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Abstract

Objectives: Delta check (DC) is widely used for detecting
sample mix-up. Owing to the inadequate error detection
and high false-positive rate, the implementation of DC in
real-world settings is labor-intensive and rarely capable of
absolute detection of samplemix-ups. The aim of the study
was to develop a highly accurate DC method based on
designed deep learning to detect sample mix-up.
Methods: A total of 22 routine hematology test items were
adopted for the study. The hematology test results, collected
from two hospital laboratories, were independently divided
into training, validation, and test sets. By selecting six
mainstream algorithms, the Deep Belief Network (DBN) was
able to learn error-free and artificially (intentionally) mixed
sample results. The model’s analytical performance was

evaluated using training and test sets. The model’s clinical
validity was evaluated by comparing it with three well-
recognized statistical methods.
Results: When the accuracy of our model in the training
set reached 0.931 at the 22nd epoch, the corresponding
accuracy in the validation set was equal to 0.922. The loss
values for the training and validation sets showed a similar
(change) trend over time. The accuracy in the test set was
0.931 and the area under the receiver operating charac-
teristic curve was 0.977. DBN demonstrated better perfor-
mance than the three comparator statistical methods. The
accuracy of DBN and revisedweighted delta check (RwCDI)
was 0.931 and 0.909, respectively. DBN performed signif-
icantly better than RCV and EDC. Of all test items, the ab-
solute difference of DC yielded higher accuracy than the
relative difference for all methods.
Conclusions: The findings indicate that input of a group of
hematology test items provides more comprehensive in-
formation for the accurate detection of sample mix-up by
machine learning (ML) when compared with a single test
item input method. The DC method based on DBN
demonstrated highly effective sample mix-up identifica-
tion performance in real-world clinical settings.

Keywords: data pre-processing; deep learning; delta check;
machine learning; pre-analytical error; sample mix-up.

Introduction

Reducing patient harm through minimizing the risk of
laboratory error is a major safety principle of laboratory
practice. In the clinical laboratory testing process, pre-
analytical, analytical, and postanalytical phases are the
three phases of laboratory practice and are referred to
as the total testing process (TTP) [1–3]. However, pre-
analytical errors account for approximately 60–70% of all
errors found in TTP [4, 5] with the primary source of error
being related to the clinical sample. Common causes of
errors include patient or sample misidentification, sample
labeling errors, sample contamination, and measurement
interferences in samples.
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Delta check (DC), an error screening tool, calculates
the difference between the current and the preceding
results, and compares this difference against a predefined
limit. If this difference is within a predefined DC limit, the
result can be released to the clinical team. Otherwise, if the
difference is greater than the predefined DC limit, this
raises the possibility of an error in the pre-analytical stage.
The concept of DC was introduced by Nosanchuk and
Gottman in 1974 as a QC technique to identifymisidentified
samples [6]. In 1975, Ladenson [7] described the first use of
computers to automatically compare patient’s current and
previous results in real time. With the widespread use of
auto-verification in various areas of laboratory medicine,
DC is becoming a mandatory component of auto-
verification rules to identify results that require addi-
tional review before release to the medical record [8].

With more emphasis on proper sample labeling, the
prevalence ofmislabeled samplesmay be reduced in certain
settings. While efforts to improve labeling practices may
mitigate one source of sample mix-up, the ever-expanding
scope of tests offered and the sharp increase in sample
volumes processed in modern large clinical laboratories
introduces high levels of complexity that counteract
improvement efforts leaving a sample mix-up rate of 1.2%.
Considering the potentially serious health risks posed by
unidentified samplemix-up errors to the patient, DCmay be
as a useful tool to mitigate these risks through early iden-
tification of potential sample mix-up errors. Furthermore,
DC is unaffected by the prevalence of mislabeled samples.

Issues such as low accuracy of error detection and sig-
nificant variations in the implementation of DC by different
laboratories are, in part, a consequence of the DC method
itself and differences for DC limits. Related studies have
indicated that the accuracy of DCmethods available ranged
from 15% to 76% [9]. In addition, DC rules are typically
defined for individual analytes of interest. However, in
practice,multiple items are often tested and results reported
as a group or panel. In such instances,multiple DC rules can
be combined according to the common test panel, and the
interpretation ofDC limits for a grouped test panel should be
different from a single analyte, since the number of hy-
pothesis tests (i.e. the number of DC rules) applied is much
higher and should be taken into account [8, 10].

A more detailed and formal definition of machine
learning (ML), first introduced by Arthur Samuel in 1959,
was described as a computer program that by learning from
experience (E) with respect to some class of tasks (T) and
performance measure (P), if its performance at tasks in
T, as measured by P, improved with experience E [11]. In

recent years, the widespread recognition of data-driven
methods has made ML algorithms widely used in bioin-
formatics studies, and biomolecular correlation prediction
[12]. However, to our knowledge, there are no related
studies demonstrating how to use deep ML technique to
establish a DC method to date.

In this work, employing hematology test item results,
we tried to establish a highly accurate DC method by using
deep ML to detect sample mix-up in clinical laboratories.
The performance of the deepML approachwas assessed by
comparison with three well-statistical DC methods.

Materials and methods

Data collection and exclusion criteria

InML, data can be divided into a training set, a validation set, and a test
set. The validation set can be understood as a part of the training set to
monitor the process of model training. The three datasets are inde-
pendently separated. In our study, 423,290deidentified hematology test
results measured on the XN-9000 (Sysmex, Kobe, Japan) from 01/2018
to 12/2018were extracted from the Laboratory Information System (LIS)
of the Beijing ChaoyangHospital. The data from01/2018 to 10/2018was
usedas the training set and the data from11/2018 to 12/2018was usedas
the validation set. Twenty-two thousand fourhundred sixtyhematology
test results from 01/2018 to 12/2018measured on the BC-5390 (Mindray,
Shenzhen, China) were extracted from the LIS of the Beijing Long-fu
Hospital to be used as the test dataset. Data filtering rules applied to
both the XN and the Mindray datasets. Filter rules included: 1) patients
with only one result during the study period were excluded; 2) the first
pair of results of each remaining patient was included; 3) Tukey’s
criteria [13], which defined outliers as values lying three interquartile
ranges below the 25th percentile or above the 75th percentile, was
applied to remove outlying data; 4) patients with two results after
applying Tukey’s criteria were included for further analysis; 5) in
consideration of gender-dependent and age-dependent differences in
distributions of test results, all test results were separated intomale and
female groups for all test items, and 6) the results of patients aged from
14 years old to 60 years oldwere included; 7) the time interval of DCwas
defined to one year [9]. The information of deidentified results included:
patient type, sex, age, sample number, sample type and all test item
result respective values andunits. The test resultswere randomly sorted
by a shuffle function in Python 3.7.3 and then automatically matched
the current data andprecedingdata fromdifferent patients to generate a
mismatched data, simulating a switched sample scenario. The original
paired test results were assumed to error-free. The absolute and relative
differences were assessed by original matched and mismatched data.

ML method: data pre-processing

After filtering data by predefined exclusion rules, the datawas assessed
for consistency of analyte and unit parameters and possible missing
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values for each pair of data. Following assessment, the data was
normalized with the Standard Scaler tool in soft package python 3.7.3.
Then absolute and relative differences of data were calculated. Isolated
forest algorithm was used for removing extreme values in delta data.

ML method: algorithm

The classification problem can be implemented by using classifiers
with different algorithms. In our work, sixmainstream classifiers were
tested and evaluated by confusion matrix. They were Deep Belief
Network (DBN), Random Forest (RF), Support Vector Machine (SVM),
Logistic Regression (LR), K-Nearest Neighbor (KNN), Naive Bayesian
Classifier (NBC). The introduction to the six algorithms is depicted in
Supplementary Materials and Methods.

DBN belongs to a deeper neural network in the field of deep
learning, which consists of Restricted Boltzmann Machine (RBM) and
neural network (NN). DBN was selected for establishing our model. It
was implemented by deep learning framework Keras in Python 3.7.3.
The main tuning parameters included: 1) “learning_rate_rbm” for
controlling the rate of learning; “batch_size_rbm” for selecting the
number of sample each time; “n_epochs_rbm” for training iterative
epochs; “activation_function_nn” for realizing the nonlinearity be-
tween the input and output of neuron.

ML method: implementation

Data pre-processing and model analysis were performed by “numpy”
and “pandas” tools in Python 3.7.3 and by “sklearn” and “tensor-
flow”encoding frameworks in Python 3.7.3. All software packages
were accessed from the sklearn library_2.4.0 in the public Python.
Python is a computer language that can be used in scientific
computing and data analysis, and is currently a mainstream pro-
gramming tool of artificial intelligence.

Reference change value (RCV) method

RCV limits of each test item dependent on biological variability (BV)
[14] were estimated using the following formula:

RCV(% ) = K∗ 2̅
√

∗
̅̅̅̅̅̅̅̅̅̅̅(CV2

a + CV2
i )

√

Coverage factor K was varied from 1.5 to 3.3 in steps of 0.1,
coefficient of variation (CVa) was analytical imprecision, and CVi

was within-subject BV. CVawas calculated from themean CV, which
was considered a representative interval of long-term imprecision.
There were two-type CVa (CVa, 1,CVa, 2) calculated. CVa,1 used whole
data. For the data of CVa,2, we excluded pairs of test results if
both test results constituting the pair were within the reference
interval (CL). Extended CL here referred to twice the upper limit
value of the CL.

Empirical delta check (EDC) method

EDC limits of each test item were calculated using the absolute or the
absolute difference. For each patient, the relative difference for
patient, △xr, was given by:

△xr = |x1 − x2|
x1

,

where x1 and x2 corresponded to the early and later dates of the patient,
respectively.

The absolute difference for each patient, △xa, was given by:

△xa = |x1 − x2|.
For relative difference, theDC limitswere varied from 1% to 200%

range in steps of 0.1%, whereas for absolute difference, the DC limits
were varied from 1% to 200% of the average test result in the same
step.

Revised weighted delta check (RwCDI) method

For all test items, a distribution of values for each test was transformed
into approximately Gaussian form by using the Box-Cox formula [15].
To make data comparable and unaffected by measurement units, all
the transformed test results were standardized to a uniform scale on
the basis of reference interval (RI) as described by Ichihara [16]. As a
next step, we used Formula (1) to get the absolute difference for each
test item and calculated a new index termed weighted cumulative
delta index (wCDI).We got three panels (including 5-item, 10-item and
22-item) to compute new parameter, and continued following the EDC
method. The details of the procedure are described in Figure 1.

Evaluation metrics

The four parameters were defined below as [17]: 1) True Positive (TP):
delta check limit was exceeded CL of mismatched queue; 2) False
Positive (FP): delta check limit was exceeded CL of matched queue; 3)
False Negative (FN): delta check limit was not exceeded CL of mis-
matched queue; 4) True Negative (TN): when the delta check limit was
not exceeded CL of matched queue.

The parameters on confusion matrix were calculated, including
true positive rate (TPR), true negative rate (TNR), false positive rate
(FPR), false negative rate (FNR), accuracy rate (ACC).We evaluated our
model using receiver operating characteristic (ROC) analysis, and the
area under the curve (AUC) was calculated, which ranges between 0.0
and 1.0, with values of 0.5 for random classification and 1.0 for perfect
classification.

Results

Data distribution

Total 445,750 data was included from two hospitals,
123,365 pairs of data in matched queue and 123,365 sets of
data in mismatched queue. We split the 423,290 data of
Beijing Chao-yang Hospital dataset into a training set from
1/2018 to 10/2018 and a validation set from 11/2018 to
12/2018. We used the 22,460 data of Long-fu Hospital from
1/2018 to 12/2018 as test set.
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Prior to conducting further analysis, data distribution
characteristicswere examined; the distribution ofMCHand
MCHC had a skewness (Sk) close to zero (−0.15 and −0.02)

resembling a normal distribution. The other test items
examined had skewed distribution with |Sk|>0.3 ranging
from 0.31 (MCV) to 2.02 (NEUT). All items kurtosis

Figure 1: A comprehensive process and architecture of DC detection of sample mix-up.
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Table : Prediction scores of models created by different ML algorithms.

Algo TPR TNR FPR FNR ACC AUC Model dimensions

DBN . . . . . . 

. . . . . . 

KNN . . . . . . 

. . . . . . 

SVM . . . . . . 

. . . . . . 

RF . . . . . . 

. . . . . . 

LR . . . . . . 

. . . . . . 

NBC . . . . . . 

. . . . . . 

Algo, algorithm; DBN, Deep Belief Network; RF, Random Forest; SVM, Support Vector Machine; LR, Logistic Regression; KNN, K-Nearest
Neighbor; NBC, Naive Bayesian Classifier; TPR, true positive rate; FPR, false positive rate; TNR, true negative rate; FPR, false positive rate;
ACC, accuracy; AUC, area under the receiver operating curve.

Figure 2: DBN training process flowchart.
(A–B) Represents the change of parameterswith time for certain layer in the training dataset. (C–D) Represents the change of the accuracy and
loss value with time in the training dataset and validation dataset from Beijing Chao-yang Hospital. In each diagram, red colored line
represents the training dataset; green colored line the validation dataset. (E) Represents the results of ML algorithm selection. (F) Represents
DBN ROC curve of the test dataset from Beijing Long-fu Hospital.
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(peakedness of distribution) ranged from −0.83 (RBC) to
16.73 (MCHC).

Performance evaluation of six ML algorithms

We evaluated six types of classifiers: SVM, KNN, RF, LR,
NBC andDBNmodel. The evaluationmetrics of eachmodel
in absolute male data are shown in Table 1 and the detailed
ROC curves are depicted in Supplementary Figure 1. We
also evaluated the performance of six ML methods for
different number of combinations of hematology test items
(10-item and 22-item). The performance of all ML methods
combined by 22-item was better, as shown in Table 1. As a
result, we selected the 22-test item ML model for model
training. The 22 hematology test items were input as a
multi-label classification task in the ML method, as shown
in Figure 1. Figure 2C and D shows the change curve of the
accuracy and loss value with time in the training set and
the validation set at the current training model. The DBN
model clearly achieved the highest accuracy on the test
dataset, shown in Figure 2F. RF achieved closely compet-
itive performance for current dataset. As shown in
Figure 2E, the performance of DBN was obviously superior
to those of the other five ML algorithms in DC method.

Performance of improved DBN model

The robustness and fault tolerance of RF, KNN and SVM to
noise data were low, the learning ability of LR and NBC to
multi-attribute nonlinear datawasweak aswell. Compared
with the above 5 ML algorithms, NN performed stronger
robustness and fault tolerance to noise data, stronger

learning ability to complex nonlinear correlation, and
higher classification accuracy. However, NN algorithm
was also not omnipotent, with the shortcomings of slack-
ness of learning rate or relatively inadequate accuracy.
We designed an improved DBN with restricted Boltzmann
machine (RBM) as shown in Figure 3. DBN consisted of two
parts: a feature learner with multi-layer RBMs and a clas-
sifier with a back propagation (BP). Model training
initialized, RBM enabled to be self-encoded to strengthen
data features, thus enlarging significant difference be-
tween positive data and negative data. Intra-and-inter RBM
learning method not only dramatically improved learning
rate, but also prevented exploding gradient and vanishing
gradient problems, thus to assure capturing the higher
accuracy than traditional NN as much as possible.

Comparison with three statistical DC
methods

To evaluate the performance of the DBN model, it was
compared with three statistical methods which had been
proven to have high performance in their respective
domains.

Absolute difference and relative difference of all test
items were shown on male/female dataset. Nineteen
thousand eight hundred seventy-six test results of Long-fu
hospital were used to compare the DBN model parameters
with three DC methods. Figure 4 demonstrated that seven
parameters of four methods collected including TPR, TNR,
FPR, FNR, PPV, NPV and ACC. Meanwhile, Figure 4
depicted the absolute difference results in male data
among four methods. For the sake of space, the absolute
and relative difference results in male and in female are

Figure 3: DBN parameter tuning chart.
DBN consisted of two parts: a feature
learner with multi-layer RBMs and a
classifier with a back propagation (BP).
Parameter tuning was realized at RBM and
BP parts separately.
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shown in Supplementary Tables 1 and 2 and in Supple-
mentary Tables 3 and 4. Experimental results illustrated
DBN was better than the three statistical methods. Of all
test items performed, absolute differenceDC yieldedhigher
accuracy than relative difference for all methods. The same
simulation study was performed by artificially generating
cases of female samples.

Discussion

Ourmodel enabled the accurate detection of samplemix-up
in real-world settings, illustrating powerful performance
when compared to previous studies [10, 16, 18]. The main
reasons for these results were as follows:

a) DC methods reported were prone to be affected by the
data distribution patterns of test results, DC limits, and
the amount of test items.

b) Dramatically heterogeneous and extreme results exist
in real-world clinical laboratory data and individual
biological variations enlarge data fluctuation.

c) Assuming analytical variation was ignored, matched
data was mainly affected by within-individual biolog-
ical variation, data distribution pattern and extreme
values. Viceversa, mismatched data was mainly
affected by between-individual biological variation,
data distribution patterns, and extreme values.

d) Simple statistical analysis was not use in uncovering
cases of sample mix-up. For both DBN and the
improved RwCDI, at the first, raw data was filtered by
pre-defined rules, and further a series of subsequent

Figure 4: Comparison of DBN method with
three optimizedDCmethods using absolute
difference results of male samples.
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data preprocessing was adopted, mainly including
data transformation and removal of extreme values for
delta data. The difference was that DBN got rid of
extreme values by isolated forest algorithm, while that
RwCDI by simple truncation limits. Isolated forest al-
gorithm was a relative robust method to remove
extreme values. Its working principlewas similar to the
density map method. The number of extreme values
were able to be adjusted according to the degree of
density and balance of data. In this study, isolated
forest algorithm in this step removed about 3% of the
extreme data, while RwCDI excluded about 1% of the
extreme data. For RCV and EDC, the original data only
filtered by the first-step rules. The experimental results
showed that the accuracy of DBN and RwCDI was
0.9310 and 0.9089 separately. DBN was better than
RwCDI and was significantly superior to RCV and EDC.

DC limit setting was the key step to detect sample mix-up.
Due to the different control limit settings in various labo-
ratories, the maximum variation in the error detection rate
of sample mix-up among laboratories reached up to 76%
[9]. In this study, two types of DC control limit setting
methods were compared. The control limit for EDC was
optimized by a dense grid search within a broad range of
0–200% in steps of 0.1. The control limit for RCV was
calculated according to individual biological variation and
optimized by adjusting k value or excluding pairs of test
results within reference intervals or directly extending the
original control limits. Our results illustrated that the
accuracy for different test items for EDC after optimization
ranged from 0.5825 to 0.7804, while for RCV from 0.5631 to
0.8145, which was similar to the results reported in the
literature [18]. The accuracy of EDC and RCV far lagged
behind that of DBN. This might be related with method
itself. The working principle of bothmethods was based on
simple DC control limits to distinguish error samples from
correct samples. Thus, they are difficult to capture
nonlinear effects and interaction in real-world clinical
scenarios.

Previous studies reported that the amount of test items
affected the accuracy of error detection for sample mix-up
[19]. Most of DC methods only used a single test item as an
input index. If a combination of test items was used as
input indexes, ML features would be strengthened. Here k
was introduced, which represented the number of test
items (k=5–22). Our results proved that the accuracy of DBN
adopting 22 test items (k=22) as input indexes reached up to
0.9310, which was higher than 10 test items (k=10). Tep-
pei’s study stated that AUC and sensitivity increased

proportionately for test items k<10 but remained almost
unchanged for k>10, and the cut off value decreased until
k=10 and remained unchanged for k>10. This might be
related with the way of weighting in the calculation. In
Teppei’ method [16], a weighting factor was conversed by
standard deviation of a given test item. But correlations
among test items involved in the calculation did not be
taken into consideration.

For DBN model established in this study, the accuracy
was regarded as the primary evaluation matric. The most
basic component of DBN model was a neuron. Neurons
receiving output signals from other neurons (x1…xn)
regarded as next input signals, these input signals trans-
ferred between neurons by connections with different
weights (ω1…ωn). A total input value received by neurons
would be compared with a threshold, called θ. Then, the
output of neurons was processed by an “activation func-
tion” (y) (Figure 1). RCV and EDCweremainly optimized by
adjusting DC limits at different strength. Our experimental
data showed that EDC was better than RCV in DC limit
optimization, but the input signal of the two methods was
only a single dimension, that was x1. In the Teppei’s
method, the input signal was multi-dimensional, i.e. x1…
xn. This was similar to DBN method. But Teppei’s method
was one-way correlation to input signals, the number of
weight (ω) was the same as the input dimension, and the
size of each weight was related to the dispersion of each

input signal x, that was ω = 1
aSD2. In our DBN model, input

signals were transferred in a multi-layer and cross-
structured way, and the number of weight was tremen-
dous and complicated. In general, parameters ωi and θ
obtained by the way of on-going ML. In particular, per-
ceptron (that was, it had only one layer of neurons) had
limited learning ability and mainly solved the linear
separable problem. For the nonlinear indivisible problem,
we needed to consider the use of multi-layer functional
neurons. The learning process was actually to adjust the
“connection weight” between neurons and the threshold θ
of each functional neuron according to the training set
data. The results showed that the accuracy of the four
methods was DBN>RwCDI≫EDC>RCV.

The generalization of themodelwas another important
evaluation metrics for assuring a valuable clinical appli-
cation. In this study, hematology test results were selected
due to high testing frequency and high levels of stan-
dardization. Data from two laboratories in different hos-
pitals were used to establish our training dataset,
validation dataset, and test dataset. The test dataset came
from one hospital, the training dataset and the validation
dataset set data were from the other hospital. The training
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dataset and validation dataset were separated indepen-
dently to avoid overestimation of the accuracy of unknown
data by the established model. The experimental results
did show that the accuracy training dataset from Chaoyang
Hospital was approximately 93%, equal to the accuracy of
test dataset from Long-fu Hospital. In addition, in the
process of ML algorithm selection, it was found that both
the RF algorithm and the DBN algorithm demonstrated
acceptable performance characteristics. The DBN algo-
rithm was slightly better than the RF algorithm on the
current dataset. However, in clinical complex scenarios,
when the data distribution difference became smaller, RF
algorithm might be prone to worse, while DBN would
represent stronger generalization ability.

In conclusion, our data demonstrate that utilizing the
full panel of all available hematology test result items
provides more significant information for sample mix-up
detection by ML than what is offered by a single test item
input. The DCmethod based on the DBN has demonstrated
highly effective sample mix-up identification performance
in real-world clinical settings.
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