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Model-Based Policy Search Using Monte Carlo
Gradient Estimation with Real Systems Application
Fabio Amadio1, Alberto Dalla Libera1, Riccardo Antonello1, Daniel Nikovski2, Ruggero Carli1, Diego Romeres2

Abstract—In this paper, we present a Model-Based Rein-
forcement Learning algorithm named Monte Carlo Probabilistic
Inference for Learning COntrol (MC-PILCO). The algorithm
relies on Gaussian Processes (GPs) to model the system dynamics
and on a Monte Carlo approach to estimate the policy gradient.
This defines a framework in which we ablate the choice of the
following components: (i) the selection of the cost function, (ii)
the optimization of policies using dropout, (iii) an improved data
efficiency through the use of structured kernels in the GP models.
The combination of the aforementioned aspects affects dramati-
cally the performance of MC-PILCO. Numerical comparisons in
a simulated cart-pole environment show that MC-PILCO exhibits
better data-efficiency and control performance w.r.t. state-of-the-
art GP-based MBRL algorithms. Finally, we apply MC-PILCO
to real systems, considering in particular systems with partially
measurable states. We discuss the importance of modeling both
the measurement system and the state estimators during policy
optimization. The effectiveness of the proposed solutions has been
tested in simulation and in two real systems, a Furuta pendulum,
and a ball-and-plate.

I. INTRODUCTION

In recent years, reinforcement learning (RL) [1] has achieved
outstanding results in many different environments, and has
shown the potential to provide an automated framework for
learning different control applications from scratch. However,
model-free RL (MFRL) algorithms might require a massive
amount of interactions with the environment in order to solve
the assigned task. This data inefficiency puts a limit to RL’s
potential in real-world applications, due to the time and cost
of interacting with them. In particular, when dealing with
mechanical systems, it is critical to learn the task after the least
possible amount of trials, to reduce wear and tear and avoid
any damage to the system. A promising way to overcome this
limit is model-based reinforcement learning (MBRL), which is
based on the use of data from interactions to build a predictive
model of the environment and to exploit it to plan control
actions. MBRL increases data efficiency by using the model to
extract more valuable information from the available data [2].

On the other hand, MBRL methods are effective only
inasmuch as their models resemble accurately the real systems.
Hence, deterministic models might suffer dramatically from
model inaccuracy, and the use of stochastic models becomes
necessary in order to capture uncertainty. Gaussian Processes
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(GPs) [3] are a class of Bayesian models commonly used in
RL methods precisely for their intrinsic capability to handle
uncertainty and provide principled stochastic predictions [4][5].
PILCO (Probabilistic Inference for Learning COntrol) [6] is a
successful MBRL algorithm that uses GP models and gradient-
based policy search to achieve substantial data efficiency in
solving different control problems, both in simulation as well
as with real systems [7][8]. In PILCO, long-term predictions
are computed analytically, approximating the distribution of
the next state at each time instant with a Gaussian distribution
by means of moment matching. In this way, the policy gradient
is computed in closed form. However, the use of moment
matching introduces also two relevant limitations. (i) Moment
matching allows modeling of only unimodal distributions. This
fact, besides being a potential incorrect assumption on the
system dynamics, it introduces relevant limitations related to
initial conditions. In particular, the restriction on the use of
unimodal distributions complicates dealing with multimodal
initial conditions, as well as being a potential limitation even
when the system initial state is unimodal. For instance, in case
that the initial variance is high, the optimal solution might
be multimodal, due to dependencies on initial conditions. (ii)
The computation of the moments is shown to be tractable
only when considering Squared Exponential (SE) kernels and
differentiable cost functions. In particular, the limitation on the
kernel choice might be very stringent, as GPs with SE kernel
impose smooth properties on the posterior estimator and might
show poor generalization properties in data that have not be
seen during training [9], [10], [11], [12].

PILCO has inspired several other MBRL algorithms, which
try to improve it in different ways. Limitations due to the use of
SE kernels have been addressed in Deep-PILCO [13], where the
system evolution is modeled using Bayesian Neural Networks
[14], and long-term predictions are computed combining
particle-based methods and moment matching. Results show
that, compared to PILCO, Deep-PILCO requires a larger
number of interactions with the system in order to learn the
task. This fact suggests that using neural networks (NNs) might
not be advantageous in terms of data-efficiency, due to the
considerably high amount of parameters needed to characterize
the model. A more articulated approach has been proposed in
PETS [15], where the authors use a probabilistic ensemble of
NNs to model the uncertainty of the system dynamics. Despite
the positive results in the simulated high-dimension systems,
also the numerical results in PETS show that GPs are more
data-efficient than NNs when considering low-dimensional
systems, such as the cart-pole benchmark. An alternative
route has been proposed in [16], where the authors use a
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simulator to learn a prior for the GP model before starting
the reinforcement learning procedure on the actual system
to control. This simulated prior improves the performance of
PILCO in areas of the state space with no available data points.
However, the method requires an accurate simulator that may
not always be available at the user.

Limitations due to the gradient-based optimization were
addressed in Black-DROPS [17], which adopts a gradient-free
policy optimization. In this way, also non-differentiable cost
functions can be used, and the computational time can be im-
proved with the parallelization of the black-box optimizer. With
this strategy, Black-DROPS achieves similar data efficiency to
PILCO’s, but significantly increases asymptotic performance.

Other approaches focused on improving the accuracy of long-
term predictions, overcoming approximations due to moment
matching. A first attempt has been proposed in [18], where
long-term distributions are computed relying on particle-based
methods. Based on the current policy and the one-step-ahead
GP models, the authors simulate the evolution of a batch
of particles sampled from the initial state distribution. Then,
the particle trajectories are used to approximate the expected
cumulative cost. The policy gradient is computed using the
strategy proposed in PEGASUS [19], where by fixing the initial
random seed, a probabilistic Markov decision process (MDP) is
transformed into an equivalent partially observable MDP with
deterministic transitions. Compared to PILCO, results obtained
where not satisfactory. The poor performance was attributed
to the policy optimization method, in particular, to inability
to escape from the numerous local minima generated by the
multimodal distribution. Another particle-based approach is
PIPPS [20], where the policy gradient is computed with the so-
called reparameterization trick [21] instead of the PEGASUS
strategy. Given a distribution pθp¨q, parameterized by θ, the
reparameterization trick provides an alternative method for
generating samples from pθp¨q such that those samples are
differentiable w.r.t. θ. The reparameterization trick has been
introduced with successful results in stochastic variational
inference (SVI) [21], [22]. In contrast with the results obtained
in SVI, where just a few samples are needed to estimate
the gradient, the authors of [20] highlighted several issues
related to the gradient computed with the reparameterization
trick, due to its exploding magnitude and random direction.
To overcome these issues, they proposed the total propagation
algorithm, where the reparameterization trick is combined with
the likelihood ratio gradient. The algorithm performs similarly
to PILCO with some improvements in the gradient computation
and in the performance in the presence of additional noise.

In this work, we propose an MBRL algorithm named
Monte Carlo Probabilistic Inference for Learning COntrol
(MC-PILCO). Like PILCO, MC-PILCO is a policy gradient
algorithm, which uses GPs to describe the one-step-ahead
system dynamics and relies on a particle-based method to
approximate the long-term state distribution instead than using
moment matching. The gradient of the expected cumulative cost
w.r.t. the policy parameters is obtained by backpropagation [23]
on the associated stochastic computational graph, exploiting
the reparameterization trick. Differently than in PIPPS, where
they focused on obtaining accurate estimates of the gradient,

we have interpreted the optimization problem as a stochastic
gradient descent (SGD) problem [24]. This problem has
been studied in depth in the context of neural networks,
where overparameterized models are optimized using noisy
estimates of the gradient [25]. Analytical and experimental
studies show that the shape of the cost function and the
nonlinear activation function adopted can affect dramatically
the performance of SGD algorithms [26], [27], [28]. Motivated
by the results obtained in this field, w.r.t. the previous particles-
based approaches, we considered the use of more complex
policies and less peaked cost functions, i.e., less penalizing
costs. During policy optimization we also considered the
application of dropout [29] to the policy parameters, in order to
improve the ability to escape from local minima, obtaining more
performing policies. The effectiveness of the proposed choice
has been ablated and analyzed in simulation. First, a simulated
cart-pole, a common benchmark system, was considered to
compare MC-PILCO with PILCO and Black-DROPS. Results
show that MC-PILCO outperforms both PILCO and Black-
DROPS, which can be considered state-of-the-art GP-based
MBRL algorithms. Second, with the purpose to evaluate the
behavior of MC-PILCO in a higher-dimensional system, we
applied it to a simulated UR5 robotic arm. The considered task
consists of learning a joint-space controller able to follow a
desired trajectory and it was successfully accomplished. These
results confirm that the reparameterization trick can be used
effectively in MBRL, and Monte Carlo methods do not suffer
of gradient estimation problems, as commonly asserted in
literature, if properly considering the cost function, the use of
dropout and complex/rich policies.

Moroever, differently from previous works which combined
GPs with particle-based methods, we show a relevant advantage
of this strategy, namely, the possibility of adopting different
kernel functions. We considered the use of a kernel function
given by the combination of an SE kernel and a polynomial
kernel [30], as well as a semiparametrical model [10], [11],
[12]. Results obtained both in simulation and in a real Furuta
pendulum show that the use of such kernels significantly
increases data efficiency, limiting the interaction time required
to learn the tasks.

Finally, we have applied and analyzed MC-PILCO in real
systems. Unlike simulated environments, where the state is
typically assumed to be fully measurable, the state of real
systems might be partially measurable. For instance, most of
the time, only positions are directly measured in real robotic
systems, while velocities are typically computed by means
of estimators, such as state observers, Kalman filters, and
numerical differentiation with low-pass filters. In particular,
the controller, i.e., the policy, works with the output of online
state estimators which, due to noise and real-time computation
constraints, might introduce significant delays and discrepancies
w.r.t. to the filtered data used during policy training. In this
context, we verified that during policy optimization it is
important to distinguish between the states generated by the
models, which aim at describing the evolution of the real system
state, and the states provided to the policy. Indeed, providing to
the control policy the model predictions corresponds to assume
to measure directly the system state, which, as mentioned
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before, is not possible in the real system. This incorrect
assumption might compromise the effectiveness of the trained
policy into the real system, due to the presence of distortions
caused by the online state estimators. Hence, during policy
optimization, from the evolution of the system state predicted
by the GPs models, we compute the estimates of the states
observed by modeling both the measurement system and the
online estimators used in the real system. Then we feed to the
policy the estimates of the observed states. In this way, we
aim at obtaining robustness w.r.t. the delays and distortions
caused by online filtering. The effectiveness of the proposed
strategy has been tested both in simulation and also with
two real systems, a Furuta pendulum and a ball-and-plate
system. The obtained performance confirms the importance of
considering the presence of filters in the real system during
policy optimization.

The article is structured as follows. In Section II, some
background notions are provided: we state the general prob-
lem of model-based policy gradient methods, and present
modelling approaches of dynamical systems with GPs. In
Section III, we present MC-PILCO, our proposed algorithm,
detailing the policy optimization and model learning techniques
adopted. In Section IV, we analyze several aspects affecting
the performance of MC-PILCO, such as the cost shape,
dropout, and the kernel choice. In Section V, we compare
MC-PILCO with PILCO and Black-DROPS using a simulated
cart-pole benchmark system, test the MC-PILCO performance
with a simulated UR5 robot, and also test the advantages
of the particle-based approach when dealing with different
distributions of the initial conditions. In Section VI, we
discuss the application of the proposed algorithm to systems
with partially measurable state. Experiments on a real Furuta
pendulum and a ball-and-plate system are shown in Section
VII. Finally, we draw conclusions in Section VIII.

II. BACKGROUND

In this section, we first introduce the standard framework
considered in model-based policy gradient RL methods, and
then discuss how to use Gaussian Process Regression (GPR) for
model learning. In the latter topic, we focus on three aspects:
some background notions about GPR, the description of the
model prediction for one-step-ahead, and finally, we discuss
long term predictions, focusing on two possible strategies,
namely, moment matching and particle-based method.

A. Model-Based Policy Gradient

Consider the discrete-time system described by the unknown
transition function fp¨, ¨q,

xt`1 “ fpxt,utq `wt,

where, at each time step t, xt P Rdx and ut P Rdu are,
respectively, the state and the inputs of the system, while
wt „ N p0,Σwq is an independent Gaussian random variable
modeling additive noise. The cost function cpxtq is defined to
characterize the immediate penalty for being in state xt.

Inputs are chosen according to a policy function πθ : x ÞÑ u
that depends on the parameter vector θ.

The objective is to find the policy that minimizes the expected
cumulative cost over a finite number of time steps T , i.e.,

Jpθq “
T
ÿ

t“0

Ext rcpxtqs , (1)

with an initial state distributed according to a given ppx0q.
A model-based approach for learning a policy consists,

generally, of the succession of several trials; i.e. attempts to
solve the desired task. Each trial consists of three main phases:
‚ Model Learning: the data collected from all the previous

interactions are used to build a model of the system
dynamics (at the first iteration data are collected applying
possibly random exploratory controls);

‚ Policy Update: the policy is optimized in order to minimize
the cost Jpθq according to the current model;

‚ Policy Execution: the current optimized policy is applied to
the system and the data are stored for model improvement.

Model-based policy gradient methods use the learned model to
predict the state evolution when the current policy is applied.
These predictions are used to estimate Jpθq and its gradient
OθJ , in order to update the policy parameters θ following a
gradient-descent approach.

B. GPR and one-step-ahead predictions

A common strategy with GPR-based approaches consists of
modeling the evolution of each state dimension with a distinct
GP. Let’s denote by ∆

piq
t “ x

piq
t`1´x

piq
t the difference between

the value of the i-th component at time t`1 and t, and by ypiqt
the noisy measurement of ∆

piq
t with i P t1, . . . , dxu. Moreover,

let x̃t “ rxt,uts be the vector that includes the state and the
input at time t, also called the GP input. Then, given the data
D “

´

X̃,ypiq
¯

, where ypiq “ rypiqt1 , . . . , y
piq
tn s

T is a vector of

n output measurements, and X̃ “ tx̃t1 , . . . , x̃tnu is the set of
GP inputs, GPR assumes the following probabilistic model,
for each state dimension,

ypiq “

»

—

–

hpiqpx̃t1q
...

hpiqpx̃tnq

fi

ffi

fl

`

»

—

—

–

e
piq
t1
...
e
piq
tn

fi

ffi

ffi

fl

“ hpiqpX̃q ` epiq,

where epiq is a zero-mean Gaussian i.i.d. noise with standard
deviation σi, and hpiqp¨q is an unknown function modeled a
priori as a zero-mean Gaussian Process and i P t1, . . . , dxu. In
particular, we have hpiq „ N p0,KipX̃, X̃qq, with the a priori
covariance matrix KipX̃, X̃q P Rnˆn defined element-wise
through a kernel function kip¨, ¨q, namely, the element in j-th
row and k-th column is given by kipx̃tj , x̃tkq. A crucial aspect
in GPR is the kernel choice. The kernel function encodes
prior assumptions about the process. One of the most common
choices for continuous functions is the SE kernel, defined as

kSEpx̃tj , x̃tkq :“ λ2e´||x̃tj´x̃tk ||
2
Λ´1 , (2)

where the scaling factor λ and the matrix Λ are kernel
hyperparameters which can be estimated by marginal likelihood
maximization. Typically, Λ is assumed to be diagonal, with
the diagonal elements named lengthscales.
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Remarkably, the posterior distribution of hpiqp¨q can be
computed in closed form. Let x̃t be a general GP input at
time t. Then, the distribution of ∆̂

piq
t , the estimate of ∆

piq
t , is

Gaussian with mean and variance given by

Er∆̂piqt s “ kipx̃t, X̃qΓ
´1
i y

piq, (3)

varr∆̂
piq
t s “ kipx̃t, x̃tq ´ kipx̃t, X̃qΓ

´1
i kTi px̃t, X̃q, (4)

with Γi and kipx̃t, X̃q defined as

Γi “ pKipX̃, X̃q ` σ
2
i Iq,

kipx̃t, X̃q “ rkipx̃t, x̃t1q, . . . , kipx̃t, x̃tnqs.

Recalling that the evolution of each state dimension is modeled
with a distinct GP, and assuming that the GPs are conditionally
independent given the current GP input x̃t, the posterior
distribution for the estimated state at time t` 1 is

ppx̂t`1|x̃t,Dq „ N pµt`1,Σt`1q, (5)

where

µt`1 “ xt `
”

Er∆̂p1qt s, . . . ,Er∆̂
pdxq
t s

ıT

, (6)

Σt`1 “ diag
´”

varr∆̂
p1q
t s, . . . , varr∆̂

pdxq
t s

ı¯

. (7)

C. Long-term predictions with GP dynamical models

In MBRL, the policy πθ is evaluated and improved based on
long-term predictions of the state evolution: ppx̂1q, . . . , ppx̂T q.
The exact computation of these quantities entails the application
of the one-step-ahead GP models in cascade, considering the
propagation of the uncertainty. More precisely, starting from a
given initial distribution ppx0q, at each time step t, the next
state distribution is obtained by marginalizing (5) over ppx̂tq,
that is,

ppx̂t`1q “

ż

ppx̂t`1|x̂t, πθpx̂tq,Dqppx̂tqdx̂t. (8)

Unfortunately, computing the exact predicted distribution
in (8) is not tractable. There are different ways to solve it
approximately, here we discuss two main approaches: moment
matching, adopted by PILCO, and a particle-based method, the
strategy followed in this work.

1) Moment matching: Assuming that the GP models use
only the SE kernel as a prior covariance, and considering a
normal initial state distribution x0 ∼ N pµ0,Σ0q, the first and
the second moments of ppx̂1q can be computed in closed form
[31]. Then, the distribution ppx̂1q is approximated to be a
Gaussian distribution, whose mean and variance correspond
to the moments computed previously. Finally, the subsequent
probability distributions are computed iterating the procedure
for each time step of the prediction horizon. For details about
the computation of the first and second moments, we refer
the reader to [31]. Moment matching offers the advantage
of providing a closed form solution for handling uncertainty
propagation through the GP dynamics model. Thus, in this
setting, it is possible to analytically compute the policy gradient
from long-term predictions. However, as already mentioned in
Section I, the Gaussian approximation performed in moment

Fig. 1: Example of two particles propagating through the stochastic
model (Gaussian distributions represented as ellipses).

matching is also the cause of two main weaknesses: (i) The
computation of the two moments has been performed assuming
the use of SE kernels, which might lead to poor generalization
properties in data that have not been seen during training
[9], [10], [11], [12]. (ii) Moment matching allows modeling
only unimodal distributions, which might be a too restrictive
approximation of the real system behavior.

2) Particle-based method: The integral in (8) can be approx-
imated relying on Monte Carlo approaches, in particular on
particle-based methods. Specifically, M particles are sampled
from the initial state distribution ppx0q. Each one of the M
particles is propagated using the one-step-ahead GP models
(5). Let xpmqt be the state of the m-th particle at time t, with
m “ 1, . . . ,M . At time step t, the actual policy πθ is evaluated
to compute the associated control. The GP model provides
the Gaussian distribution p

´

x
pmq
t`1|x

pmq
t , πθpx

pmq
t q,D

¯

from

which xpmqt`1, the state of the particle at the next time step, is
sampled. This process is iterated until a trajectory of length T is
generated for each particle. The process is illustrated in Figure
1 for the sake of clarity. The long-term distribution at each
time step is approximated with the distribution of the particles.
Notice that this approach does not impose any constraint on the
choice of the kernel function and the initial state distribution.
Moreover, no approximations on the distribution ppx̂tq are
made. Therefore, particle-based methods do not suffer from the
problems seen in moment matching, at the cost of being more
computationally heavy. Specifically, the computation of (5)
entails the computation of (3) and (4), which are, respectively,
the mean and the variance of the delta states. Regarding the
computational complexity, it can be noted that Γ´1

i y
piq is

computed a single time offline during the training of the GP
model (same computation is needed in the moment matching
case), and the number of operations required to compute (3)
is linear w.r.t. the number of samples n. The computational
bottleneck is the computation of (4), which is Opn2q. Then,
the cost of a single state prediction is Opdxn2q, leading to a
total computational cost of OpdxMTn2q. Depending on the
complexity of the system dynamics, the number of particles
necessary to obtain a good approximation might be high,
determining a considerable computational burden. Nevertheless,
the computational burden can be substantially mitigated via
GPU parallel computing, due to the possibility of computing
the evolution of each particle in parallel.
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III. MC-PILCO

In this section, we present the proposed algorithm. MC-
PILCO relies on GPR for model learning and follows a Monte
Carlo sampling method to estimate the expected cumulative
cost from particles trajectories propagated through the learned
model. We exploit the reparameterization trick to obtain the
policy gradient from the sampled particles and optimize the
policy. This way of proceeding is very flexible, and allows
using any kind of kernels for the GPs, as well as providing more
reliable approximations of the system’s behaviour. MC-PILCO,
in broad terms, consists of the iteration of three main steps,
namely, update the GP models, update the policy parameters,
and execute the policy on the system. In its turn, the policy
update is composed of three steps, iterated for a maximum of
Nopt times:
‚ simulate the evolution of M particles, based on the current
πθ and on the GP models learned from the previously
observed data;

‚ compute Ĵpθq, an approximation of the expected cumula-
tive cost, based on the evolution of the M particles;

‚ update the policy parameters θ based on OθĴpθq, the
gradient of Ĵpθq w.r.t. θ, computed by backpropagation.

In the remainder of this section, we discuss in more depth the
model learning step and the policy optimization step.

A. Model Learning

Here, we describe the model learning framework considered
in MC-PILCO. We begin by showing the proposed one-step-
ahead prediction model, and analyzing the advantages w.r.t. the
standard model described in Section II-B. Then, we discuss the
choice of the kernel functions. Finally, we briefly discuss the
model’s hyperparameters optimization and the strategy adopted
to reduce the computational cost.

1) One-step-ahead model: Let the state be defined as
xt “ rqTt , 9qTt s

T , where qt P R
dx
2 is the vector of the

generalized coordinates of the system at time step t, and,
9qt represents the derivative of qt w.r.t. time. MC-PILCO
adopts a one-step-ahead model, hereafter denoted as speed-
integration dynamical model, which exploits the intrinsic
correlation between the state components q and 9q. Indeed,
when considering a sufficiently small sampling time Ts (small
w.r.t. the application), it is reasonable to assume constant
accelerations between two consecutive time-steps, obtaining
the following evolution of qt,

qt`1 “ qt ` Ts 9qt `
Ts
2
p 9qt`1 ´ 9qtq. (9)

Let Iq (respectively I 9q) be the ordered set of the dimension
indices of the state x associated with q (respectively 9q ). The
proposed speed-integration model learns only dx{2 GPs, each
of which models the evolution of a distinct velocity component
∆
pikq
t , with ik P I 9q . Then, the evolution of the position change,

∆
pikq
t , with ik P Iq is computed according to (9) and the

predicted change in velocity.
Many previous MBRL algorithms, see for instance [6], [17],

adopted the standard model described in Section II-B, and
hereafter denoted as full-state dynamical model. The full-state

model predicts the change of each state component with a
distinct and independent GP. Doing so, the evolution of each
state dimension is assumed to be conditionally independent
given the current GP input, and it is necessary to learn a number
of GPs equal to the state dimension dx. Then, compared to the
full-state model, the proposed speed-integration model halves
the number of GPs to be learned, decreasing the cost of a
state prediction to Opdx2 MTn2q. Nevertheless, this approach
is based on a constant acceleration assumption, and works
properly only when considering small enough sampling times.
However, MC-PILCO can use also the standard full-state model,
which might be more effective when sampling time is too high.

2) Kernel functions: Regardless of the GP dynamical model
structure adopted, one of the advantages of the particle-based
policy optimization method is the possibility of choosing any
kernel functions without restrictions. Hence, we considered
different kernel functions as examples to model the evolution
of physical systems. But the reader can consider a custom
kernel function appropriate for his application.

Squared exponential (SE). The SE kernel described in (2)
represents the standard choice adopted in many different works.

SE + Polynomial (SE+Ppdq). Recalling that the sum of
kernels is still a kernel [3], we considered also a kernel given
by the sum of a SE and a polynomial kernel. In particular, we
used the Multiplicative Polynomial (MP) kernel, which is a
refinement of the standard polynomial kernel, introduced in
[30]. The MP kernel of degree d is defined as the product of
d linear kernels, namely,

k
pdq
P px̃tj , x̃tkq :“

d
ź

r“1

´

σ2
Pr ` x̃

T
tjΣPr x̃tk

¯

.

where the ΣPr ą 0 matrices are distinct diagonal matrices. The
diagonal elements of the ΣPr , together with the σ2

Pr
elements

are the kernel hyperparameters. The resulting kernel is

kSE`P pdqpx̃tj , x̃tkq “ kSEpx̃tj , x̃tkq ` k
pdq
P px̃tj , x̃tkq. (10)

The idea motivating this choice is the following: the MP
kernel allows capturing possible modes of the system that
are polynomial functions in x̃, which are typical in mechanical
systems [9], while the SE kernel models more complex
behaviors not captured by the polynomial kernel.

Semi-Parametrical (SP). When prior knowledge about the
system dynamics is available, for example given by physics
first principles, the so called physically inspired (PI) kernel can
be derived. The PI kernel is a linear kernel defined on suitable
basis functions φpx̃q, see for instance [10]. More precisely,
φpx̃q P Rdφ is a, possibly nonlinear, transformation of the GP
input x̃ determined by the physical model. Then we have

kPIpx̃tj , x̃tkq “ φ
T
px̃tj qΣPIφpx̃tkq,

where ΣPI is a dφ ˆ dφ positive-definite matrix, whose
elements are the kPI hyperparameters; to limit the number
of hyperparameters, a standard choice consists in considering
ΣPI to be diagonal. To compensate possible inaccuracies of
the physical model, it is common to combine kPI with an SE
kernel, obtaining so called semi-parametric kernels [12], [10],
expressed as

kSP px̃tj , x̃tkq “ kPIpx̃tj , x̃tkq ` kSEpx̃tj , x̃tkq.
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The rationale behind this kernel is the following: kPI encodes
the prior information given by the physics, and kSE compen-
sates for the dynamical components unmodeled in kPI .

3) Model optimization and reduction techniques: In MC-
PILCO, the GP hyperparameters are optimized by maximizing
the marginal likelihood (ML) of the training samples, see [3].
In Section II-C2, we saw that the computational cost of a
particle prediction scales with the square of the number of
samples n, leading to a considerable computational burden
when n is high. In this context, it is essential to implement
a strategy to limit the computational burden of a prediction.
Several solutions have been proposed in the literature, see
[32] for an overview. We implemented a procedure inspired
by [33], where the authors proposed an online importance
sampling strategy. After optimizing the GP hyperparameters
by ML maximization, the samples in D are downsampled to a
subset Dr “

´

X̃r,y
piq
r

¯

, which is then used to compute the
predictions. This procedure first initializes Dr with the first
sample in D, then, it computes iteratively the GP estimates of
all the remaining samples in D, using Dr as training samples.
Each sample in D is either added to Dr if the uncertainty of
the estimate is higher than a threshold βpiq or it is discarded.
The GP estimator is updated every time a sample is added to
Dr. The trade-off between the reduction of the computational
complexity and the severity of the approximation introduced is
regulated by tuning βpiq. The higher the βpiq, the smaller the
number of samples in Dr. On the other hand, using values of
βpiq too high might compromise the accuracy of GP predictions.

B. Policy Optimization

Here, we present the policy optimization strategy adopted in
MC-PILCO. We start by describing the general-purpose policy
structure considered. Later, we show how to exploit backprop-
agation and the reparameterization trick to estimate the policy
gradient from particle-based long-term predictions. Finally, we
explain how to implement dropout in this framework.

1) Policy structure: In all the experiments presented in this
work, we considered an RBF network policy with outputs
limited by an hyperbolic tangent function, properly scaled. We
call this function squashed-RBF-network, and it is defined as

πθpxq “ umax tanh

˜

1

umax

nb
ÿ

i“1

wie
||ai´x||

2
Σπ

¸

. (11)

The policy parameters are θ “ tw, A,Σπu, where w “

rw1 . . . wnbs and A “ ta1 . . .anbu are, respectively, the
weights and the centers of the Gaussian basis functions, while
Σπ determines the shape of the Gaussian basis functions; in
all experiments we assumed Σπ to be diagonal. The maximum
control action umax is constant and chosen depending on the
system to control. It is worth mentioning that MC-PILCO can
deal with any differentiable policy, so more complex functions,
such as deep neural networks could be considered too.

2) Computation of the gradient: MC-PILCO derives the
policy gradient by applying the reparameterization trick to
the computation of the estimated expected cumulative cost in
(1), obtained relying on Monte Carlo sampling [34]. Given a
control policy πθ and an initial state distribution ppx0q, the

evolution of a sufficiently high number of particles is predicted
as described in Section II-C2. Thus, the sample mean of the
costs incurred by the particles at time step t approximates
each Extrcpxtqs. Specifically, let xpmqt be the state of the m-
th particle at time t, with m “ 1, . . . ,M and t “ 0, . . . , T .
The Monte Carlo estimate of the expected cumulative cost is
computed with the following expression,

Ĵpθq “
T
ÿ

t“0

˜

1

M

M
ÿ

m“1

c
´

x
pmq
t

¯

¸

. (12)

To compute the gradient of (12) w.r.t. the policy parameters, we
use the reparameterization trick [21] to differentiate through
the stochastic operations. The evolution of every particle
x
pmq
t at the next time step is sampled from the normal

distribution ppx
pmq
t`1|x

pmq
t , πθpx

pmq
t q,Dq „ N pµt`1,Σt`1q,

defined in (6)-(7). However, instead of sampling directly from
N pµt`1,Σt`1q, the reparameterization trick samples a point
ε from a zero-mean and unit-variance normal distribution of
proper dimensions. Then, it maps this point to the desired
distribution as xpmqt`1 “ µt`1 ` Lt`1ε, where Lt`1 is the
Cholesky decomposition of Σt`1, namely, Lt`1L

T
t`1 “ Σt`1.

Now, it is possible to differentiate xpmqt`1 w.r.t. the distribution
parameters, and OθĴ is computed simply by backpropagation.
We update the policy parameters using the Adam solver [35];
we will denote the Adam step size with αlr.

3) Dropout: To improve exploration in the parameters θ
and increase the ability of escaping from local minima during
policy optimization, we considered the use of dropout [29]. The
adopted procedure is described assuming that the policy is the
squashed-RBF-network in (11); similar considerations can be
applied to different policy functions. When dropout is applied
to the policy in (11) at each evaluation of the policy function,
the policy weights w are randomly dropped with probability
pd. This operation is performed by scaling each weight wi
with a random variable ri „ Bernoullip1 ´ pdq, where
Bernoullip1´ pdq denotes a Bernoulli distribution, assuming
value 1{p1´pdq with probability 1´pd, and 0 with probability
pd. This operation is equivalent to defining a probability
distribution for w, obtaining a parameterized stochastic policy.
In particular, as shown in [36], the distribution of each wi
can be approximated with a bimodal distribution, defined by
the sum of two properly scaled Gaussian distributions with
infinitely small variance ξ2, namely,

pdN p0, ξ2q ` p1´ pdqN
ˆ

wi
1´ pd

, ξ2
˙

.

The use of a stochastic policy during policy optimization
allows increasing the entropy of the particles’ distribution.
This property increments the probability of visiting low-cost
regions and escaping from local minima. In addition, we also
verified that dropout can mitigate issues related to exploding
gradients. This is probably due to the fact that the average of
several different values of w is used to compute the gradient
and not a single value of w, i.e., different policy functions are
used, obtaining a regularization of the gradient estimates.

By contrast, the use of a stochastic policy might affect the
precision of the obtained solution due to the additional entropy.
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We also need to take in consideration that the final objective is
to obtain a deterministic policy. For these reasons, we designed
an heuristic scaling procedure to gradually decrease the dropout
rate, pd, until it equals 0. The scaling action is triggered by
a monitoring signal s, defined from the statistics of the past
history of Ĵ . Define the cost change, ∆Ĵj “ Ĵpθjq´ Ĵpθj´1q,
where θj denotes the policy parameters at the j-th optimization
step. Then, s is computed as a filtered version of the ratio

between Er∆Ĵjs and
b

Vr∆Ĵjs, that are, respectively, the
mean and the standard deviation of ∆Ĵj computed with an
Exponential Moving Average (EMA) filter. The expression of
s at the j-th optimization step is the following:

Er∆Ĵjs “ αsEr∆Ĵj´1s ` p1´ αsq∆Ĵj ,

Vr∆Ĵjs “ αspVr∆Ĵj´1s ` p1´ αsqp∆Ĵj ´ Er∆Ĵj´1sq
2q,

sj “ αssj´1 ` p1´ αsq
Er∆Ĵjs

b

Vr∆Ĵjs
, (13)

with αs a coefficient of the exponential moving average filter,
which determines the memory of the filter. At each iteration of
the optimization procedure, the algorithm checks if the absolute
value of the monitoring signal s in the last ns iterations is
below the threshold σs, namely,

r|sj´ns | . . . |sj |s ă σs, (14)

where ă is an element-wise operator, and the condition in (14)
is true if it is verified for all the elements. If the condition is
verified, pd is decreased by the quantity ∆pd, and both the
learning rate of the optimizer, αlr, and σs, are scaled by an
arbitrary factor λs. Then, we have:

pd “ pd ´∆pd (15a)
αlr “ λsαlr (15b)
σs “ λsσs (15c)

The procedure is iterated as long as

pd ě 0 and αlr ě αlrmin , (16)

where αlrmin is the minimum value of the learning rate.
The rationale behind this heuristic scaling procedure is the

following. The sj signal is small, if Er∆Ĵjs is close to zero,
or if Vr∆Ĵjs is particularly high. The first case happens when
the optimization reaches a minimum, while the high variance
denotes that the particles’ trajectories cross regions of the
workspace where the uncertainty of the GPs predictions is high.
In both cases, we are interested in testing the policy on the real
system, in the first case to verify if the configuration reached
solves the task, and in the second case to collect data where
predictions are uncertain, and so to improve model accuracy.
MC-PILCO with dropout is summarized in pseudo-code in
Algorithm 1.

We conclude the discussion about policy optimization by
reporting, in Table I, the optimization parameters used in all
the proposed experiments, unless expressly stated otherwise.
However, it is worth mentioning that some adaptation could be
needed in other setups, depending on the problem considered.

parameter description value
pd dropout probability 0.25
∆pd pd reduction coeff. 0.125
αlr Adam step size 0.01
αlrmin minimum step size 0.0025
αs EMA filter coeff. 0.99
σs monitoring signal treshold 0.08
ns num. iterations monitoring 200
λs σs reduction coeff. 0.5

TABLE I: Standard values for the policy optimization parameters.

Algorithm 1: MC-PILCO
init policy πθp¨q, cost cp¨q, kernel kp¨, ¨q, maximum

optimization steps Nopt, number of particles M ,
learning rate αlr, min. learning rate αlrmin , dropout
probability pd, dropout probability reduction ∆pd and
other monitoring signal parameters: σs, λs, ns.

Apply random control to system and collect data
while task not learned do

1) Model Learning:
Learn GP models from sampled data - Sec. III-A;
2) Policy Update:
Initialize monitoring signal s0 “ 0;
for j “ 1...Nopt do

Simulate M particles rollouts with GP models
and current policy πθj p¨q;

Compute Ĵpθjq from particles (12);
Compute OθĴpθjq through backpropagation;
πθj`1p¨q Ð Gradient-based policy update;
Update monitoring signal sj with (13);
if (14) is True then

Update pd, αlr and σs with (15);
end
if (16) is False then

break;
end

end
3) Policy Execution:
apply updated policy to system and collect data

end
return final policy πθ˚p¨q, learned GP model;

IV. ABLATION STUDIES

In this section, we analyze several aspects affecting the
performance of MC-PILCO, such as the shape of the cost
function, the use of dropout, the kernel choice, and the proba-
bilistic model adopted, namely, full-state or speed-integration
dynamical model. The purpose of the analysis is to validate
the choices made in the proposed algorithm, and show the
effect that they have in control of dynamical systems. MC-
PILCO has been implemented in Python, exploiting the PyTorch
library [37] automatic differentiation functionalities; the code
is publicly available1.

We considered the swing-up of a simulated cart-pole, a
classical benchmark problem, to perform the ablation studies.
The system and the experiments are described in the following.

1Code available at https://www.merl.com/research/license/MC-PILCO

https://www.merl.com/research/license/MC-PILCO
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The physical properties of the system are the same as the
system used in PILCO [6]: the masses of both cart and pole
are 0.5 [kg], the length of the pole is L “ 0.5 [m], and the
coefficient of friction between cart and ground is 0.1. The
state at each time step t is defined as xt “ rpt, 9pt, θt, 9θts,
where pt represents the position of the cart and θt the angle
of the pole. The target states corresponding to the swing-up
of the pendulum is given by pdes “ 0 [m] and |θdes| “ π
[rad]. The downward stable equilibrium point is defined at
θt “ 0 [rad]. As done in [6], in order to avoid singularities due
to the angles, xt is replaced in the algorithm with the state
representation x̄t “ rpt, 9pt, 9θt, sinpθtq, cospθtqs. The control
action is the force that pushes the cart horizontally. In all
following experiments, we considered white measurement noise
with standard deviation of 10´2, and as initial state distribution
N pr0, 0, 0, 0s, diagpr10´4, 10´4, 10´4, 10´4sqq. The sampling
time is 0.05 seconds. The policy is a squashed-RBF-network
with nb “ 200 basis functions. It receives as input x̄t and
umax “ 10 [N]. The number of particles has been set to
M “ 400 in all the tests. The exploration trajectory is obtained
by applying at each time step t a random control action sampled
from Up´10, 10q. GP reduction techniques have not been
adopted.

The cost function optimized in MC-PILCO is the following,

cpxtq “ 1´ exp

˜

´

ˆ

|θt| ´ π

lθ

˙2

´

ˆ

pt
lp

˙2
¸

, (17)

where lθ and lp are named lengthscales. Notice that the
lengthscales define the shape of cp¨q, the cost function goes
to its maximum value more rapidly with small lengthscales.
Therefore, higher cost is associated to the same distance from
the target state with lower lθ and lp. The lower the lengthscale
the more selective the cost function. The absolute value on
θt is needed to allow different swing-up solutions to both the
equivalent target angles of the pole π and ´π.

All the comparisons consist in a Monte Carlo study com-
posed of 50 experiments. Every experiment is composed of
5 trials each of length 3 seconds. The random seed varies at
each experiment, corresponding to different explorations and
initialization of the policy, as well as different realizations
of the measurement noise. The performance of the learned
policies is evaluated using the cost proposed in [6],

cpilcopxtq “ 1´ exp

˜

´
1

2

ˆ

dt
0.25

˙2
¸

, (18)

where d2t “ p2t`2ptLsinpθtq`2L2p1`cospθtqq is the squared
distance between the tip of the pole and its position at the
unstable equilibrium point with pt “ 0 [m]. We introduce
this cost in order to have a common metric to compare both
different setups of MC-PILCO and other MBRL algorithms,
see Section V-A. For each trial, we report the median value
and confidence interval defined by the 5-th and 95-th percentile
of the cumulative cost obtained with cpilcop¨q, as well as the
success rates observed. We mark two values of the cumulative
cost indicatively associated with an optimal and a sub-optimal
swing-up, respectively. A solution is optimal if the pole
oscillates only once before reaching the upwards equilibrium.

A sub-optimal solution is when the pole oscillates twice.
Finally, we label a trial as "success" if |pt| ă 0.1 [m] and
170 [deg] ă |θt| ă 190 [deg] @t in the last second of the trial.

A. Cost shaping

The first test regards the performance obtained varying the
lengthscales of the cost function in (17). Reward shaping is
a known important aspect of RL and here we will analyze
it for MCPILCO. In Figure 2, we compare the evolution of
the cumulative costs obtained with plθ “ 3, lp “ 1q and plθ “
0.75, lp “ 0.25q and we report the observed success rates.
The latter set of length-scales defines a more selective cost
as the function shape becomes more skewed. In both cases,
we adopted the speed-integration model with SE kernel and
no dropout was used during policy optimization. The results

0 1 2 3 4 5
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optimal swing-up

sub-optimal swing-up

lθ=0.75, lp=0.25
lθ=3, lp=1

Fig. 2: Median and confidence interval of the cumulative cost cpilcop¨q
per trial obtained using plθ “ 3, lp “ 1q or plθ “ 0.75, lp “ 0.25q.
In both cases, we used GP speed-integration models with SE kernels
and no dropout was applied. Success rates are reported below.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
l=(0.75,0.25) 0% 2% 30% 68% 74%
l=(3,1) 0% 12% 50% 72% 82%

show that with plθ “ 3, lp “ 1q MC-PILCO performs better.
Indeed, with plθ “ 0.75, lp “ 0.25q MC-PILCO manages to
find a solution only in the 74% of the experiments, while with
plθ “ 3, lp “ 1q success rate is 82%. Observing the cumulative
costs, it is possible to appreciate also a difference in the quality
of the policies learned in the two cases. The optimal swing-up
can be found in the majority of the experiments only when
using plθ “ 3, lp “ 1q, while it has never been obtained with
plθ “ 0.75, lp “ 0.25q.

This fact suggests that the use of too selective cost functions
might decrease significantly the probability of converging
to a solution. The reason might be that with small valued
lengthscales, cpxtq is very peaked, resulting in almost null
gradient, when the policy parameters are far from a good
configuration, and increasing the probability of getting stuck
in a local minimum. Instead, higher values of the lengthscales
promote the presence of non-null gradients also far away from
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the objective, facilitating the policy optimization procedure.
These observations have already been made in PILCO, but they
did not encountered difficulties in using a small lengthscale such
as 0.25 in (18). This may be due to the analytic computation of
the policy gradient made possible thanks to moment matching,
as well as to the different optimization algorithm used. On the
other hand, the lengthscales’ values seems to have no effect on
the precision of the learned solution. To confirm this, in Table
II, rows 3-4, are reported the average distances from the target
states obtained by successful policies at trial 5 during the last
second of interaction. No significant differences in term of
precision in reaching the targets can be observed.

B. Dropout

In this test, we compared the results obtained using, or
not, the dropout during policy optimization. In Figure 3, we
compare the evolution of the cumulative cost obtained in the
two cases and we show the obtained success rates. In both
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Dropout ON

Fig. 3: Median and confidence interval of the cumulative cost cpilcop¨q
per trial obtained using, or not, dropout. In both cases, we adopted
GP speed-integration model with SE kernels, lθ “ 3 and lp “ 1.
Success rates are reported below.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Dropout OFF 0% 12% 50% 72% 82%
Dropout ON 0% 14% 78% 94% 100%

scenarios, we adopted the speed-integration model with SE
kernel and a cost function with lengthscales plθ “ 3, lp “ 1q.
When using dropout, MC-PILCO learned the optimal solution
at trial 4 in the 94% of the experiments, and it managed to
obtain it for all the random seeds by trial 5. Instead, without
dropout, the optimal policy has not always been found, even in
the last trial. Notice that, when dropout is not used, the upper
bounds of the cumulative costs in the last two trials are higher,
and the task cannot be always solved. Additionally, Table II,
rows 2-4, shows that using dropout also helps in decreasing
the cart positioning error at the end of the swing-up (in terms
of both mean and standard deviation).

Empirically, we found that dropout not only helps in
stabilizing the learning process and in finding better solutions

more consistently, but it can also improve the precision of the
learned policies.

C. Kernel function

In this test, we compared the results obtained using either
the SE or the SE+Pp2q kernel. In both cases, we adopted a
speed-integration model, the cost function was defined with
lengthscales plθ “ 3, lp “ 1q, and dropout was used. Figure 4
shows that SE+Pp2q is faster to converge to the optimal solution
than SE. With the SE+Pp2q kernel, the algorithm learns the
task at trial 3 in 90% of the cases, and it obtains a success
rate of 100% at trial 4. On the other hand, when using the SE
kernel, only at trial 5 the task is solved for all the random seeds.
This can be explained by the capacity of a more structured
kernel to learn a correct enough dynamics of the system also
in areas of the state-action space with no available data points.
In fact, some parts of the dynamics of the cart-pole system are
polynomial functions of the GP input x̃t “ px̄t,utq and the
structure of the SE+Pp2q improves the data-efficiency of the
model learning.
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Fig. 4: Median and confidence interval of the cumulative cost cpilcop¨q
per trial obtained using GP speed-integration model with kernel SE
or SE+Pp2q. In both cases, lθ “ 3, lp “ 1, and dropout was used.
Success rates are reported below.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
SE 0% 14% 78% 94% 100%
SE+P(2) 2% 42% 90% 100% 100%

D. Speed-integration model

In this test, we compared the performance obtained by
the proposed speed-integration dynamical model and by the
standard full-state model. In both cases, SE kernels were chosen,
the cost function was defined with lengthscales plθ “ 3, lp “ 1q,
and dropout was used. Figure 5 shows that the speed-integration
model obtains better performance at trials 2 and 3, with
narrower confidence intervals and better success rates. On
the contrary, during the last two trials, the success rate of the
full-state model is slightly better. Recall, that in the full-state
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model, positions and velocities are learned independently, while,
in the speed-integration model, the position is computed as the
integral of the velocity under a constant acceleration assumption.
Then, the speed-integration model may reduce uncertainty
in long-term predictions and facilitate the learning w.r.t. the
counterpart when few data points have been collected. In fact,
the full-state model could face some difficulties in learning the
connection between positions and respective velocities from
a limited amount of data. This reduction of the uncertainty
may explain the narrower confidence intervals observed during
the first trials of the experiment. On the other hand, when
enough data points have been collected (trials 4 and 5), the
improvement in precision obtained by full-state model is not
very significant. Even with comparable performance, the choice
of the speed-integration model is justified since it halves the
number of GPs to learn, hence this structure is also improving
the computational time.

0 1 2 3 4 5
trials

20

30

40

50

60

optimal swing-up

sub-optimal swing-up

Full-state Model
Speed-integration Model

Fig. 5: Median and confidence interval of the cumulative cost cpilcop¨q
per trial obtained using full-state or speed-integration dynamical model.
The kernels are in both cases SE, lθ “ 3, lp “ 1 and dropout was
used. Success rates are reported below.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Full-state 0% 10% 72% 98% 100%
Speed-int. 0% 14% 78% 94% 100%

V. EXPERIMENTS IN SIMULATION

In this section, two simulated systems are considered. First,
MC-PILCO is tested on a cart-pole system and compared to
other policy gradient algorithms, namely PILCO and Black-
DROPS. In the same environment, we tested the capability of
MC-PILCO to handle bimodal probability distributions. Second,
MC-PILCO learns a controller in joint space of a UR5 robot
arm, considered as an example of a higher DoF system.

A. Cart-pole: comparison with other methods
We tested PILCO 2, Black-DROPS 3, and MC-PILCO on the

cart-pole system with the same setup described in Section IV.

2PILCO code available at http://mlg.eng.cam.ac.uk/pilco
3Black-DROPS code available at https://github.com/resibots/blackdrops
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Fig. 6: Median and confidence interval of the cumulative cost cpilcop¨q
per trial obtained with PILCO, Black-DROPS and MC-PILCO (with
speed-integration model, SE kernel, dropout activated, lθ “ 3 and
lp “ 1). Success rates are reported below.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
PILCO 2% 4% 20% 36% 42%
Black-DROPS 0% 4% 30% 68% 86%
MC-PILCO 0% 14% 78% 94% 100%

In MC-PILCO, we considered the cost function (17) with
lengthscales plθ “ 3, lp “ 1q and SE kernels, in order to
have the same kernel functions in all the three algorithms.
Results of the cumulative cost are reported in Figure 6. MC-
PILCO achieved the best performance both in transitory and
at convergence, by trial 5, it learned how to swing up the
cart-pole with a success rate of 100%. In each and every trial,
MC-PILCO obtained cumulative costs with lower median and
less variability. On the other hand, the policy in PILCO showed
poor convergence properties with only 42% of success rate
after all the 5 trials. Black-DROPS outperforms PILCO, but
it obtained worse results than MC-PILCO in each and every
trial, with a success rate of only 86% at trial 5. Recall that
MC-PILCO obtains even better performance when considering
SE+Pp2q kernel. Results in Table II, rows 1-2-6-7, also show
that policies learned with MC-PILCO are more precise in
reaching the target.

B. Cart-pole: handling bimodal distributions

One of the main advantages of particle-based policy opti-
mization is the capability to handle multimodal state evolutions.
This is not possible when applying methods based on moment
matching, such as PILCO. We verified this advantage by
applying both PILCO and MC-PILCO to the simulated cart-pole
system, when considering a very high variance on the initial
cart position, σ2

p “ 0.5, which corresponds to have unknown
cart’s initial position (but limited within a reasonable range).
The aim is to be in a situation in which the policy has to solve
the task regardless of the initial conditions and needs to have a
bimodal behaviour in order to be optimal. Note that the situation
described could be relevant in several real applications. We kept

http://mlg.eng.cam.ac.uk/pilco/
https://github.com/resibots/blackdrops
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ep [m] eθ [rad]
1 S.I. SE+Pp2q (3,1) drop. on 0.008 ˘ 0.011 0.011 ˘ 0.013
2 S.I. SE (3,1) drop. on 0.009 ˘ 0.016 0.011 ˘ 0.013
3 S.I. SE (0.75,0.25) drop. off 0.018 ˘ 0.040 0.013 ˘ 0.025
4 S.I. SE (3,1) drop. off 0.020 ˘ 0.045 0.013 ˘ 0.025
5 F.S. SE (3,1) drop. on 0.010 ˘ 0.017 0.011 ˘ 0.015
6 Black-DROPS 0.025 ˘ 0.032 0.033 ˘ 0.058
7 PILCO 0.027 ˘ 0.036 0.045 ˘ 0.057

TABLE II: Average distances from the target states (pt “ 0 and
θt “ ˘π) obtained during the last second of interaction with the
cart-pole by the successful policies learned by PILCO, Black-DROPS
and the various MC-PILCO configurations analyzed in Section IV.
Different configurations are labeled reporting the adopted dynamical
model structure (speed-integration, S.I., or full-state, F.S.), kernel
function, cost lengthscales, and if dropout was used or not. Values
are reported as mean ˘ 3ˆstandard deviation, calculated over the
total number of successful runs at trial 5.

the same setup used in previous cart-pole experiments, changing
the initial state distribution to a zero mean Gaussian with
covariance matrix diagpr0.5, 10´4, 10´4, 10´4sqq. MC-PILCO
optimizes the cost in (17) with lengthscales plθ “ 3, lp “ 1q.
We tested the policies learned by the two algorithms starting
from nine different cart initial positions (-2, -1.5, -1, -0.5, 0,
0.5, 1, 1.5, 2 [m]). In Section V-A, we observed that PILCO
struggles to consistently converge to a solution and the
high variance in the initial conditions accentuates this issue.
Nevertheless, in order to make the comparison possible, we
cherry-picked a random seed for which PILCO converged to a
solution in this particular scenario. In Figure 7, we show the
results of the experiment. MC-PILCO is able to handle the
initial high variance. It learned a bimodal policy that pushes
the cart in two opposite directions, depending on the cart’s
initial position, and stabilizes the system in all the experiments.
On the contrary, PILCO’s policy is not able to control the
cart-pole for all the tested starting conditions. Its strategy is
always to push the cart in the same direction, and it cannot
stabilize the system when the cart starts far away from the
zero position. The state evolution under MC-PILCO’s policy
is bimodal, while PILCO cannot find this type of solutions
because of the unimodal approximation enforced by moment
matching.

In this example, we have seen that a multimodal state
evolution could be the optimal solution, when starting from
a unimodal state distribution with high variance, due to
dependencies on initial conditions. In other cases, multimodal-
ity could be directly enforced by the presence of multiple
possible initial conditions that would be badly modeled with a
single unimodal distribution. MC-PILCO can handle all these
situations thanks to its particle-based method for long-term
predictions. Similar results were obtained when considering
bimodal initial distributions.

C. UR5 joint-space controller: high DoF application

The objective of this experiment is to test MC-PILCO in a
more complex system with higher DoF. We used MC-PILCO
to learn a joint-space controller for a UR5 robotic arm (6
DoF) simulated in MuJoCo [38]. Let the state at time t
be xt “ rqt, 9qTt s

T , where qt, 9qt P R6 are joint angles and
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Fig. 7: (Left) MC-PILCO policy applied to the cart-pole system
starting from nine different sparse cart initial positions, namely: -2,
-1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2 [m]. The policy is able to complete the
task in all cases, pushing the cart in different directions depending on
its initial condition. (Right) PILCO policy applied starting from the
same cart initial positions. This policy struggles to adapt to different
starting conditions, and it cannot swing up the cart-pole when starting
from the initial positions further away from zero.

velocities, respectively. The objective for the policy πθ is to
control the torques τ t in order to follow a desired trajectory
pqrt , 9qrt q for t “ 1, . . . , T . Let et “ qrt ´ qt, 9et “ 9qrt ´ 9qt
be position and velocity errors at time t, respectively. The
policy is a multi-output squashed-RBF-network defined in (11)
with nb “ 400 Gaussian basis functions and umax “ 1 [N¨m]
for all the joints, that maps states and errors into torques,
πθ : qt, 9qt, et, 9et ÞÑ τ t. The control scheme is represented
in Figure 8. In this experiment, we considered a control

πθ UR5
τ tqrt , 9qrt et, 9et qt, 9qt

qt, 9qt

´

qt, 9qt

Fig. 8: Joint-space control scheme for UR5 robotic arm.

horizon of 4 seconds with a sampling time of 0.02 seconds. The
reference trajectory has been calculated to make the end-effector
to draw a circle in the X-Y operational space. The initial
exploration, used to initialize the speed-integration dynamical
model, is provided by a poorly-tuned PD controller. We used
SE+P(1) kernels in the GP dynamical model. The GP reduction
thresholds were set to 10´3. GP input was built using extended
state x̄t “ r 9qt, sinpqtq, cospqtqs. M “ 200 is the number
of particles used for gradient estimation. The cost function
considered is defined as,

cpxtq “ 1´ exp

˜

´

ˆ

||qrt ´ qt||

0.5

˙2

´

ˆ

|| 9qrt ´ 9qt||

1

˙2
¸

.
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We assumed full state observability with measurements per-
turbed by a white noise with standard deviation of 10´3. The
initial state distribution is a Gaussian centered on pqr0, 9qr0q with
standard deviation of 10´3. Policy optimization parameters are
the same reported in Table I, with the exception of ns “ 400
and δs = 0.05, to enforce more restrictive exit conditions.

In Figure 9, we report the trajectory followed by the end-
effector at each trial, together with the desired trajectory. MC-
PILCO considerably improved the high tracking error obtained
with the PD controller after only 2 trials (corresponding to 8
seconds of interaction with the system). The learned control
policy followed the reference trajectory for the end-effector
with a mean error of 0.65 ˘ 0.69 [mm] (confidence interval
computed as 3ˆstandard deviation), and a maximum error of
1.08 [mm].

−700 −650 −600 −550 −500
X [mm]

−200

−150

−100

−50

Y 
[m

m
] Exploration

Trial 1
Trial 2
Reference

Fig. 9: End-effector trajectories obtained in exploration and for each
trial of policy learning together with the desired circle. Let eee be
the error between the desired and the actual end-effector trajectories.
In the table below, we report, in millimeters, the maximum and mean
errors (˘ 3ˆstandard deviation) at each trial.

Exploration Trial 1 Trial 2
mean(eee) [mm] 140.66˘158.94 21.15˘41.71 0.65˘0.69
max(eee) [mm] 196.70 40.79 1.08

VI. MC-PILCO FOR PARTIALLY MEASURABLE SYSTEMS

In this section, we discuss the application of MC-PILCO to
systems where the state is partially measurable, i.e., systems
whose state is observable, but only some components of
the state can be directly measured, while the rest must be
estimated from measurements. For simplicity, we introduce
the problem discussing the case of mechanical system where
only positions (and not velocities) can be measured, but similar
considerations can be done for any partially measurable system
with observable state. Then, we describe MC-PILCO for
partially measurable systems (MC-PILCO4PMS), a modified
version of MC-PILCO, proposed to deal with such setups. The
algorithm is validated in simulation as a proof of concept.

A. MC-PILCO4PMS

Consider a mechanical systems where only joint positions
can be measured. This can be described as a partially mea-
surable system, where in the state xt “ rqTt , 9qTt s

T only qt is
measured. Consequently, the 9qt elements are estimated starting
from the history of qt measurements through proper estimation
procedures, possibly performing also denoising operations of
qt in case that the measurement noise is high. In particular,
it is worth distinguishing between estimates computed online
and estimates computed offline. The former are provided to the
control policy to determine the system control input, and they
need to respect real-time constraints, namely, velocity estimates
are causal and computations must be performed within a given
interval. The latter, do not have to deal with such constraints.
As a consequence, offline estimates can be more accurate,
taking into account acausal information and limiting delays
and distortions.

In this context, we verified that, during policy optimiza-
tion, it is relevant to distinguish between the particle state
predictions computed by the models and the data provided
to the policy. Indeed, GPs should simulate the real system
dynamics, independently of additional noise given by the
sensing instrumentation, so they need to work with the most
accurate estimates available; delays and distortions might
compromise the accuracy of long-term predictions. On the
other hand, providing to the policy directly the particles’ states
computed with the GPs during policy optimization, correspond
to train the policy assuming available access directly to the
system state, which, as mentioned before, is not possible
in the setup considered. Indeed, considerable discrepancies
between the particles’ states and the state estimates computed
online during the policy application to the real system might
compromise the effectiveness of the policy. This approach
differentiate from standard MBRL approaches where, typically,
the effects of the online state estimators are not considered
during training.

To deal with the above issues, we introduce MC-
PILCO4PMS a modified version of MC-PILCO. With respect
to the algorithm described in Section III, we propose the two
following additions.

1) Computation of the GPs training data: We compute
the state estimates used to train the GP models with offline
estimation techniques. In particular, in our real experiments,
we considered two options
‚ Computation of the velocities with the central difference

formula, i.e., 9qt “ pqt`1 ´ qt´1q{p2Tsq, where Ts is the
sampling time. This technique can be used only when the
measurement noise is limited, otherwise the 9q estimates
might be too noisy.

‚ Estimation of the state with a Kalman smoother [39], with
state-space model given by the general equations relating
positions, velocities, and accelerations. The advantage of
this technique is that it exploits the correlation between
positions and velocities, increasing regularization.

2) Simulation of the online estimators: During policy
optimization, instead of simulating only the evolution of the
particles states, we simulate also the measurement system and
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MC-PILCO particles generation

Particle
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GP
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Fig. 10: Block schemes illustrating particles generation in MC-PILCO
and MC-PILCO4PMS.

the online estimators. The state feed to the policy, denoted zt,
is computed to resemble the state that will be estimated online.
Given the m-th particle, this is:

z
pmq
t “ fz

´

q̄
pmq
t . . . q̄

pmq
t´mq , z

pmq
t´1 . . . z

pmq
t´1´mz

¯

,

where fz denotes the online state estimator, with memory mq

and mz , and q̄pmqt is a fictitious noisy measurement of the
m-th particle positions. More precisely, let qpmqt the positions
of the xpmqt particle state, then, we have

q̄
pmq
t “ q

pmq
t ` e

pmq
t , (19)

where epmqt P Rdx{2 is Gaussian i.i.d. noise with zero mean
and covariance diagprσp1qz . . . σ

pdx{2q
z sq. The σpiqz s values must

be tuned in accordance with the properties of the measurement
system, e.g., the accuracy of the encoder. Then, the control
input of the m-th particle is computed as πθpz

pmq
t q, instead

than πθpx
pmq
t q. Differences in particles generation between

MC-PILCO and MC-PILCO4PMS are summed up in the block
scheme reported in Figure 10.

B. Simulation results

Here, we test the relevance of modeling the presence of
online estimators using the simulated cart-pole system, but
adding assumptions that emulate a real world experiment. We
considered the same physical parameters and the same initial
conditions described in Section IV, but assuming to measure
only the cart position and the pole angle. We modeled a possible
measurement system that we would have in the real world
as an additive Gaussian i.i.d. noise with standard deviation
3 ¨ 10´3. In order to obtain reliable estimates of the velocities,
samples were collected at 30 [Hz]. The online estimates of
the velocities were computed by means of causal numerical
differentiation followed by a first order low-pass filter, with
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Fig. 11: Comparison of 400 simulated particles rollout (left) and
the trajectories performed applying repetitively the policy 400 times
in the system (right) with the simulated cart-pole system. Results
obtained without simulating online filtering are on the top plots, while
the ones obtained considering the low-pass filters are on the bottom.
The plots refer to the policy learned after 5 trials with the system.

cutoff frequency 7.5 [Hz]. The velocities used to train the GPs
were derived with the central difference formula. To verify
the effectiveness of the strategy described in Section VI-A,
two policy functions were trained. The first policy is obtained
with MC-PILCO by neglecting the presence of online filtering
during policy optimization and assuming direct access to the
state predicted by the model. On the contrary, the second
policy is trained with MC-PILCO4PMS, which models the
presence of the online estimators as described in Section VI-A2.
Exploration data were collected with a random policy. To avoid
dependencies on initial conditions, such as policy initialization
and exploration data, we fixed the same random seed in both
experiments. In Figure 11, we report the results of a Monte
Carlo study with 400 runs. On the left, the final policy is
applied to the learned models (ROLLOUT) and on the right
to the cartpole system (TEST). Even though the two policies
perform similarly when applied to the models, which is all can
be tested offline, the results obtained by testing the policies
in the cartpole system are significantly different. The policy
optimized with modeling the presence of online filtering solves
the task in all 400 attempts. In contrast, in several attempts,
the first policy does not solve the task, due to delays and
discrepancies introduced by the online filter and not considered
during policy optimization. We believe that these considerations
on how to manipulate the data during model learning and policy
optimization might be beneficial for other MBRL algorithms
different from MC-PILCO.

VII. EXPERIMENTS WITH REAL SYSTEMS

In this section, we test MC-PILCO4PMS when applied to
real systems, considering the concepts introduced in Section
VI. In particular, we experimented on two benchmark systems:
a Furuta pendulum, and a ball-and-plate (Figure 12)4.

4A video of these experiments is available at https://youtu.be/–73hmZYaHA.

https://youtu.be/--73hmZYaHA
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Arm

Pendulum

Base

Fig. 12: (Left) Furuta pendulum used in the experiment while being
controlled in the upward equilibrium point by the learned policy.
(Right) Ball-and-plate system.

A. Furuta Pendulum

The Furuta pendulum (FP) [40] is a popular benchmark
system used in nonlinear control and reinforcement learning.
The system is composed of two revolute joints and three links.
The first link, called the base link, is fixed and perpendicular
to the ground. The second link, called arm, rotates parallel
to the ground, while the rotation axis of the last link, the
pendulum, is parallel to the principal axis of the second link,
see Figure 12. The FP is an under-actuated system as only
the first joint is actuated. In particular, in the FP considered
the horizontal joint is actuated by a DC servomotor, and the
two angles are measured by optical encoders with 4096 [ppr].
The control variable is the motor voltage. Let the state at
time step t be xt “ rθht , 9θht , θ

v
t ,

9θvt s
T , where θht is the angle

of the horizontal joint and θvt the angle of the vertical joint
attached to the pendulum. The objective is to learn a controller
able to swing-up the pendulum and stabilize it in the upwards
equilibrium (θvt “ ˘π [rad]) with θht “ 0 [rad]. The trial
length is 3 seconds with a sampling frequency of 30 [Hz]. The
cost function is defined as

cpxtq “ 1´ exp

˜

´

ˆ

θht
2

˙2

´

ˆ

|θvt | ´ π

2

˙2
¸

` cbpxtq,

(20)
with

cbpxtq “
1

1` exp
`

´10
`

´ 3
4π ´ θ

h
t

˘˘

`
1

1` exp
`

´10
`

θht ´
3
4π

˘˘ .

The first part of the function in (20) aims at driving the
two angles towards θht “ 0 and θvt “ ˘π, while cbpxtq
penalizes solutions where θht ď ´ 3

4π or θht ě
3
4π. We set

those boundaries to avoid the risk of damaging the system
if the horizontal joint rotates too much. Offline estimates of
velocities for the GP model have been computed by means of
central differences. For the online estimation, we used causal
numerical differentiation: 9qt “ pqt ´ qt´1q{pTsq, where Ts is
the sampling time. Instead of xt, we considered the extended

state x̄t “ r 9θht ,
9θvt , sinpθ

h
t q, cospθ

h
t q, sinpθ

v
t q, cospθ

v
t qs

T in GP
input. The policy is a squashed-RBF-network with nb “ 200 ba-
sis functions that receives as input z̄t “ rpθht ´θ

h
t´1q{Ts, pθ

v
t ´

θvt´1q{Ts, sinpθ
h
t q, cospθ

h
t q, sinpθ

v
t q, cospθ

v
t qs

T . We used 400
particles to estimate the policy gradient from model predictions.
The exploration trajectory has been obtained using as input
a sum of ten sine waves of random frequencies and same
amplitudes. The initial state distribution is assumed to be
N pr0, 0, 0, 0sT , diagpr5 ¨ 10´3, 5 ¨ 10´3, 5 ¨ 10´3, 5 ¨ 10´3sq.
M “ 400 particles were used for gradient estimation, and the
GP reduction thresholds were set to 10´3. We solved the task
using the three different choices of kernel functions described in
Section III-A2: squared exponential (SE), squared exponential
+ polynomial of degree d (SE+Ppdq) and semi-parametrical (SP).
In Figure 13, we show the resulting trajectories for each trial.
MC-PILCO4PMS managed to learn how to swing up the Furuta
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Fig. 13: (Left) Pendulum angle’s trajectories for each trial. (Right)
Horizontal joint angle’s trajectories for each trial. For all the kernels,
the angles are plotted up to the trial that solved the task.

pendulum in all cases. It succeeded at trial 6 with kernel SE, at
trial 4 with kernel SE+Pp2q, and at trial 3 with SP kernel. These
experimental results confirm the higher data efficiency of more
structured kernels and the advantage that MC-PILCO4PMS
offers by allowing any kind of kernel function. Moreover,
we can observe the effectiveness of the cost function (20) in
keeping θht always inside the desired boundaries in all the
trials and for any kernel tested. Considering penalties similar
to cbpxtq inside the cost function could be enough to handle
soft constraints also in other scenarios.
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B. Ball-and-Plate

The ball-and-plate system is composed of a square plate
that can be tilted in two orthogonal directions by means of
two motors. On top of it, there is a camera to track the ball
and measure its position on the plate. Let pbxt , b

y
t q be the

position of the center of the ball along X-axis and Y-axis,
while θp1qt and θ

p2q
t are the angles of the two motors tilting

the plate, at time t. So, the state of the system is defined as
xt “ rb

x
t , b

y
t ,

9bxt ,
9byt , θ

p1q
t , θ

p2q
t , 9θ

p1q
t , 9θ

p2q
t s

T . The drivers of the
motors allow only position control, and do not provide feedback
about the motors angles. To keep track of the motor angles,
we defined the control actions as the difference between two
consecutive reference values sent to the motor controllers, and
we limited the maximum input to a sufficiently small value,
such that the motor controllers are able to reach the target
angle within the sampling time. Then, in first approximation,
the reference angles and the motor angles coincide, and we
have up1qt “ θ

p1q
t`1´ θ

p1q
t and up2qt “ θ

p2q
t`1´ θ

p2q
t . The objective

of the experiment is to learn how to control the motor angles
in order to stabilize the ball around the center of the plate.
Notice that the control task, with the given definition of inputs,
is particularly difficult because the policy must learn to act
in advance, and not only react to changes in the ball position.
The cost function is defined as

cpxtq “ 1´ exp p´gtpxtqq , with

gtpxtq “

ˆ

bxt
0.15

˙2

`

ˆ

byt
0.15

˙2

`

´

θ
p1q
t

¯2

`

´

θ
p2q
t

¯2

.

The trial length is 3 seconds, with a sampling frequency of
30 [Hz]. Measurements provided by the camera are very
noisy, and cannot be used directly to estimate velocities from
positions. We used a Kalman smoother for the offline filtering
of ball positions bxt , b

y
t and associated velocities 9bxt ,

9byt . In the
control loop, instead, we used a Kalman filter [41] to estimate
online the ball state from noisy measures of positions. When
simulating the online estimator during policy optimization,
we tried both to perturb and to not perturb the positions of
the predicted particles with some additive noise. We obtained
similar performance in the two cases, this result may be due
to the fact that the Kalman filter is able to effectively filter
out the white noise added to particles. Concerning the model,
we need to learn only two GPs predicting the evolution of
the ball velocity because we directly control motor angles,
hence, their evolution is assumed deterministic. GP inputs,
x̃t “ rx̄t, uts, include an extended version of the state, x̄t “
rbxt , b

y
t ,

9bxt ,
9byt , sinpθ

p1q
t q, cospθ

p1q
t q, sinpθ

p2q
t q, cospθ

p2q
t q, pθ

p1q
t ´

θ
p1q
t´1q{Ts, pθ

p2q
t ´ θ

p2q
t´1q{Tss

T where angles have been replaced
by their sines and cosines, and motor angular velocities
have been estimated with causal numerical differentiation
(Ts is the sampling time). The SE+Pp1q kernel (10) is used,
where the linear kernel acts only on a subset of the model
inputs, x̃lint “ rsinpθ

p1q
t q, sinpθ

p2q
t q, cospθ

p1q
t q, cospθ

p2q
t q, uts.

The GP reduction threshold is reduced to 10´4 because
of the small distances that the ball can cover in one time
step. We considered M “ 400 particles for policy gradient
estimation. The policy is a multi-output RBF network (11),

with nb “ 400 basis functions, that receives as inputs the
estimates of pbxt , b

y
t ,

9bxt ,
9byt , θ

p1q
t , θ

p1q
t´1, θ

p2q
t , θ

p2q
t´1q computed

with the Kalman filter; maximum angle displacement is
umax “ 4 [deg] for both motors. The policy optimization
parameters used were the same described in Table I, with
the difference that we used αlr “ 0.006 as initial learning
rate. The reduction of the learning rate is related to the use
of small lengthscales in the cost function, that are necessary
to cope with the small range of movement of the ball. For
the same reason, we set also αlrmin “ 0.0015 and σs “ 0.05.
Initial exploration is given by two different trials, in which
the control signals are two triangular waves perturbed by
white noise. Mostly during exploration and initial trials, the
ball might touch the borders of the plate. In those cases, we
kept data up to the collision instant. A peculiarity of this
experiment in comparison to the others seen before is a wide
range of initial conditions. In fact, the ball could be positioned
anywhere on the plate’s surface, and the policy must control it
to the center. The initial distribution of bx0 and by0 is a uniform
Up´0.15, 0.15q, which covers almost the entire surface (the
plate is a square with sides of about 0.20 [m]). For the other
state components, θp1qt and θ

p2q
t , we assumed tighter initial

distributions Up´10´6, 10´6q. MC-PILCO4PMS managed
to learn a policy able to control the ball around the center
starting from any initial position after the third trial, 11.33
seconds of interaction with the system. We tested the learned
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Fig. 14: Ten different ball trajectories obtained under the final policy
learned by MC-PILCO4PMS. Steady-state positions are marked with
black crosses. The dashed circle has the same diameter of the used
ball.

policy starting from ten different points, see Figure 14. The
mean steady-state error, i.e. the average distance of the final
ball position from the center observed in the ten trials, was
0.0099 [m], while the maximum measured error was 0.0149
[m], which is lower than the ball radius of 0.016 [m].
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VIII. CONCLUSION

In this paper, we have presented the MBRL algorithm
MC-PILCO. The proposed framework uses GPs to derive
a probabilistic model of the system dynamics, and updates
the policy parameters through a gradient-based optimization;
the optimization exploits the reparameterization trick and
approximates the expected cumulative cost relying on a Monte
Carlo approach. Compared to similar algorithms proposed in
the past, the Monte Carlo approach worked by focusing on two
aspects, that are (i) proper selection of the cost function, and
(ii) introduction of exploration during the policy optimization
through the use of dropout. We compared MC-PILCO with
PILCO and Black-DROPS, that are two state-of-the-art GP-
based MBRL algorithms. MC-PILCO outperforms both the
algorithms, exhibiting better data-efficiency and asymptotic
performance. The results obtained in simulation confirm the
effectiveness of the proposed solution, and show the relevance
of the two aforementioned aspects when optimizing the policy
combining the reparameterization trick with particles-based
approaches. Moreover, we explored two advantages due to
the particles-based approximation w.r.t. the moment-matching
adopted in PILCO, that are, the possibility of using structured
kernels, such as polynomial kernel and semiparametrical
kernel, and the ability of handling multimodal distributions. In
particular, results obtained in simulation and with real systems
show that the use of structured kernels can increase data-
efficiency, reducing the interaction-time required to learn the
task. Finally, we analyzed common problems arising when
trying to apply MBRL to real systems. In particular, we
focused on systems with partially measurable states, which are
particularly relevant in real applications. In this context, we
proposed a modified algorithm called MC-PILCO4PMS, where
we verified the importance of taking into account the state
estimators used in the real system during policy optimization.
Results have been validated in different simulated scenarios,
namely a cart-pole and a robotic manipulator, and also on real
systems, such as a Furuta pendulum and a ball-and-plate setup.

In future works, we are interested in testing the proposed
algorithms in more challenging environments, e.g., manipula-
tion tasks in real world environments. The issues regarding the
impossibility of measuring directly the velocity states tackled in
MC-PILCO4PMS could be further analyzed by considering the
recently introduced "Derivative-free" framework [42]. Finally,
the application to manipulation tasks will also require the
introduction of safe exploration techniques and guarantees
from the Safe RL state of the art [43].
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