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Abstract: Nowadays, the demand for personalized goods is increasing, with small batches of cus-
tomized products. Companies are asked to cope with this need to be more competitive; thus, it is
crucial to optimally set up the production process to cope with the demand. Among the products
composed of several parts, sales kits occupy a significant role. Sales kits are sets of different com-
ponents, supplied as a single unit. Automation is usually used to reduce the unit direct production
costs for assembled products, and this is especially true for kitting since it has minimum added value,
compared to other technologies. The wide range of components leads to frequent reconfiguration of
the feeding devices between different products, increasing the setup time. The aim of this work is to
provide a model that minimizes the setup times of automatic kitting systems when working with a
high variety of products. To reach this goal, we propose to apply the traveling salesman problem
(TSP) to the production process by integrating a multi-clustering model, thus increasing its appeal to
several applications. This method is applied both to simulations and to a real case study, and proves
to be able to provide a good solution in a reasonable time.

Keywords: sales kit; clustering; kitting lines; traveling salesman problem; feeder

1. Introduction

Nowadays, it is fundamental for many manufacturing companies to provide a wide
range of products with minimum lead time. To reach this goal, a production system must
be flexible, i.e., manage changes in product and volumes [1]. Despite manual assembly
systems (MAS) achieving a high degree of flexibility, several drawbacks limit their usage:
the accuracy and repeatability is inferior to that achievable with automatic systems, and
ergonomic problems affects the achievable throughput [2]. Therefore, automation is a
viable option, thanks to their improved throughput and product quality with reduced
production costs in comparison to MAS.

Kitting is one of the most critical in terms of throughput and flexibility. Kitting is the
process where all the parts required to assemble a product are collected in a kit container,
instead of storing the parts along the line-side storage locations, as in line-side stocking [3].
However, this work focuses on kits as the end product of the production line, i.e., the
set of the assembled product packed together with its accessories and supplied to the
customers as a single product, and which are called sales kits [4]. Different from other
assembly technologies, kitting is based on operations with minimum added value to the
end product [5], even if from the logistic point of view it creates added value in the form of
improved quality and reduced search time [6]; thus, it is critical to increase throughput.
The required flexibility often leads to the adoption of manual systems, which creates a
range of problems as seen with MAS [7], but also, it is labor intensive. Thus, the adoption
of automatic kitting systems is fundamental, but to reach this goal, it is necessary to have
flexible systems to minimize the lead times.
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For an automatic system to be competitive, it should [8] be able to adapt to part and
volume changes, be capable of processing multiple parts and models simultaneously, and
carry out model changeovers quickly and easily. To improve the flexibility of automatic
systems, flexible assembly systems (FAS) have been developed. Flexibility during the fixing
phase is achieved by using a programmable robotic manipulator [9,10]. However, for a
FAS to be truly flexible, it is important to ensure that the feeder system provides multiple
and different parts quickly. Indeed, the fundamental tasks of partitioning the parts, i.e., the
separation and presentation in a certain amount and orientation at a picking location, are
carried out by the feeders [11]. This process is critical for the flexibility of the assembly
system [12] and should be accordingly studied.

Indeed, traditional automatic feeding systems [11] are mainly passive orientating
systems, and therefore, they present limited flexibility, i.e., they can provide a limited
number of component types at the same time. However, their low cost is appealing for
kitting companies. Hence, the workcell may require as many feeders as the number of
parts; changing between products requires the set up of usually more than one feeder,
thus increasing the setup time. Therefore, it is important to reduce the number of feeder
reconfigurations between changeovers to reduce the overall setup time.

This work aims to provide a model that minimizes the setup times of automatic kitting
systems by adopting a suitable schedule that minimizes the number of retoolings of its
feeders. Indeed, the productivity of a logistics system depends on the efficiency of the
schedule: if different products are to be made on a single line, it is important to reduce the
setup time between each changeover [11]. To achieve this goal, this work adopts a traveling
salesman problem (TSP) approach, which aims to minimize the reconfiguration times. TSP
is already adopted in the literature to minimize the cost of setup. However, when the
number of parts is significant, which is reasonable for sales kitting since it is characterized
by high product variety, the computational time may be too large to adopt this method in
flexible systems. Hence, the novelty of this work is to adopt a multi-clustering approach to
decompose the problem into subproblems, which can be managed with the TSP algorithm
and provide a solution in low computational time. This faster approach can be used in
flexible manufacturing systems in order to quickly respond to an unexpected event and
obtain a new schedule faster than with traditional methods.

This work is structured as follows: Section 2 provides a literature review, showing
the novelty and the importance of the study; Section 3 presents the mathematical model.
Section 4 applies the model to simulations to identify its capabilities in terms of final
changeover cost and computational time, and Section 5 applies the proposed model to an
industrial case study. Lastly, Section 6 concludes the work.

2. Literature Review

An analysis of the state of the art should be carried out to identify the different
approaches adopted in the literature to reduce the setup time, with a major focus on kitting
processes. As seen in Table 1, a major part of the literature regarding the reduction of setup
times is focused on job shop floor scenarios.
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Table 1. Summary of the literature review on setup reduction methods in the last decade.

Author Year
Industry Objective Method

Results
Job Shop Assembly Kitting Tardiness Flowtime Makespan Setup Tme Other Search Algorithm GA Heuristic SMED Other

[13] 2018 X X X X Improved calculation time

[14] 2018 X X X Similar results to exact
method

[15] 2017 X X X Tabu search allows to solve
more complex scenarios

[16] 2017 X X X Kitting requires floor space
and picking time

[17] 2014 X X X Improvement on traditional
VNS

[18] 2014 X X X Average assembly time
reduction of 2.5%

[19] 2013 X X X X
Different results when

machining or assembly are
bottleneck.

[20] 2013 X X X Setup time reduction up to
79%

[21] 2013 X X X Genetic algorithm preferred
for large scale problems

[22] 2013 X X X Reduction of at least 17% in
tardiness

[23] 2012 X X X Changeover from 399 min to
120 min

[24] 2012 X X X Better solutions than
traditional ACO

[25] 2012 X X X Setup time reduction from
85 min to 50 min

[1] 2011 X X X X Reduction in makespan and
increase in machine utilization

[26] 2011 X X X X

GA more performing if setup
time is 20% of makespan;

heuristic reduces more setup
times
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Indeed, the literature on kitting processes is mainly focused on comparison with
other feeding policies [27], such as line-side stocking [6,28], focusing more on product
kits [4]. Moreover, the kitting processes studied are mainly manual [29], preferred due to
the flexibility of the operator, whereas automatic systems are more focused on providing
technical solutions [30–32], providing cost evaluating models [33] or estimating the perfor-
mance [34]. However, automating the kitting process is fundamental since kitting is labor
intensive; hence, it is considered a valid solution to increase productivity [16]. Despite
automated storage and retrieval systems having been adopted to improve logistics since
1950s, traditional systems based on stacker cranes [35] are not suitable for kitting processes
in small areas; hence, mobile robotic systems are studied in the literature [36]. One of
the main problems when adopting mobile robots is optimally performing all the tasks to
minimize the schedule length or duration [37] to minimize the setup time of the workcells.

From our review, it is possible to distinguish two main methods. The first approach is
based on the reduction in the setup time by acting on the setup operations, i.e., the single
minute exchange of die (SMED) methodology. Applied since the 1950s [25], this approach
is based on the identification of two types of setup operations [38]:

• Internal setup activities, which can be performed only when the machine is stopped;
• External setup activities, which can be performed even when the machine is operating.

Through this, it is possible to focus only on and to improve the internal activities,
as seen in [23]. The authors developed a new clamping system; by applying the SMED
approach, it was possible to reduce the changeover time from 399 min to 120 min.

However, when working on a complex system, SMED may not be sufficient to obtain
successful solutions [20]. Indeed, manufacturing systems are complex, as they are com-
prised of a set of different machines connected by automated transfer systems, and their
relationship is not included in the SMED approach. As shown by the author, considering
also a balancing approach improves the achievable setup time reduction, from 40% to 79%.

The flexible job shop scheduling problem, which consists of scheduling a set of
operations on a set of flexible machines, is known to be NP-hard [39]. Hence, to solve
large-scale problems, which are more akin to real industrial scenarios, meta-heuristics
are usually employed [21]. Genetic algorithms (GA) have been considered. Jalilvand-
Nejad and Fattahi [21] proposed a GA based on different strategies for initial population,
crossover, and mutation operations to improve its efficiency. Shokohui [14] presented a
multi-objective GA, which aims to minimize the makespan, machine load, and total load.
Luo et al. [26] proposed a comparison between a GA and a heuristic to solve hybrid flow
shop scheduling with a setup time characteristic for each family. Their results showed
that the GA, despite being more high performing with a lower makespan, requires more
changeover than the heuristic approach, thus increasing the setup time, with an average
increase in the setup time of 43.2%.

GA have also been adopted to solve the TSP problem for mobile robots[40]. In [37],
such a GA was proposed to reduce the travel path of a mobile robot that performs logistics-
related tasks (picking and delivery). The algorithm was compared to a traditional greedy
algorithm, i.e., a planner that picks nearest tasks, showing a reduction in the travel path
of at least 40%. A GA was also adopted in [41], where it minimizes the energy usage by
minimizing the traveling time. The system was also applied to an industrial application,
where the robot was successfully capable of continuously picking and placing SLCs from
the warehouse. Lastly, [42] compared the performance of a GA-based heuristic with a
mixed-integer programming (MIP) model. Indeed, the MIP was capable of finding optimal
solutions, but proved to be too time consuming. On the other hand, the approximated GA
approach was significantly faster, with differences in the results of only 3%.

Considering our review, the majority of works have focused on the search algorithm,
e.g., tabu search [15]. Sabouni et al. [13] proposed a custom search algorithm, CFIM2,
which improves the traditional tabu search. Whereas the two algorithms achieve similar
performance, tabu search generates a larger number of solutions, thus requiring a higher
computational time. Adibi et al. [17] combined a variable neighborhood search with a
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clustering approach. The authors introduced a clustering analysis to improve the efficiency
of the algorithm by grouping a set of jobs on the basis of the processing time. This approach
leads to better solutions, increasing the improvement percentage as the mean time job
arrivals increases, thereby improving the schedule as the problem complexity increases.

As a result of our literature review, we can identify that previous studies agree that
real industrial scheduling problems are complex, and meta-heuristics or approaches that
decompose the problem into subproblems should be considered. Despite previous works
having presented algorithms to reduce the setup times, little focus has been directed
toward the reduction in setup time in sales kitting. Moreover, the literature regarding
automatic kitting processes focuses, to the authors’ knowledge, on technical solutions and
performance evaluation models. Approaches to minimize kitting process times have been
developed regarding mobile robots, where heuristics have been adopted to solve the TSP.
However, these works do not focus on the minimization of the retooling of feeders, which
is another important problem in automatic kitting processes. Therefore, this work aims to
reduce the setup time in the sales kitting industry, adopting a multi-clustering approach to
reduce the complexity of the problem due to the high number of products and components
characteristic of this process.

3. Mathematical Model
3.1. Model Description

Let us consider an enterprise in the logistics field. Such an enterprise is able to
provide to the customers multiple products, and each product is made of several parts.
Different products are built with different parts, but different products may share some
parts; clearly, different products must not be built with the same parts; otherwise, they
would be considered coincident. Indeed, since this work focuses on the feeding process,
the assembly phase is not considered, which may result in different final products. This
approach is perfectly applicable to a kitting line, in which the parts are grouped together to
form kits (i.e., products).

Products and parts are summarized in the bill of materials (BOM) matrix. The BOM is
a logical Np × Nc matrix (M), where Np is the number of products and Nc is the number of
parts. The M elements mik are as follows:

M = [mik] , mik =

{
1 if product i is made with part k
0 otherwise

(1)

As stated before, for each part to be fed, a feeder is required. Thus, with a great number
of parts, it is important to reduce the setup time between each changeover, i.e., between
two kits. This setup time depends on the number of feeders to be reconfigured; thus, it is
important to evaluate its extent.

The number of reconfigurations can be calculated directly by comparing the list of
parts to be used for two specific products (Table 2): if a product i uses a certain part k and
another product j does not, then a reconfiguration is required. Such reconfiguration could
be avoided if a very high number of feeders is installed in the workcell, but such a solution
is impractical if Nc is high, due to the cost and encumbrance.

Table 2. Relationship between two different products in terms of feeder changes for a generic part
k. Feeder resetting is to be done if only one of the products uses the specific part (and the other
does not).

Part k
Product j, mjk

1 0

Product i, mik
1 0 1

0 1 0
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The aforementioned comparison is equal to a XOR operation of two different rows of
matrix M. The resulting vector Dij shows the parts for which the feeder reconfiguration
is required. The total number of reconfigurations between two products i and j, Sij is
as follows:

Sij =
Nc

∑
k=0

Dij,k (2)

where Dij,k is the k-th element of vector Dij. It is clear that Sij ∈ [1, Nc] since there is at least
one part that differs between the two products (lower bound).

If the reconfiguration time of one feeder for a specific part is tset,k, the overall cell setup
time between two products i and j is as follows:

tset,ij =
Nc

∑
k=0

Dij,ktset,k (3)

In Equation (3), the setup time tset,k can be modified, including similarities between
the parts, i.e., the fact that in some cases, it is possible to reconfigure a feeder by changing
only a subset of traps, reducing the overall setup time [43]. For the sake of brevity, tset,k is
considered a mean time among all the possible setup times for the specific part.

From Equation (3), it is possible to define a Np × Np cost matrix C. Such a matrix
contains all the reconfiguration times:

C = [cij] , cij = tset,ij (4)

To optimize the logistics system, C can be used: several algorithms are suitable (such
as genetic algorithms [14,21] or tabu search algorithms [15]), but in our case, we choose
to use the traveling salesman problem (TSP) [44] to solve the problem, due to its ease of
implementation and its non-stochastic properties.

TSP is a problem which aims at finding the best path that connects a certain number
of “cities” with the minimum cost, starting from one city, visiting all the other cities just
once and coming back to the first one. This results in a closed loop in which the starting
point can be chosen arbitrarily. In our scenario, the cities are the products, and the path
cost is made up of the feeder reconfiguration. Reducing the cost of the entire path means
reducing the overall reconfiguration time. Our work aims at reducing the complexity of
the TSP in computational terms, dividing the products into clusters, and thus, imposing
additional constraints to the problem that allow the finding of a solution to the TSP in a
lower computational time. Clusters can be further divided into clusters; thus, it is possible
to apply a multi-clustering approach, increasing the flexibility of our approach.

3.2. The Traveling Salesman Problem

Let us consider xij to be the connection between products i and j; xij is an integer, and
its value is defined by the status of the path:

xij =

{
1 if loci and locj are connected
0 otherwise

(5)

In a kitting process, xij describes the actual reconfiguration process between two kits.
Its cost is described by cij of Equation (4).

The TSP finds X = [xij] that solves the function as follows:

min

(
n

∑
i=1

n

∑
j 6=i,j=1

cijxij

)
(6)
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While TSP can be used with the full C matrix, the computational time may greatly
increase if a large number of products is to be considered [45]. Therefore, it is important to
reduce the computational time to obtain a good solution in a reasonable time.

To do so, clustering is of great importance: not only is the algorithm that solves the
TSP constrained to evaluate a smaller number of solutions, but the intrinsic characteristic
of TSP makes it well suited for the clustering of cities [44]. In fact, clustering the cities in
the TSP means that the solution “enters” the cluster, moves between all the cities of the
cluster and then moves to another cluster. This means that for each cluster S, containing ns
positions, the TSP defines a non-closed sub-tour containing only the positions of the cluster.
This constraint can be defined as follows [44]:

∑
i 6=j,i∈S,j∈S

xij = ns − 1 (7)

since the last connection that would close the tour has to be removed to connect the cluster
to the other positions. The number of connections between the clusters must be equal to
the number of clusters to obtain a closed path. The clustering can be performed multiple
times: Equation (7) can be used to group different clusters or group different products.

By applying constraints to the TSP, the final solution can result in a cost which differs
from the optimal solution, but can be obtained in lower computational times.

3.3. Clustering

Grouping the products into clusters is a problem that has been studied in the past
years [46]. Sometimes, some parts are widely used among products, while in other cases,
very few parts require a high setup time tset,k. Combinations of the two can also be found.

Similar parts can be grouped into “families”. As an example, screws with differ-
ent thread lengths but the same diameter can be grouped within the same family. In
mathematical terms, the membership of a part k to a family F is defined via the integer fk:

fk =

{
1 if part k is in family F
0 otherwise

(8)

As a result, it is possible to evaluate the mean setup time of each family tF as follows:

tF =

Nc
∑

k=1
tset,k fk

Nc
∑

k=1
fk

(9)

Different families are described by different mean setup times (tF). As a result, some
families have a greater impact on the overall setup time with respect to others. Due to the
Pareto principle [47], “roughly 80% of consequences come from 20% of the causes”, which
translates to the fact that only a few families are responsible for the majority of the setup
time.

By following the Pareto principle, it is possible to cluster the parts into the respective
families. The steps of the clustering process can be summarized as follows (Figure 1):

1. Parts are divided into families (i.e., the parts that are used by a specific machine can
be grouped into a family).

2. The families are listed in descending order based on tF (i.e., at the top of the list are
placed the families with higher tF).

3. The cumulative sum of tF is performed.
4. Once a certain threshold is reached (e.g., 80% for the Pareto principle), the list of the

summed families is retrieved. These families are used for the multi-clustering process.
5. Starting from the first family, the products are divided based on the different parts of

the families (thanks to the value of mik, Equation (1)) to form clusters. Starting from
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the second family, products with the same part may be placed in different clusters
based the previous clustering (Figure 2).

From Point 5 it is possible to apply TSP to calculate the optimal sequence of products.
To do so, the appropriate constraints have to be applied (Equation (7)).

Figure 1. Optimization process. Starting from the matrix BOM as an input, it is possible to obtain
the optimal sequence to be applied to the system.

Figure 2. An example of the multi-clustering process: starting from the first family F1 (with 3 parts),
multiple clusters are created by dividing the first clusters based on the families F2 and F3 (each with
2 parts). Clusters in the green box are used for the TSP.

4. Simulations

This section aims at comparing the performance of the standard TSP to the TSP with
clusters (which, from now on, we refer to as “cluster TSP”). To achieve this result, the
mathematical model described in Section 3 is simulated in Matlab by varying the ruling
parameters:

• The number of parts Nc.
• The number of products Np.

The BOM matrix M is randomly generated, and for each part, tset,k is randomly
assigned. As a result, the total number of reconfigurations between two products (Sij) is
calculated by means of Equation (2). For each set of Nc and Np, the simulations are run
20 times for statistical relevance.
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The results are shown in Figures 3 and 4. As expected, in general, the overall cost
provided by the solution of the cluster TSP (Figure 3b) is higher than the one of the full TSP
(Figure 3a). This result is perfectly reasonable since the full TSP aims at finding the best
solution to the problem, while the cluster TSP applies some constraints on the connections
that force the final solution to diverge from the optimal one. In this sense, the cluster
TSP provides a sub-optimal solution which satisfies the constraints provided during the
definition of the problem.

However, the final cost of the cluster TSP is generally very close to the cost of the full
TSP (Figure 3c). In this sense, an enterprise could apply some constraints to the problem
(maybe not directly related to the setup time) without the worry of drastically reducing the
performance of the system.

(a) Full TSP (b) Cluster TSP

(c) Normalized values

Figure 3. Simulation results: overall cost. (a) The cost of the solution of the Full TSP; (b) The
cost of the solution of the Cluster TSP; (c) The cost of the solution of Cluster TSP divided per the
corresponding cost of the solution of Full TSP.
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(a) Full TSP (b) Cluster TSP

(c) Normalized values

Figure 4. Simulation results: computational time. (a) The computational time of the Full TSP; (b) The
computational time of the Cluster TSP; (c) The computational time of Cluster TSP divided per the
corresponding computational time of Full TSP.

On the other hand, the computational time (Figure 4) is where generally the cluster
TSP outperforms the full TSP. In fact, the performance of the solver depends on the
implementation itself, but we have found that for most of the tests, the cluster TSP requires
less computational time than that of the full TSP. This result is also highly influenced by
the punctual load of the PC, and it can be found sometimes (Figure 3c) that the full TSP is
faster than the cluster TSP. Furthermore, this influence is even more relevant with lower Nc
and Np, where the computational time of the two TSP is generally lower than a tenth of
a second. In this scenario, the TSP implementation is of no use, and the SMED approach
should be used.

By analyzing Figure 3c, it is worth noting that the cluster TSP is more appealing if the
number of products to be handled is high. In this way, it is possible to obtain a sub-optimal
solution in a reasonable time.

Figure 3a,b shows how, in general, with equal Np, the computational time decreases
with Nc. This is due to the number of constraints applied to the problem: if the number of
parts is low, the clusters usually contain a higher number of products, thus applying more
constraints. Moreover, with a high number of products and a low number of parts, it is
more likely to have very similar Sij (Equation (2)), so it is more difficult for the algorithm to
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find an optimal solution. This issue can be solved by improving the algorithm that solves
the TSP [48].

It is worth noting that the TSP itself is crucial in reducing the overall cost. Figure 5
shows the maximum, median and minimum cost of all the possible combinations of
products, for various values of Np. For simplicity, the number of components is kept
constant (Nc = 10), and the simulations are run 20 times for statistical relevance. The
results show how the TSP (blue line) greatly reduces the overall cost, even considering the
median value (black line).

4 5 6 7 8

15

20

25

30

35

40

45

50

Figure 5. Maximum, median and minimum cost of all the possible combinations of products Np

(Nc = 10), simulated 20 times. The TSP solutions lie on the blue curve.

5. Case Study

To assess the validity of our method, it is applied to a real case application. This
application is defined by a kitting machine in which small parts are placed within a plastic
film to be grouped and a label is applied to the film.

The small parts (e.g., screws) are serialized via bowl feeders and hoppers, while the
film and the label are installed directly in the kitting machine. The small parts fall through
the hoppers inside the film to form a bag, and then the label is applied to the film. Different
products require different numbers of feeder retooling. The higher this number, the higher
the number of retooling, and thus, the higher the setup time.

In this sense, the film and the label changes are the leading parts in terms of setup
time; thus, it is important to reduce the number of film and label changeovers.

As a result, our multi-clustering approach is applied to both the film and the label.
Firstly, the products are clustered based on the film (F1 of Figure 2). Then, the resulting
clusters are clustered based on different labels (F2 of Figure 2). The total number of possible
clusters is 24. The matrix C contains the number of feeder retooling between two kits,
considering all the retooling times to be equal.

The company that owns the kitting machine is able to handle hundreds of different
products on the same device. Since not every product has to be produced in a certain
timespan, the company is interested in optimizing the retooling of the machine with a small
number of products. For example, the company may be interested in managing a week
of production in which 100 different products have to be produced, based on costumers
needs. As a result, our method is applied to different Np values.

The results are depicted in Figures 6 and 7. The overall cost provided by the cluster
TSP (blue line of Figure 7) is always higher than the cost of the standard TSP (red line),
which is an expected result: the clustering applies some constraints that drift the final
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solution away from the optimal one provided by the standard TSP. However, the clustering,
in the same way as shown previously in Section 4, is generally more computationally
efficient. Figure 6 shows how the standard TSP generally requires higher computational
time, due to the increased difficulty in reaching the optimal solution via the optimizer.
Moreover, in some cases, the standard TSP even fails at providing a solution within the
constrained maximum computational time.

Figure 6. Computational time of the case study with different Np. On the upper left corner, a zoom
of the lowest Np values.

Figure 7. Overall cost of the case study with different Np, where the cost identifies the total number
of retooling to process all the products.
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6. Conclusions

This paper presents a multi-clustering approach that is implemented on the travel-
ing salesman problem to reduce computational time and thus, improve feasibility. The
approach is applied both to simulations and to a case study. Results show that while the
TSP with clusters provides a solution with a cost that is higher than the one of the standard
TSP (as expected, due to the cluster constraints), the TSP with clusters is generally more
computationally efficient than the standard TSP, especially when the number of products
and parts to be held increases.

The proposed method can be applied to many industrial processes with very little
computational effort: in fact, it could be implemented in any language without any special
requirements. The optimization process is simplified since after its general implementation
it requires only the bill of material matrix to find the optimal sequence. Under and
industrial perspective, the proposed method could be of great use because it does not
require skilled operators.

Future work will address the possibility of using off-line retooling for specific parts
(e.g., when the number of feeders is higher than the number of parts that are fed to assemble
the current product) and its impact on the final reconfiguration cost.
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Nomenclature

Np Number of products
Nc Number of components
i, j, k Indices that define a specific element of a matrix
M Bill of materials (BOM) matrix with elements mik
Sij Number of reconfigurations between products i, j
tset,ij Setup time between products i, j
tset,k Reconfiguration time of part k
C Cost matrix with elements cij
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