [26] for the proof of Theorem 4.13.

In order to characterize those couples (g(0),g(1))∈H
3
2
A(∂Ω)×H

1
2
A(∂Ω) whi-

ch belong to Γ(H2(Ω)), we need to introduce the spaces H
3
2−m
A,` (∂Ω) defined for

`,m ∈ {0,1}, ` 6= m, by

H
3
2−m
`,A (∂Ω) :=

{
g ∈ L2(∂Ω) : g =

∞

∑
j=1

g jŵ
`,m
j such that

∞

∑
j=1

(1+η
`,m
j )g2

j < ∞

}
,

where g j = 〈g, ŵ`,m
j 〉L2(∂Ω). It turns out that H3/2−m

`,A (∂Ω) = γm(B2
0,`(Ω)).

We have the following corollary of Theorem 4.12

Corollary 4.14. Let Ω be a bounded domain in RN of class C0,1. Let (g(0),g(1))
∈ H3/2

A (∂Ω)×H1/2
A (∂Ω) be given by

g(`) =
∞

∑
j=1

g(`)j û(`)j ,

with ∑
∞
j=1(1+σ

(`)
j )(g(`)j )2 < ∞, for ` = 0,1. Then (g(0),g(1)) belongs to the

space Γ(H2(Ω)) if and only if one of the following two equivalent conditions
holds:

∞

∑
j=1

√
1+σ

(0)
j g(0)j γ1(u

(0)
j )−g(1) ∈ H

1
2
A,0(∂Ω). (24)

∞

∑
j=1

√
1+σ

(1)
j g(1)j γ0(u

(1)
j )−g(0) ∈ H

3
2
A,1(∂Ω). (25)

We conclude this section with some remarks. We note that for k = 2, in
the case of smooth domains, the eigenvalues σ

(0)
j and σ

(1)
j satisfy the following

asymptotic law

σ
(0)
j ∼CN

(
j
|∂Ω|

) 3
N−1

and σ
(1)
j ∼C′N

(
j
|∂Ω|

) 1
N−1

, as j→+∞,

where CN ,C′N depend only on N, see [26] for details. Hence we can identify the
space H3/2

A (∂Ω) with the space of sequences{
(s j)

∞
j=1 ∈ R∞ : ( j

3
2(N−1) s j)

∞
j=1 ∈ l2

}
(26)
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and the space H1/2
A (∂Ω) with{

(s j)
∞
j=1 ∈ R∞ : ( j

1
2(N−1) s j)

∞
j=1 ∈ l2

}
. (27)

Also in this case we observe the natural appearance of the exponents 3
2 and 1

2 in
(26) and (27) respectively.

Note that for k = 2 and `= 0, setting λ :=−β
(0)
1 , problem (17) is the weak

formulation of the following Steklov-type problem for the biharmonic operator:
∆2u = 0, in Ω,
∂ 2u
∂ν2 −λ

∂u
∂ν

= 0, on ∂Ω,

−div∂Ω(D2u ·ν)∂Ω− ∂∆u
∂ν

= σ (0)(λ )u, on ∂Ω,

(28)

in the unknowns u (the eigenfunction) and σ (0)(λ ) (the eigenvalue). Similarly,
for k = 2 and ` = 1, setting µ := −β

(1)
0 , problem (17) is the weak formulation

of the following Steklov-type problems for the biharmonic operator:
∆2u = 0, in Ω,
∂ 2u
∂ν2 = σ (1)(µ) ∂u

∂ν
, on ∂Ω,

−div∂Ω(D2u ·ν)∂Ω− ∂∆u
∂ν
−µu = 0, on ∂Ω,

(29)

in the unknowns u (the eigenfunction) and σ (1)(µ) (the eigenvalue). Accord-
ing to (17), the numbers λ ,µ are assumed to be strictly negative. Problems
(28) and (29) admit increasing sequences of eigenvalues, which we denote by
{σ (0)

j (λ )}∞
j=1 and {σ (1)

j (µ)}∞
j=1 respectively. We have highlighted the depen-

dence of the eigenvalues on λ and µ . Indeed, problems (28) and (29) define a
family of multi-parameter Steklov-type problems for the biharmonic operator,
which are genuine generalizations of the classical Steklov problem (10) for the
Laplace operator.

As pointed out in [26], problems (28) and (29) can be studied also for λ ,µ ≥
0. We refer to [26] for a detailed analysis of the dependence of the eigenvalues
σ
(0)
j (λ ) and σ

(1)
j (µ) upon λ ,µ , explicit examples, Weyl’s asymptotics, as well

as the asymptotic behavior of the eigenvalues for λ ,µ →−∞.
For k = 2, the auxiliary problems defined by (23) are the weak formulations

of the following Steklov-type problems for the biharmonic operator. For `= 1,
m = 0 we have 

∆2w = 0, in Ω,
∂w
∂ν

= 0, on ∂Ω,

−div∂Ω(D2w ·ν)∂Ω− ∂∆w
∂ν

= η1,0w, on ∂Ω,

(30)
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in the unknowns w (the eigenfunction) and η1,0 (the eigenvalue). For ` = 0,
m = 1 we have 

∆2w = 0, in Ω,
∂ 2w
∂ν2 = η0,1 ∂w

∂ν
, on ∂Ω,

w = 0, on ∂Ω,

(31)

in the unknowns w (the eigenfunction) and η0,1 (the eigenvalue).
Problem (28) for λ = 0 has been introduced in [12] and further investigated

in [13]. Problem (31) has been considered by many authors in the literature,
while problem (30) has been much less investigated. See [26] for references,
see also [11]. In particular, it has been proved in [26] that problem (30) is the
limit problem of (28) as λ →−∞, while problem (31) is the limit problem of
(29) as µ →−∞.

Already for k = 3, writing explicitly the classical formulation of problem
(17) analogous to (28)-(29) is not easy, see e.g., [2, 18] for a discussion of var-
ious classical boundary value problems for polyharmonic operators. However,
even if their explicit form is quite involved, there exist uniquely defined bound-
ary differential operatorsN j, j = 0, ...,k−1 of order j+k such that any smooth
solution to (17) solves the following boundary value problem

∆ku = 0, in Ω,

Nk−1− ju+β
(`)
j

∂ ju
∂ν j = 0 ∀ j = 0, ...,k−1, j 6= `, on ∂Ω,

Nk−1−`u = σ (`) ∂ `u
∂ν` , on ∂Ω,

in the unknowns u (the eigenfunction) and σ (`) = σ (`)(β
(`)
0 , ..., ,β

(`)
`−1,β

(`)
`+1, ...,

β
(`)
k−1) (the eigenvalue). When k = 2, N0u = ∂ 2u

∂ν2 and N1(u) = −div∂Ω(D2u ·
ν)∂Ω− ∂∆u

∂ν
. The operatorsN j correspond to the Neumann boundary conditions

for the polyharmonic operator (−∆)k.
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