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Abstract: The blue-green alga Spirulina platensis is rich in phycocyanins, that exhibit a wide range of
pharmacological actions. C-phycocyanin (C-PC), in particular, possesses hepatoprotective, nephro-
protective, antioxidant, and anticancer effects. Furthermore, several studies have reported both anti-
and proinflammatory properties of this pigment. However, the precise mechanism(s) of action of
C-PC in these processes remain largely unknown. Therefore, here we explored the C-PC effect in
in vitro microglia activation. The effect of C-PC on the expression and release of IL-1β and TNF-α
and the activation of NF-κB was examined in primary microglia by real-time PCR, ELISA, and
immunofluorescence. Treatment with C-PC up-regulated the expression and release of IL-1β and
TNF-α. C-PC also promoted the nuclear translocation of the NF-κB transcription factor. Then, to
elucidate the molecular mechanisms for the immunoregulatory function of C-PC, we focused on
investigating the role of Toll-like receptor 4 (TLR4). Accordingly, several TLR4 inhibitors have been
used. Curcumin, ciprofloxacin, L48H37, and CLI-095 that suppresses specifically TLR4 signaling,
blocked IL-1β and TNF-α. Overall, these results indicate the immunomodulatory effect of C-PC in
microglia cultures and show for the first time that the molecular mechanism implicated in this effect
may involve TLR4 activation.

Keywords: C-phycocyanin; microglia; cytokines; Toll-like receptor 4

1. Introduction

The blue-green alga Arthrospira platensis, commonly known as Spirulina, has long
been used as a food supplement mainly due to the high content of proteins (~70% by
dry weight), vitamins, minerals, various kinds of amino acids, fibers, and pigments such
as chlorophylls, carotenoids, and phycocyanins [1,2]. Apart from the importance as a
food additive, currently, Spirulina is extensively studied for its potential for medical and
therapeutic applications [2]. A lot of in vitro and in vivo studies have been focused on the
antioxidant activity of Spirulina, that is able to activate antioxidant enzymes, scavenge free
radicals and protect against lipid peroxidation and DNA damage [3–6]. Thanks to these
activities, Spirulina is considered a promising agent with protective roles against renal,
hepatic, cardiovascular, and central nervous system (CNS) diseases [7–9]. Spirulina has
also immunomodulatory and anti-inflammatory properties. As stimulator of the immune
system, Spirulina increases the macrophage phagocytic activity, activates T and B cells, and
stimulates the production of antibodies and proinflammatory cytokines, such as interleukin
(IL)-1β, IL-2, IL-6, tumor necrosis factor (TNF)-α, and interferon-γ [10–12]. Spirulina ex-
hibits also promising anti-inflammatory activities being able to inhibit the expression of
inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2
(COX-2), TNF-α, IL-1β, and IL-6 in in vitro and in vivo models of inflammation [12–14].
The beneficial effects of Spirulina seem to be mediated by β-carotene, phycobiliproteins, and
other vitamins and minerals present in the microalga [15,16]. Among the phycobiliproteins,
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Spirulina contains phycocyanin and allophycocyanin in a ratio of 10:1 [17]. In particular,
C-phycocyanin (C-PC), isolated from the blue-green algae, is a nontoxic and noncarcino-
genic water-soluble protein that constitutes up to 15–20% of Spirulina dry weight, and it is
commonly used as a food additive, cosmetic colorant, and fluorescent dye [18]. C-PC also
exhibits a wide range of pharmacological actions, including hepatoprotective, nephroprotec-
tive, antioxidant, and anticancer effects [19–21]. Furthermore, different studies have shown
either anti- or proinflammatory effects of C-PC. For example, in macrophages and BV-2
microglia cells, C-PC reduced the expression of several inflammatory genes (e.g., iNOS,
COX-2, TNF-α, and IL-1β) [22,23]. Conversely, Chen et al. [24] showed that C-PC induced
secretion of TNF-α, IL-1β, and IL-6, increased expression of COX-2, and stimulated the
phosphorylation of proteins implicated in inflammatory responses, including ERK, JNK,
p38 and IκB in murine macrophages. Other studies also reported neuroprotective effects of
C-PC and showed that oral administration of C-PC crosses blood brain barrier suggesting
its use in neurodegeneration, where oxidative stress and neuroinflammation play a relevant
role [25,26].

Neuroinflammation is initiated by microglia, the immune cells of the CNS, that in
response to pathological conditions undergo an activation process aimed at CNS protec-
tion. Microglia activation is characterized by the classical (M1) and the alternative (M2)
phenotype, although there are different opinions about the existence of multiple activation
phenotypes for microglia. M1 microglia produce proinflammatory cytokines (e.g., TNF-α,
IL-1β, IL-6), chemokines, and other mediators (nitric oxide, oxygen radicals), which con-
tribute to the clearance of pathogens. Furthermore, M1 microglia are also able to perform
phagocytosis, antigen presentation, and lymphocyte activation. On the other hand, M2
phenotype is associated with neural survival, suppression of brain damage, and prevention
of negative effects of the immune response [27–30]. Importantly, microglia, like peripheral
macrophages, are plastic cells that possess the capacity to change their phenotype dur-
ing the inflammatory response [31,32]. Microglia become activated following interaction
of pathogen- and/or endogenous damage-associated molecular patterns with pathogen
recognition receptors, that include NOD-like receptors, C-type lectin receptors, RIG-I-like
receptors, and Toll-like receptors (TLRs) [33,34]. Among the TLRs, TLR4, localized on
the surface of microglia, is the major receptor for lipopolysaccharide (LPS), which is an
important component of the outer membranes of Gram-negative bacteria [35]. Following
activation, TLR4 interacts with the two adaptor proteins MyD88 and TRIF. Both MyD88-
dependent pathway and TRIF-dependent pathway result in the activation of nuclear factor
(NF)-κB, which induces the expression of proinflammatory genes and the production of
cytokines [36,37].

Considering the conflicting results on the effect of C-PC in in vitro models of inflamma-
tion/neuroinflammation, in this study we explored the effect of C-PC in in vitro microglia
activation. Then, with the purpose to clarify the mechanism involved in the observed
effects, we found that microglia inflammatory response induced by C-PC was mediated by
the activation of TLR4.

2. Results
2.1. Identification of Noncytotoxic Concentrations of C-Phycocyanin in Microglial Cells

The first experiments were aimed at exploring the safety and identifying the non-
cytotoxic concentrations of C-PC in microglia. Cultures were incubated with increasing
concentrations (1–300 µg/mL) of a commercial preparation of C-PC for 16 h. Cell viability
of microglia exposed to C-PC at concentrations higher than 200 µg/mL significantly de-
creased compared to vehicle treated cells, taken as 100% (Figure 1). Based on these results,
concentrations of C-PC used in the following experiments ranged from 1 to 200 µg/mL.
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Figure 1. Effect of C-phycocyanin in microglia cell viability. Microglia were cultured overnight in
medium containing 10% of serum, which was replaced with serum-free medium before exposure to
C-PC (1–300 µg/mL) for 16 h. At the end of incubation, SRB assay was used to measure cell viability.
Results are expressed as percentage of cell viability relative to control cells. Data are means ± SEM of
3 independent experiments. ** p < 0.01 versus control cells (dashed line). One-way ANOVA followed
by Holm–Sidak’s test.

2.2. Effect of C-Phycocyanin on Proinflammatory Cytokine Release by Microglia

Classical M1 microglia activation is correlated with the production and release of
proinflammatory cytokines such as IL-1β and TNF-α, in addition to reactive oxygen species,
nitric oxide, and others inflammatory mediators [29]. Therefore, to study the effect of C-PC
on M1 microglia activation, cells were treated with noncytotoxic concentrations of C-PC
(1–200 µg/mL) in the absence or presence of LPS stimulation, and the release of IL-1β
and TNF-α, indicative of M1 activation, was examined. C-PC significantly increased basal
levels of both cytokines starting from the concentration of 25 µg/mL (Figure 2A,B). To note
that the release of both cytokines induced by the highest concentrations of C-PC tested
(100 and 200 µg/mL) was to the same extent as that observed after stimulation with the
endotoxin LPS, a potent inducer of M1 microglia activation. Furthermore, pretreatment
with C-PC did not influence the release of IL-1β and TNF-α induced by LPS (Figure 2C,D).

To confirm these results, we also explored the effect of C-PC on IL-1β and TNF-α
mRNA expression levels. Considering that 100 and 200 µg/mL C-PC affected cytokine
release in a similar manner, in the following studies C-PC was used at the concentration of
100 µg/mL. C-PC treatment markedly increased basal levels of cytokine gene expression,
without changing the effect of LPS (Figure 3).

2.3. Effect of C-Phycocyanin on NF-κB Activation in Microglia

The transcription factor NF-κB is expressed in the cytoplasm of the majority of cells.
The activated NF-κB dimers (p50/p65) translocate to the nucleus and bind to κB site
of chromosome to induce transcription of NF-κB targeted genes. NF-κB controls the
expression of more than 500 genes, which are involved in inflammatory responses [38,39].
Therefore, immunofluorescence analysis was performed to analyze the effect of C-PC on
nuclear translocation of the NF-κB/p65 subunit. Consistent with NF-κB activation, confocal
images reveal a pronounced redistribution of p65 subunit from the cytoplasm to the nucleus
after treatment with C-PC. Furthermore, as observed for cytokine release, C-PC did not
change the effect of LPS (Figure 4). In addition, microglia morphology has not been affected
by 90-min exposure to C-PC, LPS, or their association.
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Figure 2. Effect of C-phycocyanin on cytokine release from cortical microglia. Microglia were cultured
overnight medium containing 10% of serum, which was replaced with serum-free medium before
treatment with C-PC (A,B) or C-PC + LPS (100 ng/mL) (C,D). After the exposure to C-PC or LPS
for 16 h, supernatants were collected and analyzed for IL-1β (A,C) and TNF-α (B,D) content. Data
are means ± SEM (n = 3 in triplicate). * p < 0.05, ** p < 0.01, and *** p < 0.001 versus control cells.
One-way ANOVA followed by Holm–Sidak’s test.

Figure 3. Effect of C-phycocyanin on cytokine production from cortical microglia. Microglia were
cultured overnight in medium containing 10% of serum, which was replaced with serum-free medium
before treatment with 100 µg/mL C-PC, 100 ng/mL LPS, or their association for 6 h. IL-1β (A) and
TNF-α (B) mRNA levels were quantified by real-time PCR. Data are means± SEM (n = 3 in triplicate).
* p < 0.05 and ** p < 0.01 versus control cells (CTR). One-way ANOVA followed by Holm–Sidak’s test.
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Figure 4. Effect of C-phycocyanin on NF-κB activation in microglia. Microglia were cultured
overnight in medium containing 10% of serum, which was replaced with serum-free medium before
treatment with 100 µg/mL C-PC ± 100 ng/mL LPS. Cells were then processed for NF-κB p65
immunostaining. Experiments were performed 3 times and representative confocal images showing
subcellular localization of p65 are shown. Scale bar, 10 µm.

2.4. Effect of Polymyxin B on Proinflammatory Cytokine Release by Microglia Treated with
C-Phycocyanin

In an attempt to explain the inconsistency between our results and some previous
studies that have shown the anti-inflammatory properties of C-PC in macrophage and
microglia cultures [23,24], we examined whether C-PC could be contaminated with LPS.
Microglia were pretreated with polymyxin B (PMB, 50 µg/mL), a cyclic cationic polypeptide
antibiotic able to bind to lipid A and neutralize LPS biological activity, widely used in vitro
and in vivo to impede the effects of endotoxin contamination [40,41]. Then, cells were
stimulated with 100 ng/mL LPS (used as positive control) or 100 µg/mL C-PC. As expected,
PMB markedly abolished LPS-induced release of IL-1β and TNF-α by microglia (Figure 5,
gray bars). Conversely, PMB had no effect on the release of both cytokines induced by
C-PC (Figure 5, light red bars), proving that C-PC is free from endotoxin contamination.
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Figure 5. Effect of polymyxin B on cytokine release from cortical microglia. Microglia were cultured
overnight in medium containing 10% of serum, which was replaced with serum-free medium
before pretreatment with 50 µg/mL polymyxin B (PMB) for 1 h followed by stimulation with LPS
(100 ng/mL) or C-PC (100 µg/mL) for 16 h. Supernatant were collected and analyzed for IL-1β
(A) and TNF-α (B) content. Data are means ± SEM (n = 4 in triplicate). * p < 0.05 and *** p < 0.001
versus control cells. ◦◦◦ p < 0.001 versus LPS treatment (black bars). One-way ANOVA followed by
Holm–Sidak’s test.

2.5. Effect of Toll-Like Receptor 4 Inhibition on Proinflammatory Cytokine Release from Microglia
Treated with C-Phycocyanin

Next, to determine the target of C-PC at receptor level, we explored whether TLR4
could be required for the proinflammatory effect of C-PC. First, we examined the extracel-
lular region of the receptor complex composed of TLR4 and myeloid differentiation protein
2 (MD-2). To this end, microglia were treated with curcumin, ciprofloxacin, or L48H37,
three TLR4 inhibitors that interfere with LPS binding to MD-2 [42–45]. Curcumin (10 µM),
ciprofloxacin (100 µg/mL), and L48H37 (1-ethyl-3,5-bis(3,4,5-trimethoxybenzylidene)piperi-
din-4-one; 10 µM) reduced the release of IL-1β and TNF-α by microglia stimulated with
LPS (used as positive control; Figure 6, gray bars) and C-PC (Figure 6, light red bars).
Specifically, the three inhibitors had effects on cytokine release after C-PC stimulation
similar to those observed after LPS treatment, suggesting that TLR4 could be the target of
the proinflammatory activity of C-PC.

Figure 6. Effect of Toll-like receptor 4 inhibition on cytokine release from cortical microglia. Microglia
were cultured overnight in medium containing 10% of serum, which was replaced with serum-free
medium before pretreatment with curcumin (Curc, 10 µM), ciprofloxacin (CPFX, 100 µg/mL), or
L48H37 (10 µM) for 1 h followed by stimulation with LPS (100 ng/mL) or C-PC (100 µg/mL) for 16 h.
Supernatant were collected and analyzed for IL-1β (A) and TNF-α (B) content. Data are means± SEM
(n = 3 in triplicate). * p < 0.05, ** p < 0.01, and *** p < 0.001 versus control cells. ◦ p < 0.05 and
◦◦◦ p < 0.001 versus LPS or C-PC treatment. One-way ANOVA followed by Holm–Sidak’s test.
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Further, we analyzed the role of TLR4 in mediating the effects of C-PC using CLI-095,
a cyclohexene derivative that selectively inhibits TLR4 signaling mediated by the receptor
intracellular domain [46–48]. CLI-095 (0.5 µg/mL) completely reduced the release of IL-1β
and TNF-α by microglia stimulated with LPS (Figure 7, gray bars) and C-PC (Figure 7, light
red bars), confirming that TLR4 is involved in the inflammatory effect of C-PC.

Figure 7. Effect of CLI-095 on cytokine release from cortical microglia. Microglia were cultured
overnight in medium containing 10% of serum, which was replaced with serum-free medium before
pretreatment with 0.5 µg/mL CLI-095 for 1 h followed by stimulation with LPS (100 ng/mL) or C-PC
(100 µg/mL) for 16 h. Supernatant were collected and analyzed for IL-1β (A) and TNF-α (B) content.
Data are means ± SEM (n = 3 in triplicate). *** p < 0.001 versus control cells and ◦◦◦ p < 0.001 versus
C-PC treatment. One-way ANOVA followed by Holm–Sidak’s test. ND, not determined.

3. Discussion

We have recently shown that an acetone extract from the microalga Spirulina platensis
reduced the release of proinflammatory cytokines and impeded LPS-triggered neuroinflam-
mation in microglial cells. The studied extract contained chlorophylls, pheophytins and
carotenoids that could be implicated in the anti-inflammatory effect observed [14]. Indeed
chlorophylls, pheophytins, and carotenoids have been shown to exhibit promising anti-
inflammatory activities in numerous experimental models [49–51]. Spirulina platensis also
synthetizes C-PC, a water-soluble pigment, known worldwide as a food additive and cos-
metic colorant with potential biological activities and health benefits [52]. Antioxidant and
antitumor activities, together with hepatic, renal, cardiovascular, and CNS protective prop-
erties of C-PC from Spirulina platensis have been extensively shown [19–25,53–58]. Moreover,
it should be emphasized that Spirulina and C-PC, in particular, exert anti-inflammatory
and immunomodulatory activities by stimulating the production of antibodies and up- or
down-regulating the expression of different sets of key cytokines, such as IL-1β, IL-2, IL-4,
IL-6, IL-10, and TNF-α [10–14,59].

In the present study we examined the effect of C-PC in the inflammatory phenotype of
microglia, the primary innate immune cells of the CNS. Noncytotoxic concentrations of C-
PC increased the expression and release of the proinflammatory cytokines IL-1β and TNF-α
under basal conditions (i.e., in the absence of an inflammatory stimulus). In addition, C-PC
induced translocation to the nucleus of the NF-κB/p65 subunit, indicating the activation
of NF-κB signaling, widely implicated in immune responses. These results suggest that
C-PC, similarly to LPS, drives microglia into a proinflammatory phenotype, which is
characterized by the production of proinflammatory mediators including IL-1β, IL-6, TNF-
α, nitric oxide, and reactive oxygen radicals as well as by an increased expression of surface
markers such as CD16/32, CD40, CD86, which sustain the inflammatory process [29,60].
Our findings confirm those of Chen et al. [24] that purified C-PC from Spirulina and
showed its capability to induce the expression of IL-6, proIL-1β, IL-1β, TNF-α, COX-2
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and the phosphorylation of ERK, JNK, p38, and IκB in the murine macrophage cell line
J774A.1. However, our results differ from other numerous studies that revealed the anti-
inflammatory effect of C-PC in various cell types [19,22,23,57,58], including BV-2 microglial
cells. In particular, Chen et al. [23] showed that C-PC prevented the up-regulation of IL-6,
TNF-α, iNOS, and COX-2 induced by LPS in BV-2 microglia cells, suggesting that C-PC
may contribute to neuroprotection in degenerative disorders in which microglial activation
plays a detrimental role. This inconsistency may be partly caused by the difference between
primary microglia, used in our study, and the BV-2 cell line. Despite the similarity of BV-2
cells to primary microglia, their use as an alternative model to primary microglia has long
been debated. The main idea is that BV-2 cells have almost identical functions as primary
microglia, but not to the same extent. For example, upon LPS stimulation, many of the
genes induced by BV-2 cells are also up-regulated in primary microglia; however, they are
more pronounced in primary microglia compared to the BV-2 cell line [61,62].

C-PC used in this study was extracted and purified from Spirulina that belongs to
the cyanobacteria group. Cyanobacteria are prokaryotes that contain the basic structure
and chemical composition of the cell wall of Gram-negative bacteria, while similarly to
eukaryotes they possess a photosynthesis apparatus. Cyanobacterial cell wall contains
LPS in the outer membrane layer and LPS comprises 1.6% of the cellular dry weight of
Spirulina [63]. For that reason, firstly we verified the presence of LPS in the C-PC prepa-
ration used. To this aim, microglia were treated with PMB, a cyclic cationic polypeptide
antibiotic produced by Bacillus polymixa, that binds and neutralizes LPS of the outer cell
membrane of Gram-negative bacteria [64]. PMB did not affect the C-PC-induced microglia
inflammatory response, proving that C-PC preparation used in this study was free from
LPS contamination and, most important, supporting the direct immunomodulatory effect
of C-PC in microglia.

Although C-PC has been widely studied, signaling pathways involved in its biological
effects are largely unclear. Thus, here we tried to delineate the target for the immunomod-
ulatory effect of C-PC. Immune response, including that of microglia, initiates with the
activation of several classes of pattern recognition receptors, including TLRs. Among them,
TLR4 associated with MD-2 is responsible for the initiation of rapid innate immune re-
sponses. Binding of ligands, such as LPS, causes dimerization of the extracellular domains
and the subsequent recruitment of specific adaptor proteins to the intracellular domains,
thus initiating a signaling cascade [32,65]. Previous studies have proposed that inflamma-
tory cascade can be prevented by compounds able to bind to TLR4–MD-2 complex and
inhibit its dimerization, required for the activation of downstream signaling pathways [66].
In this context, previous studies, including ours, have shown that curcumin, the major
active compound of turmeric, binds directly to the MD-2 pocket, competing with LPS for
the same binding site and resulting in the suppression of LPS-induced proinflammatory
signaling [42,43]. We also showed that ciprofloxacin, a commonly prescribed antibiotic,
can accommodate into the binding pocket of MD-2 occupying a relevant portion of the
LPS binding site through the same mechanism of curcumin [44]. Moreover, among the
curcumin structural analogues, L48H37 exerts a strong anti-inflammatory activity by target-
ing MD-2 and inhibiting the formation of TLR4–MD-2–LPS complex [45]. Based on these
findings, to explore whether C-PC may target TLR4–MD-2, the receptor complex has been
inhibited with curcumin, ciprofloxacin, or L48H37. When microglia were treated with the
compounds before stimulation with C-PC, cells showed a suppressed release of IL-1β and
TNF-α, suggesting the engagement of TLR4–MD-2 complex in mediating the effect of C-PC.
To further support the role of this receptor in mediating the effect of C-PC, microglia were
also treated with CLI-095 (also known as TAK-242), a TLR4-specific inhibitor that inhibits
TLR4 signaling by binding directly to the intracellular TIR domain of TLR4 [46–48]. In our
experimental conditions, CLI-095 completely abolished the C-PC-induced release of IL-1β
and TNF-α, confirming the role of TLR4 in mediating microglia immune response induced
by C-PC. Furthermore, considering that CLI-095 completely blocked the release of both
cytokines, the effect of C-PC appears exclusively mediated by TLR4–MD-2 complex.
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Even if the binding mode as well as the precise binding site of C-PC on TLR4–MD-
2 complex remain to be define, this study helped to clarify the mechanism underlying
immunomodulatory activity of C-PC, showing for the first time, to our knowledge, that
the signaling through TLR4 can be critically involved. Furthermore, it is noteworthy that
in vivo, after oral administration, C-PC is degraded by proteolysis to phycocyanobilin,
the linear tetrapyrrole chromophore of C-PC, or to phycocyanobilin-linked peptides [67].
Phycocyanobilin, in particular, possesses anticancer, anti-inflammatory, atheroprotective,
nephroprotective, and neuroprotective effects [68–73], suggesting that most of the phar-
macological actions of C-PC could be ascribed to phycocyanobilin. Therefore, additional
in vivo studies will be relevant to definitively prove the functional role of TLR4 in C-PC
immunomodulatory effect and to clarify whether phycocyanobilin could contribute to
this effect.

4. Materials and methods
4.1. Reagents

All reagents were from Sigma-Aldrich (Milan, Italy), unless noted otherwise. Tissue cul-
ture media, fetal bovine serum (FBS), and antibiotics were purchased from Life Technologies
(San Giuliano Milanese, Italy). LPS (Ultra-Pure LPS-EB from Escherichia coli, 0111:B4 strain
that only activates TLR4) and (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-
1-carboxylate (CLI-095 or TAK-242) were from InvivoGen (InvivoGen Europe, Toulouse,
France). C-PC was purchased from Sigma-Aldrich as a lyophilized powder obtained from
Spirulina platensis with a 30–50% of protein content and the PC ratios (A620/A280) > 3.5 [24].
The primary antibody mouse anti-p65 (NF-κB p65, Cat. sc-8008) was from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Alexa Fluor 555 secondary antibody was from Invit-
rogen (Milan, Italy, Cat. A21422). Enzyme-linked immunosorbent assay (ELISA) kits were
obtained from Antigenix America (Huntington Station, NY, USA). Falcon tissue culture
plasticwares were purchased from BD Biosciences (SACCO srl, Cadorago (CO), Italy).

4.2. Cell Cultures

All experimental procedures were conducted according to national and EU guidelines
for animal experiments and were approved by the Institutional Review Board for Animal
Research (Organismo Preposto al Benessere Animale, OPBA) of the University of Padua
and by the Italian Ministry of Health (protocol number 41451.N.N8P). Microglial cells were
isolated from mixed glial cell cultures prepared from cerebral cortices of postnatal day
1 Sprague-Dawley rat pups (CD strain), as previously described [74]. Typically, 7 days
after isolation, cultures reached confluence and microglia were recovered by shaking
the flasks (200 rpm for 1 h at 37 ◦C), resuspended in high-glucose Dulbecco’s modified
eagle medium (DMEM) supplemented with 2 mM L-glutamine, 10% heat-inactivated FBS,
100 units/mL penicillin, 100 µg/mL streptomycin and 50 µg/mL gentamicin (growth
medium), and plated on poly-L-lysine-coated (10 µg/mL) plastic wells at a density of
1.50 × 105 cells/cm2. Cells were allowed to adhere for 45 min and then washed to remove
nonadhering cells. The procedure used generated microglial cultures of 97% purity, as
determined by immunocytochemistry using a primary antibody against ionized calcium
binding adaptor molecule 1 (Iba1, 1:800, Wako Chemicals USA Inc., Richmond, VA, USA,
Cat. 019-19741), a marker for microglia cell types. Cells were maintained at 37◦C in a
humidified atmosphere containing 5% CO2/95% air.

4.3. Cell Viability

The sulforhodamine B (SRB) assay was used to measure microglial cell viability [75,76].
Cells were plated in poly-L-lysine coated 96-well plates (50,000 cells/well) in growth
medium containing 10% of serum and allowed to adhere overnight. Growth medium was
replaced with serum-free medium 2 h before treatment with increasing concentrations of
C-PC for 16 h. At the end of incubation, cells were fixed with cold 10% trichloroacetic acid
for 1 h at 4 ◦C. Then, cells were stained with 0.4% SRB for 30 min at room temperature.
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Following this step, the protein-bound dye was solubilized with 10 mM Tris base solution.
The absorbance was then measured at 570 nm in a microplate reader. Absorbance of
vehicle-treated cultures was considered as 100% cell viability.

4.4. Cytokine Determination

After the exposure to LPS or C-PC for 16 h, cell supernatants were collected and the
content of IL-1β and TNF-α measured using commercially available ELISA kits, according
to the manufacturer’s instructions (Antigenix America, Huntington Station, NY, USA). The
absolute concentration of cytokines (pg/mL) in the culture medium was calculated from
standard curves obtained with known amounts of IL-1β or TNF-α.

4.5. Real-Time Polymerase Chain Reaction (Real-Time PCR)

After the exposure to LPS or C-PC for 6 h, total RNA was extracted from cells by
QIAzol (Invitrogen), according to the manufacturer’s instructions. The amount and purity
of RNA extracted were assessed by RNA 6000 Nano assay in an Agilent BioAnalyser
(Thermo Scientific, Milan, Italy). Reverse transcription was performed with SuperScript IV
reverse transcriptase (Thermo Fisher Scientific, Milan, Italy). The real-time PCR reaction
was performed as described previously [77]. Primers were selected using the NCBI primer
designing tool (Primer-Blast), constraining the choice to specific amplification of only one
target amplicon for each gene mRNA and to the absence of primer dimers and secondary
structures. Primer sequences were: β-actin, 5′-GATCAGCAAGCAGGAGTACGATGA-3′;
5′-GGTGTAAAACGCAGCTCAGTAACA-3’; IL-1β, 5′-CGTCCTCTGTGACTCGTGGG-3′;
5′-ATGGGTCAGACAGCACGAGG-3′; TNF-α, 5′-GCAGGTTCCGTCCCTCTCAT-3′; 5′-
TGCCAGTTCCACATCTCGGA-3′. Amounts of amplified product were calculated using
linear regression analysis from standard curves, demonstrating amplification efficiencies
ranging from 95 to 100%. Dissociation curves were generated for each primer pair, showing
single-product amplification. Data were normalized to expression levels of the reference
gene β-actin and are presented as specific ratio between the gene of interest and β-actin.

4.6. Immunofluorescence

Microglia, grown on coverslips in 24-well plates, were treated for 90 min with 100 µg/mL
C-PC, 100 ng/mL LPS, or their association for the analysis of NF-κB activation. Cells were
fixed with 4% paraformaldehyde (pH 7.4) for 15 min at room temperature. After blocking
nonspecific binding sites with 5% normal goat serum/0.1% Triton X-100 in PBS (blocking
solution) for 1 h at room temperature, cells were incubated with the primary antibody anti-
p65 (NF-κB p65, 1:500) for 2 h at room temperature. Then, cells were extensively washed
with PBS and incubated with the Alexa Fluor 555 secondary antibody (1:1000) for 1 h at
room temperature. Both antibodies were diluted in the blocking solution. Negative control
omitted the primary antibody. Nuclei were stained with 4,6-diamidino-2-phenylindole
(DAPI; 0.1 µg/mL) and coverslips were mounted on microscope slides with Fluoromount-G
mounting medium (Fisher Scientific, Milan, Italy) [44]. All images were acquired using a
confocal laser-scanning microscope (Zeiss LSM 800; Carl Zeiss AG, Germany). Acquisition
settings were kept constant to permit a direct comparison of all images.

4.7. Statistical Analysis

Results are given as mean± SEM. Data were analyzed using GraphPad Prism Software,
version 6.0 (GraphPad Software, Inc., San Diego, CA, USA). Statistical analyses were
performed by one-way analysis of variance (ANOVA) followed by Holm–Sidak’s post hoc
test for multiple comparison. Statistically significant differences were taken at p < 0.05.
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