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Abstract

The modeling of unsaturated groundwater flow is affected by a high degree

of uncertainty related to both measurement and model errors. Geophysi-

cal methods such as Electrical Resistivity Tomography (ERT) can provide

useful indirect information on the hydrological processes occurring in the

vadose zone. In this paper, we propose and test an iterataed particle filter

method to solve the coupled hydrogeophysical inverse problem. We focus on

an infiltration test monitored by time-lapse ERT and modeled using Richards

equation. The goal is to identify hydrological model parameters from ERT

electrical potential measurements. Traditional uncoupled inversion relies on

the solution of two sequential inverse problems, the first one applied to the
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ERT measurements, the second one to Richards equation. This approach

does not ensure an accurate quantitative description of the physical state,

typically violating mass balance. To avoid one of these two inversions and

incorporate in the process more physical simulation constraints, we cast the

problem within the framework of a SIR (Sequential Importance Resampling)

data assimilation approach that uses a Richards equation solver to model the

hydrological dynamics and a forward ERT simulator combined with Archie’s

law to serve as measurement model. ERT observations are then used to up-

date the state of the system as well as to estimate the model parameters

and their posterior distribution. The limitations of the traditional sequential

Bayesian approach are investigated and an innovative iterative approach is

proposed to estimate the model parameters with high accuracy. The numer-

ical properties of the developed algorithm are verified on both homogeneous

and heterogeneous synthetic test cases based on a real-world field experiment.

Keywords: Particle filter, Data Assimilation, Coupled Hydro-Geophysical

Inversion, Electrical Resistivity Tomography

1. Introduction1

Electrical Resistivity Tomography (ERT) is a practical, cost-effective, in-2

direct tool for collecting soil and moisture content data in subsurface environ-3

ments [1–5]. When applied to the simulation of the dynamics of the vadose4

zone, ERT relies on the inversion of the direct current (DC) flow equation pro-5

viding an image of the electrical resistivity [4], with the soil moisture pattern6

reconstructed from petrophysical relations, such as, e.g., Archie’s Law [6]. A7

second inverse problem is finally used to estimate hydrological model param-8
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eters. It is well known that inverse modeling of a parabolic diffusion equation9

is generally an ill-posed problem and regularization techniques are often em-10

ployed to achieve well-posedness [2, 7–9]. Traditional geophysical inversion11

is at the same time an over- and under- constrained problem, in the sense12

that the problem character can change in space, and benefits from the use of13

prior information embedded in the regularization procedure [10]. However,14

imposing smoothness via regularization may introduce inaccuracies or even15

unphysical constraints into the estimates of the hydrological properties [11].16

ERT has been widely used to monitor vadose zone processes [e.g. 1, 12, 13]17

but it is well known that the inversion procedure can produce mass balance18

errors [14] especially when surface ERT is used to monitor water infiltration19

into soil [15, 5, 16] due a rapid decrease of ERT resolution with depth. To20

cope with this limitation coupled hydro-geophysical approaches seem highly21

promising [17]. By these procedures, the spatial distribution and the tem-22

poral dynamics of the geophysical properties are enforced by a physically23

based hydrologic model combined with petrophysical relations, and explicit24

assumptions for spatial and temporal regularization are no longer needed.25

Even though the coupled approach avoids an independent geophysical26

inversion, estimation of the hydrologic properties (e.g. soil hydraulic pa-27

rameters) is still a highly non-linear, mixed-determined inversion problem.28

For these reasons, although parameter estimation can be made theoretically29

well-posed, the physical interpretation of the estimated parameters is still30

not well understood [18]. The presence of structural model errors (model31

approximations, uncertain initial conditions, etc.), as well as measurement32

uncertainties, suggests that a deterministic search for the best parameters is33
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not likely to converge to a single set of “true” values. A stochastic approach34

based on ensemble forecasting seems therefore the most appropriate solution35

procedure [18, 19].36

Sequential Data Assimilation (S-DA) methods (typically called filters)37

have been successfully applied to improve model predictions by incorporat-38

ing real system observations onto the dynamical model and have been already39

employed to correct the hydrological states of groundwater infiltration mod-40

els [20]. Their ability to include structural and parametric error distributions41

make them particularly attractive for application to the problem of dynamic42

parameter estimation [18]. Because of the high nonlinearity of porous media43

infiltration models, the typical filtering method used in hydrological applica-44

tions is the Ensemble Kalman filter (EnKF) [21]. Notwithstanding the linear45

optimality properties of the Kalman Gain [22], the main limitation of EnKF46

is that it is based on the Gaussian approximation of the filtering probability47

distribution, possibly leading to inaccurate results or even divergence of the48

posterior pdfs in presence of a strongly nonlinear relation between observa-49

tions and state variables [23–25]. To cope with arbitrary non-Gaussian prior50

distributions, the family of particle filters is a highly attractive alternative, as51

it is directly based on the Bayesian filtering rule [26, 27]. Particle filters have52

been recently introduced into hydrology [28–31, 25] and used also for estima-53

tion of hydrological model parameters [32–34]. All these latter studies focus54

on the assimilation of direct hydrological information (e.g. discharge [25] or55

soil moisture data [35–37]). A coupled hydro-geophysical parameter estima-56

tion procedure by S-DA has been presented by [38], but its ability to provide57

accurate estimates of unknown model parameters remains to be proven, as58
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shown by the consistent underestimation of saturated hydraulic conductivity59

in the results of [38]. As a matter of fact, the structural uncertainties of both60

the hydrologic evolution and geophysical observation models strongly affect61

the estimated parameters. Sequential filters correct both model parameters62

and state variables at each assimilation time, yielding identified parameter63

values that vary in time [18]. Compared to smoothers or other more sofisti-64

cated inversion methods (e.g., Markov Chain Monte Carlo methods [39, 40])65

the filtering approach is computationally more efficient when dealing with a66

detailed and spatially resolved simulation model such as the coupled Richards67

equation-ERT solver here employed.68

In this paper we propose an iterative procedure to overcome the prob-69

lem of the sensitivity to the initial guess and provide accurate identifica-70

tion of unknown model parameters from indirect state information. The71

method is grounded on a Sequential Importance Resampling (SIR) particle72

filter, already tested in similar hydrological applications [25, 38], whereby an73

ERT forward simulation model is embedded into the observation equation74

and both parameter and state distributions are updated at each assimilation75

step. Iteration is introduced by sequentially repeating until convergence the76

same simulation period, using as initial guess the state values and parameter77

pdfs evaluated from the results of the previous iteraton. Compared to more78

sofisticated statistical updates, the use of iterations allows the inclusion of79

a less accurate but computationally more efficient inversion scheme able to80

cope with large dimensional problems.81

We validate the methodology on synthetic test cases and apply the meth-82

ods to a field experiment comparing the results of our procedure with tra-83
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ditional uncoupled inversion of ERT data. We focus on both homogeneous84

and heterogeneous systems with parameters distributed by zones. The pro-85

posed procedure displays convergence of the posterior distribution towards86

the correct value of the hydraulic conductivity in both the homogenous and87

heterogeneous scenarios independently from the initial guess. The numer-88

ical results obtained from the synthetic test cases show that the iterative89

approach yields faster convergence with respect to standard DA methods,90

using consistently smaller ensemble sizes and a drastic reduction of the num-91

ber of forward model runs, in particular for the heterogeneous test case. The92

results obtained in the application to the real world problem are consistent93

with the desired physical constraints at relatively low computational costs,94

thus improving significantly on existing coupled flow-ERT procedures.95

2. Parameter estimation by sequential data assimilation96

The state space model describing the S-DA problem can be written as:97

xt = F(xt−1, λ, wt), (1)

yt = H(xt, λ, vt), (2)

where xt is the state vector at assimilation time t, F is the evolution operator,98

λ is the time-independent parameter vector, wt is the stochastic model error,99

yt is the observation vector, H is the observation model, and vt is the stochas-100

tic error term in the observations. Model uncertainty is connected, e.g., to101

structural model errors, parameter errors, initial solution errors, etc. Casted102

in a stochastic framework, the objective of S-DA is to estimate the posterior103

probability density function (pdf) of the state vector at time t conditioned to104
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the observations yobst that become available at time t. Because of model non-105

linearity, Monte Carlo-based approaches are used to discretize the state and106

observation pdfs in equations (1) and (2). To relax the Gaussian hypothesis107

inherent to Kalman-filter based algorithms we estimate the state and pa-108

rameter pdfs employing a SIR (Sequential Importance Resampling) particle109

filter, which has been successfully tested in hydrological applications [25] in110

standard S-DA mode.111

2.1. Sequential Importance Resampling for parameter estimation112

Let the state vector xt be characterized by a probability density function113

denoted by p(xt) and let p(λ) be the prior distribution of the parameters114

λ. The sequence of random variables {x0, x1, . . . } defines a Markov chain115

where (1) and p(wt) uniquely identify the transition probability density func-116

tion p(xt|xt−1, λ). The variance associated to p(xt) typically increases with117

time during the numerical simulation, leading to highly uncertain forecasts.118

Our goal is to obtain the posterior distribution of the parameters λ and of the119

state variables xt, conditioned to the field observations yobs1:t , i.e., the filtering120

pdf p(xt, λ|yobs1:t ). Sequential data assimilation allows to compute a posterior121

distribution as soon as a field observation yobst becomes available. For this122

reason in the following we will assume that the parameters are time depen-123

dent, λt, in the sense that they may change when their posterior distribution124

changes.125

The S-DA technique consists of two basic steps that are repeated sequen-126

tially. In the forecast step the state pdf is propagated in time to obtain the127

forecast pdf, p(xt, λt|yobs1:t−1). This is expressed by the Chapman-Kolmogorov128
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equation as:129

p
(
xt, λt|yobs1:t−1

)
=

∫
p (xt, λt|xt−1, λt−1) p

(
xt−1, λt−1|yobs1:t−1

)
dxt−1dλt−1. (3)

Note that in this step we have the effective propagation from time t − 1 to130

time t of the system state by formal application of (1) using constant values131

of the parameters. The second step is called analysis or update and consists132

in correcting the forecast pdf using the new field observation yobst . Bayes’133

theorem allows the factorization of the filtering pdf as:134

p
(
xt, λt|yobs1:t

)
= Cp

(
yobst |xt, λt

)
p
(
xt, λt|yobs1:t−1

)
,

where C is a normalization constant and the other two factors are the like-135

lihood function, to which we assign a known distribution, and the forecast136

pdf, computed in (3), respectively. The analysis step essentially consists in a137

reinitialization of the system state variables and of the parameters given the138

forecast and the observations.139

In the SIR algorithm the forecast and filtering pdfs are approximated140

using an ensemble of N random samples (also called particles), {x(i)t , λ
(i)
t },141

i = 1, . . . , N , with associated weights {ω(i)
t }, i = 1 . . . , N :142

p
(
xt, λt|yobs1:t−1

)
≈

N∑
1=1

ω
(i−)
t δ

(
xt − x(i−)

t

)
δ
(
λt − λ(i−)

t

)
, (4)

p
(
xt, λt|yobs1:t

)
≈

N∑
1=1

ω
(i+)
t δ

(
xt − x(i+)

t

)
δ
(
λt − λ(i+)

t

)
, (5)

where δ(·) is the Dirac delta function, and superscripts ’−’ and ’+’ denote143

the realizations before and after the update, respectively. The SIR algorithm144

starts by assigning uniform weights to the N realizations of the ensemble.145
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The Monte Carlo discretization reduces the forecast step to the propagation146

in time of the ensemble members using the system dynamics and, in the up-147

date step, new weights are calculated recursively, by means of the likelihood148

function, as:149

ω
(i)
t = Cω

(i)
t−1p(y

obs
1:t |x

(i−)
t , λt), (6)

where C is a normalization constant. To avoid the ensemble deterioration150

phenomenon [41], resampling is performed when Neff < 0.5N , where Neff151

is the effective ensemble size, evaluated as:152

Neff =

[
N∑
i=1

(ω
(i)
t )2

]−1

,

and is representative of the number of realizations that have non-negligible153

weights. We adopt the systematic resampling method [42], to duplicate sam-154

ples with large weight and discard samples with negligible weight. The re-155

sampling procedure maintains the ensemble size equal to N by generating156

new members using parameters drawn from the posterior distribution and157

assigning to them uniform weights. The duplicated realizations will then dif-158

ferentiate in the following forecast step. If the resampling step does not occur,159

i.e., all the particles have sizable weights, then x
(i+)
t = x

(i−)
t , λ

(i+)
t = λ

(i−)
t and160

only the weights are changed according to (6), yielding an effective weighted161

distribution given by (4) and (5).162

2.2. Iterative parameter estimation163

Since the resampling step is a reinitialization of the system state variables164

at an observation time, it is convenient to use this step to sample new realiza-165

tions from the posterior pdf of the parameters. Let {λ̂(i)t }, i = 1, . . . , N be the166
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parameter values of the realizations after the resample. Most of these param-167

eters are equal, the number of different values corresponding to the number168

of realizations that have non-negligible weights. Maintaining these values169

for the parameter update, i.e. λ
(i+)
t = λ̂

(i)
t , may yield an impoverishment170

of the ensemble with the consequence that the posterior distribution is not171

adequately explored and erroneous parameter estimations may be identified.172

This can be exemplified in the case that only one realization is duplicated173

after the resample. In this case the posterior distribution collapses in one174

single value that cannot change in the subsequent updates. To guarantee a175

good performance of the filter it is then necessary to perturb the duplicated176

parameters to effectively explore the relevant pdf. Moradkhani et al. [28]177

propose a perturbation of the parameters with independent additive Gaus-178

sian variates, λ
(i+)
t = λ̂

(i)
t + ξ

(i)
t , ξ

(i)
t ∼ N(0, V ar(λ

(i−)
t )), while [43, 44] use179

a Markov-Chain sampling of the parameters with the computation of the180

Metropolis ratio to accept or eventually reject the sampled values. While the181

first approach requires a large number of realizations, the second strategy182

incurs in increased computational effort due to the repetition of the fore-183

cast step necessary for the computation of the Metropolis ratio. Here we184

propose to sample the updated parameters from a probability distribution185

that maintains the initial structure, but employing the moments updated186

with the ensemble statistics. For example, assuming an initial distribution187

defined only by the first and second moments (e.g., uniform, normal, log-188

normal distributions), the proposed scheme updates the expected value µλt189

and the coefficient of variation cvλt on the basis of the prior {λ(i−)
t } and the190

resampled {λ̂(i)t } parameters. To this aim, we impose that the expected value191
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of the new distribution be given by the mean of the resampled parameters:192

µλt = E[λ̂
(i)
t ], (7)

and the coefficient of variation be given by the maximum between the coef-193

ficient of variations of the forecasted and the updated parameters,194

cvλt = s ·max
(
cv
λ
(−)
t
, cvλ̂t

)
, (8)

where s is a tuning coefficient used to force a gradual reduction of the variance195

of the distribution (typically s=0.9) and the use of the maximum value avoids196

the fast collapse of the filter when only a few realizations are resampled. The197

sequence of posterior parameter distributions obtained with this procedure198

needs several updates to converge and hence we iterate the filtering procedure199

by cyclic repetition of the assimilation interval until the resampling step is200

no longer performed at any update of the period. This stopping criterion201

ensures that no further progresses are obtained by continuing the iterations.202

A more computationally savvy approach would be to stop on the basis of203

average residual or parameter update metrics. At each restart of the filtering204

process (external iteration) the mean and variance of the prior distribution205

of the parameters is updated by:206

µk+1
λ0

=
1

nt

nt∑
t=1

µkλt ,

cvk+1
λ0

=
1

nt

nt∑
t=1

cvkλt ,

where nt is the number of updates in each S-DA cycle (k-th external iter-207

ation). Instead of restarting the S-DA procedure with the posterior distri-208

bution at the previous S-DA cycle, we use a “mean posterior disitribution”209
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to reduce the effect of the initial bias on the parameter estimation. The210

procedure is illustrated schematically in Figure 1.211

3. Evolution and Observation models of water infiltration and ERT212

In this study we are interested in applying the S-DA method to a coupled213

hydro-geophysical model. The evolution model (1) describes the soil mois-214

ture dynamics in the vadose zone and ERT observations are used to update215

system state and parameters by means of a geophysical electrical current flow216

observation model (2).217

3.1. Evolution model218

We use Richards’ equation to describe the infiltration process in a variably-219

saturated isotropic porous medium:220

SsSw (ψ)
∂ψ

∂t
+ φ

∂Sw (ψ)

∂t
= ~∇ ·

[
KsKr (ψ)

(
~∇ψ + ηz

)]
+ q, (9)

where Ss is the elastic storage term, Sw is water saturation, ψ is water pres-221

sure, t is time, φ is the porosity, Ks is the saturated hydraulic conductivity222

tensor, Kr is the relative hydraulic conductivity, ηz = (0, 0, 1)T with z the ver-223

tical coordinate directed upward and q is a source/sink term. The saturated224

hydraulic conductivity is modeled as a diagonal matrix and its components225

Kx, Ky and Kz are the saturated hydraulic conductivities along the coordi-226

nate directions x, y and z, respectively. Equation (9) is highly nonlinear due227

to the pressure head dependencies of saturation and relative hydraulic con-228

ductivity. These constitutive functions are modeled using the characteristic229

12



… …

update forecast update

Evolution Model

Observation Model

Observation

Time

Start End

Sequential Data Assimilation

External Iteration

Restart ?

STOP

No

Yes

Figure 1: Scheme of the iterative particle filter method (modified from [45]). The data

assimilation cycle starts with a distribution of the system state at time t−1 which is used

by the evolution model to provide a forecast at time t. The forecast state is converted

by the observation model into a forecasted observation which is combined with the field

observation yt to produce the update at time t. When all the available data are assimilated,

the data assimilation cycle is restarted (k-th external iteration) until convergence of the

model parameter λt (see main text for details).
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relations proposed by [46]:230

Sw (ψ) =

(1− Swr) (1 + βψ)−m + Swr ψ < 0,

1 ψ ≥ 0,

(10)

Kr (ψ) =

(1 + βψ)−m/2
[
(1 + βψ)m − βmψ

]2
ψ < 0,

1 ψ ≥ 0,

(11)

where Swr is the residual water saturation, βψ = (ψ/ψs)
α, ψs is the capillary231

or air entry pressure, α is a constant and m = 1 − 1/α , with 1.25 < α <232

6. Equation (9) is numerically solved using the subsurface module of the233

CATHY model (CATchment HYdrology [47]), a linear tetrahedral finite ele-234

ment method with backward Euler scheme with adaptive time stepping and235

Newton-like iterations for the solution of nonlinear system [48]. The system236

state vector xt of (1) collects the nodal pressure head ψ at simulation time t.237

The nonlinear function F is a formal representation of the numerical solver238

and comprises a number of time steps to advance within the assimilation239

interval [t− 1, t]. The stochastic noise wt, kept constant during the forecast240

step, represents model uncertainty and is generally specified by a normal or241

lognormal distribution of the parameters.242

3.2. Observation model243

We monitor the infiltration process with ERT measurements. ERT emits244

direct current (DC) from evenly spaced electrodes installed at the soil sur-245

face and monitors the electrical potential differences at other locations. The246

DC injection pairs are moved sequentially to generate a number of electri-247

cal potential fields. Using moisture content-resistivity relationships (e.g..,248
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Archie’s Law [49, 50]) and assuming that changes in conductivity correspond249

to changes in moisture content, the water flow in the vadose zone can be mon-250

itored [17, 38, 51]. The intensity of the electrical potential field Φ induced in251

the soil by the input current can be modeled as [51]:252

−~∇ ·
[
κ (Sw) ~∇Φ

]
= I [δ (~r − ~rS+)− δ (~r − ~rS−)] , (12)

where κ is the scalar electrical conductivity of the bulk (porous medium253

plus contained fluid), I is the applied current, δ is the Dirac delta function,254

and ~rS+ and ~rS− are the current source and sink electrode position vectors,255

respectively. The soil electrical conductivity is related to saturation accord-256

ing to the following petrophysical relationship that is derived from Archie’s257

law [6]:258

κ (Sw) = κ (t0)

(
Sw (t)

Sw (t0)

)n
, (13)

where Sw(t0) and κ(t0) are the initial water saturation and the corresponding259

initial electrical conductivity of the soil, respectively, and n is a dimensionless260

parameter generally calibrated in the lab using soil samples. Since water sat-261

uration varies during the infiltration process, the induced electric field is time262

dependent. Let yobst be the vector collecting the electrical potential differences263

that are observed at the measurement electrodes at time t. Equations (10)-264

(11), (12) and (13) imply that there exists a nonlinear relation between the265

water pressure in the soil and the electrical potential differences at all elec-266

trodes. In fact, van Genuchten relations (10)-(11) and Archie’s law (13) allow267

us to calculate the soil electrical conductivity field from the water pressure.268

Equation (12) is solved numerically using a three-dimensional linear finite269

element solver. In order to avoid boundary effects on the simulated electrical270
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potential, the model domain used to simulate the infiltration experiment for271

both the hydrological and DC current models is enlarged in the three spatial272

directions to accommodate the geophysical simulations. The solution of (12)273

gives the electrical potential differences yt,i, i = 1, . . . , Nobs, at the Nobs elec-274

trode positions to be compared to the corresponding field measurements yobst .275

The general observation model of equation (2) becomes yt = H (ψt), where H276

embeds the nonlinear relation between the soil moisture and the electric po-277

tential. The observation yobst can then be related to the measurement model278

using the measurement uncertainties as:279

yobst = yt (1 + vt) ,

where vt is the observation error, modeled as an unknown realization of a280

normal random variable with zero mean and standard deviation equal to σy.281

The term vt incorporates both measurement errors and observation model282

uncertainties. From the previous equation and the probability distribution283

of vt we can now explicitly derive the expression for the likelihood function284

p(yobst |xt), which in the case of a normal distribution becomes:285

p
(
yobst |xt

)
= C · exp

−1

2

Nobs∑
j=1

(
yobst,j − yt,j
σyyt,j

)2
 ,

where C is a normalization constant. This pdf is estimated from the MC286

ensemble, hence completing the overall inversion algorithm.287

4. Experimental Results288

The performance of the proposed approach was tested on a controlled289

infiltration field experiment. First, using the geometry of the real case study,290
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Figure 2: Schematic representation of the system geometry (a) and time-behavior of the

infiltration flux rates imposed at the surface boundary (b). Black dots indicate the time

of ERT measurements.
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Table 1: Time invariant model parameters

Parameter Description Unit Value Reference

Evolution model

φ Soil porosity - 0.33 [52]

Ss Elastic storage m−1 5.0E-04 Assumed

Swr Residual saturation - 0.003 [53]

ψr Capillary pressure m -0.185 [53]

α VG model parameter - 2.0 [53]

Observation model

n Archie’s law parameter - 1.27 [52]

Sw(t0) Initial value of Sw - 0.21 Field data

κ(t0) Initial value of κ S m−1 7.69E-04 Field data
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a synthetic problem is designed in order to assess the convergence properties291

of the developed scheme, then, the real field experiment is simulated.292

The controlled infiltration experiment is described in [54] and is similar to293

a previous experiment discussed by [55]. The experimental site is located in294

Grugliasco (Turin, Italy), nearby the campus of the Agricultural Faculty of295

the University of Turin. It is characterized by a regular stratigraphic sequence296

of sandy soil composed mainly of eolic sands with low organic content [52,297

56]. In the unsaturated zone, sand grains are relatively homogeneous with298

a median diameter (d50) of 200 µm and porosity of φ = 0.33 forming a299

homogeneous and isotropic soil in the horizon interested by the infiltration300

process [52]. The water table is located approximately 20 m below the surface301

and the vadose zone is not influenced by the underlying aquifer. A line of302

sprayers was used to wet an area of about 3 m×20 m for 6 hours using303

variable in time irrigation rates (shown in Figure 2(b)).304

The infiltration front was monitored by means of both ERT and GPR305

WARR surveys [54] along a cross section of the irrigated area. ERT was306

performed in time-lapse mode using a dipole-dipole configuration, using 24307

electrodes placed on the soil surface with a regular spacing of 0.2 m. ERT308

data were acquired before irrigation (background ERT), during short in-309

tervals within the irrigation period, and after the end of irrigation for the310

following 24 hours. The exact timings of the ERT acquisitions used in the311

data assimitation procedure (i.e. during and after irrigation) are shown as312

bullets in Figure 2(b).313

Soil samples at different depths were collected and used to obtain labora-314

tory estimates of the hydrological parameters Ss, φ, α, ψs, and Swr, as well315
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as Archie’s law constant n. Initial volumetric water content was estimated316

from GPR measurements at 0.07 m3 m−3, corresponding to an initial water317

saturation Sw(t0) = 0.21, while background ERT measurements were used to318

determine the initial soil electrical conductivity κ(t0) = 7.69 × 10−4 S m−1,319

corresponding to a resistivity of 1300 Ω m. This value is in accordance with320

Archie’s law parameter calibrated during the laboratory experiments [52].321

The values of these parameters are reported in Table 1.322

Inverted resistivity data, obtained from the uncoupled approach devel-323

oped by [4], revealed that irrigation was not uniformly distributed in the324

direction orthogonal to the sprinkler line, probably due to the presence of325

wind [54]. This was taken into account in order to properly define the top326

boundary conditions and the irrigation flux was thus modeled with a Gaus-327

sian distribution centered at 2.5 m (top boundary), with variance equal to 0.6328

m, both values calculated such that the total flux equals the real irrigation329

rate.330

The model of the field experiment is developed using a vertical cross-331

section orthogonal to the irrigation line, whose schematic representation is332

illustrated in Figure 2(a). For the hydrologic simulation, no-flow boundary333

conditions (BCs) were set all over the model domain, except for the top334

boundary where the irrigation rate was imposed as a Neumann flux. Spa-335

tially varying input infiltration is considered as a potential rate, and actual336

infiltration is evaluated based on system state condition allowing the switch-337

ing between Neumann and Dirichlet BCs in the case of ponding [47].338

The finite element grid of the hydrologic model consists of 9792 nodes339

and 49500 elements while the stationary geophysical model was solved on an340
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enlarged mesh characterized by 21240 nodes and 112404 elements.341

4.1. Synthetic case342

In the synthetic cases, a forward simulation of both the hydrological and343

the ERT models with pre-imposed parameters was used to generate the true344

state and the ERT measurements. We are interested in identifying saturated345

homogeneous or spatially heterogeneous hydraulic conductivity, simulated346

with a lognormal distribution to ensure positivity of the parameters val-347

ues [e.g. 57, 58]. All other model parameters are based on the values used348

in the field case study as listed in Table 1. The synthetic dataset of ERT349

observations was generated by the coupled hydro-geophysical forward model350

assuming the same dipole-dipole configuration of the field experiment. It was351

then used to constrain the particle filter simulations assuming different levels352

of measurement errors (σy = 5 - 20%).353

The convergence of the proposed coupled inversion method is tested by354

looking at the behavior of a number of error statistics. The discrepancy be-355

tween measured and simulated observations (electrical potential at the elec-356

trodes) is evaluated in terms of ensemble mean relative error (εy), maximum357

relative error (εy,max) and root mean square error (RMSEy):358

εy =
1

N

N∑
i=1

[
1

Nobs

Nobs∑
j=1

|yi,Φt,j − yobst,j |
|yobst,j |

]

εy,max = maxi

{
maxj

{
|yi,Φt,j − yobst,j |
|yobst,j |

}}

RMSEy =
1

N

N∑
i=1

 1

Nobs

√√√√∑
j=1

Nobs

|yi,Φt,j − yobst,j |2

|yobst,j |2


i
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We also look at the L2-norm of the error εψ between the true and the sim-359

ulated system state values, soil water pressure head, named the pressure360

error:361

εψ = ‖ψ̄t − ψtruet ‖2

where ψ̄t is the ensemble mean pressure field at time t. For all the simulations362

we require a fixed number (8) of iterations chosen so that convergence is363

reached within a reasonable computational time and a reliable assessment of364

error statistics is obtained. The use of one of the stopping criteria proposed365

in section 2.2 would yield faster convergence in all test cases.366

4.1.1. Homogeneous test case367

In this test case, an isotropic and homogeneous soil with hydraulic con-368

ductivity equal to Ks = 10−5 [m s−1] was employed. The saturated hydraulic369

conductivity tensor is thus the only unknown parameter λt = {Ks} with370

Kx = Ky = Kz (homogeneous and isotropic soil).371

A preliminary sensitivity analysis on the ensemble size carried out with372

N = 20, 50, 100 suggests that 20 particles are enough for this case study to373

obtain reliable estimates. Hence, a value N = 20 particles is used to test the374

performance of the method with the different measurement errors. Figure 3375

reports the convergence results in terms of both parameter values (left panel)376

and errors (right panel). To better illustrate the behaviour of the pdf of the377

hydraulic conductivity during the iterative procedure, the simulation results378

obtained with 100 particles are also shown (Figure 4).379

The hydraulic conductivity estimated by the iterative particle filter method380

is shown to converge to the true value Ktrue
s as the number of updates is suf-381

ficiently large (Figure 3). The number of updates necessary for convergence382
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Figure 3: Synthetic test case results: convergence of the hydraulic conductivity (a,c,e) and

relative errors between true and simulated observations (b,d,f). Mean relative error (εy),

Mean RMSEy and Maximum Relative error (εy,max) are shown. The performance of the

method for different measurements error is illustrated: (a,b) σΦ = 5% with measurements

not randomly perturbed, (c,d) σΦ = 5%, and (e,f) σΦ = 20% with randomly perturbed

measurements. Red dots indicate the true value of Ks. The roman numerals indicate the

external iteration step. Each external iteration consists of 8 SIR updates
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(a)

(b)

Figure 4: Synthetic test case results: pdf of the hydraulic conductivity normalized on

the maximum value of the pdf. Panel (a) and (b) refer to the first and second external

iteration of the SIR method, respectively. The simulation was run with an ensemble size

N=100. Dotted lines indicate the ensemble mean and the red line indicates the true value

of Ks.
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Figure 5: Spatial distribution of the error εψ, representing the discrepancy between simu-

lated (ensemble mean) and true system state (pressure field).
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depends on the measurement error: when the true observations are assimi-383

lated, i.e. when the observations are not randomly perturbed, the method384

approaches Ktrue
s after four iterations (Figure 3a) but for increasing noise,385

more iterations are needed to achieve convergence. As a matter of fact, for386

σΦ = 5% and 20% the estimated value µλt,k keeps oscillating until the 6th387

and 7th external iteration, respectively (Figure 3(c) and Figure 3(e)). The388

convergence speed depends on σΦ, observing slower convergence for higher389

noises. The results demonstrate that the traditional particle filter (i.e. the390

non-iterative approach) may provide a biased estimate of the model param-391

eter unless larger ensemble sizes are used. This is highlighted in Figure 4392

where the pdf of the hydraulic conductivity at different updates of the first393

and second iterations are shown. If the initial guess of the model param-394

eter is overestimated, the predicted value at the end of the first iteration395

(8th update in Figure 4(a)) is underestimated. This is due to the fact that396

the particle filter has to correct the model parameter more than necessary397

to balance the bias on the predicted state during the initial updates. For398

example, a higher initial estimate of Ks corresponds to a higher infiltration399

capacity and thus causes an over-estimated total infiltrated water, with a400

corresponding over-estimation of the front speed. Hence, at later times, the401

inversion procedure must identify an under-estimated Ks to accommodate402

the slower observed saturation front depth. As a result, the pdf of the param-403

eter is shifted further than necessary on the opposite direction of the initial404

guess. The iterative approach allows the filter to “forget” the initial bias and405

converge more efficiently to the true parameter (Figure 4(b)). The results in406

Figure 5 show that the error εψ develops at the edge of the infiltration front407
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where sensitivities are highest. The iterative procedure successfully reduces408

the discrepancy between simulated and true system state and the restart is409

shown to be fundamental to achieve negligible errors. The traditional SIR410

method corrects also the system state after each update but errors up to411

0.6 m (in term of predicted pressure head) are still observed at the end of412

the first iteration of the sequential procedure. The iterated approach allows413

instead a reduction of the error εy down to negligible values (εy < 10−3 m).414

The synthetic simulations confirmed that the particle filter is an efficient415

method to update the system state and the iterative procedure is shown to416

be essential to provide precise estimates of the model parameters at lower417

computational effort.418

4.1.2. Heterogeneous test case419

The ability of the proposed methodology to estimate multiple model pa-420

rameters is investigated. We consider the same infiltration experiment, now421

characterized by an isotropic heterogenous soil (Figure 6(a-b)). The model422

domain is divided into four zones with different hydraulic conductivities (thus423

providing four unknown model parameters). The physical setting in Fig. 6(a)424

is not intended to represent typical field conditions but aims to provide a sim-425

ple setup generating both vertical and lateral infiltration patterns to test the426

proposed approach in a truly multidimensional heterogeneous setting. The427

results of the iterative SIR scheme, shown in Figure 6(c-d), demonstrate that428

this approach successfully estimates multiple model parameters. To assess429

the sensitivity to the initial condition, we simulated the same test problem430

with different values of the initial guess. Figure 7 reports an example of431

the identification results in the case of underestimated initial solutions. We432
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Figure 6: Heterogeneous test case results: (a) conceptual model of the model domain

(divided into 4 zones with different soil properties) and (b) the simulated soil saturation

at t = 5.5h. Convergence of the hydraulic conductivities of the four zones is shown in

panels c-f. The results are relative to σΦ = 5% with randomly perturbed measurements.
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Figure 7: Heterogeneous test case results: convergence of the hydraulic conductivities

(ensemble mean values) of the four zones (a-d) and mean RMSE (e) for different initial

values µλ0
. The results are relative to σΦ = 5% with randomly perturbed measurements.
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Figure 8: Heterogeneous test case results: comparison of the iterative approach (N = 20)

with a non-iterative simulation with ensemble size N = 160. The convergence of the four

hydraulic conductivities for the iterative (panels a,c,e,g) and non-iterative (panels b,d,f,h)

cases is illustrated (runs with σΦ = 20% and randomly perturbed measurements).
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notice that the behavior of the iterative SIR method is qualitatively similar433

independently on the initial solution, thus confirming the reliability of the434

proposed approach.435

We note that the identification is practically achieved after four iterations,436

for a total of 80 forward model runs. At later iterations the identified values of437

zones 3 and 4 display small oscillations whose amplitude seem to decrease as438

the scheme progresses (Figure 6(e-f)). This is likely due to the fact that both439

zones 3 and 4 receive information from the infiltration experiment at later440

times. At the first 4 observation times the true infiltration front is shallower441

than the material interface, and only the last 4 measurements contribute442

information towards the identification of hydraulic conductivity of zones 3443

and 4.444

To test the improvements obtained by our proposed iterative method445

with respect to standard (non iterative) DA methods, we solve the same446

problem with a one-iteration SIR approach but with an ensemble size N =447

160. This value corresponds the same number of forward model runs used in448

the previous simulations using (pre-fixed) eight iterations. We perform this449

comparison for the case of σΦ = 20% and randomly perturbed measurements.450

The convergence results of the iterative and non-iterative procedures for451

this case are compared in Figure 8. The iterated simulation converges to the452

correct hydraulic conductivities of zones 1, 2 and 3, and only a small dis-453

crepancy persists in the estimation of Ks in zone 4. The value of this bias is454

consistent with the 20% measurement uncertainty, implying that the inverse455

procedure has arrived at the correct solution. On the contrary, the results for456

the non-iterative SIR show a bias in the identification of the parameters of457
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zones 3 and 4 that is larger than the variability dictated by the measurement458

error. The corresponding ensemble means underestimate the true values,459

reflecting the earlier observation that starting from a large Ks leads to an460

underestimation of the parameter value. The final posterior distributions461

of the parameters have a higher ensemble variance than the corresponding462

iterative-results, yielding an uncertain characterization of the soil structure.463

The non-iterative SIR procedure shows a parameter distribution with strong464

variations during the assimilation, corresponding to a large variance of the465

posterior distribution.466

4.2. Field experiment467

The results of the field data inversion are shown in Figure 9. The as-468

similation of ERT measurements provides similar results to the synthetic469

test case, thus confirming the reliability of the method. The iterative par-470

ticle filter is shown to converge to a value of hydraulic conductivity K∗
471

which is independent to the initial guess µλ0 . As a matter of fact, start-472

ing from µλ0 = 10−3 ms−1 the method provides a final estimate K∗ =473

8.9 × 10−6 ± 3.6 × 10−7 ms−1 and starting from µλ0 = 10−7 ms−1, the fi-474

nal estimate is K∗ = 9.8× 10−6 ± 2.9× 10−7 ms−1. Note that in both cases475

the initial guess is two orders of magnitude away from the final estimate476

and the two final intervals for the identified parameter value are overlapping.477

It must be emphasized that the method does not provide just an estimate478

of hydraulic conductivity but a full probability distribution of the estimate.479

As shown by the synthetic test, in the case of large measurement noise, the480

relative errors slightly decrease during the first updates and quickly stabi-481

lize. The residual errors are larger than observed in the synthetic test case482
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Figure 9: Field experiment results: convergence of the hydraulic conductivity (a) and

relative errors (b) for different initial values of hydraulic conductivity µλ0
. The roman

numerals at the top of the panels indicate the external iteration count. Mean relative

error (εy), Mean RMSEy and Maximum Relative error (εy,max) are shown.
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Figure 10: Time-lapse soil saturation estimated by uncoupled inversion (a,c,e) and by the

forward simulation with the hydraulic conductivity estimated by the coupled approach

(b,d,f). The results are shown at (a,b) t = 2h, (c,d) t = 4h, and (e,f) t = 5.5h. The

black contour indicates the area where uncoupled inversion provides unphysical saturation

estimates (Sw > 1). Mass balance (g): the forward simulation (black line) matches the

volume of water injected at the site (red circles with a 5% error bar) while the estimate

from uncoupled inversion of ERT data overestimates the mass of water in the system.
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thus indicating a bias due to external factors not accounted for in the model483

setup. The hydraulic conductivity estimated by the iterative particle filter484

method is shown to converge to the K∗ value. However, the reliability of the485

estimate has to be proven. For this purpose, a forward hydrologic simulation486

is run with Ks = K∗ and the results are compared with field observations487

(Figure 10). The robustness of the estimated parameter is confirmed by the488

spatial agreement of simulated soil moisture fields obtained by the coupled489

and uncoupled inversion procedures (Figure 10(a-f)) and by the excellent490

agreement between the amount of injected water and the predicted mass491

balance (Figure 10(g)). Further comparison between the forward simulation492

and field data are presented in [54] where the simulated infiltration is shown493

to match the front depth estimated by the GPR survey. The discrepancy494

between the simulation and the time-lapse saturation estimated by uncou-495

pled inversion increases for increasing front depth. As a matter of fact the496

resolution of traditional ERT inversion decreases with depth and, given the497

electrode configuration used in this study, the inverted resistivity is not re-498

liable for depth higher than 1 m. In addition, the conversion of inverted499

resistivity to soil saturation by Archie’s law (calibrated in the lab) provided500

regions of Sw > 1 (black contour in Figure 10). Even though these regions501

can be corrected empirically to ensure a consistent saturation field (accord-502

ing to common practice in geophysical applications anyway) the uncoupled503

approach over-estimates the total water present in the system at any time504

(Figure 10). Therefore, while the forward simulation provides a full conser-505

vation of mass, the traditional inversion approach provides a good qualitative506

description of the physical process but does not ensure a correct mass balance507
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(Figure 10g).508

5. Discussion509

The results presented in this paper demonstrate the accuracy and ro-510

bustness of the proposed iterative methodology and highlight the weaknesses511

of both, uncoupled ERT inversion and traditional particle filter applications512

with ERT data. As shown in Figures 3, 4, and 8 for the synthetic test cases513

and in Figure 9 for the field simulations, a single iteration of the particle filter514

method does not provide a reliable estimate of the soil hydraulic conductiv-515

ity. To verify this hypothesis, we use as initial guess the parameter value516

µλ0 = 10−3 m s−1 and then employ the identified parameter µλ8 estimated517

at the end of the first iteration to run a forward simulation of the infiltration518

experiment. In this case, the irrigation intensity is found to be higher than519

the infiltration capacity, thus leading to surface ponding not observed at the520

site during the experiment. Therefore, if the particle filter is used to esti-521

mate the model parameters without enough updates to ensure convergence,522

the method may lead to wrong predictions of the system dynamics. The re-523

sults of our simulations further show that a non-iterative SIR approach with524

a large ensemble is not fully capable of performing a correct identification,525

suggesting that the iterative approach is computationally more efficient for526

solving the problem of interest.527

The proposed coupled hydro-geophysical modeling framework presents528

the following advantages compared to more traditional approaches: (1) a529

forward geophysical model is used and the inversion of the geophysical data530

is avoided thus guaranteeing physical consistency with the hydrologic quan-531
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tities; (2) the sequential approach provides a dynamic correction of the sim-532

ulated system state, thus correcting intrinsic model errors (i.e. unknown533

initial condition), with relatively small compuational requirements; (3) the534

data assimilation approach is particularly interesting for field applications535

where the geophysical measurements can be affected by external factors (e.g.536

soil evaporation, a rainfall event during the geophysical survey, etc.) that537

can be easily included in the hydro-geophysical modeling framework; (4) the538

filtering approach describes quantitatively both model and observation er-539

rors, and provides the probability density functions of both system state and540

model parameters.541

6. Conclusions542

A sequential Bayesian approach for coupled hydro-geophysical assimila-543

tion of ERT measurements in a variably saturated flow model is presented.544

An innovative iterative approach is proposed to achieve accurate identifica-545

tion of the model parameters. The robustness of the methodology is tested546

on spatially homogeneous and heterogeneous synthetic test cases and vali-547

dated on a field infiltration experiment. We show that the new approach has548

several advantages compared to uncoupled inversion and traditional sequen-549

tial data assimilation techniques. In particular the iterative particle filter550

provides accurate parameter estimation as opposed to traditional SIR that551

may lead to biased results. Further work will focus on testing the method-552

ology for the estimation of multiple and spatially varying parameters (e.g.553

Archie’s law, retention curves, heterogeneous soil, etc.).554

37



7. Acknowledgments555

This study was funded by the University of Padova, Italy, within the556

Research Programme “GEO-RISKS: Geological, morphological and hydro-557

logical processes: monitoring, modeling and impact in the north-eastern558

Italy”, WP4. The authors would like to acknowledge partial funding from559

the EU FP7 project CLIMB (“Climate Induced Changes on the Hydrology560

of Mediterranean Basins - Reducing Uncertainty and Quantifying Risk”) and561

the Italian Ministry of Education, Universities and Research, PRIN 2010-11562

(“Innovative methods for water resources management under hydro-climatic563

uncertainty scenarios”).564

References565

[1] W. Daily, A. Ramirez, D. J. La Brecque, J. Nitao, Electrical resistivity566

tomography of vadose zone water movement, Water Resour. Res. 28567

(1992) 1429–1442.568

[2] T. C. J. Yeh, J. Šimůnek, Stochastic fusion of information for char-569

acterizing and monitoring the vadose zone, Vadose Zone J. 1 (2002)570

207–221.571

[3] Q. Y. Zhou, J. Shimada, A. Sato, Temporal variations of the three-572

dimensional rainfall infiltration process in heterogeneous soil, Water573

Resour. Res. 38 (2002) 1–1–1–15.574

[4] A. Binley, A. Kemma, Dc resisitivity and induced polarization meth-575

ods, in: Y. Rubin, S. S. Hubbard (Eds.), Hydrogeophysics, volume 50,576

Springer, 2005, pp. 129–156.577

38



[5] G. Cassiani, N. Ursino, R. Deiana, G. Vignoli, J. Boaga, M. Rossi, M. T.578

Perri, M. Blaschek, R. Duttmann, S. Meyer, R. Ludwig, A. Soddu, P. Di-579

etrich, U. Werban, Non-invasive monitoring of soil static characteristics580

and dynamic states: a case study highlighting vegetation effects, Vadose581

Zone J. 11 (2012) vzj2011.0195.582

[6] G. E. Archie, The electrical resistivity log as an aid in determining some583

reservoir characteristics, Trans. Am. Inst. Min. Metall. Eng. 146 (1942)584

54–61.585

[7] T. Ha, S. Pyun, C. Shin, Efficient electric resistivity inversion using586

adjoint state of mixed finite-element method for Poissons equation, J.587

Comp. Phys. 214 (2006) 171–186.588

[8] E. Chung, T. Chan, X. Tai, Electrical impedance tomography using589

level set representations and total variation regularizationa, J. Comp.590

Phys. 205 (2005) 357–372.591

[9] K. van den Doel, U. M. Ascher, On level set regularization for highly592

ill-posed distributed parameter estimation problems, J. Comp. Phys.593

216 (2006) 707–723.594

[10] W. Menke, Geophysical Data Analysis: Discrete Inverse Theory, Else-595

vier, New York, 1984.596

[11] J. Rings, C. Hauck, Reliability of resistivity quantification for shallow597

subsurface water processes, J. Appl. Geophys. 68 (2009) 404–416.598

[12] D. J. La Brecque, G. Heath, R. Sharpe, R. Versteeg, Autonomous599

39



monitoring of fluid movement using 3-d electrical resistivity tomography,600

J. Environ. Eng. Geoph. 9 (2004) 167–176.601

[13] A. M. Tartakovsky, D. Bolster, D. M. Tartakovsky, Hydrogeophysical602

approach for identification of layered structures of the vadose zone from603

electrical resistivity data, Vadose Zone J. 7 (2008) 1–8.604

[14] K. Singha, S. M. Gorelick, Saline tracer visualized with three-605

dimensional electrical resistivity tomography: Field-scale spatial mo-606

ment analysis, Water Resour. Res. 41 (2005) W05023.607

[15] D. Michot, Y. Benderitter, A. Dorigny, B. Nicoullaud, D. King, A. Tab-608

bagh, Spatial and temporal monitoring of soil water content with an609

irrigated corn crop cover using surface electrical resistivity tomography,610

Water Resour. Res. 39 (2003) 1138.611

[16] J. Travelletti, P. Sailhac, J. P. Malet, G. Grandjean, J. Ponton, Hy-612

drological response of weathered clay-shale slopes: water infiltration613

monitoring with time-lapse electrical resistivity tomography, Hydrol.614

Process. 26 (2012) 2106–2119.615
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